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This collection of 816 problems is based on the textbook 
"Elementary Physics" edited by Academician G. S. Landsberg. 
For this reason the content and nature of the problems and their 
arrangement mainly conform with this textbook. There is no section 
devoted to "Atomic Physics", however, since the exercises in 
Landsberg's book illustrate the relevant material in sufficient 
detail. Some problems on this subject have been included in other 
chapters. 

The problems, most of which are unique, require a funda-
mental knowledge of the basic laws of physics, and the ability 
to apply them in the most diverse conditions. A number of prob-
lems in the book have been revised from those used at the annual 
contests organized by the Physics faculty of the Moscow Uni-
versity. 

The solutions of all the difficult problems are given in great 
detail. Solutions are also given for some of the simpler ones. 

The book is recommended for self-education of senior pupils 
of general and special secondary and technical schools. Many 
problems will be useful for first and second year students of 
higher schools. 
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PROBLEMS 

CHAPTER 1 

MECHANICS 

1-1. Kinematics of Uniform Rectilinear Motion 

1. A motor-boat travelling upstream met rafts floating down-
stream. One hour after this the engine of the boat stalled. 
It took 30 minutes to repair it, and during this time the boat 
freely floated downstream. When the engine was repaired, the 
boat travelled downstream with the same speed relative to the 
current as before and overtook the rafts at a distance of s = 7.5 km 
from the point where they had met the first time. Determine 
the velocity of the river current, considering it constant. 

2. A man walking with a speed v constant in magnitude and 
direction passes under a lantern hanging at a height H above 
the ground. Find the velocity which the edge of the shadow of 
the man's head moves over the ground with if his height is h. 

3. The distance between a town and a mill is 30 km. A man 
started to walk from the mill to the town at 6:30 a. m., while 
a cyclist left the town for the mill at 6:40 a.m., riding at a 
speed of 18 km/h. The man met the cyclist after walking 6 km. 
Determine at what time they met and the man's speed. 

Also find the place where the man was when he met the 
twelfth bus coming from the town and the number of buses 
which overtook the cyclist if bus traffic begins at 6 a. m. The 
buses leave their terminals every 15 minutes and their speed 
is 45 km/h. 

4. Two trains left Moscow for Pushkino at an interval of 
t = 10 minutes and with a speed of v=30 km/h. What was the 
speed u of a train bound for Moscow if it met these two trains 
at an interval of T =4 minutes? 

5. An engineer works at a plant out-of-town. A car is sent 
for him from the plant every day that arrives at the railway 
station at the same time as the train he takes. One day the 
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engineer arrived at the station one hour before his usual time 
and, without waiting for the car, started walking to work. 
On his way he met the car and reached his plant 10 minutes 
before the usual time. How long did the engineer walk before 
he met the car? Give a graphical solution. 

6. Two landing-stages M and K are served by launches that 
all travel at the same speed relative to the water. The distance 
between the landing-stages is 20 km. It is covered by each 
launch from M to K in one hour and from K to M in two hours. 
The launches leave the two landing-stages at the same time at 
an interval of 20 minutes and stop at each of them also for 
20 minutes. 

Determine: (1) the number of launches in service, (2) the num-
ber of launches met by a launch travelling from M to K, (3) 
the number of launches met by a launch travelling from K to M. 

7. Two tourists who are at a distance of 40 km from their 
camp must reach it together in the shortest possible time. They 
have one bicycle which they decide to use in turn. One of them 
started walking at a speed of v,=5 km/h and the other rode 
off on the bicycle at a speed of 02  = 15 km/h. The tourists agreed 
to leave the bicycle at intermediate points between which one 
walks and the other rides. What will the mean speed of the 
tourists be? How long will the bicycle remain unused? 

8. Two candles of equal height h at the initial moment are 
at a distance of a from each other. The distance between each 
candle and the nearest wall is also a (Fig. 1). With what speed 
will the shadows of the candles move along the walls if one 
candle burns down during the time t, and the other during the 
time t 2? 

9. A bus is running along a highway at a speed of v, = 16 m/s. 
A man is at a distance of a=60 metres from the highway and 
b= 400 metres from the bus. In what direction should the man 
run to reach any point of the highway at the same time as 
the bus or before it? The man can run at a speed of 02 =4 m/s. 

10. At what minimum speed should the man run (see Problem 9) 
to be able to meet the bus, and in what direction? 

11. A man is on the shore of a lake at point A, and has 
to get to point B on the lake in the shortest possible time 
(Fig. 2). The distance from point B to the shore BC =d and 
the distance AC=s. The man can swim in the water with 
a speed of v, and run along the shore with a speed of v2, greater 
than v,. Which way should he use—swim from point A straight 
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to B or run a certain distance along the shore and then swim 
to point B? 

12. A motor-ship travelling upstream meets rafts floating 
downstream. Forty-five minutes (t1) later the ship stops at a 
landing-stage for t 2  = 1 hour. Then the ship travels downstream 
and overtakes the rafts in t3  = 1 hour. The speed of the ship 
relative to the water is constant and equal to 01 =10 km/h. 
Determine the river current velocity v2, considering it constant. 
Consider both graphical and analytical methods of solution. 

13. Mail is carried between landing-stages M and K by two 
launches. At the appointed time the launches leave their landing-
stages, meet each other, exchange the mail and return. If the 
launches leave their respective landing-stages at the same time, 
the launch departing from M spends 3 hours both ways and that 
from K —1.5 hours. The speeds of both launches are the same 
relative to the water. Determine graphically how much later 
should the launch depart from M after the other one leaves K 
for the two to travel the same time. 

14. Use the conditions of the previous problem to determine 
the speed of the launches with respect to the water, the velo-
city of the river current and the point where the launches will 
meet if they leave their respective landing-stages simultaneously. 
The distance between the stages is 30 km. 

15. A rowboat travels from landing-stage C to T at a speed 
of v, =3 km/h with respect to the water. At the same time a launch 
leaves T for C at a speed of 02  = 10 km/h. While the boat moves 
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C 	Q. 	B 	between the landing-stages the launch 
covers this distance four times and 
reaches T at the same time as the 
boat. Find the direction of the cur- 

b rent. 
16. A man in a rowboat must get 

from point A to point B on the op-
posite bank of the river (Fig. 3). The 

	  distance BC = a. The width of the ri- 
ver AC =b. At what minimum speed 

Fig. 3 u relative to the water should the 
boat travel to reach point B? The 
current velocity is vo. 

17. A man must get from point A on one bank of a river to 
point B on the other bank moving along straight line AB (Fig. 4). 
The width of the river AC =1 km, the distance BC =2 km, the 
maximum speed of the boat relative to the water u =5 km/h 
and the river current velocity v = 2 km/h. Can the distance AB 
be covered in 30 minutes? 

18. A launch travels across a river from point A to point B 
on the opposite bank along a straight line AB forming an angle a 
with the bank (Fig. 5). The wind blows with a velocity of u at 
right angles to the bank. The flag on the mast of the launch forms 
an angle p with the direction of its motion. Determine the speed 
of the launch with respect to the bank. Can the data in this 
problem be used to find the river current velocity? 

19. To find the speed of an airplane it is necessary to de-
termine how long it takes it to fly around a closed loop of a 
known length. How long will it take a plane to fly around a square 
with a side a, with the wind blowing at a velocity u, in two cases: 
(1) the direction of the wind coincides with one of the sides of 

Fig. 4 	 Fig. 5 
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the square, (2) the direction of the wind coincides with the dia-
gonal of the square? With no wind the speed of the plane is v, 
greater than u. 

20. Two motor vehicles run at constant speeds vi  and v2  along 
highways intersecting at an angle a. Find the magnitude and 
direction of the speed of one vehicle with respect to the other. 
In what time after they meet at the intersection will the distance 
between the vehicles be s? 

21. Two intersecting straight lines move translationally in oppo-
site directions with velocities v, and v, perpendicular to the 
corresponding lines. The angle between the lines is a. Find the 
speed of the point of intersection of these lines. 

1-2. Kinematics of Non-Uniform and Uniformly 
Variable Rectilinear Motion 

22. A motor vehicle travelled the first third of a distance s at 
a speed of v, = 10 km/h, the second third at a speed of v, = 20 km/h 
and the last third at a speed of v. =. 60 km/h. Determine the 
mean speed of the vehicle over the entire distance s. 

23. Determine the mean velocity and the mean acceleration 
of a point in 5 and 10 seconds if it moves as shown in Fig. 6. 

24. A man stands on a steep shore of a lake and pulls a boat 
in the water by a rope which he takes up at a constant speed of v. 
What will the speed of the boat be at the moment when the 
angle between the rope and the surface of the water is a? 

25. A point source of light S is at a distance 1 from a vertical 
screen AB.  An opaque object with a height h moves translatio-
nally at a constant speed v from the source to the screen along 
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straight line SA. Determine the instantaneous velocity with which 
the upper edge of the shadow of the object moves along the 
screen (Fig. 7). 

26. The coordinate of a point moving rectilinearly along the 
x-axis changes in time according to the law x = 11 +35t +41t2  
(x is in centimetres and t is in seconds). Find the velocity and 
acceleration of the point. 

27. Figures 8 and 9 show the velocity of a body and the change 
in its coordinate (parabola) with time. The origin of time reading 
coincides on both charts. Are the motions shown in the charts 
the same? 

28. Two motor vehicles left point A simultaneously and reached 
point B in to  =2 hours. The first vehicle travelled half of the 
distance at a speed of vi  =30 km/h and the other half at a speed 
of v2 = 45 km/h. The second vehicle covered the entire distance 
with a constant acceleration. At what moment of time were the 
speeds of both the vehicles the same? Will one of them overtake 
the other en route? 

trolls 
5 
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t, seconds 	Fig. 9 

29. A ball freely drops from a height H onto an elastic hori-
zontal support. Plot charts showing the change in the coordinate 
and velocity of the ball versus the time neglecting the duration 
of the collision. The impact is absolutely elastic. 

30. Two steel balls freely drop onto an elastic plate, the first 
one from a height of 111 =44 cm and the second in T > 0 seconds 
after the first from a height of h2  = 11 cm. After a certain time 
the velocities of the balls coincide in magnitude and direction. 
Find the time T and the interval during which the velocities of 
the two balls remain the same. The balls do not collide. 

31. How long will a body freely falling without any initial 
velocity pass the n-th centimetre of its path? 

32. Two bodies are thrown one after the other with the same 
velocities v, from a high tower. The first body is thrown verti-
cally upward, and the second one vertically downward after the 
time T. Determine the velocities of the bodies with respect to 
each other and the distance between them at the moment of 
time t > T. 

33. At the initial moment three points A, B and C are on a 
horizontal straight line at equal distances from one another. 
Point A begins to move vertically upward with a constant ve-
locity v and point C vertically downward without any initial 
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velocity at a constant acceleration a. How should point B move 
vertically for all the three points to constantly be on one straight 
line? The points begin to move simultaneously. 

34. Two trucks tow a third one by means of a pulley tied 
to it (Fig. 10). The accelerations of the trucks are a, and a2. 
Find the acceleration as  of the truck being towed. 

35. A lift moves with an acceleration a. A passenger in the 
lift drops a book. What is the acceleration of the book with 
respect to the lift floor if: (1) the lift is going up, (2) the lift 
is going down? 

36. A railway carriage moves over a straight level track with 
an acceleration a. A passenger in the carriage drops a stone. 
What is the acceleration of the stone with respect to the car-
riage and the Earth? 

37. A man in a lift moving with an acceleration a drops 
a ball from a height H above the floor. In t seconds the accele-
ration of the lift is reversed, and in 2t seconds becomes equal 
to zero. Directly after this the ball touches the floor. What 
height from the floor of the lift will the ball jump to after the 
impact? Consider the impact to be absolutely elastic. 

38. An overhead travelling crane lifts a load from the ground 
with an upward acceleration of a,. At the same time the hook 
of the crane carrying the load moves in a horizontal direction 

with an acceleration a2  relative to the crane. Besi-
des, the crane runs on its rails with a constant speed 
vo  (Fig. 11). The initial speed of the hook relative 
to the crane is zero. Find the speed of the load 
with respect to the ground when it reaches the 
height h. 

39. Body A is placed on a wedge forming an 
angle a with the horizon (Fig. 12). What accele- 

Fig. 10 Fig. 11 
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Fig. 12 Fig. 13 

ration should be imparted to the wedge in a horizontal direction 
for body A to freely fall vertically? 

1-3. Dynamics of Rectilinear Motion 

40. A force F is applied to the centre of a homogeneous 
sphere (Fig. 13). In what direction will the sphere move? 

41. Six forces lying in one plane and forming angles of 60° 
relative to one another are applied to the centre of a homoge-
neous sphere with a mass of m = 4 kg. These forces are consecu-
tively 1, 2, 3, 4, 5 and 6 kgf (Fig. 14). In what direction and 
with what acceleration will the sphere move? 

42. How much does a body with a mass of one kilogram 
weigh? 

43. The resistance of the air causes a body thrown at a cer-
tain angle to the horizon to fly along a ballistic curve. At what 
angle to the horizon is the acceleration of the body directed at 
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the highest point of the trajectory A, if the mass of the body 
is m and the resistance of the air at this point is F? 

44. A disk arranged in a vertical plane has several grooves 
directed along chords drawn from point A (Fig. 15). Several bo-
dies begin to slide down the respective grooves from point A 
simultaneously. In what time will each body reach the edge of 
the disk? Disregard friction and the resistance of the air (Gali-
leo's problem). 

45. What is the minimum force of air resistance acting on a 
parachutist and his parachute when the latter is completely ope-
ned? The two weigh 75 kgf. 

46. What is the pressure force N exerted by a load weighing 
G kgf on the floor of a lift if the acceleration of the lift is a? 
What is this force equal to upon free falling of the lift? 

47. A puck with an initial velocity of 5 m/s travels over 
a distance of 10 metres and strikes the boards. After the impact 
which may be considered as absolutely elastic, the puck travelled 
another 2.5 metres and stopped. Find the coefficient of friction 
between the puck and the ice. Consider the force of sliding 
friction in this and subsequent problems to be equal to the 
maximum force of friction of rest. 

48. The path travelled by a motor vehicle from the moment 
the brakes are applied until it stops is known as the braking 
distance. For the types of tyres in common use in the USSR 
and a normal air pressure in the tubes, the dependence of the 
braking distance on the speed of the vehicle at the beginning 
of braking and on the state and type of the pavement can be 
tabulated (see Table 1). 

Find the coefficient of friction for the various kinds of pave-
ment surface to an accuracy of the first digit after the decimal 
point, using the data in this table. 

49. Determine the difference in the pressure of petrol on the 
opposite walls of a fuel tank when a motor vehicle travels over 
a horizontal road if its speed increases uniformly from 
to v during t seconds. The distance between the tank walls is 1. 
The tank has the form of a parallelepiped and its side walls are 
vertical. It is completely filled with petrol. The density of pet-
rol is p. 

50. A homogeneous rod with a length L is acted upon by 
two forces F, and F, applied to its ends and directed oppositely 
(Fig. 16). With what force F will the rod be stretched in the 
cross section at a distance 1 from one of the ends? 
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Table 1. Braking Distance in Metres 

Pavement 
surface 

Speed, km/h 

10 20 30 	40 	50 	I 	60 70 80 90 	100 

Ice 3.9 15.6 35.3 62.9 98.1 141.4 192.6 251.6 318.2 393.0 

Dry snow 1.9 7.8 17.6 31.4 49.0 70.7 96.3 125.8 159.1 196.6 

Wet wood, 
block 1.3 5.2 11.7 20.9 32.7 47.1 64.2 83.8 106.0 131.0 

Dry wood 
block 0.78 3.1 7.0 12.5 19.6 28.2 38.5 50.3 63.6 78.6 

Wet 
asphalt 0.97 3.9 8.8 15.7 24.5 35.3 48.1 62.9 79.5 98.2 

Dry asphalt 0.65 2.6 5.8 10.4 16.3 23.5 	32.1 41.9 53.0 65.5 

Dry concrete 0.56 2.2 5.0 9.0 14.0 20.2 27.5 35.9 45.4 56.1 

51. A light ball is dropped in air and photographed after it 
covers a distance of 20 metres. A camera with a focal length 
of 10 cm is placed 15 metres away from the plane which the 
ball is falling in. A disk with eight equally spaced holes arran-
ged along its circumference rotates with a speed of 3 rev's in 
front of the open lens of the camera. As a result a number of 
images of the ball spaced 3 mm apart are produced on the film. 
Describe the motion of the ball. What is the final velocity of 
another ball of the same radius, but with a mass four times 
greater than that of the first one? Determine the coefficient of 

I-4 	  L 	 N' 

i Immimm412 
I  

i 	1 	 Fig. 16 
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friction if the weight of the first ball is 4.5 gf. At high velo-
cities of falling, the resistance of the air is proportional to the 
square of the velocity. 

52. Two weights with masses m,== 100 g and m2  = 200 g are 
suspended from the ends of a string passed over a stationary 
pulley at a height of H =2 metres from the floor (Fig. 17). 
At the initial moment the weights are at rest. Find the tension 
of the string when the weights move and the time during which 
the weight m2  reaches the floor. Disregard the mass of the pul-
ley and the string. 

53. A weight G is attached to the axis of a moving pulley 
(Fig. 18). What force F should be applied to the end of the 
rope passed around the second pulley for the weight G to move 
upwards with an acceleration of a? For the weight G to be at 
rest? Disregard the mass of the pulleys and the rope. 

54. Two weights are suspended from a string thrown over 
a stationary pulley.. The mass of one weight is 200 g. The 
string will not break if a very heavy weight is attached to its 
other end. What tension is the string designed for? Disregard 
the mass of the pulley and the string. 

55. Two pans with weights each equal to G =3 kgf are sus-
pended from the ends of a string passed over two stationary 
pulleys. The string between the pulleys is cut and the free ends 
are connected to a dynamometer (Fig. 19). What will the dyna-
mometer show? What weight G1  should be added to one of the 
pans for the reading of the dynamometer not to change after 
a weight G2  = 1 kgf is taken off the other pan? Disregard the 
masses of the pans, pulleys, thread and dynamometer. 

Fig. 17 	Fig. 18 Fig. 19 
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Fig. 20 

56. A heavy sphere with a mass m is suspended on a thin 
rope. Another rope as strong as the first one is attached to the 
bottom of the sphere. When the lower rope is sharply pulled 
it breaks. What acceleration will be imparted to the sphere? 

57. Two weights with masses m, and m2  are connected by 
a string passing over a pulley. The surfaces on which they rest 
form angles a and t with the horizontal (Fig. 20). The right-
hand weight is h metres below the left-hand one. Both weights 
will be at the same height in i seconds after motion begins. 
The coefficients of friction between the weights and the sur-
faces are k. Determine the relation between the masses of the 
weights. 

58. A slide forms an angle of a=30° with the horizon. 
A stone is thrown upward along it and covers a distance of 
/ = 16 metres in 4 =2 seconds, after which it slides down. What 
time t, is required for the return motion? What is the coeffi-
cient of friction between the slide and the stone? 

59. A cart with a mass of M = 500 g is connected by a string 
to a weight having a mass m=200 g. At the initial moment 
the cart moves to the left along a horizontal plane at a speed 
of v0 =7 m/s (Fig. 21). Find the magnitude and direction of 

Fig. 21 Fig. 22 
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the speed of the cart, the place it will be at and the distance 
it covers in t = 5 seconds. 

60. Can an ice-boat travel over a level surface faster than 
the wind which it is propelled by? 

61. The fuel supply of a rocket is m = 8 tons and its mass 
(including the fuel) is M = 15 tons. The fuel burns in 40 seconds. 
The consumption of fuel and the thrust F =20 ,000 kgf are constant. 

(1) The rocket is placed horizontally on a trolley. Find its 
acceleration at the moment of launching. Find how the accele-
ration of the rocket depends on the duration of its motion 
and show the relation graphically. Use the graph to find the 
velocity acquired by the rocket in 20 seconds after it begins 
to move. Disregard friction. 

(2) The rocket is launched vertically upward. Measurements 
show that in 20 seconds the acceleration of the rocket is 0.8 g. 
Calculate the force of air resistance which acts on the rocket 
at this moment. Consider the acceleration g to be constant. 

(3) The acceleration of the rocket is measured by an instru-
ment having the form of a spring secured in a vertical tube. 
When at rest, the spring is stretched a distance of 10 = 1 cm 
by a weight secured to its end. Determine the relation between 
the stretching of the spring and the acceleration of the rocket. 
Draw the scale of the instrument. 

62. A bead of mass in is fitted onto a rod with a length of 
2/, and can move on it without friction. At the initial mo - 
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ment the bead is in the middle of the rod. The rod moves 
translationally in a horizontal plane with an acceleration a in 
a direction forming an angle a with the rod (Fig. 22). Find 
the acceleration of the bead relative to the rod, the reaction 
force exerted by the rod on the bead, and the time when the 
bead will leave the rod. 

63. Solve the previous problem, assuming that the moving 
bead is acted upon by a friction force. The coefficient of fric-
tion between the bead and the rod is k. Disregard the force of 
gravity. 

64. A block with the mass M rests on a smooth horizontal 
surface over which it can move without friction. A body with 
the mass m lies on the block (Fig. 23). The coefficient of fric-
tion between the body and the block is k. At what force F 
applied to the block in a horizontal direction will the body 
begin to slide over the block? In what time will the body fall 
from the block if the length of the latter is 1? 

65. A wagon with the mass M moves without friction over 
horizontal rails at a speed of vo. A body with the mass m is 
placed on the front edge of the wagon. The initial speed of 
the body is zero. At what length of the wagon will the body 
not slip off it? Disregard the dimensions of the body as com-
pared with the length 1 of the wagon. The coefficient of friction 
between the body and the wagon is k. 

66. A weightless string thrown over a stationary pulley is 
passed through a slit (Fig. 24). As the string moves it is acted 
upon by a constant friction force F on the side of the slit. The 
ends of the string carry two weights with masses m1  and m2, 
respectively. Find the acceleration a of the weights. 

67. A stationary pulley is secured to the end of a light bar. 
The bar is placed onto a balance pan and secured in a vertical 
direction. Different weights are attached to the ends of a string 
passed over the pulley. One of the weights slides over the bar 
with friction and therefore both weights move uniformly 
(Fig. 25). Determine the force which the, pulley acts on the bar 
with and the readings of the balance when the weights move. 
Disregard the masses of the pulley, bar, string and the friction 
in the pulley axis. Consider two cases: (1) m1 = 1 kg, m2  = 3 kg, 
and (2) m1 =3 kg, m2  = 1 kg. 

68. A system consists of two stationary and one movable 
pulleys (Fig. 26). A string thrown over them carries at its ends 
weights with masses m1  and m3, while a weight with a mass 
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tn, is attached to the axis of the movable 
pulley. The parts of the string that are 
not on the pulleys are vertical. Find the 
acceleration of each weight, neglecting 

B the masses of the pulleys and the string, 
and also friction. 

69. Two monkeys of the same weight 
are hanging at the ends of a rope thrown 
over a stationary pulley. One monkey 
begins to climb the rope and the other 
stays where it is. Where will the second 

Fig. 27 
	

Fig. 28 
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monkey be when the first one reaches the pulley? At the initial 
moment both monkeys were at the same height from the floor. 
Disregard the mass of the pulley and rope, and also friction. 

70. Determine the accelerations of the weights in the pulley 
system depicted in Fig. 27. Disregard the masses of the pulleys 
and string, and also friction. In what direction will the pulleys 
rotate when the weights riiove? 

71. A table with a weight of G1 = 15 kgf can move without 
friction over a level floor. A weight of G2  = 10 kgf is placed 
on the table, and a rope passed over two pulleys fastened 
to the table is attached to it (Fig. 28). The coefficient of fric-
tion between the weight and the table k = 0.6. What acceleration 
will the table move with if a constant force of 8 kgf is applied 
to the free end of the rope? Consider two cases: (1) the force 
is directed horizontally, (2) the force is directed vertically upward. 

72. An old cannon without a counter-recoil device rests on 
a horizontal platform. A ball with a mass m and an initial 
velocity vo  is fired at an angle of a to the horizon. What velo-
city vi  will be imparted to the cannon directly after the shot 
if the mass of the cannon is M and the acceleration of the ball 
in the barrel is much greater than that of free fall? The coeffi-
cient of friction between the cannon and the platform is k. 

1-4. The Law of Conservation of Momentum 

73. A meteorite burns in the atmosphere before it reaches the 
Earth's surface. What happens to its momentum? 

74. Does a homogeneous disk revolving about its axis have 
any momentum? The axis of the disk is stationary. 

75. The horizontal propeller of a helicopter can be driven by 
an engine mounted inside its fuselage or by the reactive forces 
of the gases ejected from special nozzles at the ends of the 
propeller blades. Why does a propeller-engine helicopter need 
a tail rotor while a jet helicopter does not need it? 

76. A hunter discharges his gun from a light inflated boat. 
What velocity will be imparted to the boat when the gun is 
fired if the mass of the hunter and the boat is M = 70 kg, the 
mass of the shot m = 35 g and the mean initial velocity of the 
shot vo  = 320 m/s? The barrel of the gun is directed at an angle 
of a =60° to the horizon. 

77. A rocket launched vertically upward explodes at the highest 
point it reaches. The explosion produces three fragments. Prove 
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that the vectors of the initial velocities of all three fragments 
are in one plane. 

78. A man in a boat facing the bank with its stern walks to 
the bow. How will the distance between the man and the bank 
change? 

79. A boat on a lake is perpendicular to the shore and faces 
it with its bow. The distance between the bow and the shore is 
0.75 metre. At the initial moment the boat was stationary. A man 
in the boat steps from its bow to its stern. Will the boat reach 
the shore if it is 2 metres long? The mass of the boat M= 140 kg 
and that of the man m=60 kg. 

80. Two identical weights are connected by a spring. At the 
initial moment the spring is so compressed that the first weight 
is tightly pressed against a wall (Fig. 29) and the second weight 
is retained by a stop. How will the weights move if the stop is 
removed? 

81. A massive homogeneous cylinder that can revolve without 
friction around a horizontal axis is secured on a cart standing on 
a smooth level surface (Fig. 30). A bullet flying horizontally 
with a velocity v strikes the cylinder and drops onto the cart. 
Does the speed of the cart that it acquires after the impact 
depend on the point where the bullet strikes the cylinder? 

82. At the initial moment a rocket with a mass M had a 
velocity vo. At the end of each second the rocket ejects a portion 
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of gas with a mass in. The velocity of a portion of gas differs 
from that of the rocket before the given portion of gas burns by 
a constant value u, i. e., the velocity of gas outflow is constant. 
Determine the velocity of the rocket in n seconds, disregarding 
the force of gravity. 

83. Will the velocity of a rocket increase if the outflow velo-
city of the gases with respect to the rocket is smaller than the 
velocity of the rocket itself, so that the gases ejected from the 
nozzle follow the rocket? 

84. Two boats move towards each other along parallel paths 
with the same velocities. When they meet, a sack is thrown from 
one boat onto the other and then an identical sack is thrown from 
the second onto the first. The next time this is done simultane-
ously. When will the velocity of the boats be greater after the 
sacks are thrown? 

85. A hoop is placed on an absolutely smooth level surface. 
A beetle alights on the hoop. What trajectory will be described 
by the beetle and the centre of the hoop if the beetle begins to 
move along the hoop? The radius of the hoop is R, its mass is 
M and the mass of the beetle m. 

86. A wedge with an angle a at the base can move without 
friction over a smooth level surface (Fig. 31). At what ratio 
between the masses m, and m2  of the weights, that are connected 
by a string passed over a pulley, will the wedge remain statio-
nary, and at what ratio will it begin to move to the right or 
left? The coefficient of friction between the weight of mass m2  
and the wedge is k. 

1 -5. Statics 

87. A homogeneous chain with a length 1 lies on a table. What 
is the maximum length I, of the part of the chain hanging over 
the table if the coefficient of friction between the chain and the 
table is k? 

88. Two identical weights are suspended from the ends of a 
string thrown over two pulleys (Fig. 32). Over what distance 
will a third weight of the same mass lower if it is attached to 
the middle of the string? The distance between the axes of the 
pulleys is 2/. The friction in the axes of the pulleys is negligible. 

89. An isosceles wedge with an acute angle a is driven into 
a slit. At what angle a will the wedge not be forced out of the 
slit if the coefficient of friction between the wedge and the slit is k? 
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90. What is the ratio between the weights G, and G, if the 
system shown in Fig. 33 is in equilibrium. Bars AD, BC, CH, 
DI and arm 00, of the lever are twice as long as bars AE, EB, 
IJ, JH and arm FO, respectively. Disregard the weight of the 
bars and the arm. 

91. A horizontal force F is applied perpendicularly to an upper 
edge of a rectangular box with a length 1 and a height h to 
move it. What should the coefficient of friction k between the 
box and the floor be so that the box moves without overturning? 

92. A homogeneous beam whose weight is G lies. on a floor. 
The coefficient of friction between the beam and the floor is k. 
What is easier for two men to do—turn the beam about its 
centre or move it translationally? 

93. An overhead travelling crane (see Fig. 11) weighing G=2 
tonf has a span of L=26 metres. The wire rope carrying a load 
is at a distance of 1-10 metres from one of the rails. Deter-
mine the force of pressure of the crane on the rails if it lifts a 
load of Go = 1 tonf with an acceleration of a =9.8 m/s2. 

94. A lever is so bent that its sides AB, BC and CD are 
equal and form right angles with one another (Fig. 34). The axis 
of the lever is at point B. A force of G= 1 kgf is applied at 
point A at right angles to arm AB. Find the minimum force that 
should be applied at D for the lever to be in equilibrium. 
Disregard the weight of the lever. 

95. A rod not reaching the floor is inserted between two iden-
tical boxes (Fig. 35). A horizontal force F is applied to the 
upper end of the rod. Which of the boxes will move first? 
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96. A heavy homogeneous sphere is suspended from a string 
whose end is attached to a vertical wall. The point at which the 
string is fastened to the sphere lies on the same vertical as the 
centre of the sphere. What should the coefficient of friction 
between the sphere and the wall be for the sphere to remain in 
equilibrium? 

97. A homogeneous rectangular brick lies on an inclined plane 
(Fig. 36). What half of the brick (left or right) exerts a greater 
pressure on it? 

98. A horizontally directed force equal to the weight of a heavy 
cylindrical roller with a radius R is applied to its axis to lift it 
onto a rectangular step. Find the maximum height of the step. 

99. A sphere weighing G = 3 kgf lies on two inclined planes 
forming angles a1 = 300  and a2  = 60° with the horizon. Determine 
the pressure exerted by the sphere on each plane if there is no 
friction between the sphere and one of the planes. 

100. The front wall of a drawer in a cabinet is provided with 
two symmetrical handles. The distance between the handles is 1 
and the length of the drawer a. The coefficient of friction bet-
ween the drawer and the cabinet is k. Can the drawer always be 
pulled out by applying a force perpendicular to the wall of the 
drawer only to one handle? 

101. A homogeneous board is balanced on a rough horizontal 
log (Fig. 37). After a weight has been added to one of the ends 

Fig. 35 Fig. 36 
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of the board, equilibrium can be obtained when the board forms 
an angle a with the horizon. What is the coefficient of friction 
between the board and the log? 

102. The upper end of a ladder rests against a smooth vertical 
wall and its bottom end stands on a rough floor. The coefficient 
of friction between the ladder and the floor is k. Determine the 
angle a between the ladder and the wall at which the former 
will be in equilibrium. 

103. Solve the previous problem, assuming that the wall is 
rough and the coefficient of friction between the ladder and the 
wall is also equal to k. 

104. A homogeneous thin rod AB with a length 1 is placed 
onto the horizontal surface of a table. A string with a length of 
2/ is attached to end B of the rod (Fig. 38). How will the rod 
move if the other end C of the string is slowly lifted up a sta-
tionary vertical straight line DO passing through end A of the 
rod. Disregard the weight of the string. 

105. At what coefficient of friction will a man not slip when 
he runs along a straight hard path? The maximum angle between 
a vertical line and the line connecting the man's centre of gravity 
with the point of support is a. 

106. A ladder leans against a smooth vertical wall of a house. 
The angle between the ladder and the horizontal surface of the 
Earth is a= 60°. The length of the ladder is l, and its centre of 
gravity is at its middle. How is the force acting on the ladder 
from the Earth directed? 

107. A ladder with its centre of gravity at the middle stands 
on an absolutely smooth floor and leans against a smooth wall 
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(Fig. 39). What should the tension of a rope tied to the middle 
of the ladder be to prevent its falling down? 

108. A man climbs up a ladder leaning against a smooth 
vertical wall. The ladder begins to slip only when the man 
reaches a certain height. Why? 

109. A picture is attached to a vertical wall by means of string 
AC with a length 1 forming an angle a with the wall. The height 
of the picture BC=d (Fig. 40). The bottom of the picture is 
not fastened. At what coefficient of friction between the picture 
and the wall will the picture be in equilibrium? 

110. Four homogeneous rods are pin-connected to one another 
at points B, C and D (Fig. 41). The two extreme rods AB and 
DE can freely revolve with respect to stationary points A and 
E on a horizontal straight line. The lengths of the rod AB = ED 
and BC = CD. The masses of the rods are the same. Show that 
the angles a and is are related by the ratio tan a= 3 tan 13 when 
in equilibrium. 

111. What is the coefficient of friction between a floor and 
a box weighing one ton-force if a minimum force of 600 kgf is 
required to start the box moving? 

112. A weightless unstretchable string is wound around a cy-
linder with a mass m (Fig. 42). With what minimum force F min 
and at what angle a, to the horizon should the string be pulled 

Fig. 39 Fig. 40 
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for the rotating cylinder to remain in place? The coefficient of 
friction between the cylinder and the floor is k. 

113. Figure 43 shows a simplified diagram of the steam engine 
and crank gear of a steam locomotive. Fig. 43a and b correspond 
to the moments when steam has been admitted into the lef t-
and right-hand parts of the cylinder, respectively. Calculate the 
tractive effort for these cases when point C is on one vertical 
line with the axis of the driving wheel. The pressure of the 
steam in the cylinder is p, the area of the piston is A, the 
radius of the driving wheel is R and the distance OC = r. Disre-
gard the masses of the crank gear, the piston and the driving 
wheel. 

114. Bricks are so laid without a binder that a part of each 
following brick extends over the one below (Fig. 44). Over what 
maximum distance can the right-hand edge of the upper brick 
extend over the right-hand edge of the lowermost brick that 
serves as the base for the entire brickwork? The length of each 
brick is 1. 

115. Find the centre of gravity of a thin homogeneous wire 
bent to a semicircle with a radius r. 

(a) (o) 

Fig. 43 
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116. Determine the centre of gravity of a homogeneous thin 
semicircle with a radius r. 

117. Determine the centre of gravity of a thin homogeneous 
wire bent over an arc with a radius r (Fig. 45). 

118. Determine the centre of gravity of a thin homogeneous 
plate cut in the form of a sector with a radius r and a central 
angle a (Fig. 46). 

119. Determine the centre of gravity of a thin homogeneous 
plate having the form of a rectangle with sides r and 2r which 
a semicircle with a radius r is cut out of (Fig. 47). 

1-6, Work and Energy 

120. What work will be performed if a force of 3 kgf is used 
to lift a load of 1 kgf to a height of 5 metres? 

121. In the formula for work W=kFs, the coefficient k =1 
if all the quantities are given in the same system of units. 
What is the coefficient k. if the work is measured in joules, the 
force in kgf and the distance in centimetres? 
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Fig. 48 

122. In Guericke's experiment two copper hemispheres were 
tightly fitted to each other to form a hollow sphere from which 
the air was pumped out. The hemispheres were held so tightly 
together by the atmospheric pressure that they could be pulled 
apart only with the aid of horses. How many horses are requi-
red to do this if each horse pulled with a force F? The radius 
of each hemisphere was R and the atmospheric pressure p. 

123. How do you explain the fact that when a stone is 
dropped onto the ground, the change in the momentum of the 
Earth is equal to that of the stone, while the change in the 
kinetic energy of the Earth is neglected? 

124. A pile with a weight of 100 kgf is forced into the ground 
by a pile driver weighing 400 kgf. The latter freely drops from 
a height of 5 metres and drives the pile to a depth of 5 cm 
upon each impact. Determine the resistance of the soil, assuming 
it to be constant. 

125. A box with sand having the mass M is suspended from 
a rope with a length L. The length of the rope is much greater 
than the linear dimensions of the box. A bullet with a mass in 
flies in a horizontal direction, strikes the box and gets stuck in 
it. After this the rope is deflected by angle a from the vertical. 
Determine the velocity of the bullet. 

126. Two carts are pushed apart by an explosion of a powder 
charge Q placed between them (Fig. 48). The cart weighing 
100 gf travels a distance of 18 metres and stops. What distance 
will be covered by the other cart weighing 300 gf? The coeffi-
cients of friction k between the ground and the carts are the 
same. 

127. Solve Problem 65 using the law of conservation of mo-
mentum and taking into account the change in the kinetic 
energy of the wagon and the body. 

128. A rocket launched vertically upward ejects hot gases 
consecutively in two equal portions. The outflow velocity of the 
gases relative to the rocket is constant and equal to u. What 
should the time interval between combustion of the portions be 
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for the rocket to reach a maximum altitude? The fuel burns 
instantaneously. Disregard the resistance of the air. 

129. The fuel in a rocket burns in equal portions with a 
mass m. Combustion takes place instantaneously. Will the outflow 
velocity of the gases be constant with respect to the rocket if 
the mechanical energy of the system changes the same amount 
upon the combustion of each portion? 

130. A body is first lifted to the top of a mountain over the 
path ADC, and again over the path ABC (Fig. 49). Prove that 
the work done will be the same provided the body is lifted 
slowly if the coefficient of friction is the same on both slopes. 

131. What force should be applied to the handle of a screw 
jack to hold in equilibrium the load G lifted by the jack? The 
pitch of the screw is h and the length of the handle is R. There 
is no friction. 

132. Find the maximum efficiency of a screw jack having no 
special device to prevent back travel. 

133. A rope ladder with a length l carrying a man with a 
mass m at its end is attached to the basket of a balloon with 
a mass M. The entire system is in equilibrium in the air. Find 
the work the man should do to climb into the basket. What is 
the velocity of the balloon if the man climbs the ladder with a 
velocity v with respect to it? 

134. How should the power of a pump motor change for the 
pump to deliver twice as much water in a unit of time through 
a narrow orifice? Disregard friction. 

135. A rectangular pit with an area at its base A and a depth 
H is half filled with water. A pump forces the water up onto 
the surface through a cylindrical pipe with a radius R. 

2-i865 
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(1) What work is done by the pump if it pumps out all the 
water during the time T? 

(2) What work is done by the pump during the same time if a 
rectangular stone slab with an area at its base Al  and a height 
h lies at the bottom of the pit? The depth of the water in the 
pit is H/2 as before. 

136. What work should a man do to walk up a subway esca-
lator moving down? The height of the escalator is h, its speed is cons-
tant and equal to v, and it is inclined at an angle a to the horizon. 

137. Calculate the potential energy of a deformed spring if 
its elastic force F = kx, where k is the coefficient of spring elas-
ticity, and x is the deformation. 

138. A man acting with a force F upon a stretched spring 
stands in a railway carriage of a uniformly moving train (Fig. 50). 
The train covered a distance L. What work will be done by the 
man in a coordinate system related to the Earth? 

139. A man stretches a spring attached to the front wall 
of a railway carriage over a distance 1 in a uniformly moving 
train. During this time the train covered the distance L. What 
work will be performed by the man in a coordinate system rela-
ted to the Earth? What will this work be in a system related 
to the train? When the man stretches the spring he moves in 
a direction opposite to that of the train. 

140. Two absolutely elastic spheres with masses ml  and m2  
collide. Their initial velocities are v, and v2. Find the velocities 
of the spheres after collision. 

Consider the collision as central, the velocities of the spheres 
being directed along the line connecting their centres. Analyse 
two cases: (1) the velocity of the second sphere before colli-
sion is zero, (2) the masses of the spheres are the same. 

141. Two elastic blocks of equal mass m and connected by a 
spring with a length 1 rest on an absolutely smooth horizontal 
surface (Fig. 51). The coefficient of elasticity of the spring is k. 
A third block of the same mass m strikes the left-hand block 
with a velocity v. Prove that the blocks connected by the 
spring will always move in the same direction. 

Determine the velocities of the blocks when the spring is 
stretched as much as possible. 

142. Two plates whose masses are m, and m2, respectively, 
are connected by a spring (Fig. 52). What force should be ap-
plied to the upper plate for it to raise the lower one after the 
pressure is removed? Disregard the mass of the spring. 
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143. A ball moving with a velocity v strikes a wall moving 
toward the ball with a velocity u (Fig. 53). An elastic impact 
occurs. 

Determine the velocity of the ball after the impact. What is 
the cause of the change in the kinetic energy of the ball? 

Consider the mass of the wall to be infinitely great. 
144. Two stones identical in mass and connected by a rope 

with a length of 1 = 39.2 metres are dropped from a height of 
h=73.5 metres with an initial velocity of zero. The first stone 
begins to fall T=2 seconds before the second one. In what 
time will the stones reach the ground? 

(1) Consider the rope to be absolutely elastic. 
(2) Consider the rope to be absolutely inelastic. 
145. Several identical elastic balls are so suspended in a row 

on strings of equal length (Fig. 54) that the distances between 
adjacent balls are very small. How will the balls behave if an 
extreme ball is moved aside and then released; two, three, etc., 
balls are moved aside and released at the same time? 

146. A row of balls of identical size are placed at small 
intervals on a level surface (Fig. 55). The middle ball is made 
of steel and the others of ivory (the mass of the steel ball is 
greater). An ivory ball (of the same mass) strikes the balls from 
the right along the line of centres. How will the balls move 
after the impact? 

147. Equal weights of mass m are suspended from the ends 
of a very long string thrown over two small stationary pulleys 
at a distance of 2/ from each other (Fig. 56). Find the velo- 

rr 

Fig. 52 

2* 

Fig. 53 
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city of the weights after 
a sufficiently long time if 
a weight with a mass 2m 
is attached to the middle 
of the string. 

148. A weight of mass 
m1 =536 g first kept near 
the ceiling between points 
A and B begins to lower 
(Fig. 57). At what angle 
ANB will its velocity be 
equal in absolute value to 

Fig. 54 the velocity of a weight 
with a mass m2 =1,000 g? 

How will the weights move afterward? 
149. A heavy board forming an angle a with the horizon 

rests on two rollers of different radii. Determine how the board 
will move if it does not slip. Disregard the mass of the rollers. 

150. A homogeneous chain with a length 2/ and mass M 
lies on an absolutely smooth table. A small part of the chain 
hangs from the table. At the initial moment of time the part 
of the chain lying on the table is held and then released, after 
which the chain begins to slide off the table under the weight 
of the hanging end. Find the velocity of the chain when the 
length of the hanging part is equal to x (x < 1). 

Determine (for the same moment of time) the acceleration of 
the chain and the force with which it acts on the edge of the 
table. 

151. A wagon with a mass M can move without friction along 
horizontal rails. A mathematical pendulum (a sphere with a 
mass m suspended from a long string 1) is fastened on the wa-
gon (Fig. 58). At the initial moment the wagon and the pendu-
lum were at rest and the string was deflected through an angle 
a from the vertical. What will the velocity of the wagon be 
when the pendulum string forms an angle 13 	< a) with the 
vertical? 

152. A wedge with a mass M rests on an absolutely smooth 
horizontal surface. A block with a mass in is placed on the 

//c)g,9 	  
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wedge. The block can slide along the wedge without friction 
under the force of gravity. Assuming that the system was at 
rest at the initial moment of time, find the velocity of the 
wedge when the block lowers vertically through a height h. 

153. A rod secured between two couplings can travel freely 
in a vertical direction (Fig. 59). The lower tip of the rod 
bears against a smooth wedge lying on a horizontal surface. 
The mass of the rod is m and that of the wedge is M. There 
is no friction. At the initial moment the rod and the wedge 
were at rest. 

Find: the velocity v of the wedge at the moment the rod 
lowers through the height h, the velocity u71  of the rod relative 
to the moving wedge and the acceleration a of the rod. 

1-7. Kinematics of Curvilinear Motion 

154. Two shafts A and B are joined by an endless belt that 
transmits rotation from A to B. The speed of the driving shaft 
is n1 =3,000 rpm. A pulley with a diameter of D2  = 500 mm 
is fitted onto the driven shaft which should rotate at n2  = 600 rpm. 
What is the diameter of the pulley to be fitted onto the driving 
shaft? 

155. The crawler of a tractor consists of n links, each with a 
length of a. The radii of the wheels which the crawler is placed 
on are R. The tractor moves at a speed v. It is assumed that 
the crawler does not sag. 

(1) What number of links move at this moment translationally, 
how many of them are at rest (relative to the Earth) and how 
many rotate on the wheels? 

(2) The tractor covered a distance s>na. How much time 
did each link of the crawler move translationally, remain at rest 
and participate in rotational motion? 

156. The following device is used to determine the velocities 
of molecules. A silver-coated wire heated by current is arran-
ged on a common axis of two cylinders fastened to each other 
and rotating with an angular velocity o (Fig. 60). The internal 
cylinder is provided with a slit which the molecules evapora-
ting from the wire fly into. The entire device is placed in a 
vacuum. If the cylinders are at rest, the trace of the deposited 
silver molecules appears at point A. If the cylinders rotate, 
the trace appears at point B at a distance 1 from A. Find 
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the velocity of the molecules. The 
radii of the cylinders are r and R. 

157. To turn a tractor moving 
at a speed of v0  = 18 km/h the 
driver so brakes one of the craw-
lers that the axle of its driving 
wheel begins to move forward at a 
speed of v

i 
 = 14 km/h. The distance 

between the crawlers d= 1.5 met-
res. An arc of what radius will be 
described by the centre of the trac-
tor? 

158. In mountains the following 
phenomenon can be observed: a star being watched quickly disap-
pears behind a remote summit. (The same phenomenon can also 
be observed on a plain if there is a sufficiently remote tall stru-
cture.) At what speed should the observer run to constantly 
see the star at the same angular distance from the mountain? 
The distance between the observer and the summit is 
10 km. Assume that observations are being made at the 
pole. 

159. The current velocity of a river grows in proportion to 
the distance from its bank and reaches its maximum 00  in the 
middle. Near the banks the velocity is zero. A boat is so moving 
on the river that its velocity u relative to the water is 
constant and perpendicular to the current. Find the distance 
through which the boat crossing the river will be carried away 
by the current if the width of the river is c. Also determine 
the trajectory of the boat. 

160. Four tortoises are at the four corners of a square with 
a side a. They begin to move at the same time with a constant 
speed v, the first one always moving in a direction toward the 
second, the second toward the third, the third toward the fourth 
and the fourth toward the first. Will the tortoises meet, and if 
they do, in what time? 

161. Two ships A and B originally at a distance of a= 3 km 
from each other depart at the same time from a straight coast-
line. Ship A moves along a straight line perpendicular to the 
shore while ship B constantly heads for ship A, having at each 
moment the same speed as the latter. After a sufficiently great 
interval of time the second ship will obviously follow the first 
one at a certain distance. Find this distance. 
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162. A body is thrown with an initial velocity vo  at an ang-
le a to the horizon. How long will the body fly? At what 
distance from the spot where it was thrown will the body fall 
to the ground? At what angle a will the distance of the flight 
be maximum? At what height will the body be in the time ti 
after the motion begins? What will the velocity of the body be 
in magnitude and direction at the given moment of time? 

Consider T to be greater than the time during which the body 
reaches the maximum height. Disregard the resistance of the air. 

163. Find the trajectory of the body thrown at an angle to 
the horizon (see Problem 162). 

164. A rubber ball is to be thrown from the ground over 
a vertical wall with a height h from a distance s (Fig. 61). At 
what minimum initial velocity' is this possible? At what angle a 
to the horizon should the velocity be directed in this case? 

Fig. 63 Fig. 64 
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165. A body is thrown into a river from a steep bank with 
a height H. The initial velocity of the body forms an angle a 
with the horizon and is equal to vo. At what distance from the 
bank will the body fall? In how many seconds will the body 
be at a height h above the water after motion begins? What is 
the velocity of the body when it falls into the water? 

166. At what angle to the horizon should a stone be thrown 
from a steep bank for it to fall into the water as far as pos-
sible from the bank? The height of the bank ho  = 20 metres and 
the initial velocity of the stone 00  = 14 m/s. 

167. Two bodies are thrown at the same time and with an 
equal initial velocity vo  from point x=y=0 at various angles a, 
and a, to the horizon (Fig. 62). What is the velocity with which 
the bodies move relative to each other? What will the distance 
between the bodies be after the time T elapses? 

168. A dive-bomber drops a bomb from a height h at a dis-
tance 1 from the target. The speed of the bomber is v. At what 
angle to the horizon should it dive? 

169. A passenger car is driving over a level highway behind 
a truck. A stone got stuck between double tyres of the rear 
wheels of the truck. At what distance should the car follow the 
truck so that the stone will not strike it if it flies out from 
between the tyres? Both vehicles have a speed of 50 km/h. 

170. A ball freely falls from a height h onto an inclined plane 
forming an angle a with the horizon (Fig. 63). Find the ratio 
of the distances between the points at which the jumping ball 
strikes the inclined plane. Consider the impacts between the ball 
and the plane to be absolutely elastic. 

171. Find the acceleration of body A which slides without 
initial velocity down a helical groove with a pitch h and a ra-
dius R at the end of the n-th turn (Fig. 64). Disregard friction. 

172. Two steel slabs M and N with a height h are placed on 
sand (Fig. 65). The distance between the slabs 1=20 cm. A ball 
whose velocity has not been determined exactly moves over 
slab M. It is only known that this velocity ranges between 
200 cm/s and 267 cm/s. 

(1) At what height h is it impossible to predict the horizontal 
direction of the velocity of the ball at the moment when it 
falls onto the sand? (Before it touches the sand, the ball strikes 
slab N at least once.) 

(2) At what minimum height of the slabs is it impossible to 
predict the spot on section / which the ball will strike? Disre- 



42 
	

PROBLEMS 

Fig. 65 Fig. 66 

gard the duration of the impact between the ball and the slab, 
and consider the impact to be absolutely elastic. 

173. A solid homogeneous disk rolls without slipping over 
a horizontal path with a constant velocity v (Fig. 66). 

(1) Prove that the linear velocity of rotation of any point of 
the disk on its rim with respect to the centre 0 is equal to the 
translational velocity of the disk. 

(2) Find the magnitude and direction of the velocities of 
points A, B, C and D on the rim of the disk with respect to 
a standing observer. 

(3) What points of the disk have the same absolute velocity 
as the centre of the disk relative to a standing observer? 

174. A moving cart is shown on a cinema screen. The radius 
of the front wheels of the cart r = 0.35 metre and that of the 
rear ones R = 1.5 r. The front wheels have N1 = 6 spokes. The 

Fig. 67 Fig. 68 
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film in the cinema camera moves with 
a speed of 24 frames per second. 

Assuming that the wheels of the cart 
do not slip, find the minimum speed 
with which the cart should move for 
its front wheels to seem stationary on 
the screen. What minimum number of 
spokes N 2  should the rear wheels have 
for them also to seem stationary? 

175. At what speeds of the cart mo-
ving from the left to the right (see Prob-

Fig. 69 lem 174) will it seem to the audience 
that: (1) the spokes of the wheels rotate 

counterclockwise? (2) the spokes of the front and rear wheels 
rotate in opposite directions? There are six spokes on each front 
and rear wheel. 

176. A spool consists of a cylindrical core and two identical 
solid heads. The core rolls without slipping along a rough hori-
zontal block with a constant velocity v (Fig. 67). The radius 
of the core is r and that of the heads is R. 

What instantaneous velocity will points A and B on the rim 
of one of the heads have? What points on the heads have an 
instantaneous velocity equal in magnitude to the velocity of the 
spool core? 

177. Draw the trajectories of points A, B and C of a spool 
(Fig. 68) rolling with its cylindrical core without slipping along 
a block (see Problem 176). 

Fig. 70 
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178. A ball bearing supports the end of a shaft rotating with 
an angular velocity co. The diameter of the shaft axis is d and 
that of the race is D (Fig. 69). Find the linear velocity of 
motion of the centre of one of the balls if the race is statio-
nary, or rotates with an angular velocity of 	Assume that in 
both cases the balls do not slip when they roll over the shaft. 

179. A cone rolls without slipping along a plane. The axis of 
the cone rotates with a velocity to around a vertical line passing 
through its apex. The height of the cone is h and the angle 
between the axis and the generatrix of the cone is a. What is 
the angular velocity with which the cone rotates around its axis? 
Also determine the linear velocity of an arbitrary point on the 
diameter of the cone base lying in a vertical plane. 

180. Figure 70 shows schematically a differential transmission 
of a motor vehicle that does not allow the driving wheels of the 
vehicle to slip when negotiating a curve. (In this case the wheels 
should revolve at different speeds.) 

The engine rotates wheel B rigidly mounted on axle A around 
which a pair of bevel gears E can freely rotate. These gears 
mesh with another pair of bevel gears along which they run when 
axle A rotates. The axle of the driving wheels (usually the rear 
ones) is divided into two halves that carry on their ends gears C 
and D. These halves can rotate with various angular velocities, 
remaining connected by the differential transmission. 

Find the relationship between the angular velocities Q, co, 
co, and co, of the differential transmission if the radii of gears E 
are equal to r and the radii of gears D and C are r1. 

1-8. Dynamics of Curvilinear Motion 

181. Determine the tension of the rope of a ballistic pendulum 
(see Problem 125) at the moment when it is struck by a bullet. 

182. Four identical weights are secured on a flexible un-
stretchable string whose weight may be neglected (Fig. 71). The 
entire system rotates with an angular velocity co around a ver-
tical axis passing through point 0. The weights move over 
a smooth level" surface. Determine the tension of the string in 
various sections. 

183. Masses m1  and m2  are fastened to the ends of a weight-
less rod with a length /. The velocities of these masses are in 
one plane and are equal to 01  and r.),, respectively (Fig. 72). 
Find the velocity which the centre of gravity of the system 
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moves with and the angular velocity which the rod rotates with 
relative to an axis passing through the centre of gravity. 

184. A cannon is at the centre of a platform freely rotating 
around a vertical axis. The axis of rotation passes through the 
breech of the cannon. A shell is fired in a horizontal direction 
along the radius of the platform. Will the velocity of rotation 
change in this case? 

185. A small body begins to slide without initial velocity 
down an inclined plane with a height H (Fig. 73). Assuming 
that there is no friction and the impact of the body against 
horizontal plane AB is absolutely elastic, determine the nature 
of motion of the body after it leaves the inclined plane. Answer 
the same question if the impact is absolutely inelastic. 

186. What is the minimum radius of an arc that can be nego-
tiated by a motor-cyclist if his speed is v=21 m/s and the 
coefficient of friction between the tyres and the ground k = 0.3? 

To what angle a to the horizon should the motor-cycle be 
inclined in this case? 

187. A massive sphere is fitted onto a light rod (Fig. 74). 
When will the rod fall faster: if it is placed vertically on 
end A or on end B? The end of the rod on the ground does 
not slip. 

188. A massive sphere is secured on the end of a light rod 
placed vertically on a floor. The rod begins to fall without any 
initial velocity. At what angle a between the rod and a ver-
tical will the end of the rod no longer press on the floor? 

At what coefficient of friction will the end of the rod not 
slip up to this moment? 

Fig. 72 
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Fig. 73 
	

Fig. 74 

189. At what distance from the bottom of the rod will the 
sphere (see Problem 188) fall if the coefficient of friction 

k> 	. 
190. A wire is bent along an arc with a radius R (Fig. 75). 

A bead is placed on the wire that can move along it without 
friction. At the initial moment the bead was at point 0. What 
horizontal velocity should be imparted to the bead for it to 
get onto the wire again at point B after flying a certain di-
stance (AB) through the air? 

191. A small body slides down an inclined surface passing 
into a loop from the minimum height ensuring that the body 
does not leave the surface of the loop (Fig. 76). What symmet-
rical segment with an angle a < 90° can be cut out of the loop 
for the body to reach point B after travelling a certain distance 
in the air? 

Fig. 75 	 Fig. 76 
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Fig. 77 

How will the body move if the angle a is greater or smaller 
than the found one? Disregard friction and the resistance of 
the air. 

192. Three weights moving circularly are attached to the ends 
of a string passing over two nails (Fig. 77). Two weights with 
a mass m each hang on the left and one weight with a mass 
2m on the right. Will this system be in equilibrium? 

193. A ball is suspended from a very thin string. The latter 
is brought into a horizontal position and is then released. At 
what points of the trajectory is the acceleration of the ball 
directed vertically downward, vertically upward and horizon-
tally? The string is not tensioned at the initial moment. 

194. A weightless rod can rotate in a vertical plane with 
respect to point 0. The rod carries masses m, and m, at distan- 

 

O 

Fig. 78 Fig. 79 
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Fig. 80 
	

Fig. 81 

ces r, and r 2  from 0 (Fig. 78). The rod is released without any 
initial velocity from a position forming an angle a with the 
vertical. Determine the linear velocities of masses m, and m2  
when the rod reaches a vertical position. 

195. A plumb to which a small ball is attached by means 
of a string with a length of / = 12.5 cm is secured on the axis 
of a centrifugal machine. Find the angle a through which the 
string deflects from the vertical if the machine makes one revo-
lution per second, two revolutions per second. 

196. A rigid rod bent as shown in Fig. 79 rotates with an 
angular velocity co around axis 00'. A weight with a mass m 
is attached to the end of the rod. Find the force which the 
rod acts with on the mass in. 

197. A rigid rod A00' bent as shown in Fig. 80 rotates with 
an angular velocity w around axis 00'. A bead is fitted onto 
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the rod. Find the distance 1 from point 0 at which the bead 
will be in equilibrium if the coefficient of friction between the 
bead and the rod is k. 

198. A weight with a mass m is attached to the end of 
a string with a length / fastened to a vertical rod rotating 
with an angular velocity o. Another string of the same length 
as the first and carrying on its end another weight with a mass 
m is secured to the first weight. 

Prove that during rotation the angle between the first string 
and the vertical will be smaller than the angle between the 
vertical and the second string. Disregard the weight of the 
string. 

199. A weightless rod carries two weights of mass m and M. 
The rod is hinge-jointed to vertical axis 00' (Fig. 81), which 
rotates with an angular velocity o. Determine the angle y for-
med by the rod and the vertical. 

200. A horizontal straight bar rotates with a constant angular 
velocity around a vertical axis. A body can move without friction 
over the bar. Initially, the body is retained in equilibrium by 
a spring (Fig. 82). What will happen to the body if an initial 
velocity is imparted to it along the bar? The length of the spring 
in an unstretched state can be neglected. 

201. A metallic chain with a length of 1=62.8 cm and whose 
ends are joined together is fitted onto a wooden disk (Fig. 83). 
The disk rotates with a speed of n= 60 rps. Find the tension 
of the chain T if its mass is m= 40 g. 

202. Water flows with a velocity v along a rubber tube having 
the form of a ring (Fig. 84). The radius of the ring is R and 
the diameter of the tube cl-<R. What force is the rubber tube 
S tretched with? 

203. A homogeneous rod with a length 1 and a mass m rotates 
with an angular velocity o in a horizontal plane around an axis 
passing through its end. Find the tension of the rod at a distance x 
from its axis of rotation. 

204. A ball with the mass in secured on a weightless rod ro-
tates with a constant velocity v in a horizontal plane (Fig. 85). 
Its kinetic energy in a coordinate system that is stationary with 
respect to the axis of rotation is constant and equal to mv2 /2. 

The kinetic energy changes with time from zero to 4mv2 /2 with 
respect to a reading system that moves rectilinearly in a hori-
zontal plane with a velocity v relative to the axis. What is the 
reason for this change in the energy? 
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205. A thin homogeneous hoop rolls over a horizontal surface 
with a constant velocity v. How and under the action of what 
forces does the total energy of a small section AB that is at the 
highest point of the loop at the given moment change? 

206. A heavy spool with a thread wound on it lies on a rough 
horizontal surface over which it can roll without slipping. If the 
thread is pulled to the left in a horizontal direction, the spool 
will also move to the left. If the direction of the thread is changed 
(Fig. 86), the spool will begin to roll to the right at a certain 
angle a between the direction of the thread and a vertical line. 

Determine this angle. What will happen to the spool at the 
given value of this angle? The radius of the spool heads is R 
and that of its core is r. 

207. Find the kinetic energy of a hoop with a mass M and a 
radius R if it moves uniformly with a velocity v and rotates 

with an angular velocity o.) 
around an axis passing through 
its centre. 

208. Find the kinetic energy 
of the crawler of a tractor mo- 
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Fig. 88 
	

Fig. 89 

ving with a speed v. The distance between the centres of the 
wheels which the crawler is placed onto is 1. The radius of the 
wheels is r. A unit of crawler length weighs G. 

209. Two cylinders of equal mass and size are made of unknown 
materials of different density. How is it possible to tell which 
of the two is hollow? 

210. A flexible cable is wound in one row around a drum 
with a radius R (Fig. 87). The weight of a unit of cable length 
is p. The entire cable weighs G. The drum moves by inertia 
without slipping along a horizontal surface, and the cable is 
wound off onto it. 

At the initial moment, when the cable was completely wound 
on the drum, the velocity of the drum centre was v. 

Appraise the velocity of the drum centre at the moment of 
time when a part of the cable with a length x lies on the sur-
face, neglecting the radius of the cable cross section (in compa-
rison with R) and the mass of the drum. 

What force changes the momentum of the cable? 
211. A friction force f is applied to a pulley with a radius r 

rotating around a stationary axis (Fig. 88). Determine the change 
in the angular velocity of the pulley with time if this velocity 
is coo  at the initial moment. The mass of the pulley is m and 
the mass of the spokes can be neglected. 

212. A hoop of radius r rotating with an angular velocity coo  
is placed on a rough horizontal surface. Determine the velocity v 
of the centre of the hoop when the hoop ceases to slip. At the 
initial moment the velocity of the centre of the hoop is zero. 

213. A translational velocity vo  is imparted in a horizontal 
direction to a hoop with a radius r placed on a rough horizontal 
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surface. Find the angular velocity co of rotation of the hoop 
after it stops slipping. 

214. A hoop with a radius r rotating with an angular veloci-
ty coo  is placed on a rough horizontal surface. A translational 
velocity vo  is imparted to the hoop (Fig. 89). Determine the 
nature of the motion of the hoop, assuming that the force of 
sliding friction is f. 

215. A cylindrical tube with a radius r is connected by means 
of spokes to two hoops with a radius R. The mass of both the 
hoops is M. The mass of the tube and the spokes in comparison 
with the mass M can be neglected. A string passed over a weight-
less pulley is wound around the tube. A weight with a mass m 
is attached to the end of the string (Fig. 90). 

Find the acceleration of the weight, the tension of the string 
and the force of friction acting between the hoops and the sur-
face. (Assume that the hoops do not slip.) Also determine the 
coefficient of friction at which the hoops will slip. 

216. A spool lies on an inclined plane. A thread is wound on 
the spool and its free end carrying a weight having a mass in is 
thrown over a weightless pulley (Fig. 91). It is assumed that the 
mass of the spool M is uniformly distributed over a circle with 
a radius R and there is no friction. Determine the angle of in-
clination a at which the centre of gravity of the spool will be 
at rest. 

217. A board with a mass M is placed on two identical cy-
lindrical rolls with a radius R. The rolls rest on a horizontal 
surface. At the initial moment the system is at rest. Then, a 

Fig. 90 Fig. 91 
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force Q is applied to the board in a hori-
zontal direction. Find the acceleration of 
the board and the forces of friction acting 
between the rolls and the board and also 
between the rolls and the horizontal sur-
face. The rolls have the form of thin-walled 
cylinders with a mass m each and do not 
slip. 

218. A double-step pulley consists of two 
rigidly connected thin hoops with radii R 
and r and masses M1  and M 2, respectively. 
Strings carrying weights m1  and m 2  at 
their ends are passed around each step 
(Fig. 92). 

Find the acceleration of the weights m1  
mi and m2, the tension of the strings and the 

force with which the system acts on the 
Fig. 92 axis of the pulley. 

219. A homogeneous thin-walled cylinder 
with a radius R and a mass M rolls without slipping under the 
force of gravity down an inclined plane forming an angle a with 
the horizon. 

Using the law of conservation of energy, determine the velo-
city of the centre of gravity and the angular velocity of cylin-
der rotation when the time t elapses after motion begins. (It is 
assumed that the cylinder is at rest at the initial moment.) Also 
find the acceleration of the centre of gravity of the cylinder. 

1-9. The Law of Gravitation 

220. Why does the Earth impart to all bodies the same ac-
celeration irrespective of their mass? 

221. Find the magnitude and dimension of the gravitational 
constant in the CGS system, bearing in mind that the mean ra-
dius of the Earth is R = 6.4 x 108  cm and its mass M = 6 x 1027  g. 

222. In what conditions will bodies inside a spaceship be 
weightless, i. e., cease to exert any pressure on the walls of the 
cabin? 

223. A light pendulum consisting of a rod and a disk (Fig. 93) 
is attached to a wooden block which can freely fall along guid-
ing wires. 
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The pendulum is brought out of equilibrium through an angle a 
and released. At the moment when the pendulum passed through 
its lowermost position, the block was released and began to fall 
freely. How will the pendulum move with respect to the block? 
Disregard friction and the resistance of the air. 

224. A planet moves along an ellipse having the Sun in its 
focus. Taking into account the work of the force of gravity, 
indicate the points on the trajectory at which the velocity of 
the planet will be maximum and minimum. 

225. An artificial satellite of the Earth moves at an altitude 
of h= 570 km along a circular orbit. Find the velocity of the 
satellite. 

226. How will the velocity of an artificial satellite of the 
Earth change with time when it moves in the upper layers of 
the atmosphere? 

227. Two satellites move along a circular orbit in the same 
direction at a small distance from each other. A container has 
to be thrown from the first satellite onto the second one. When 
will the container reach the second satellite faster: if it is 
thrown in the direction of motion of the first satellite or in 
the opposite direction? The velocity of the container with re-
spect to the satellite u is much less than that of the satellite v. 

228. Determine the mass of the Sun M if the mean radius of 
the Earth's orbit is R = 149 x 106  km. 

229. Determine the minimum distance h from the first Soviet 
artificial satellite launched on October 4, 1957, to the Earth's 
surface if the following data are known: the maximum distance 
between the satellite and the Earth H= 900 km, the period 
of revolution around the Earth T = 96 minutes, the major se- 
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miaxis of the Moon's orbit R=384,400 km, the period of ro-
tation of the Moon around the Earth T=27.3 days and the 
Earth's radius R0 = 6,370 km. 

230. An air bubble with a radius r and an iron ball with the 
same radius are present in water. Will they be attracted or 
repulsed from each other? What is the force of interaction bet-
ween them? The distance between the centre of the ball and the 
bubble is R. 

231. Two air bubbles with a radius r are present in water. 
Are the bubbles attracted or repulsed? What is the force of in-
teraction between them? The distance between the bubbles is R. 

232. A lead ball with a radius of R = 50 cm has inside a 
spherical space with a radius r = 5 cm whose centre is at a 
distance of d= 40 cm from the centre of the ball (Fig. 94). 

With what force will a material particle with a mass of 
m= 10 g at a distance of 1=80 cm from the centre of the 
ball be attracted to it if the line connecting the centres of the 
ball and the space forms an angle a = 60° with the line conne-
cting the centre of the ball and the material particle? 

233. A body whose dimensions may be neglected is placed 
inside a thin homogeneous sphere. Prove that the force of at-
traction acting from the sphere on the body is zero irrespective 
of its position in the sphere. 

234. What is the force with which a body with a mass m 
in a deep mine will be attracted to the centre of the Earth 
if the distance between the body and the Earth's centre is r? 
The density of the Earth is the same everywhere and equal to p. 

1-10. Hydro- and Aerostatics 

235. A block floats vertically in a glass filled with water. How 
will the level of the water in the glass change if the block as-

sumes a horizontal position? 
236. A vessel filled with water 

is placed on the edge of a board 
(Fig. 95). Will equilibrium be vio-
lated if a small board carrying a 
weight is placed on the surface of 
the water? 

237. A piece of ice floats in a 
glass filled with water. How will 
the level of the water in the 
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Fig. 96 

glass change when the ice melts? Consider the following ca-
ses: 

(1) the ice is absolutely homogeneous; 
(2) a stone is frozen in the ice; 
(3) the ice contains an air bubble. 
238. A solid homogeneous body submerged into a liquid with 

a specific weight of y, weighs G1, and in a liquid with a spe-
cific weight of y2  it weighs G2. Determine the specific weight y 
of the body. 

239. A hole is cut in the ice in the middle of a large lake. 
The ice is 10 metres thick. What length of rope is required to 
scoop up a bucketful of water? 

240. A match-box with a small stone on its bottom floats in 
a cup filled with water. Will the level of the water in the cup 
change if the stone is taken out of the box and dropped into 
the water? 

241. A ship passing through a lock rises to a higher level in 
a chamber of the lock into which water is pumped from the 
side of the lower level (Fig. 96). When will the pumps perform 
more work: when a large ship is in the chamber, or a small boat? 

242. A square with a side a and a rectangle with sides a and 
2a are cut out from two plates of equal thickness with specific 
weights of 3.5 gf/cm3  and 2 gf/cm3, the square being cut out of 
the heavier material. The square and the rectangle are fastened 
together in the form of the letter L and placed upside down on 
the bottom of an empty vessel (Fig. 97). What will occur if the 
vessel is filled with water? 
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243. A tube floats vertically in water (Fig. 98). The portion 
of the tube protruding from the water is h = 5 cm. Oil with a 
specific weight of y = 0.9 gf/cm3  is poured into the tube. What 
length can the tube have so that it can be completely filled 
with oil? 

244. A vessel with water falls with an acceleration a < g. 
How does the pressure p in the vessel change with depth? 

245. A vessel with a body floating in it falls with an accele-
ration a < g. Will the body rise to the surface? 

246. A cart supports a cubic tank filled with water up to its 
top (Fig. 99). The cart moves with a constant acceleration a. 
Determine the pressure at point A which is at a depth h and a 
distance 1 from the front wall, if the tank is tightly closed with 
a lid. In uniform motion the lid does not exert any pressure on 
the water. 

247. A rubber ball with a mass m and a radius R is submer-
ged into water to a depth h and released. What height will the 
ball jump up to above the surface of the water? Disregard the 
resistance of the water and the air. 

248. Mercury is poured into two communicating cylindrical 
vessels, and water is poured in above it. The level of the water 
is the same in both vessels. Will the level of the water and the 
mercury be the same if a piece of wood is dropped into one 
vessel and some water equal in weight to this piece is added to 
the other? Consider cases when the cross sections of the vessels 
are the same or different. 

Fig. 97 	 Fig. 98 
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Fig. 99 Fig. 100 

249. Mercury is poured into cylindrical communicating vessels 
with different cross sections. An iron block with a volume Vo  is 
dropped into the broad vessel, and as a result the level of the 
mercury in it rises. Then water is poured into the vessel until 
the mercury reaches the previous level. Find the height of the 
water column h if the cross section of the narrow vessel is A1. 

250. One end of a board with a length 1 is placed on top of 
a stone protruding from water. Part a is above the point of 
support (Fig. 100). What part of the board is below the surface 
of the water if the specific weight of wood is 7? 

.251. A conical vessel without a bottom tightly stands on a 
table. A liquid is poured into the vessel and as soon as its level 
reaches the height h, the pressure of the liquid raises the vessel. 
The radius of the bottom greater base of the vessel is R, the 
angle between the cone generatrix and a vertical is a, and the 
weight of the vessel is G. What is the density of the liquid? 

252. Can water be pumped over a 
wall 20 metres high with the aid of 
a syphon? 

Fig. 101 Fig. 102 
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253. The vessel shown in Fig. 101 is entirely filled with wa-
ter. What will happen if plug A is removed? The radius of the 
hole is about 0.5 cm. 

254. Four piston pumps are made of pipe sections with a large 
and a small diameters. The pumps lifted water to the same 
height H-kh (Fig. 102). Which of the pistons should be pulled 
with a greater force to keep it in equilibrium? Disregard the 
weight of the pistons. 

255. A piston weighing G=3 kgf has the form of a circular 
disk with a radius R = 4 cm. The disk has a hole into which a 
thin-walled pipe with a radius r = 1 cm is inserted. The piston 
can enter a cylinder tightly and without friction, and is initially 
at the bottom df the cylinder. What height H will the piston 
rise to if m=700 g of water is poured into the pipe? 

256. A vessel with a hole in its bottom is fastened on a cart. 
The mass of the vessel and the cart is M and the area of the 
vessel base is A. What force F should the cart be pulled with 
so that a maximum amount of water remains in the vessel? The 
dimensions of the vessel are shown in Fig. 103. There is no 
friction. 

257. The following design of a perpetuum mobile was suggested 
(Fig. 104). A hermetic vessel is divided into two halves by an 
air-tight partition through which a tube and a water turbine of 
a special design are passed. The turbine is provided with cham-
bers having covers which close and open automatically. The 
pressure p, in the lower part of the vessel is greater than the 
pressure p2  in the upper part, and the water rises along the tube 
filling an open chamber of the turbine. After this the chamber 
closes and the disk turns. In the lower part of the vessel the 
chamber opens automatically and returns the water. After this 
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the chamber closes hermetically, etc. Why will this machine not 
function perpetually? 

258. The following alternative of the machine described in 
Problem 257 was suggested. Air-tight chambers (Fig. 105) are 
filled with water in the right-hand side of the disk and lower. 
At the bottom the chambers open and, in contrast to the ma-
chine in Problem 257, the walls of the chambers are automati-
cally retracted into the disk. In the upper portion of the vessel 
the walls are automatically pushed out and the chambers are 
filled with water. Otherwise this perpetuum mobile is designed 
on the same lines as the previous one. Why will it also fail 
to work? 

259. Three vessels with attached bottoms are submerged into 
water to the same depth (Fig. 106). Each bottom will fall 
off if the respective vessel is filled with 1 kgf of water. Will 
the bottom fall off if the vessels are filled with 1 kgf of oil? 
1 kgf of mercury? or if a weight of 1 kgf is placed into each 
vessel? 

260. A body is weighed on an accurate analytical balance 
placed under a glass hood. Will the reading of the balance 
change if the air is pumped out from the hood? 

261. A man carries a tyre tube and decides to make it light-
er by using the expulsive force of air (according to Archi-
medes' principle). For this purpose he inflates the tube, thus 
increasing its volume. Will his aim be achieved? 

262. What error is made in weighing a body with a volume 
of V = 1 litre if when weighed in the air copper weights weigh-
ing G, = 800 gf are placed on the pan of the balance. The 
specific weight of copper y, = 8.8 gf/cm3  and of air To  = 1.29 gf/litre. 

Fig. 105 Fig. 106 
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Fig. 107 

263. A cup and a U-shaped mercury barometers are brought 
into equilibrium on a very sensitive balance (Fig. 107). The 
barometers are made of the same material, have tubes of the 
same diameter and contain the same amount of mercury. The 
distance between the soldered ends of the tubes and the upper 
levels of the mercury in them is also the same. How will the 
equilibrium of the balance change if the atmospheric pressure 
grows? 

264. Appraise the weight of the Earth's atmosphere. 
265. An air mattress is filled with air to a certain pressure 

exceeding the atmospheric pressure. When will the air pressure 
in the mattress be greater: when a man stands on it or when 
he lies on it? 

266. A wheel of a motor vehicle is designed as follows. 
A rubber tube enclosed in a tyre casing is placed onto a me-
tallic rim. The tube is then inflated with air. The air pressure 
in the top and the bottom of the tube is the same. Besides 
the air pressure, the rim is acted upon by the force of gravity 
(Fig. 108). Why does the rim not lower? What holds it in a 
state of equilibrium? 

267. A steam boiler consists of a cylindrical portion and two 
hemispherical heads (Fig. 109), all of the same radius. The cy-
linder walls are 0.5 cm thick. All the parts of the boiler are 
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made of the same material. How thick should the walls of the 
heads be for the strength of all the parts of the boiler to be 
identical? 

268. What shape should a steam boiler be given to obtain 
the maximum strength with the given wall thickness? 

269. Why is ballast always taken on a stratosphere balloon, 
although extra weight inevitably decreases its ceiling? 

1-11. Hydro- and Aerodynamics 

270. Two holes with an area of A = 0.2 cm2  each are drilled 
one above the other in the wall of a vessel filled with water. 
The distance between the holes H = 50 cm. Every second 
Q = 140 cm' of water is poured into the vessel. Find the point 
where the streams flowing out of the holes intersect. 

271. A broad vessel with water stands on a smooth surface. 
The level of the water in the vessel is h. The vessel together 
with the water weighs G. The side wall of the vessel has at the 
bottom a plugged hole (with rounded edges) with an area A. At 
what coefficient of friction 'between the bottom and the surface 
will the vessel begin to move if the plug is removed? 

272. When a stream of liquid flows out of a vessel through 
a hole with an area A0, the force that acts on the wall with 
the hole is 2pA,, smaller than the force acting on the opposite 
wall (see Problem 271). 

If a tube is inserted into the hole as shown in Fig. 110, the 
difference between the forces acting on the opposite walls will 
approxithately equal pAo, since the tube will prevent the motion 
of the liquid near the walls. 

On the other hand, the change in the momentum of the li-
quid flowing out of the vessel in a unit of time is always 2pA, 

Fig. 108 
	

Fig. 109 
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Fig. 110 	 Fig. 111 

where A is the cross-sectional area of the stream. How can these 
two facts be brought into agreement? 

273. A stream of water flowing out of a pipe with a diameter 
of d=1 cm at a velocity of v = 1 m/s strikes a vertical wall. 
Determine the force acting on the wall, assuming that the pipe 
is perpendicular to it and neglecting splashing of the water. 

274. A gas flows with a velocity v along a pipe with a cross 
section A bent through 90 degrees. The density of the gas is p. 
What force does the gas act on the pipe with? Disregard the 
compression of the gas and friction. 

275. Find the force acting on the blade of an undershot wheel 
(Fig. 111) if the stream after impinging on the blade continues 
to move with the velocity of the blade. 

The height of the water head is h, the radius of the wheel 
is R, the angular velocity of the wheel is w and the cross-sec-
tional area of the stream is A. 

Fig. 112 
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Fig. 114 

276, A ship gets a large hole in its underwater portion 
(Fig. 112). In what direction will it begin to move as a result 
of this? 

277. A liquid flows out of a broad vessel through a narrow 
pipe (Fig. 113). How are the pressure and velocity of the liquid 
in the vessel and in the pipe distributed along a vertical? 

278. The vessel with water described in the previous problem 
is suspended from a spring balance. The lower end of the pipe 
is closed with a plug. How will the reading of the balance 
change at the first moment after the plug is removed and the 
liquid begins to flow out? 

279. A vessel with water is placed on one pan of a balance 
in equilibrium (Fig. 114). Will the equilibrium change if the 
cock is opened? The outflowing water gets onto the same pan 
on which the vessel is placed. 

280. Figure 115 shows a self-acting water lifting device cal-
led a hydraulic ram. The principle of its operation is based on 
the phenomenon of a hydraulic impact—a sharp increase in the 
pressure of a liquid flowing along a tube when its flow is sud-
denly stopped, for example, by the shutting of a valve that 
discharges the water from the tube. 

A tube with a length of 1=2 metres and a diameter of 
d=20 cm is lowered into a brook with a current velocity of 
v = 400 cm/s. 
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Fig. 116 

(a) (0) 
Fig. 117 

First let valve V 2  be open and valve V, be shut. A sharp 
increase in pressure will cause valve V, to open (valve V 2  will 
close at the same time) and the water will flow up into ves-
sel A. The pressure drops, valve V, shuts and V 2  opens. The 
water in the tube assumes its course and the phenomenon is 
repeated in the previous sequence. 

Find the amount of water raised by the ram in one hour to 
a height of h = 30 metres if each valve opens thirty times a 
minute. 

281. During storms, when the velocity of the wind is very 
high, it tears off the roofs of buildings. Two cases can be dis-
tinguished: (1) if the roof is fastened more firmly at points A 
and B than at ridge C, the wind will break the roof along 
ridge C and raise both halves up (Fig. 116a); (2) if the roof is 
secured more firmly at the ridge and less firmly at points A 
and B, the wind will first lift the roof up and then carry it 
aside (Fig. 1166). How do you explain this phenomenon? 

282. Why will a light celluloid ball placed in a stream of 
a gas or water issuing at a high velocity from a tube with a 
narrow neck freely hover in this stream (Fig. 117)? 

283. The demonstration device shown in Fig. 118 consists of 
two disks A and B. The hole in the centre of disk A is con-
nected by a pipe to a cylinder containing compressed air. Disk 
B hangs on three pins along which it can move freely up and 
down. If a stream of compressed air is passed through the pipe, 
the lower disk will begin to knock against the upper one. 
Explain the cause of this phenomenon. 

3-1865 



66 
	

PROBLEMS 

Fig. 118 Fig. 119 

284. The bottom of a broad vessel is provided with a narrow 
tube through which the water can flow out of the vessel 
(Fig. 119). A screen is placed between the vessel and the tube. 

If a light ball is submerged to the bottom of the vessel the 
water flows out of it, and the ball will not rise to the surface. 

If the outflow of the water is stopped, the ball will imme-
diately rise to the surface. Why? 

(This experiment can easily be conducted in a sink with a 
ping pong ball.) 

285. A pump is designed as a horizontal cylinder with a pis-
ton having an area of A and an outlet orifice having an area 
of a arranged near the cylinder axis. Determine the velocity of 
outflow of a liquid from the pump if the piston moves with a 
constant velocity under the action of a force F. The density of 
the liquid is p. 

Fig. 120 	 Fig. 121 
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286. In Problem 285, the velocity v may become infinitely 
high even with a small force F when a—,- A. Explain this pa-
radoxical phenomenon. 

287. A water clock (clepsydra) used in ancient Greece is de= 
signed as a vessel with a small orifice 0 (Fig. 120). The time 
is determined according to the level of the water in the vessel. 
What should the shape of the vessel be for the time scale to 
be uniform? 

288. A cylindrical vessel with a liquid rotates with an angu-
lar velocity co around a vertical axis (Fig. 121). Determine the 
change of pressure in the horizontal cross section of the vessel 
depending on the distance to the axis of rotation. 

Note. Apply the method described in solving Problem 203. 
289. Find the shape of the surface of a liquid in a cylindri-

cal vessel rotating with an angular velocity co around a vertical 
axis (i.e., the height of the liquid level depending on the dis-
tance to the axis of rotation). 

290. Why do the tea leaves gather in the middle of a glass 
after stirring? 



CHAPTER 2 

HEAT. 

MOLECULAR PHYSICS 

2-1. Thermal Expansion of Solids and Liquids 

291. An iron tyre is to be fitted onto a wooden wheel 100 cm 
in diameter. The diameter of the tyre is 5 mm smaller than 
that of the wheel. How much should the temperature of the 
tyre be increased for this purpose? The coefficient of linear ex-
pansion of iron a1 = 12X 10-6  deg-1. 

292. Why is only iron or steel used as reinforcement in con-
crete structures, while other metals, duralumin for example, are 
never employed? 

293. Why is a greater time required to measure the tempera-
ture of a human body with a thermometer than to shake it down? 

294. The height of a mercury column measured with a brass 
scale at a temperature of t1  is H1. What height H0  will the 
mercury column have at to  = 0°C? The coefficients of linear ex-
pansion of brass a and of volume expansion of mercury Y  are 
known. 

295. How can the temperature of a human body be measured 
with a thermometer if the temperature of the ambient air is 

42°C? 
296. Determine the lengths of an iron and a copper ruler to and 

/; at t = 0°C if the difference in their lengths at t1 = 50°C and 
t 2  = 450°C is the same in magnitude and equal to 1 = 2 cm. The 
coefficient of linear expansion of iron a1 = 12 x 10-6  deg-1  and 
of copper a, = 17 x 10-6  deg-1. 

297. The period of oscillations of a pendulum depends on the 
length, which changes with the temperature. How should the 
pendulum be suspended so that its length does not change with 
the temperature? 

298. A glass cylinder can contain mo  = 100 g of mercury at 
a temperature of to  = 0°C. When t1= 20°C, the cylinder can con-
tain m1= 99.7 g of mercury. In both cases the temperature of 
the mercury is assumed to be equal to that of the cylinder. Use 
these data to find the coefficient of linear expansion of glass a, 
bearing in mind that the coefficient of volume expansion of 
mercury y1= 18 x 10-5  deg-1. 
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299. A clock with a metallic pendulum is Ti = 5 seconds fast 
each day at a temperature of t, = 	15°C and T2  = 10 seconds 
slow at a temperature of 1,— + 30°C. Find the coefficient a of 
thermal expansion of the pendulum metal, remembering that the 

period of oscillations of a pendulum T = , where 1 is 
the length of the pendulum and g is the gravity acceleration. 

2-2. The Law of Conservation of Energy. 
Thermal Conductivity 

300. A brick with a mass in is lowered onto a cart with a 
mass M that moves rectilinearly with a constant velocity of vo. 
Find the amount of heat liberated in this case. 

301. An iron washer slides down a weightless rubber cord 
with a length 10  (Fig. 122). The force of friction between the 
cord and the washer is constant and equal to f. The coefficient 

of elasticity of the cord k is known. 
  Find the amount of heat Q evolved. 

What part of the work produced by fric-
tion on the cord will be converted in-
to heat? 

302. A refrigerator consuming P watts 
converts q litres of water into ice in 
minutes at a temperature 1. 

--a 

7; 

Al 	A2 

Fig. 122 
	

Fig. 123 
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What quantity of heat will be liberated by the refrigerator 
in a room during this time if the heat capacity of the refrige-
rator can be neglected? 

303. Will the temperature in a room drop if the door of a 
working refrigerator is opened? 

304. It is easiest to heat premises by means of electric ap-
pliances. Is this method the most advantageous from the ener-
getic point of view? 

305. Equal quantities of salt are dissolved in two identical 
vessels filled with water. In one case the salt is one large crystal 
and in the other—powder. 

In which case will the temperature of the solution be higher 
after the salt is completely dissolved, if in both cases the salt 
and the water originally had the same temperatures? 

306. It is known that if water is heated or cooled with cer-
tain care it can retain its liquid state at temperatures below 
0°C and higher than + 100°C. 

A calorimeter with a heat capacity of q = 400 cal/deg con-
tains m1 = 1 kg of water cooled to t1= —10°C. Next m2  = 100 g 
of water overheated to t 2  = 120°C is added to it. 

What is the temperature in the calorimeter? 
307. An incandescent lamp consuming P =54 watts is immer-

sed into a transparent calorimeter containing V = 650 cm3  of 
water. During T = 3 minutes the water is heated by t = 3.4°C. 
What part Q of the energy consumed by the lamp passes out 
of the calorimeter in the form of radiant energy? 

308. The area of a brick wall facing a street is A = 12 m2  
and its thickness d= 1 metre. The temperature of the outside 
air T o  = —15°C and that of the air in the room T = + 15°C. 
What amount of heat is lost from the room in 24 hours? The 
coefficient of thermal conductivity of brick is X = 0.003 cal/cm x 
x s • deg. 

309. A wall consists of two adjoining panels made of diffe-
rent materials. The coefficients of thermal conductivity and the 
thicknesses of the panels are X„ d1  and X„ d 2, respectively 
(Fig. 123). The temperatures of the external surfaces of the 
wall are T, and T, (where T o > T1) and are kept con-
stant. Find the temperature T, on the plane between the pa-
nels. 

310. Assuming in Problem 309 that the panels have the same 
thickness d, determine the coefficient of thermal conductivity 
of the wall. 
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311. A wall consists of alternating blocks with a length d 
and coefficients of thermal conductivity X and X, (Fig. 124). 
The cross-sectional areas of the blocks are the same. Determine 
the coefficient of thermal conductivity of the wall. 

312. Two walls I and II of the same thickness are made of 
heterogeneous metals, as shown in Figs. 125 and 126. In what 
case will the coefficient of thermal conductivity be greater? 

313. During one second m grammes of water boils away in a 
pan. Assuming that heat is received by the water only through 
the bottom of the pan and neglecting the transfer of heat from 
the pan walls and the water surface to the ambient air, deter-
mine the temperature T of the pan bottom in contact with the 
heater. The area of the pan bottom is A and its thickness d. 
The coefficient of thermal conductivity is X. 

2-3. Properties of Gases 

314. The cap of a fountain-pen is usually provided with a 
small orifice. If it is clogged, the ink begins to leak out of the 
pen. What is the cause of this phenomenon? 
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315. A barometer gives wrong readings because some air is 
present above the mercury column. At a pressure of po,= 755 mm 
Hg the barometer shows p1 =748 mm, and at p02 = 740 mm it 
shows p2  = 736 mm. Find the length 1 of the barometer tube 
(Fig. 127). 

316. A glass tube with a length of l = 50 cm and a cross sec-
tion of A = 0.5 cm2  is soldered at one end and is submerged 
into water as shown in Fig. 128. 

What force F should be applied to hold the tube under , the 
water if the distance from the surface of the water to the sol-
dered end is h = 10cm and the atmospheric pressure po  = 760 mm Hg? 
The weight of the tube G = 15 gf. 

317. A narrow tube open at both ends is passed through the 
cork of a vessel filled with water. The tube does not reach the 
bottom of the vessel (Mariotte's vessel shown in Fig. 129). Draw 
a diagram showing how the pressure p of the air in the vessel 
depends on the quantity of water Q that has flowed out. 

318. Upon each double stroke a piston pump sucks in a vo-
lume v0  of air. When this pump is used to evacuate the air 
from a vessel with a volume V it performs n double strokes. 

Fig. 129 
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The initial pressure inside the vessel po  is equal to atmospheric 
pressure. 

After that, another pump with the same active volume vo  
begins to suck in the atmospheric air, also making n double 
strokes. What will the pressure in the vessel be? 

319. A mercury column with a length 1 is in the middle of 
a horizontal tube with a length L closed at both ends. If the 
tube is placed vertically, the mercury column will shift through 
the distance Al from its initial position. 

At what distance will the centre of the column be from the 
middle of the tube if one end of the tube placed horizontally 
is opened? if the upper end of the tube placed vertically is 
opened? if the lower end of the tube placed vertically is 
opened? 

The atmospheric pressure is H cm Hg. The temperature remains 
the same. 

320. Bearing in mind that, according to Avogadro's law, the 
volume of one gramme-molecule of any gas under standard con-
ditions (temperature 0°C and pressure 1 atm) is 22.4 litres, 
find the constant in the equation of state of an ideal gas (the 
Clapeyron-Mendeleyev equation) for a quantity of a gas equal 
to one mole and prove that this constant is the same for all 
gases. 

321. Write the equation of state for an arbitrary mass of an 
ideal gas whose molecular weight IA is known. 

322. How would the pressure inside a fluid change if the 
forces of attraction between the molecules suddenly disappeared? 

323. A vessel contains one litre of water at a temperature of 
27° C. What would the pressure in the vessel be if the forces 
of interaction between the water molecules suddenly disappeared? 

324. Is the pressure the same inside a gas and at the wall 
of the vessel containing this gas? 

325. Is the concentration of gas molecules inside a vessel and 
at its wall the same? 

326. Find the temperature of a gas contained in a closed ves-
sel if its pressure increases by 0.4 per cent of the initial pres-
sure when it is heated by 1°C. 

327. A thin-walled rubber sphere weighing G = 50 gf is filled 
with nitrogen and submerged into a lake to a depth of h = 100 
metres. 

Find the mass of the nitrogen m if the sphere is in a position 
of equilibrium. Will equilibrium be stable? The atmospheric 
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pressure p0  = 760 mm Hg. The temperature in the lake t = +4°C. 
Disregard the tension of the rubber. 

328. Two hollow glass balls are connected by a tube with a 
drop of mercury in the middle. Can the temperature of the am-
bient air be appraised from the position of the drop? 

329. A cylinder closed at both ends is separated into two 
equal (42 cm each) parts by a piston impermeable to heat. Both 
the parts contain the same masses of gas at a temperature of 
27°C and a pressure ofl atm. 

How much should the gas be heated in one part of the cylin-
der to shift the piston by 2 cm? Find the pressure p of the gas 
after shifting of the piston. 

330. Dry atmospheric air consists of nitrogen (78.09 per cent 
by volume), oxygen (20.95 per cent), argon (0.93 per cent) and 
carbon dioxide (0.03 per cent). Disregarding the negligible ad-
mixtures of other gases (helium, neon, krypton, xenon), deter-
mine the composition of the air (in per cent) by weight. 

331. Find the mean (effective) molecular weight of dry at-
mospheric air if the composition of the air in per cent is known 
(see Problem 330). 

332. The density of the vapour of a compound of carbon and 
hydrogen is 3 g/lit at 43°C and 820 mm Hg. What is the mo-
lecular formula of this compound? 

333. When will the change in the pressure of a gas be grea-
ter—if it is compressed to a certain extent in a heat-imperme-
able envelope or upon isothermal compression? 

334. A gas that occupies a volume of 1 11 = 1 lit at a pressure 
of p1 = 1 atm expands isothermally to a volume of V2  = 2 lit. 
Then, the pressure of the gas is halved at the same volume. 
Next the gas expands at a constant pressure to V4  = 4 litres. 

Draw a diagram of p versus V and use it to determine the 
process in which the gas performs the greatest work. How does 
the temperature change? 

335. A cyclic process 1-2-3-1 depicted on a V-t diagram 
(Fig. 130) is performed with a certain amount of an ideal gas. 
Show the same process on a p-V diagram and indicate the 
stages when the gas received and when it rejected heat. 

336. A gas heated geyser consumes V0  = 1.8 m3  of methane 
(CH4) an hour. Find the temperature t 2  of the water heated 
by the geyser if the water flows out at a rate of v =50 cm/s. 
The diameter of the stream D=1 cm, the initial temperature 
of the water and the gas t, =11°C and the calorific value of 
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methane go = 13,000 cal/g. The gas in the tube is under a pres- 
sure of p = 1.2 atm. The efficiency of the heater r1= 60 per cent. 

337. A closed vessel impermeable to heat contains ozone (03) 
at a temperature of 11 =527°C. After some time the ozone is 
completely converted into oxygen (02). 

Find the increase of the pressure in the vessel if q= 34,000 
cal have to be spent to form one gramme-molecule of ozone 
from oxygen. 

Assume that the heat capacity of one gramme-molecule of 
oxygen at a constant volume is equal to Cv  = 5 cal/deg•mole. 

338. Twenty grammes of helium in a cylinder under a piston 
are transferred infinitely slowly from a state with a volume of 

V1 = 32 lit and a pressure of p1 = 
4.1 atm to a state with V 2  = 9 lit and 
p2  = 15.5 atm. What maximum tem-
perature will the gas reach in this 
process if it is depicted on the p-V 
diagram as a straight line (Fig. 131)? 

339. Will the energy of the air in 
a room increase if a stove is heated 
in it? 

Note. Assume the energy of a unit 
of mass of the air u to be proportio-
nal to the absolute temperature, i.e., 
u =cT. 

340. The temperature in a room 
with a volume of 30 m3  rose from 
15°C to 25°C. How much will the mass 
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of the air in the room change if the atmosphere pressure p = 1 
atm? The molecular (mean) weight of the air is p, = 28.9 g/mole. 

341. A small tube filled with air and open at the bottom is 
placed into a water-filled open vessel with a screen on the top 
(Fig. 132). The tube cannot be turned over. Draw a diagram 
showing how the depth of submergence of the tube depends on 
the temperature of the water if the temperature first slowly 
increases and then gradually decreases. 

342. A cylinder contains m = 20 g of carbon dioxide under 
a heavy piston. The gas is heated from the temperature t, = 20° C 
to t, = 108° C. What work is performed by the gas? 

343. What quantity of heat should be imparted to carbon 
dioxide (see Problem 342) expanding at a constant pressure as 
a result of heating? The molar heat of the carbon dioxide (heat 
capacity of one gramme-molecule) at a constant volume is 
Cv  = 6.864 cal/mole • deg. 

2-4. Properties of Liquids 

344. Is it more difficult to compress a litre of air to three 
atmospheres, or a litre of water? 

345. How can a minimum and a maximum thermometers be 
made using the phenomena of wettability and unwettability? 

346. The surface layer of a liquid is frequently likened to a 
stretched rubber film. In what respect does this analogy disagree 
with reality? 

347. To remove a grease spot from a fabric it is good to 
apply some petrol to the edges of the spot, while the spot itself 
should never be wetted with petrol immediately. Why not? 

348. Why is moisture retained longer in soil if it is harrowed? 
349. Skiing boots are usually warmed up to ensure that they 

absorb grease better. Should the boots be warmed up outside 
or inside? 

350. Why can an iron be used to remove greasy spots from 
clothing? 

351. Why do drops of water appear at the end of a piece 
of firewood in the shade when it is being dried in the sun? 

352. A vessel whose bottom has round holes with a diameter 
of d = 0.1 mm is filled with water. Find the maximum height 
of the water level h at which the water does not flow out. The 
water does not wet the bottom of the vessel. 
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353. A soapy film is stretched over a rectangular vertical wire 
frame (Fig. 133). What forces hold section abcd in equilibrium? 

354. A cube with a mass m = 20 g wettable by water floats 
on the surface of water. Each face of the cube a is 3 cm long. 
What is the distance between the lower face of the cube and 
the surface of the water? 

355. The end of a capillary tube with a radius r is immersed 
into water. What amount of heat will be evolved when the 
water rises in the tube? 

356. A capillary tube is lowered into a vessel with a liquid 
whose vapour pressure may be neglected. The density of the 
liquid is p. The vessel and the tube are in a vacuum under the 
bell of an air pump (Fig. 134). Find the pressure inside the 
liquid in the capillary tube at a height h above the level of 
the liquid in the vessel. 

357. The course of reasoning given below is usually followed 
to prove that the molecules of the surface layer of a liquid have 
surplus potential energy. A molecule inside the liquid is acted 
upon by the forces of attraction from the other molecules which 
compensate each other on the average. If a molecule is singled 
out on the surface, the resulting force of attraction from the 
other molecule is directed into the liquid. For this reason the 
molecule tends to move into the liquid, and definite work should 

a 6 

d 

Fig. 133 
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Fig. 135 Fig. 136 

be done to bring it to the surface. Therefore, each molecule of 
the surface layer has excess potential energy equal to this work. 

The average force that acts on any molecule from the side of 
all the others, however, is always equal to zero if the liquid is 
in equilibrium. This is why the work done to move the liquid 
from a depth to the surface should also be zero. What is the 
origin, in this case, of the surface energy? 

358. One end of a glass capillary tube with a radius r = 0.05 cm 
is immersed into water to a depth of h= 2 cm. What pressure 
is required to blow an air bubble out of the lower end of 
the tube? 

359. A glass capillary tube with an internal diameter of 0.5 mm 
is immersed into water. The top end of the tube projects by 
2 cm above the surface of the water. What is the shape of 
the meniscus? 

360. Water rises to a height h in a capillary tube lowered 
vertically into water to a depth 1 (Fig. 135). The lower end 
of the tube is closed, the tube is then taken out of the water 
and opened again. Determine the length of the water column 
remaining in the tube. 

361. Two capillary tubes of the same cross section are lowered 
into a vessel with water (Fig. 136). The water in the straight 
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Fig. 137 	 Fig. 138 

tube rises to a height h. What will the level of the water be 
in the bent tube and what form will the meniscus take? The 
lower end of the bent tube is at a depth H below the level of 
the water in the vessel. 

Consider the following five cases: 
(1) H > h 
(2) H = h 
(3) 0 < H < h 
(4) H = 0 
(5) H < 0 (the end of the bent tube is above the level of the 

water in the vessel). 
362. A soap-bubble with a radius r is placed on another 

bubble with a radius R (Fig. 137). What will the form of the 
soapy film separating the two bubbles be? What angles will be 
formed between the films at the points of contact? 

363. A wooden cross floats in water. Each arm of the cross 
is coated :on one side with varnish (Fig. 138). The water will 
rise to different heights on both sides of each arm owing to the 
different wettability of the wood and the varnish. The wetting 

- I- 

Fig. 139 
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angle will be different, and therefore the horizontal component 
of the force of surface tension F will also be different on each 
side of an arm (Fig. 139). Will this cause the cross to rotate? 

364. Light bodies wetted by water (for example, two matches) 
and floating on its surface are mutually attracted. This also 
occurs if bodies are not wetted (matches coated with a thin 
layer of paraffine). If one body is wetted and the other not, 
they will be repulsed. How can these phenomena be explai-
ned? 

2-5. Mutual Conversion of Liquids and Solids 

365. Water in a glass freezes at 0°C. If this water is sepa-
rated into fine drops, the water in them can be overcooled 
to —40° C. For example, water drops which clouds are composed 
of usually begin to freeze at a temperature below —17° C. How 
can these facts be explained? 

366. A vessel with 100 g of water at a temperature of 0°C 
is suspended in the middle of a room. In 15 minutes the tem-
perature of the water rises to 2°C. When ice equal in weight 
to the water is placed into the vessel, it melts during ten hours. 
May these data be used to appraise the specific heat of fusion 
of ice H? 

367. Two identical pieces of ice fly toward each other with 
equal velocities and are converted into vapour upon impact. 
Find the minimum possible velocities of the pieces before the 
impact if their temperature is —12° C. 

368. A calorimeter contains ice. Determine the heat capacity 
of the calorimeter if Q1 = 500 cal are required to heat it together 
with its contents from 270 to 272° K, and Q 2  = 16,600 cal from 
272 to 274° K. 

369. A calorimeter contains 400 g of water at a temperature 
of +5°C. Then, 200 g of water at a temperature of +10°C are 
added and 400 g of ice at a temperature of —60°C are put in. 
What is the temperature in the calorimeter? 

370. Ice with a mass of m2  = 600 g and at a temperature of 
12 =—l0°C is placed into a copper vessel heated to ti= 350° C. 
As a result, the vessel now contains m8  = 550 g of ice mixed 
with water. Find the mass of the vessel. The specific heat of 
copper c,= 0.1 cal/deg•g. 

371. When a small ice crystal is placed into overcooled water 
it begins to freeze instantaneously. 
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(1) What amount of ice is formed from M =1 kg of water 
overcooled to t = —8°C? 

(2) What should the temperature of the overcooled water be 
for all of it to be converted into ice? 

Disregard the relation between the heat capacity of the water 
and the temperature. 

372. One hundred grammes of ice at a temperature of 0°C 
are placed into a heat-impermeable envelope and compressed to 
p = 1,200 atm. Find the mass of the melted part of the ice if 
the melting point decreases in direct proportion to the pressure, 
and if it lowers by 1°C when the pressure is increased by 138 atm. 

2-6. Elasticity and Strength 

373. A copper ring with a radius of r =100 cm and a cross-
sectional area of A = 4 mm2  is fitted onto a steel rod with 
a radius R =100.125 cm. With what force F will the ring be 
expanded if the modulus of elasticity of copper E = 12,000 kgf/mm2? 
Disregard the deformation of the rod. 

374. What work can be performed by a steel rod with a 
length 1 and a cross-sectional area A when heated by t degrees? 

375. A wire with a length of 2/ is stretched between two 
posts. A lantern with a mass M is suspended exactly from the 
middle of the wire. The cross-sectional area of the wire is A 
and its modulus of elasticity E. Determine the angle a of 
sagging of the wire, considering it to be small (Fig. 140). 

376. A steel rod with a cross section A =1 cm2  is tightly 
fitted between two stationary absolutely rigid walls. What 

Si 

 

Fig. 140 
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force F will the rod act with on the walls if it is heated 
by At = 5°C? 

The coefficient of linear thermal expansion of steel 
a= 1.1 X 10-5  deg-' and its modulus of elasticity E= 
= 20,000 kgf/mm2. 

377. Two rods made of different materials are placed between 
massive walls (Fig. 141). The cross section of the rods is A 
and their respective lengths l, and 12. The rods are heated by t 
degrees. 

Find the force with which the rods act on each other if their 
coefficients of linear thermal expansion a, and a2  and the moduli 
of elasticity of their materials E, and E2  are known. Disre-
gard the deformation of the walls. 

Fig. 142 Fig. 143 
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Fig. 144 

Steel 

Copper 
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378. A homogeneous block with a mass tn = 100 kg hangs on 
three vertical wires of equal length arranged symmetrically 
(Fig. 142). Find the tension of the wires if the middle wire 
is of steel and the other two are of copper. All the wires have 
the same cross section. Consider the modulus of elasticity of 
steel to be double that of copper. 

379. A reinforced-concrete column is subjected to compression 
by a certain load. Assuming that the modulus of elasticity of 
concrete E, is one-tenth of that of iron Ei, and the cross-
sectional area of the iron is one-twentieth of that of concrete, 
find the portion of the load acting on the concrete. 

380. A steel bolt is inserted into a copper tube as shown 
in Fig. 143. Find the forces induced in the bolt and in the 
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tube when the nut is turned through one revolution if the 
length of the tube is 1, the pitch of the bolt thread is h and 
the cross-sectional areas of the bolt and the tube are Ab and 
At , respectively. 

381. A copper plate is soldered to two steel plates as shown 
in Fig. 144. What tensions will arise in the plates if the 
temperature is increased by t° C? All three plates have the same 
cross sections. 

382. Find the maximum permissible linear velocity of a 
rotating thin lead ring if the ultimate strength of lead 
au  = 200 kgf /cm2  and its density p = 11.3 g/cm3. 

383. An iron block AB has both ends fixed. Hook H is 
fastened with two nuts in a hole in the middle of the block 
(Fig. 145). The block is clamped by the nuts with a force Fo. 

What forces will act on the upper and lower nuts from the 
side of the block if the hook carries a load whose weight can 
change from zero to G = 2F0? Disregard sagging of the block 
and the weight of the hook. 

2-7. Properties of Vapours 

384. Water vapour amounting to 150 g at a temperature of 
+100°C is admitted into a calorimeter containing 100 g of ice 
at a temperature of —20°C. What will the temperature inside 
the calorimeter be if its heat capacity is 75 cal/deg? 

385. Why does a strong jet of steam burst out from a 
boiling kettle when the gas burner is switched off, while no 
steam was visible before? 

386. Prove that the density of water vapour at a temperature 
near room temperature, expressed in g/m3, is approximately 
equal to the pressure of water vapour expressed in millimetres 
of mercury. 

387. The pressure of saturated water vapours in a hermetic 
vessel increases with the temperature as shown in Fig. 146. 
The pressure of an ideal gas at constant volume is directly 
proportional to the temperature. 

Using a table of the properties of saturating water vapours 
(Table 2), find whether the equation of state of an ideal gas 
can be used to calculate the density or the specific volume of 
saturated water vapours. Explain the result obtained. 

388. Nine grammes of water vapour at a temperature of 30° C 
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Table 2. Properties of Saturating Water Vapours 

t (°C) 
Pressure 
(kgf/cma) 

Specific 
volume 

of vapour 
(m 3/kg) 

t (°C) 
Pressure 
(kgf/cm') 

Specific 
volume 

of vapour 
(m3/kg) 

17.2 0.02 68.3 151.1 5 0.3818 
45.4 0.1 14.96 158.1 6 0.3214 
59.7 0.2 7.80 164.2 7 0.2778 
75.4 0.4 4.071 169.6 8 0.2448 
85.45 0.6 2.785 174.5 9 0.2189 
93.0 0.8 2.127 179.0 10 0.1980 
96.2 0.9 1.905 187.1 12 0.1663 
99.1 1 1.726 194.1 14 0.1434 
100 1.0333 1.674 200.4 16 0.1261 
116.3 1.8 0.996 206.2 18 0.1125 
119.6 2 0.902 211.4 20 0.1015 
132.9 3 0.617 232.8 30 0.0679 
142.9 4 0.4708 249.2 40 0.0506 

are compressed isothermally in a cylinder under a piston. At 
what volume will the vapour begin to condense? 

Note. Use Table 2. 
389. The relative humidity in a room is 10 per cent at a tem-

perature of 15°C. How will the relative humidity change if the 
temperature in the room gradually increases by 10° C? 

390. A cold autumn drizzle settled down for the day. Washing 
is hung up to dry in a room. Will it dry faster if the window 
is opened? 

391. Two vessels connected by tubes with cocks are filled 
with water to different levels (Fig. 147). The air has been pumped 
out of the vessels. What will occur if the vessels are connected 
(1) by opening the cock in the lower tube, (2) by opening the 
cock in the upper tube? 

392. What is the relative humidity of air at a temperature of 
t i  = 10° C if the moisture from this air, when the latter has been 
heated to t 2  = 30° C, begins to condense after isothermal compres-
sion from 1 to JO at. 

Note. Use Table 2. 
393. A porous body is placed for drying under the bell of a 

vacuum pump. The pressure under the bell is maintained at 6.5 mm 
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Fig. 146 Fig. 147 

Hg for one hour, after which it sharply drops. The capacity of 
the pump is 60 lit/min. The temperature under the pump bell 
is t = 5°C. What amount of water did the body contain? 

394. Water with a mass of m = 30 g at a temperature of 0°C 
is in a heat-insulated cylinder under a weightless piston. The 
area of the piston A=512 cm' and the external pressure p = 1 atm. 
What height will the piston rise to if an electric heater conta-
ined in the cylinder supplies Q = 5,760 cal? 



CHAPTER 3 

ELECTRICITY 

AND MAGNETISM 

3-1. Electrostatics 

395. What is the force of interaction between point charges 
of one coulomb at a distance of 1 km from each other? 

Can a small (several centimetres) body have an electrostatic 
charge of one coulomb? 

396. Three identical small balls, each weighing 0.1 gf, are 
suspended at one point on silk threads having a length of l = 20 cm. 
What charges should be imparted to the balls for each thread to 
form an angle of a= 30° with the vertical? 

397. Two identical balls are suspended on threads at a distance 
from each other. The balls are given equal charges and immersed 
in kerosene. Determine the density of the material of the balls 
if the threads do not deflect from the vertical in a vacuum or 
in kerosene. The density of kerosene po  = 0.8 g/cm3  and its per-
mittivity (dielectric constant) 8 = 2. 

398. Two small balls with equal but opposite charges are secured 
in a horizontal plane at a distance a from each other. A third 
charged ball is suspended on a string. The point of suspension 
is first so moved that the third ball, when in a state of equili-
brium, is precisely above the first ball at a distance a from it, 
and then it is so moved that the third ball is above the second 
one. Find the angles through which the string is deflected from 
the vertical if the angle of deflection above one of the balls is 
twice that above the other. 

399. In classical experiments performed to measure the charge 
of an electron, a charged drop of oil is placed between the hori-
zontal plates of a plane capacitor. Under the action of an electro-
static field, the drop moves uniformly upward, covering a certain 
distance during the time ti, or downward, when the sign of the 
charge on the plates changes, covering the same distance during 
the time t2. 

Assuming the force of friction between the drop and the air 
to be proportional to the velocity of the drop, find the time t 
during which the drop travels the same distance after the field 
is switched off. 
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400. If only one charged body is available, can it be used to ob-
tain a charge exceeding many times in absolute magnitude that 
which it itself has? 

401. A charged body has some energy. What is the source of 
the energy in a body which receives a charge as a result of the 
process described in the solution to Problem 400? 

402. Can two likely-charged balls be attracted to each 
other? 

403. A thin wire ring with a radius R carries an electric 
charge q. The centre of the ring contains a charge Q of the 
same sign as q, and Q>q. Find the force which the ring is 
stretched with. 

404. Two point charges Q1  and Q2 are at a distance d from 
each other. Find the intensity of the electric field at a point at 
a distance r1  from the charge Q1  and r2  from the charge Q2. 
Consider the cases of opposite and like charges. 

405. Three identical positive charges Q are arranged at the 
vertices of an equilateral triangle. The side of the triangle is a. 
Find the intensity of the field at the vertex of a regular tetra-
hedron of which the triangle is the base. 

406. A positive charge Q is uniformly distributed over a thin 
wire ring with a radius R. Find the intensity of the electric 
field at points on the axis of the ring at a distance r from its 
centre. 

407. Find the points on the axis of the charged ring (see 
Problem 406) at which the intensity of the electric field is ma-
ximum. Determine the intensity of the field at these points. 

408. Two parallel metal plates, each with an area A, carry 
the charges Q1  and Q 2 . The distance between the plates is much 
less than their linear dimensions. Determine the intensity of the 
electric field at points A, B, and C (Fig. 148). 

409. Two large current-conducting plates are arranged parallel 
to each other. The distance between them is much less than their 
dimensions. One of the plates is given a charge + Q. What are 
the charges induced on the surfaces of the other plate? 

410. A molecule is at a distance r from the axis of a charged 
infinitely long metallic cylinder. Find the force acting on the 
molecule if the intensity of the cylinder field is expressed by 
the formula E=— (q is the charge per unit of cylinder length) 

and the molecule has the form of a "dumb-bell" with a length 
1 and with charges + Q and — Q at its ends. 
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411. Two molecules of equal mass are at a certain distance 
from the axis of a charged cylinder. One molecule has a constant 
electric moment p = Q1 (see Problem 410). An "elastic" force 
acts between the charges of the other molecule, i.e., the dis-
tance 1 is determined from the expression QE = kl, where E is 
the mean intensity of the field acting on the molecule and k is 
a proportionality factor. 

First, the electric moments of the molecules are the same and 
their velocities are zero. 

Which molecule will reach the surface of the cylinder quicker 
under the action of the force of attraction? 

412. A charge + Q is imparted to a rectangular metal plate 
with sides a and b. The thickness c of the plate is much smal-
ler than a and b. Find the intensity of the field created by this 
charged plate at points in space close to the centre of the plate. 

413. A point electric charge + Q is at a distance d from a 
large current-conducting plate. Find the force with which the 
plate acts on the point charge. 

414. A point charge + Q1  is brought up to a distance d from 
the centre of the metal plate described in Problem 412. The 
distance d is much smaller than sides a and b of the plate. 
Determine the force with which the plate acts on the charge 
-+ Q1 . When will a positively charged plate attract a positive 
point charge? 

415. What potential can an isolated metal sphere with a ra-
dius R in the air be charged to if the intensity of the electric 
field that causes a puncture in the air is E0  = 30,000 V/cm? 

416. A body with a charge —q is introduced through a small 
orifice into a hollow current-conducting sphere with a radius R 
carrying a charge + Q. What is the potential of a point in space 
at a distance of R > r from the centre of the sphere? 

472 

A 
	

9 

Fig. 148 	 Fig. 149 Fig. 150 
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417. A metal leaf is attached to the internal wall of an electro-
meter insulated from the earth (Fig. 149). The rod and the 
housing of the electrometer are connected by a conductor, and 
then a certain charge is imparted to the housing. Will the leaves 
of the electrometer deflect? What will happen to the leaves if 
the conductor is removed and the rod is then earthed? 

418. The housing of the electrometer described in Problem 417 
is given a charge (the conductor is absent). Will the leaves of 
the electrometer deflect in this case? Will the angle of deflection 
of the leaves change if the rod is earthed? 

419. By touching different points on a metal bucket having 
a narrow bottom with a test ball connected by a wire to an 
earthed electrometer (Fig. 150), we can observe an identical 
deflection of the leaves of the electrometer at any position of 
the ball. If the wire is removed, the deflection of the leaves of 
the electrometer, whose rod the ball is made to contact, will 
depend on what point of the bucket surface (external or inter-
nal) we touched previously. Why? 

420. Why does an electrometer connected by a wire to the 
metal body shown in Fig. 151 make it possible to measure the 
potential of the body? Why do the leaves deflect in proportion 
to the density of the charge on separate portions of the body 
when the charge is transferred from the body to the electrometer 
with the aid of an insulated current-conducting ball? 

421. An uncharged current-conducting sphere with a radius R 
is at a distance d from a point charge Q. What is the poten-
tial of the sphere? 

422. An isolated current-conducting sphere with a radius R 
carries a charge + Q. What is the energy of the sphere? 

423. A metal sphere two metres in diameter is in the centre 
of a large room and charged to a potential of 100,000 V. What 
quantity of heat will be liberated if the sphere is connected to 
the earth with a conductor? 

424. Two metal balls with radii of r1= 1 cm and r2 = 2 cm 
at a distance of R = 100 cm from each other are connected to 
a battery with an electromotive force of e = 3,000 V. Find the 
force of interaction of the balls, disregarding the interaction of 
the connecting wires. 

425. Two small balls carry charges different in magnitude and 
identical in sign. One of the balls is secured. If the second ball 
is released, it can perform the mechanical work IV, as it moves 
away under the action of the electrostatic forces of repulsion. 
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Fig. 151 Fig. 152 

If before the second ball is released, the balls are connected 
by a conductor for a certain time, the second ball upon moving 
away can perform the mechanical work W2. 

Calculate the quantity of heat liberated in the conductor when 
the balls are connected, and find the energy at the expense of 
which this heat is liberated and the mechanical work changed. 

426. A spherical envelope with a radius R is charged uniformly 
with a charge Q. Find the expanding force per unit of envelope 
area. 

427. There are three charges on a straight line: a positive one 
q and two negative ones Q. At what ratio between the charges 
can they be so arranged that the entire system is in equilibri-
um? Will this equilibrium be stable? 

Draw the relation between the potential energy for each charge 
and its position on the straight line, assuming that the other 
two charges are stationary. 

428. An electric charge Q moves from infinity toward a me-
tallic plate. Find the kinetic energy of the charge when it is 
at a distance d from the plate. The initial velocity of the charge 
is zero. The dimensions of the plate are infinitely great. 

429. Charges are so arranged on the surface of an infinitely 
long cylinder that the right-hand half of the cylinder surface 
from section 00' is charged positively, and the left-hand half 
negatively (Fig. 152). The density of the charges increases in 
both directions directly proportional to the distance from sec-
tion 00'. 

Prove that the intensity of the electric field at all points 
inside the cylinder will be the same everywhere and directed 
along the axis of the cylinder as shown in the figure by the 
arrow. 

430. An analogy is frequently drawn between capacitance and 
the capacity of a vessel. How should the vessel be shaped for 
this analogy to be true? 
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431. Appraise the capacitance of a human body in the order 
of its magnitude. 

432. Will the readings of an electrometer joined to a galva-
nic cell change if a capacitor is connected in parallel with it? 
Will the capacitance of the capacitor have any significance? 

433. Four identical plane capacitors with an air dielectric are 
connected in series. The intensity of the field at which the air 
is punctured is Ea =3 x104  V/cm. The distance between the 
plates d=0.7 cm. 

(1) What maximum voltage can be fed to this battery of ca-
pacitors? 

(2) What will this maximum voltage be if one of the capa-
citors is replaced by a similar one in which glass is used as a 
dielectric? 

The permittivity of glass s= 7 and the puncturing field inten-
sity for glass Eg  = 9 x104  V/cm. 

434. Determine the voltages U, and U 2  on the capacitors 
(Fig. 153) if e, = 12 kV and i2 = 13 kV, C, = 311F and C2  = 7p.F. 
Disregard the conductivity of the dielectrics. 

4 	If 	 
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Fig. 155 
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435. Find the capacitance Co  of the battery of identical capa-
citors shown in Fig. 154. 

436. Each edge of a cube made of wire contains a capacitor 
C (Fig. 155). Find the capacitance of this battery if it is con-
nected to the circuit by means of conductors joined to the oppo-
site apices A and B of the cube. 

437. The spark-capacitor transformer designed by Arkadyev can 
be used to obtain short-time high voltages. A diagram of the 
device is shown in Fig. 156. 

A group of capacitors connected in parallel by conductors AB 
and CD having a very high resistance is joined to a high-vol-
tage source. 

The upper plate of each capacitor is connected through a spark 
gap to the lower plate of the following capacitor (gaps 1, 2, 3 
and 4). Each following gap is greater than the preceding one. 

A discharge occurs when the potential difference between the 
plates attains the puncturing voltage of the first gap. After this 
the second, third, etc., gaps will be punctured. What will the 
potential difference be when the last gap is punctured if there 
are n capacitors and the voltage applied is Vo? 

438. The plates of a charged plane capacitor are alternately 
earthed. Will the capacitor be discharged? 

439. A plane capacitor is charged to a potential difference U. 
Both plates are arranged symmetrically with respect to the earth 
so that their potentials relative to it are + U/2 and —U/2, 
respectively. 

How will the potentials of the plates change relative to the 
earth if the first plate is earthed, then disconnected from the 
earth, after which the second plate is earthed? 

440. One of the plates of a capacitor connected to a battery 
with an e.m.f. of e is earthed (Fig. 157). Will the potentials 
of the capacitor plates change with respect to the earth if the 
earthing wire is removed? 

441. Two plane capacitors with capacitances C1  and C, are 
charged to potential differences U 1  and U 2  (U1  U2). 

Fig. 156 



94 
	

PROBLEMS 

Prove that if these capacitors are connected in parallel, their 
total electrostatic energy diminishes. Explain the drop in the 
energy. 

442. A dielectric in the form of a sphere is introduced into a 
homogeneous electric field. How will the intensity of the field 
change at points A, B and C (Fig. 158). 

443. One of the plates of a plane capacitor with a mica die-
lectric carries a positive charge of Q= 1.4 x 105  CGSQ. The other 
plate isolated from earth is not charged. The area of each plate 
A = 2,500 cm2. The permittivity of mica sr = 7. 

Find the intensity of the field in the space between the plates. 
444. What is the force of interaction of the balls connected 

to the battery (Problem 424) if they are immersed in kerosene? 
The permittivity of kerosene Er  = 2. 

445. The plates of a plane capacitor are connected to a storage 
battery whose e.m.f. is e. Calculate the mechanical work per-
formed by the electric field when the plates are moved if the 
initial distance between the plates is d1, the final distance is d2, 
and d,< d1. Disregard the evolution of heat in the battery and 
the feeding conductors. 

446. Elongated pieces of a dielectric are usually placed along 
the force lines of an electric field. It would seem that the se-
parate molecules of a non-polar dielectric only stretch along 
the field, and never rotate. In a dielectric consisting of dipole 
molecules the average number of molecules that rotate clockwise 
when the field is switched on is equal to the number of mole-
cules rotating in the opposite direction. Why does the entire 
piece of dielectric rotate? 

447. The space between the plates of a plane capacitor is 
filled with a dielectric as shown in Fig. 159. The area of each 
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plate is A and the permittivity of the dielectric is Er. Find the 
capacitance of the capacitor in both cases. 

448. Determine the energy of a plane capacitor having the 
space between its plates filled with a dielectric. 

449. A plane capacitor is filled with a dielectric whose per-
mittivity is Cr. The intensity of the field in the dielectric is E. 
What is the intensity of the field in a space made inside the 
dielectric and having the form of a long thin cylinder directed 
along the field or the form of a parallelepiped one side of 
which is much smaller than the other two? The smaller side is 
directed along the field. 

450. Two rectangular plates with a length 1 and an area A 
are arranged parallel to each other at a distance d. They are 
charged to a potential difference U (plane capacitor). A dielect-
ric with a permittivity et  whose thickness is d and whose width 
is equal to that of the plates is drawn into the space between 
the latter. The length of the dielectric is greater than 1 
(Fig. 160). Find the resulting force F acting on the dielectric 
from the side of the field depending on the distance x. 

451. Solve Problem 450 if the 
capacitor is connected to a battery 
whose e.m.f. is U. Disregard the re-
sistance of the connecting wires. 

452. The following design of a per-
petuum mobile has been suggested. 

Kerosene is poured into commu-
nicating vessels (Fig. 161). One part 

1 

Fig. 160 
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of the vessel is placed into a strong electric field between 
the plates of a capacitor owing to which the level of the kero-
sene in this part is higher than in the other. A chain of balls 
is passed over two pulleys. 

The specific weight of the material of the balls is less than 
that of the kerosene. 

The lifting force acting on the balls will be greater in the 
left-hand part than in the right-hand one because more balls 
are immersed in the kerosene in the left-hand part. For this 
reason the inventor believes that the chain should start rotating 
clockwise. Why will there actually be no rotation? 

453. The space between the plates of a plane capacitor is 
filled with a dielectric whose permittivity is 8,.. One plate is 
given a charge +Q and the other —Q. Determine the density 
of the bound electric charges that appear on the surface of the 
dielectric and the forces that are exerted by the field on the 
dielectric. 

454. The space between the plates of a plane capacitor is 
filled with a dielectric. Each molecule of the dielectric is assu-
med to have the form of a "dumb-bell" with a length 1 whose 
ends carry charges 	and —Q. The number of molecules in 
a unit of volume (1 cm3) is n. 

Let us assume further that all the molecules have turned along 
the electric field under its action. Find the intensity E of the 
field inside the capacitor filled with the dielectric if before fill-
ing it the intensity of the field was E0. 

455. A dielectric consists of molecules each of which can be 
represented as two charges +Q and —Q between which an 
"elastic force" acts. The latter term should be understood to mean 
that x (the distance between the charges +Q and —Q) can be 
found from the equality kx= QE, where E is the intensity 
of the field acting on the charges, and k is a proportionality 
factor. 

Assume that a unit of volume (1 cm3) of the dielectric con-
tains n molecules. Solve Problem 454, assuming that the space 
between the plates of the plane capacitor is filled with a die-
lectric of this type. 

Determine the permittivity of the dielectric. 
456. A capacitor is filled with the dielectric whose properties 

are described in Problem 455. 
Find the energy stored in the dielectric owing to its polari-

zation. 
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3-2. Direct Current 

457. Is there an electric field near the surface of a conductor 
carrying direct current? 

458. Draw approximately the arrangement of the force lines 
of an electric field around a homogeneous conductor bent to 
form an arc (Fig. 162). The conductor carries direct current. 

459. Determine the resistance r if an ammeter shows a cur-
rent of 1= 5 A and a voltmeter 100 V (Fig. 163). The internal 
resistance of the voltmeter R =2,500 Q. 

460. What resistance r should be used to shunt a galvanome-
ter with an internal resistance of R = 10,000 ohm to reduce its 
sensitivity n = 50 times? 

461. Determine the voltage across a resistance R using a volt-
meter connected to its ends. What relative error will be made 
if the readings of the voltmeter are taken as the voltage applied 
before it was switched on? The current intensity in the circuit 
is constant. 

462. An ammeter is connected to measure the current inten-
sity in a circuit with a resistance R. What relative error will 
be made if connection of the ammeter does not change the cur-
rent intensity in the cir- 
cuit? The voltage across 	2  
the ends of the circuit is 
kept constant. 

Fig. 164 
	

Fig. 165 

4-1865 



B 

C 

Fig. 169 

98 
	

PROBLEMS 

Fig. 166 
	

Fig. 167 

463. Two conductors with temperature coefficients of resist-
ance a1  and a2  have resistances R01 and R02  at 0°C. Find the 
temperature coefficient of a circuit consisting of these conduc-
tors if they are connected in series and in parallel. 

464. Find the resistance of the circuit shown in Fig. 164. Dis-
regard the resistance of the connecting wires AC'C and BC"D. 

465. Find the resistance of the hexagon shown in Fig. 165 if 
it is connected to a circuit between points A and B. The resis-
tance of each conductor in the diagram is R. 

466. Find the resistance of a wire cube when it is connected 
to a circuit between points A and B (Fig. 166). The resistance 
of each edge of the cube is R. 

467. Resistances R, and R2, each 60Q, are connected in se-
ries (Fig. 167). The potential difference between points A and 
B is U = 120 V. Find the reading U 1  of a voltmeter connected 
to points C and D if its internal resistance r = 120Q. 

468. Wires identical in cross section A and resistivity p are 
soldered into a rectangle ADBC (Fig. 168) with the diagonal 
AB of the same cross section and material. Find the resistance 
between points A and 
B and between C and 
D if AD= BC = a 
and AC = BD=b. 
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469. Figure 169 shows the diagram of a Wheatstone bridge 
used to measure resistances. litre R., is the unknown resistance, 
R, a standard resistance, G a galvanometer connected by a slid-
ing contact D to a homogeneous conductor AB with a high re-
sistance (a slide wire). 

Prove that the equation Ro= F  is true when no current flows 
through the galvanometer. Disregard the resistance of the con-
necting wires. 

470. What resistance should be connected between points C 
and D (Fig. 170) so that the resistance of the entire circuit 
(between points A and B) does not depend on the number of 
elementary cells? 

471. The output voltage can be reduced in the output circuits 
of generators as desired by means of an attenuator designed as 
the voltage divider shown in Fig. 171. 

A special selector switch makes it possible to connect the 
output terminal either to the point with a potential Uo  produ-
ced by the generator, or to any of the points U 1, U 2, Un, 
each having a potential k times smaller (k> 1) than the pre-
vious one. The second output terminal and the lower ends of 
the resistances are earthed. 

Find the ratio between the resistances R1:R2:R3  with any 
number of cells in the attenuator. 

472. What devices are needed to verify Ohm's law experimen-
tally, i.e., to show that the current intensity is directly pro-
portional to the potential difference? 

473. A charge Q is imparted to two identical plane capaci-
tors connected in parallel. 

1/17-z e 147-1 
RI 

Fig. 171 

4* 
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R 	At the moment of time t = 0 the distan- 
-----4 F  ce between the plates of the first capacitor 

begins to increase uniformly according to 
the law cl1 = cl,± vt, and the distance bet-
ween the plates of the second capacitor to 

	

+ 	– 	decrease uniformly according to the law 
r ci2 =do —vt. Neglecting the resistance of 

Fig. 172 

	

	 the feeding wires, find the intensity of the 
current in the circuit when the plates of 

the capacitors move. 
474. Find the work performed by an electrostatic field (see 

Problem 473) when the distance between the plates of the first 
capacitor increases and that between the plates of the second 
capacitor simultaneously decreases by a. 

475. A curious phenomenon was observed by an experimenter 
working with a very sensitive galvanometer while sitting on 
a chair at a table. (The galvanometer was secured on a wall 
and the ends of its winding connected to an open key on the 
table.) Upon rising from the chair and touching the table with 
his hand, the experimenter observed an appreciable deflection 
of the galvanometer pointer. If he touched the table while sit-
ting on the chair there was no deflection. Also, the galvanome-
ter showed no deflection when he touched the table without 
first sitting down. Explain this phenomenon. 

476. The following effect was observed in a very sensitive 
galvanometer when the circuit was opened. If a charged body 
is brought up to one end of the winding of the galvanometer, 
its pointer deflects. If the body is brought up to the other end 
of the winding, the deflection is in the same direction. Explain 
this phenomenon. 

477. How is the potential distributed in a Daniell cell when 
the external circuit is opened? 

gl 	82 	8, 	82 	6 	82 	7 	6  2 4.11. 	14711  
+ I- 1-1-1 + + H-7-1  - 

	

'1 B rz 	g 

	

6, >82 	87=82 	6,, > 82 	61=62 
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Fig. 173 
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478. Show graphically the distribution of a potential along 
the closed circuit illustrated in Fig. 172 and on this basis de-
duce Ohm's law for a closed circuit. 

479. Show graphically the approximate distribution of a po-
tential along the closed circuits depicted in Fig. 173. 

Determine the current intensity for each circuit and the po-
tential difference between points A and B. Disregard the resis-
tance of the connecting wires. 

480. Prove that an electromotive force in a circuit contain-
ing a galvanic cell is equal to the work of forces of non-elec-
trostatic origin when a single positive charge moves along a 
closed circuit. 

481. About 106,000 calories are evolved when one mole of 
zinc combines with sulphuric acid and about 56,000 calories are 
consumed when a mole of copper is liberated from blue vitriol. 
Use these data to find the e. m. f. of a Daniell cell. 

482. Two Daniell cells with internal resistances of 1' 1= 0.852 
and r, = 1.3Q and the same e. m. f. s are connected in parallel 
and across an external resistance R. Find the ratio between the 
quantities of the zinc dissolved in these elements during a de-
finite interval of time. 

483. A Daniell cell is made of absolutely pure materials. 
Find the consumption of zinc and crystals of blue vitriol 
CuSO4  • 5H20 if the cell produces a current of 0.1 A in eight hours. 

484. In a Daniell cell, copper is replaced by wax coated 
with a layer of graphite. Describe the phenomena that will 
occur in such a cell if the zinc is connected to the graphite 
layer by a wire. 

485. How will the e. m. f of the battery shown in Fig. 174 
change if the partition between the vessels is removed? A solu-
tion of sulphuric acid is used as the electrolyte. 

486. A homogeneous carbon rod lies on the bottom of a 
vessel filled with electrolyte. A voltmeter with a high resistance 
is connected to the ends of the rod. A zinc rod bears against 
the middle of the carbon rod (Fig. 175). 

What will the voltmeter show if the zinc rod is placed ver-
tically? How will the readings of the voltmeter change if the 
zinc rod is inclined to the right or the left? 

487. A hollow current-conducting sphere with a radius of 
R = 5 cm is placed into an electrolytic bath filled with a solu-
tion of blue vitriol. The surface of the sphere has an orifice 
with a radius of r = 0.5 mm. 
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Fig. 174 Fig. 175 

How much will the weight of the sphere increase if the 
copper is deposited during t= 30 min with a current density 
in the electrolyte of j =0.01 A/cm2. 

488. If a capacitor carrying a charge Q is discharged through 
an electrolytic bath with acidified water, m grammes of deto-
nating gas will be liberated. According to Faraday's law, the 
quantity of substance evolved during electrolysis depends only 
on the amount of electricity passed through the electrolyte. 
This means that if the capacitor is discharged through N se-
ries-connected baths, then mN grammes of detonating gas will 
be liberated. N can be made as great as required to obtain any 
quantity of the gas. Combustion of this gas can produce any 
amount of energy, which is obviously inconsistent with the law 
of conservation of energy, since the initial energy of a charged 
capacitor is not infinitely great. Explain this fact. 

489. When detonating gas explodes, 34,500 cal are liberated 
per gramme of reacted hydrogen. Use these data to find the 
minimum e. m. f. of a battery at which the electrolysis of water 
is possible. 

490. In electrolysis, positive and negative ions are continu-
ously neutralized on the respective electrodes. What maintains 
the concentration of the ions in the electrolytes at a constant 
level? In what sections of the electrolyte is the reduction in the 
number of the ions compensated? 

491. The total density of the current in electrolytes is deter-
mined as the sum of the current of the positive ions and that 
of the negative ions: 

j = e (n±v ±  n_v_) 
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where e is the charge of an ion, and n and v are the concentra-
tions and velocities of the positive and negative ions. 

Why is the amount of substance evolved, for example, on 
the cathode considered to be proportional to the full current, 
and not to the current en,v+? 

492. What minimum change in temperature can be deter-
mined with the aid of an iron-constantan thermocouple, if the 
measuring instrument (galvanometer) has a sensitivity of 10-s A 
and a resistance of R = 20Q? The e. m. f. of the thermocouple 
is 50 microvolts (50 x 10-6 V) per degree and its resistance 
r= 5Q. 

493. The temperature of the hot joints of a thermoelectric 
battery t1= 127° C and of the cold ones t, = 27°C. The e. m. f. 
of the battery e= 4 V. Two calories of heat are supplied to the 
heated joints in a unit of time to maintain a constant tempe-
rature. 

An electrolytic bath with a solution of blue vitriol is connec-
ted to the battery. What maximum (theoretical) amount of 
copper can be deposited on the cathode in a unit of time? 

494. A current with an intensity of I flows through a sto-
rage battery with an internal resistance of r and an e. m. f. 
of e. What is the potential difference across the terminals of 
the battery? 

495. A voltmeter with a resistance of R1 = 100Q connected 
to the terminals of a cell shows a potential difference of 2 V. 
When this cell is connected across a resistance of R = 15Q, an 
ammeter connected to the circuit shows a current intensity of 
I = 0.1 A. Find the e. m. 1. of the cell if the resistance of the 
ammeter R2  = 1Q. 

496. Why can a galvanic cell with an e. m. f. of several 
volts produce a large current, while an electrostatic machine 
having an e. m. f. rated at dozens of thousands of volts gene-
rates a negligible current? 

497. In the circuit shown in Fig. 176, the capacitor C2  is 
punctured and the resistance between its plates is finite. What 
is the potential difference between the plates of each of the 
capacitors if the key 1( is closed? 

498. When will two series-connected galvanic cells connected 
to an external- resistance give a lower current than one of these 
cells connected to the same resistance? 

499. A storage battery with an e. m. f. of e = 24 V was con-
nected to one end of a two-conductor telephone line with a 
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length of L = 5.6 km to find an insulation breakdown between 
the wires. It was found that if the conductors at the other end 
of the line were opened, the current flowing through the battery 
was I, — 1.5 A, and if short-circuited the current was 12 =2 A. 
The short-circuit current of the battery 13  = 96 A and the resi-
stance of each conductor of the line r —752. Find the resistance 
of the insulation R at the point of breakdown. 

500. Galvanic cells with e. m. f.s of ei = 2 V and 6,2 =1.5 V 
are connected as shown in Fig. 177a. A voltmeter with zero in 
the middle of the scale shows a voltage of u

1 
 =1 V and its 

pointer deflects in the same direction as when key K is open. 
What will the voltmeter show if the cells are connected as shown 
in Fig. 177b? Disregard the current branched off into the volt-
meter. 

501. Solve Problem 500 if, with key K closed (Fig. 177a), 
the pointer of the voltmeter deflects in the direction opposite 
to the one in which it deflects with the key open. 

502. Two cells with e. m. f. s of 6,1 =2 V and 6,2 =1 V are 
connected as shown in Fig. 178. The resistance R=0.5S2. The 
internal resistances of the cells are the same and equal to 15-2 
each. Determine the currents flowing through the cells and the 
resistance R. Disregard the resistance of the feeding wires. 

503. At what resistance R in the circuit of Problem 502 will 
the current not flow through a galvanic cell with an e. m. f. e3? 

At what values of R will the current through this cell be 
directed against the e. m. f. of the cell? 

504. Can a resistance of R=0.25.2 and a current of 1=21A 
be obtained in an external circuit with the aid of 24 storage 
battery cells, each with an e. m. f. of 6,0 =2 V and an internal 
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resistance of r =0.3Q by connecting them into separate iden-
tical groups? 

505. An electric stove designed for 220 V is to be adapted 
for 110 V without changing or shortening the coil so that its 
power remains the same. What should be done for this? 

506. A lamp the resistance of whose filament in a heated 
state is R=2.9Q is placed into a calorimeter containing a mix-
ture of water and ice. In what time will the amount of water 
in the calorimeter increase by m=15 g if the lamp is connec-
ted to mains with a voltage of u= 220 V? The specific heat of 
fusion of ice H = 80 cal/g. 

507. An electric lamp with a tungsten filament consumes 
50 watts. When the lamp burns, the temperature of its fila-
ment is 2,500°C. What power will be consumed by the lamp 
at the first moment after it is switched on? The temperature 
coefficient of resistance of tungsten a = 4.5 x 10-3  deg-'. 

508. Why does the incandescence of the lamps in a room 
noticeably drop as soon as a high-power device (for example, 
an electric iron) is switched on, and after a brief inter-
val of time increase, reaching about the same value as be-
fore? 

509. The wires leading from the mains into a building have 
a resistance of Ro  = 0.552. The voltage in the mains is constant 
and equal to U o  = 127 V. What is the maximum permissible 
power of the electric energy consumed in the building if the 
voltage across the devices connected to the mains should not 
drop below U=120 V? 

510. An electric tea-kettle has two windings. When one of 
them is switched on the kettle begins to boil in t, minutes, 
and when the other is switched on—in t 2  minutes. In what 
time will the kettle begin to boil if both windings are switched 
on simultaneously in series and in parallel? 

511. An electric heater has three windings. If two windings 
are connected in parallel and the third is connected to them 
in series, then with various combinations of the windings the 
water in the tank will begin to boil in 20, 40 and 16 minu-
tes, respectively. 

In what time will the water begin to boil if all the win-
dings are connected (1) in series? (2) in parallel? 

512. When a direct current flows through a conductor, the 
amount of energy liberated is QU, where Q is the charge pas-
sing through the conductor and U the potential difference, while 
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an energy of QU/2 is liberated when a capacitor is dischar-
ged. Why? 

513. When electric energy is transmitted over great distan-
ces, a transformer is used to so increase the voltage as to reduce 
the current intensity at the same power. According to the Joule-
Lenz law, the amount of heat evolved in the wires Q 
= 0.24I2Rt, and therefore the losses due to heat evolution will 
be small with small currents. 

On the other hand, Q = 0.24 —U2 t, i. e., the amount of heat 

evolved grows with an increase in the voltage. Explain why an 
increase in the voltage saves electric energy when it is trans-
mitted over great distances. 

514. When two identical lamps are connected in series to the 
circuit of a battery, the voltage drop across the internal resi-
stance is k% of the e. m. f. The rated voltage of the lamp is 
U volts and the rated power p watts. Determine the internal 
resistance r of the battery. 

515. A storage battery with an e. m. f. of 6 = 10 V and an 
internal resistance of r = 1S2 is connected across an external 
resistance R and liberates in it a power P = 9 watts. Find the 
potential difference U across the terminals of the battery. What 
is the cause of the ambiguity of the result? 

516. What maximum useful power (evolved on an external 
resistance) can be produced by a storage battery with an e. m. f. 
of e= 10 V and an internal resistance of r= 1Q? What is the 
resistance of the external circuit? 

517. Determine the efficiency rl of the storage battery in 
Problems 515 and 516. How does the efficiency depend on the 
external resistance with a constant internal resistance? How 
does the useful power change in this case? Can I be equal to 
unity? 

518. The efficiency of a source of current connected to an 
external resistance R is lb= 60 per cent. What will the 
efficiency'12  be if the external resistance is increased six 
times? 

519. A storage battery with an initial e. m. f. of 4 is char-
ged from a station rated at U volts. The internal resistance of 
the battery is r. Find the useful power spent to charge the 
battery and the power used to liberate the heat in it. 

520. Does the useful power spent to charge a storage battery 
exceed the heat evolved in it? 
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521. A conductor carries a current of 1= 10 A. 
The cross-sectional area of the conductor A = 5 cm2  
and the number of free electrons in 1 cm3  of the 
conductor n = 1023. Find the directed velocity of 
the electrons v assuming it to be the same for all 
the electrons. 

522. A metal rectangular parallelepiped with 
Fig. 179 	sides d, b, c (d>c, b>c) moves with an acce- 

leration a in the direction shown by the arrow 
in Fig. 179. Find the intensity of the electric field produced by 
the accelerated motion of the metal block and the density of 
the electric charges on its surfaces that are perpendicular to the 
direction of motion. 

523. A solid metal cylinder whose radius is R rotates with 
a constant angular velocity w. Find how the field intensity 
depends on the distance to the axis of the cylinder and deter-
mine the potential difference between the surface of the cylin-
der and the axis. 

3-3. Electric Current in Gases and a Vacuum 

524. Will a glow discharge occur if an anode is placed into 
a cathode dark space (the region of the cathode drop)? 

525. Figure 180 shows a diagram of an X-ray tube with a 
cold cathode: C is the cathode, A the anode and A, the anti-
cathode. A high voltage is created between the anode and the 
cathode. The electrons accelerated near the cathode (region of 
the cathode drop) bombard the anticathode with a high velocity 
and initiate X-rays. Why is the tube provided with two electro-
des, an anode and an anticathode, instead of one? 

Fig. 180 
	

Fig. 181 
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526. Why are the anode and the anticathode of an X-ray 
tube connected by a wire (see Problem 525)? What will occur 
if the anticathode is isolated? 

527. Figure 181 shows a Geiger-Muller counter of elementary 
particles. A high voltage is produced between the housing of 
tube A and a thin wire ab that is only slightly smaller than 
the critical voltage necessary to ignite the charge. 

When a fast charged particle enters the counter, the molecu-
les of the gas are ionized and a discharge begins. The flow of 
current through the circuit is accompanied by a drop of vol-
tage across the large resistance R. This voltage drop is recorded 
after amplification by corresponding instruments. 

For the counter to answer its purpose, the discharge caused 
by the particle should be quickly extinguished. What extingui-
shes the discharge in the circuit in Fig. 181? 

528. A capacitor with a capacitance C=8 cm and a distance 
between the plates of d= 3 mm is connected to a high-voltage 
source through a resistance of R= 103Q (Fig. 182). 

The air in the space between the plates of the capacitor is 
ionized by X-rays so that n=104  ionic pairs form in one cubic 
centimetre per second. The charge of each ion is equal to that 
of an electron. 

Find the voltage drop across the resistance R assuming that 
all the ions reach the plates before they recombine. 

529. What will occur to a burning electric arc if the negative 
carbon is intensively cooled? What will occur if the positive 
carbon is cooled? 

530. Why is an electric iron with a thermocontroller used 
only with alternating current? 

531. What energy in ergs will an electron acquire after pass-
ing through a potential difference of 1 V in a vacuum? (In ato-
mic physics this energy is taken as the unit "electron-volt".) 
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532. Does the trajectory of a charged particle in an electro-
static field coincide with a force line? 

533. A broad metal plate is connected to earth through a 
galvanometer. A charged ball flies along a straight line above 
the plate at a distance much less than the linear dimensions 
of the plate (Fig. 183). 

Draw an approximate diagram showing how the current flowing 
through the galvanometer depends on time. 

534. An electron moves along a metal tube with a variable 
cross section (Fig. 184). How will its velocity change when it 
approaches the neck of the tube? 

535. A potential difference U is created between a filament 
emitting electrons and a current-conducting ring (Fig. 185). The 
electrons move with an acceleration along the axis of the ring. 
Their kinetic energy increases while the battery producing the 
potential difference U performs no work, since no current flows 
through the circuit. (It is assumed that the electrons do not 
impinge upon the ring.) How can this be brought into agreement 
with the law of conservation of energy? 

536. A charge +Q is uniformly distributed over a thin ring 
with a radius R. Find the velocity of a negative point charge 
— Q at the moment it passes through the centre 0 of the ring 
if the charge —Q was initially at rest at point A sufficiently 
removed from the ring (Fig. 186). The mass of the charge —Q 
is equal to m. The ring is stationary. 

537. The plates of a plane capacitor with a capacitance C 
at a distance of / from each other carry charges +Q and —Q. 

An electron flies into the middle of the capacitor with a 
velocity vo  directed parallel to the plates. 

What is the velocity of the electron at a sufficiently great 
distance from the capacitor? 

What is the nature of the change in the velocity of the 
electron (in absolute magnitude) when it moves inside and out-
side of the capacitor? 

     

     

     

     

     

Fig. 185 Fig. 186 
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Fig. 187 
	

Fig. 188 

Consider the following three cases: 
(1) at the initial moment the electron is at the same distance 

from both plates of the capacitor; 
(2) at the initial moment the electron is at a distance of 1/4 

from the positive plate; 
(3) the electron is at a distance of 1/4 from the negative plate. 
538. A battery (directly heated) triode is connected to the 

circuit shown in Fig. 187. The e. m. f. of the B battery e ,= 80 V, 
of the A battery e 2=6V and of the C battery e, = 2 V. 

With what energies will the electrons reach the anode? How 
will the energy of the electrons reaching the anode change if 
the e. m. f. e, changes in magnitude and even in sign? 

Assume the anode current to be small as compared with the 
heating current. 

539. The anode current of a diode can be related to the po-
tential difference Ua  between the electrodes within a certain 
voltage range by the equation a = AU a + BUg. 

Find the anode current if the diode is connected in series 
with a resistance of Ra  = 20 k52 to the circuit of a battery with 
an e. m. f. of e = 120 V. For the given diode A = 0.15 mA/V and 
B = 0.005 mA/V2. Disregard the internal resistance of the battery. 

540. Two electronic valves are connected in parallel. They 
are connected to the circuit of a battery with an e. m. f. of 
e = 300 V in series with a resistance of R =4k52 (Fig. 188). The 
relation between the anode current i on the anode voltage Ua  
for each valve can be approximately expressed as i = AU a + BUL 
where for one valve A1 = 0.07 mA/V, B1 = 0.005 mA/V2  and for 
the other Az = 0.03 mA/V, B2  = 0.01 mA/V2 . 

Determine the anode currents of the valves disregarding the 
internal resistance of the battery. 
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541. An electronic valve (one of the triodes 6H8C) is con-
nected to the circuit of a battery with an e. m. f. of e= 250 V 
in series with a resistance of R=104 5.2 (Fig. 189). 

The valve grid is connected to the negative pole of a small 
battery (e1 =3 V) and the cathode to its positive pole. In this 
case the voltage drop across the resistance R reaches U 1 =95 V. 

If the grid circuit includes a battery with e2 =6V, the poten-
tial difference across the resistance R will be U 2  = 60 V. 

What will the potential difference between the anode and the 
cathode of the valve be if the grid and the cathode are short-
circuited? Consider the grid characteristic of the valve as a 
straight line in the range of the grid potential change being 
considered. 

542. Three identical diodes whose anode characteristics can be 
approximately represented by sections of straight lines: 

la = 0 at Ua  <0 
/a  = kU a  at Ua  > 0 

where k= 0.12 mA/V, are connected to a circuit as shown in 
Fig. 190. 

Draw a diagram showing how the current I in the circuit 
depends on the voltage V if e1- 2 V, e2= 5 V, es = 7 V, and V 
can change from —10 V to +10 V. 

543. Calculate the sensitivity of a cathode-ray tube to voltage, 
i. e., the deflection of the light spot on the screen caused by a 
potential difference of 1 V on the control grids. The length of 
the control grids is 1, the distance between them is d, the distance 
from the end of the grids to the screen is L, and the accelerating 
potential difference is Uo. 

Fig. 189 Fig. 190 
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3-4. Magnetic Field of a Current. Action of a Magnetic 
Field on a Current and Moving Charges 

544. Determine the dimension and magnitude of the coefficient k 
in the expression for the intensity of the magnetic field of a 
solenoid H = k 43-tI '  if H is measured in oersteds and I in 
cgs electrostatic units. 

The dimension of the oersted coincides with that of the electric 
field intensity in cgs units. 

545. Two windings connected as shown in Fig. 191 are wound 
around a thin iron ring with a radius R = 10 cm. The first wind-
ing has 2,000 turns and the second 1,000 turns. Find the inten-
sity of the magnetic field inside the ring if a current of I = 10A 
flows through the windings. 

546. A current I flows through an infinitely long conductor 
ABC bent to form a right angle (Fig. 192). 

How many times will the intensity of the magnetic field change 
at point M if an infinitely long straight conductor BD is so 
connected to point B that the current I branches at point B 
into two equal parts and the current in the conductor AB re-
mains the same? 

Note. Take into account the fact that the intensity of a mag-
netic field induced at a certain point by a small element of 
current is perpendicular to the plane containing this element 
and a radius-vector drawn from this current element to the 
given point. 

547. A current flows through a conductor arranged in one plane 
as shown in Fig. 193. Find the intensity of the magnetic field 

  

  

Fig. 191 Fig. 192 Fig. 193 
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Fig. 194 
	

Fig. 195 
	

Fig. 196 

at an arbitrary point on line AB, which is the axis of symmetry 
of the conductor. 

548. How will a magnetic pointer be positioned if it is placed 
in the centre of a single-layer toroidal solenoid through which 
a direct current flows? 

549. A current I flows along an infinite straight thin-walled 
pipe. Bearing in mind that the intensity of the magnetic field 
of an infinite straight conductor at a distance r from it is pro-
portional to 11r, find the intensity of the magnetic field at an 
arbitrary point inside the pipe. 

550. Remembering that the intensity of a magnetic field inside 
a long cylindrical conductor H =k2ajr, where j is the current 
density and r is the distance from the conductor axis, find the 
intensity of the field at an arbitrary point on a long cylindrical 
space inside the conductor (Fig. 194) through which a current 
with a density j flows. The axis of the space is parallel to the 
axis of the conductor and is at a distance d from it. 

551. Draw the distribution of the force lines of a magnetic 
field in the space of the cylindrical conductor described in 
Problem 550. 

552. Determine the dimension and the magnitude of the coef-
ficient k in the expression for the force F = kHIl sin cp acting 
from a magnetic field on a current if H is in oersteds and I in 
cgs electrostatic units. 
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553. Will the density of a direct current flowing in a cylindrical 
conductor be constant across the entire cross section of the 
conductor? 

554. A lightning arrester is connected to earth by a circular 
copper pipe. After lightning strikes, it is discovered that the 
pipe became a circular rod. Explain the cause of this phenomenon. 

555. A very great current is made to flow for a short time 
through a thick winding of a solenoid. Describe the deformation 
of the winding from the viewpoint of quality. 

556. The magnetic system of a galvanometer consists of a 
magnet, pole shoes A and B, and a cylinder made of soft iron 
(Fig. 195). The magnetic force lines in the gap between the 
shoes and the cylinder are perpendicular to the surface of the 
cylinder. The intensity of the magnetic field is H. A rectangular 
coil with n turns is placed in the gap on axis 0. The sides of 
the coil are parallel to the diameter and the generatrix of the 
cylinder. The area of each turn is A. One end of a spiral spring 
is so attached to the axis of the coil that when the latter ro-
tates through an angle a, the deformation of the spring creates 
a rotational moment ka that tends to turn the coil to a posi-
tion of equilibrium. Determine the angle through which the coil 
will turn if a current I passes through it. 

557. A current of I = 1 A flows through a wire ring with a 
radius R = 5 cm suspended on two flexible conductors. The ring 
is placed in a homogeneous magnetic field with an intensity of 
H = 10 Oe whose force lines are horizontal. What force will the 
ring be tensioned with? 

558. A wire ring with a radius R = 4 cm is placed into a 
heterogeneous magnetic field whose force lines at the points of 
intersection with the ring form an angle of a= 10° with a normal 
to the plane of the ring (Fig. 196). The intensity of the mag-
netic field acting on the ring H = 100 Oe. A current of I = 5 A 
flows through the ring. What force does the magnetic field act 
on the ring with? 

559. A rectangular circuit ABCD with sides a and b placed 
into a homogeneous magnetic field with an intensity H can 
revolve around axis 00' (Fig. 197). A direct current I constantly 
flows through the circuit. 

Determine the work performed by the magnetic field when 
the circuit is turned through 180° if initially the plane of the 
circuit is perpendicular to the magnetic field and arranged 
as shown in Fig. 197. 
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IO 	
560. A conductor is placed into a magnetic 

field whose intensity H forms an angle a with 
the conductor. A force F=kH11 sin a acts on 
the section of the conductor with a length / 
when it carries a current I. If F is expressed 
in dynes, H in oersteds, I in amperes and 1 

a in centimetres, then k=0.1. 
ift 

	

	This force is the resultant of all the forces 
that act on the moving electrons present at 

A 	 17 this moment in the volume of the section of 
the conductor with a length 1. 

Find the force which the magnetic force 
acts on one electron with. 

Fig. 197 	 561. Can a magnetic field independent of time 
change the velocity of a charged particle? 

562. How will an electron move in a homogeneous magnetic 
field if the velocity of the electron at the initial moment is per-
pendicular to the force lines of the field? 

563. How will an electron move in a homogeneous magnetic 
field if the velocity of the electron at the initial moment forms 
an angle a with the force lines of the field? 

564. A current I flows along a metal band with a width 
AB=a placed in a magnetic field with an intensity H perpen-
dicular to the band (Fig. 198). Find the potential difference 
between points A and B of the band. 

565. Determine the numerical value of the potential difference 
(see Problem 564) if H = 10,000 Oe, the band width a = 1 cm, 
its thickness d=0.1 mm, and the current I = 10 A. The number 
of electrons in a unit of vo- 
lume is n = 9 x 1021  cm-3. H  

566. An uncharged metal 	 V. 

 
block has the form of a rec-
tangular parallelepiped with 
sides a, b, and c (a> c,b>c). 
The block moves in a magne- 

b 

H 

0 

A 

ell 

B 

Fig 198 
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tic field in the direction of side a with a velocity v. The inten-
sity of the magnetic field H is perpendicular to the base of 
the block with the sides a and c (Fig. 199). 

Determine the intensity of the electric field in the block and 
the density of the electric charges on the surfaces of the paral-
lelepiped formed by sides a and b. 

567. An uncharged metal cylinder with a radius r revolves about 
its axis in a magnetic field with an angular velocity w. The 
intensity of the magnetic field is directed along the axis of the 
cylinder. 

What should the intensity of the magnetic field be for no 
electrostatic field to appear in the cylinder? 

3-5. Electromagnetic Induction. Alternating 
Current 

568. Determine the direction of the intensity of an electric 
field in a turn placed in a magnetic field (Fig. 200) directed away 
from us in a direction perpendicular to the plane of the turn. 
The intensity of the magnetic field grows with time. 

569. A rectangular circuit ABCD moves translationally in the 
magnetic field of a current flowing along straight long conductor 
00' (Fig. 201). Find the direction of the current induced in the 
circuit if the turn moves away from the conductor. 

570. A non-magnetized iron rod flies through a coil connected 
to a battery and an ammeter (Fig. 202). Draw an approximate 
diagram of the change of current in the coil with time as the 
rod flies through it. 

571. A current in a coil grows directly with time. What is the 
nature of the relation between the current and time in another 
coil inductively connected to the first one? 
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572. Will the result of Problem 571 change if an iron core is 
inserted into the second coil? 

573. A wire ring with a radius r is placed into a homogeneous 
magnetic field whose intensity is perpendicular to the plane of 
the ring and changes with time according to the law H = kt. 
Find the intensity of the electric field in the turn .  

574. A ring of a rectangular cross section (Fig. 203) is made 
of a material whose resistivity is p. The ring is placed in a ho-
mogeneous magnetic field. The intensity of the magnetic field is 
directed along the axis of the ring and increases directly with 
time, H =kt. Find the intensity of the current induced in the 
ring. 

575. A coil having ti turns, each with an area of A, is con-
nected to a ballistic galvanometer. (The latter measures the quantity 
of electricity passing through it.) The resistance of the entire 
circuit is R. First the coil is between the poles of a magnet in 
a region where the magnetic field H is homogeneous and its 
intensity is perpendicular to the area of the turns. Then the coil 

is placed into a space with no magnetic field. 
What quantity of the electricity passes through 

1 the galvanometer? (Express the answer in cou- 
lombs.) 

576. Determine the current in the conductors 
of the circuit shown in Fig. 204 if the intensi- 

I
ty of a homogeneous magnetic field is perpen-
dicular to the plane of the drawing and changes 
in time according to the law H = kt. The resi-
stance of a unit of length of the conductors is r. 

577. The winding of a laboratory regulating 
autotransformer is wound around an iron core ha- Fig. 205 
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Fig. 206 Fig. 207 

ving the form of a rectangular toroid (Fig. 205). For protection 
against eddy (Foucault) currents the core is assembled of thin 
iron laminas insulated from one another by a layer of varnish. 
This can be done in various ways: 

(1) by assembling the core of thin rings piled on one another; 
(2) by rolling up a long band with a width h; 
(3) by assembling the core of rectangular laminas / x h in size, 

arranging them along the radii of the cylinder.Which is the best way? 
578. A direct induced current I is generated in a homogeneous 

circular wire ring. The variable magnetic field producing this cur-
rent is perpendicular to the plane of the ring, concentrated near 
its axis and has an axis of symmetry passing through the centre 
of the ring (Fig. 206). 

What is the potential difference between points A and B? What 
is the reading of an electrometer connected to these points? 

579. A variable magnetic field creates a constant e.m.f. e in 
a circular conductor ADBKA (see Problem 578). The resistances 
of the conductors ADB, AKB and ACB (Fig. 207) are equal to 
R1, R2  and R3, respectively. What current will be shown by 
ammeter C? The magnetic field is concentrated near the axis of 
the circular conductor. 

580. The resistance of conductor ACB (see Problem 579) is 
R3  = 0. Find the currents /,, I, and 13  and the potential diffe-
rence U A- U 8. 

581. A medical instrument used to extract alien particles from 
an eye has the form of a strong permanent magnet or an electro-
magnet. When brought close to the eye (without touching it) it 
extracts iron and steel particles (filings, chips, etc.). 

What current should flow through the electromagnet to extract, 
without touching the eye, metal objects made of non-ferromagne-
tic materials (aluminium, copper, etc.)? 
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582. A wire ring secured on the axis passing through its centre 
and perpendicular to the force lines is placed in a homogeneous 
magnetic field (Fig. 208). The intensity of the field begins to 
grow. Find the possible positions of equilibrium of the ring and 
show the position of stable equilibrium. What will happen if the 
intensity of the field decreases? 

583. A conductor with a length 1 and mass m can slide with-
out friction along two vertical racks AB and CD connected 
by a resistor R. The system is in a homogeneous magnetic field 
whose intensity H is perpendicular to the plane of the drawing 
(Fig. 209). 

How will the movable conductor travel in the field of gravity 
if the resistance of the conductor itself and the racks is negle-
cted? 

584. A conductor with a mass m and length 1 can move without 
friction along two metallic parallel racks in a horizontal plane 
and connected across capacitor C. The entire system is in a 
homogeneous magnetic field whose intensity H is directed upward. 
A force F is applied to the middle of the conductor perpendi-
cular to it and parallel to the racks (Fig. 210). 

Determine the acceleration of the conductor if the resistance 
of the racks, feeding wires and conductor is zero. What kinds 
of energy will the work of the force F be converted into? Assume 
that the velocity of the conductor is zero at the initial moment. 

585. Considering the motion of a straight magnet in a plane 
perpendicular to a wire and using the law of conservation of 
energy, prove that the field of a long forward current dimin-
ishes with the distance from the wire as 1/R. 

586. A cylinder made of a non-magnetic material has N turns 
of a wire (solenoid) wound around it. The radius of the cylinder 
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is r and its length 1 (r 	The resistance of the wire is R. 
What should the voltage at the ends of the solenoid be for the 
current flowing in it to increase directly with time, i.e., 1 = kt? 

587. A solenoid (see Problem 586) is connected to a battery 
whose e.m.f. is e. The key is closed at the moment t = 0. What 
is the intensity of the current flowing through the circuit of 
the solenoid if the resistance R of the solenoid, battery and 
feeding wires is neglected? 

588. Calculate the work of the battery (see Problem 587) 
during the time T. What kind of energy is this work converted 
into? 

589. A ring made of a superconductor is placed into a homo-
geneous magnetic field whose intensity grows from zero to Ho. 
The plane of the ring is perpendicular to the force lines of the 
field. Find the intensity of the induction current appearing in 
the ring. The radius of the ring is r and its inductance L. 

590. A superconductive ring with a radius r is in a homoge-
neous magnetic field with an intensity H. The force lines of the 
field are perpendicular to the plane of the ring. There is no 
current in the ring. 

Find the magnetic flux piercing the ring after the magnetic 
field is switched off. 

591. Find the inductance of a coil wound onto the iron core 
shown in Fig. 211. The number of turns of the coil N, the 
cross-sectional area A, the perimeter of the core (medium line) 
1 and the permeability of the core tt, are known. 

Note. Take into account the fact that the intensity of the 
magnetic field inside the core is practically constant and can 
be approximately expressed by the formula H=0.4n T I. 

592. Estimate approximately the coefficient of mutual induc-
tance of the windings of a transformer. Consider the windings 

Fig. 211 Fig. 212 
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as coils of identical cross section. .Disregard the dispersion of 
the force lines of the magnetic field. 

Note. The coefficient of mutual inductance of two circuits is 
the ratio between the magnetic flux .D induced by the magnetic 
field of the first circuit through the area limited by the second 
circuit and the magnitude of this current M = 4)  . 

593. A light aluminium disk is suspended on a long string in 
front of the pole of an electromagnet (Fig. 212). 

How will the disk behave if an alternating current is passed 
through the winding of the electromagnet? The resistance of 
the disk is small. 

594. When a capacitor carrying a charge Q is connected in 
parallel with an uncharged capacitor having the same capaci-
tance, the energy of the electric field of the system is halved 
(see Problem 441). Without resorting to the law of conservation 
of energy, prove by direct calculations that the amount of heat 

Q 2  evolved in the wires is We 	2 , where W e°  = 2c is the ini- 
tial energy of the system. Disregard the inductance of the con-
necting wires. 

595. Find the effective magnitude of an alternating current 
that changes according to the law: 

/ = /o  when 0 < t < 

I = 0 when < t < 

1=-10  when TT  < t <-8-5  T 

1=0 when —
5 T <t <T 
8 

9 
= 10  when T <t < -87  T 

etc., (Fig. 213). 
596. A d-c ammeter and an a-c thermal ammeter are connec-

ted to a circuit in series. When a direct current is passed through 
the circuit, the d-c ammeter shows I1 = 6 A. When a sinusoidal 
alternating current flows through the circuit, the a-c ammeter 
shows / 2 = 8 A. What will the reading of each ammeter be if a 
direct and an alternating currents flow simultaneously through 
the circuit? 
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597. An alternating sinusoidal current flows through a coil 
without any ohmic resistance. Draw a diagram showing the pro-
duct of the current and the voltage (instantaneous power) changes 
depending on time. Explain the nature of the curve. 

What is the average power consumed by the coil per period? 
598. Like an electric arc, daylight lamps have a dropping 

current-voltage characteristic, and for this reason a coil with a 
high inductance (choke) is connected in series with the lamp as 
a ballast resistance for stable burning. Why are ordinary less 
expensive resistors not used? 

599. Why are capacitors connected in parallel with electric 
devices having a high inductance (chokes, for example), if there 
are many of them in a-c mains? 

600. (a) A tap C is made from the middle of a coil with an 
iron core (the winding is a thick copper wire with many turns) 
(Fig. 214). A constant potential difference U 1  is created between 
points B and C. Find the voltage U 2  between points A and B. 

(b) A variable potential difference with an amplitude U1  (for 
example, from town mains) is applied between points B and C. 
Find the amplitude U, of the variable potential difference between 

points A and B. 
601. Why does the presence of 

a very high voltage in the secon-
dary winding of a step-up trans-
former (see Problem 513) not lead 

Fig. 214 Fig. 215 
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to great losses of energy 
due to the evolution of heat 
in the winding itself? 

602. Show that the pro- 
11 portion T.= N 

2 
, where I, 

and 12  are the currents in 
the windings and N1  and 
N 2  the numbers of turns 

Fig. 216 in them, exists, if the 
no-load current of a tran-

sformer and the ohmic resistance of its windings are neglected. 
Consider the windings as coils with the same cross section. 

603. What puncturing voltages should capacitor C and diode D 
be calculated for if the rectifier (Fig. 215) can operate both with 
or without load? 

604. An alternating voltage with an amplitude of U =600 V 
is excited at the ends of the secondary winding of a transfor-
mer supplying a biphase rectifier (Fig. 216). The capacitance of 
the capacitor C is so high that the current I flowing through 
the resistance R= 5 kQ can be considered as approximately con-
stant (I = 40 mA). 

Assuming that each of the diodes passes no current in the 
opposite direction, find the share of the period T during which 
no current flows through the valve. 

3-6. Electrical Machines 

605. The resistance in the load circuit of an a-c generator 
increases. How should the power of the motor revolving the 
generator change for the frequency of the alternating current to 
remain the same? 

606. The force acting on a moving charged particle from 
the side of a magnetic field (the Lorentz force) is always per-
pendicular to the velocity. Therefore, this force performs no 
work (see Problem 561). 

Why does an electric motor operate in this case? We know 
that the force acting on a conductor carrying a current is cau-
sed by the action of the field on separate particles whose mo-
tion produces a current. 

607. Can a d-c series motor connected to mains with a 
voltage of U = 120 V develop a power of P = 200 watts if the 
resistance of its windings is R = 20 Q? 
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608. Determine the efficiency of a series and a shunt-wound 
motors if they develop the maximum power. The voltages ac-
ross the terminals U and the resistances of the windings of the 
rotor R1  and the stator R2  are the same in both motors and 
are known. 

609. The rotor of a model of a d-c motor consists of one 
turn in the form of a rectangle. The intensity of the magnetic 
field H produced by a permanent magnet (north at the left and 
south at the right) is directed along the radius because the gap 
between the pole shoes and iron cylinder C is very small 
(Fig. 217). 

A potential difference U is applied to the turn, whose area 
is A and resistance is R. 

Find the power of the motor as a function of the angular 
velocity co. At what angular velocity co will the power be ma-
ximum, and what will the current be at this power? 

610. Determine how the rotational moment (torque) M de-
pends on the angular velocity, using the condition of the 
previous problem. 

611. Find the nature of the relation between the power of 
a d-c motor (see Problem 609) and the intensity of the magne-
tic field H at a given speed. At what value of H does the 
power reach its maximum? 

612. Determine the intensity of the magnetic field in a d-c 
motor (see Problem 609) at which the torque M is maximum. 
The speed of the armature is known. 

613. A d-c shunt-wound motor develops a mechanical power 
of P = 160 watts with a voltage across the terminals of 
U = 120 V. The armature rotates at n = 10 rev/s. Determine the 

maximum possible speed of 
the motor at this voltage. 
The resistance of the armature 
is R = 20 52. 

614. A d-c shunt-wound 
motor has an angular velocity 
of the armature rotation of 

= 100 rad/s at a voltage of 
U = 120 V across the terminals. 
The resistance of the motor 
armature winding is R = 2052. 
What electromotive force will 

Fig. 217 this motor develop when used 
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as a generator if it is rotated with the same angular velocity? 
The voltage in the stator windings is kept constant and equal 
to 120 V. At the velocity indicated, the mechanical moment on 
the motor shaft is M= 1.6 x 107  dyne • cm. 

615. How will the speed n of a shunt-wound motor change 
when the current in the stator windings grows if the voltage across 
the armature U and the mechanical moment M applied to the 
armature axis remain constant? 

616. What parameters of mains would determine the power 
of a d-c series motor connected to them if the winding of the 
motor were made of a superconductor? 

617. Prove that if the windings of a three-phase generator 
are star-connected (Fig. 218), the voltages between linear con- 
ductors U„, U„ and U 23  are 1/.3 times greater than the phase 
voltages U,,, UO2  and UO3. 

618. Prove that when the windings of a three-phase generator 
and the load resistances are star-connected (Fig. 219), the cur- 

Ch 

Fig. 220 
	

Fig. 221 
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rent I4  flowing through the neutral conductor is zero if 
R1 =R2=R3 =R. 

619. Prove that if the intensities of the magnetic field gene-
rated by three pairs of electromagnets are equal in amplitude 

2 
and shifted in phase through -a- TE (Fig. 220), the resultant mag- 
netic field can be described by a vector rotating with a constant 
angular velocity co about point 0. 

Each pair of electromagnets creates magnetic fields directed 
along the respective diameters of the ring: H1, 112  and H 3. The 
electromagnets are fed with an alternating current having the 
frequency co. 

620. Two identical coils perpendicular to each other are 
divided in half and connected to a circuit as shown in Fig. 221. 

The inductance of the choke Ch and the ohmic resistance R 
are so selected that the intensities of the currents in the coils 
are the same. The ohmic resistance and inductive reactance of 
the coils are much less than the inductive reactance of the 
choke. 

What will occur if an aluminium cylinder A secured on an 
axis is introduced into the space between the poles of the coils? 



CHAPTER 4 
OSCILLATIONS 
AND WAVES 

4-1. Mechanical Oscillations 

621. A weight suspended from a long string oscillates in a 
vertical plane and is deflected through an angle a from the ver-
tical (a mathematical pendulum). The same weight can rotate 
over a circumference so that the string describes a cone (a co-
nical pendulum). When will the tension of the string deflected 
through an angle a from the vertical be greater? 

622. A clock with an oscillation period of the pendulum of 1 
second keeps accurate time on the surface of the Earth. When 
will the clock go slower in a day: if it is raised to an altitude 
of 200 metres or lowered into a mine to a depth of 200 metres? 

623. Two small spheres each with a mass of tn = 1 g are 
secured to the ends of a weightless rod with a length d = 1 metre. 
The rod is so suspended from a hinge that it can rotate without 
friction around a vertical axis passing through its middle. Two 
large spheres with masses M = 20 kg are fastened on one line 
with the rod. The distance between the centres of a large 
sphere and a small one L =16 cm (Fig. 222). Find the period 
of small oscillations of this torsion pendulum. 

624. What is the period of oscillations of a mathematical 
pendulum in a railway carriage moving horizontally with an 
acceleration a? 

Fig. 222 
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625. Find the period of oscillations of a pendulum in a lift 
moving vertically with an acceleration a. 

626. A block performs small oscillations in a vertical plane 
while moving without friction over the internal surface of a 
spherical cup. Determine the period of oscillations of the block 
if the internal radius of the cup is R and the face of the 
block is much smaller than R. 

627. How will the period of oscillations of the block in the 
cup change (see Problem 626) if, besides the force of gravity, 
the cup is acted upon by a force F directed vertically upward? 
The mass of the cup M is much greater than that of the 
block m. 

628. How will the period of oscillations of the block in the 
cup change (see Problem 626) if the cup is placed onto a smooth 
horizontal surface over which it can move without friction? 

629. A hoop with a mass m and a radius r can roll without 
slipping over the internal surface of a cylinder with a radius R 
(Fig. 223). Determine the period of motion of the hoop centre 
if the angle cp is small. 

630. Find the period of oscillations of the pendulum shown 
in Fig. 224. Consider the rod carrying the masses m, and m2  
to be weightless. 

631. Find the period of oscil-
lations of a pendulum made of 
a thin homogeneous half-ring 
with a radius r suspended on 
weightless strings OA and OB as 
shown in Fig. 225. 

632. Figure 226 shows a mech-
anical system consisting of a 
weight with a mass m, spring 
A with a coefficient of elasti- 
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city k and a pulley with a mass M. A string passed over the 
pulley connects the weight to the spring. Find the period of 
oscillations of the weight if the pulley is a thin-walled cylinder. 

633. With what frequency will a bottle with a mass of 
m = 200 g and a cross-sectional area of A = 50 cm2  oscillate if 
it floats on the surface of water in a vertical position? 

Note. Remember that the period of oscillations of a weight 

on a spring is T =231 k 
m 

' where k is the coefficient of elas- 
ticity of the spring. 

634. Mercury is poured into communicating cylindrical ves-
sels. Find the oscillation period of the mercury if the cross-
sectional area of each vessel is A = 0.3 cm2  and the mass of the 
mercury m=484 g. The specific weight of mercury is 

= 13.6 gf/cm3. 
635. A mine pierces the Earth along one of its diameters. In 

what time will a body thrown into the mine reach the centre 
of the Earth? There is no resistance to motion. 

636. A string secured at its ends is stretched with a force f. 
A point weight with a mass m is attached to the middle of the 
string (Fig. 227). Deter-
mine the period of small 
oscillations of the weight. 
The mass of the string 
and the force of gravity 
can be neglected. 

637. How will the pe-
riod of vertical oscilla- 

Fig. 225 

5-1865 
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Fig. 227 

tions of a weight hanging on two identical springs change if 
the series connection of the springs is changed to a parallel one? 

638. Two mathematical pendulums each with a length / are 
connected by a weightless spring as shown in Fig. 228. The 
coefficient of elasticity of the spring is k. In equilibrium the 
pendulums occupy a vertical position and the spring is not de-
formed. Determine the frequencies of small oscillations of the two 
linked pendulums when they are deflected in one plane through 
equal angles in one direction (oscillations in phase) and in 
opposite directions (oscillations in antiphase). 

639. A force of 5 kgf should be applied to the handle of an 
open swinging door to keep it in equilibrium (the door is retur-
ned to its usual closed position of equilibrium by springs). Can 
the door be opened by a force of 10 gf applied to the same 
handle? Disregard friction in the door hinges. 

640. A weightless rod with a length / is rigidly attached to 
a weightless pulley with a radius r. The end of the rod carries 
a mass m (Fig. 229). A string to whose free end a mass M is 

Fig. 228 
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Fig. 229 

fastened is passed over the pulley. In what condition will the 
motion of the system be oscillatory if the angle a between the 
rod and the vertical is zero at the initial moment? 

4-2. Electrical Oscillations 

641. Why is a permanent magnet needed in a telephone re-
ceiver? Why must the intensity of the magnetic field of this 
magnet be greater than the maximum intensity of the magne-
tic field generated by the current flowing through the winding 
of the telephone coil? 

642. Find the frequency of natural oscillations in a circuit 
consisting of a solenoid with a length of 1 =3 cm, a cross-sec-
tional area of S1= 1 cm2  and a plane capacitor with a plate 
area of S2  = 30 cm2, the distance between them being d = 0.1 cm. 
The number of solenoid turns is N = 1,000. 

643. An electric circuit consists of a capacitor with a cons-
tant capacitance and a coil into which a core can move. One 
core is made of ferrite and is used as an insulator, and the 
other is made of copper. How will the frequency of natural 
oscillations of the circuit change if (a) the copper core, (b) the 
ferrite core, is moved into the coil? 

5* 
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644. The capacitors described in Problem 594 are connected 
by a superconductor. No heat is liberated. How can the dec-
rease in the energy of the electric field be explained in this 
case from a qualitative point of view? 

645. A voltage of V,=Vio  cos cot is applied to the vertically 
deflecting plates of an oscillograph and a voltage of V 2  = V20 
cos (o)t—y) to the horizontally deflecting plates. Find the 
trajectory of the cathode beam on the oscillograph screen if 
the phase difference between the voltage on the plates is 
(pi  = –2-9  and c1'2= 

646. Figure 230 shows a circuit consisting of a battery E, a 
neon tube N, a capacitor C and a resistor R. 

The characteristic of the neon tube (current in the tube 
versus voltage) is shown in Fig. 231. Current does not flow 
through the tube when the voltage is low. When the potential 
in the tube reaches V, (striking potential), the tube ignites, 
the current jumps to Is  and then grows in proportion to V. If 
the voltage drops, the current drops at a slower rate than that 
at which it increased. The tube goes out at an extinguishing 
potential V,. 

Draw the approximate relation between the change of vol-
tage across the capacitor and the time when the key K is 
closed. 

647. How will the period of relaxation oscillations change in 
a circuit with a neon tube (see Problem 646) if the capacitance 
of the capacitor C and the resistance R change? 
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648. A plane capacitor incorporated into an oscillatory circuit 
is so designed that its plates can move relative to each other. 
How can the circuit be made to oscillate parametrically by 
moving the plates? 

4-3. Waves 

649. A thin string is replaced by another made of the same 
material, but with a double diameter. How many times should 
the tension of the string be changed to retain the previous 
frequency of oscillations? 

650. Find the frequencies of natural oscillations of a steel 
string with a length of / =50 cm and a diameter of d= 1 mm 
if the tension of the string is T=2,450 dynes. The density of 
steel is p =7.8 g/cm3. 

651. Find the frequencies of the natural oscillations of an air 
column in a pipe with a length of 1= 3.4 metres closed at both 
ends. 

652. A tuning fork with a frequency of natural oscillations 
of v = 340 s-1  sounds above a cylindrical vessel one metre high. 
Water is slowly poured into the vessel. At what level of the 
water in the vessel will the sound of the tuning fork be appre-
ciably intensified? 

653. What is the shape of the front of the shock wave pro-
duced in air when a bullet flies at a supersonic velocity? 

654. A jet airplane flies at a velocity of 500 m/s at a dis-
tance of 6 km from a man. At what distance from the man was 
the plane when the man heard its sound? 

655. If a source of sound and a man are about at the same 
altitude the sound is heard better in the direction of the wind 
than in the opposite direction. How can you explain this pheno-
menon? 

656. Why can TV programmes be seen only within the range 
of direct visibility? 

657. A radio direction finder operates in pulse duty. The pulse 
frequency is f =1,700 cps and its duration is T-0.8 ps. Deter-
mine the maximum and minimum range of this finder. 

658. Besides the wave transmitted directly from the station 
(point A), a TV aerial (point C in Fig. 232) receives the wave 
reflected from the iron roof of a building (point B). As a result 
a double image appears. How many centimetres are the images 
shifted with respect to each other if the aerial and the roof are 
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located as shown in Fig. 232? The width of the TV screen is 
1=50 cm. 

Note. Remember that the image is resolved into 625 lines, 
and 25 frames are transmitted a second. 

659. A vibrator with a length of 1=0.5 metre is immersed 
into a vessel with kerosene (sr  = 2). What is the length of the 
electromagnetic wave radiated by the vibrator in a vacuum as 
it emerges from the vessel? 

660. Figure 233 depicts a TV aerial. How is the plane of 
oscillations of the magnetic vector of the wave coming from the 
TV centre orientated? 



CHAPTER 5 

GEOMETRICAL 

OPTICS 

5-1. Photometry 

661. A round hall with a diameter of D=30 metres is illu-
minated by a lamp secured in the centre of the ceiling. Find 
the height h of the hall if the minimum illumination of the 
wall is double that of the floor. 

662. A lamp rated at /, = 100 cd hangs above the middle of 
a round table with a diameter of D = 3 metres at a height of 
H —2 metres. It is replaced by a lamp with 12  = 25 cd and 
the distance to the table is changed so that the illumination 
of the middle of the table remains as before. How will the illu-
mination of the edge of the table change? 

663. Sources of light S, and S2  of equal intensity are arran-
ged at the vertices of an isosceles right triangle (Fig. 234). How 
should a small plate A be positioned for its illumination to be 
maximum? The sides of the triangle AS, = AS2  = a. 

664. An attempt to use a photometer to measure the luminous 
intensity of a certain source of light failed since the luminous 
intensity was very high and the illumination of the photometer 
fields with the aid of a standard source could not be equalized 
even when the source being investigated was placed on the very 
edge of the photometer bench. Then a third source was employed 
with a luminous intensity lower than that of the one being inves-
tigated. At a distance of r1 = 10 cm from the photometer the 
standard source produced the same illumination of the fields as 

Fig. 234 
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the third one that was placed at a distance of r2 =50 cm. After 
that, the standard source was replaced by the one being investi-
gated and equal illuminations were obtained at distances from 
the photometer r8  = 40 cm (source being investigated) and 
r4  =10 cm (auxiliary source). Find how many times the lumi-
nous intensity of the source being investigated is greater than 
that of the standard source. 

665. The ray of a searchlight falls on the wall of a house and 
produces a bright spot with a radius of r = 40 cm. How many 
times will the illumination of the wall of a remote house be 
smaller if the radius of the spot on it is 2 metres? 

666. A lamp with a luminous intensity of I = 100 cd is fastened 
to the ceiling of a room. Determine the total luminous flux 
falling onto all the walls and the floor of the room. 

667. What part of the energy radiated by the Sun reaches 
the Earth? The radius of the Earth is 6,400 km and the average 
distance from the Earth to the Sun is 149, 000, 000 km. 

668. A hot glowing wire is placed on the axis of a hollow 
cylinder with a radius R. The length of the wire is much greater 
than the height of the cylinder. How many times will the illu-
mination of the internal surface of the cylinder change if its 
radius is R 2  (assume that R 2  < R1)? 

669. At what height should a lamp be hung above the centre 
of a round table to obtain the maximum illumination on its 
edges? 

670. Why can a text be read through tissue paper only if 
the paper is placed directly on the page? 

5 -2. Fundamental Laws of Optics 

671. Why is the shadow of a man's legs on the ground sharp 
and that of his head diffused? In what conditions will the 
shadow be equally distinct everywhere? 

672. How should a pencil be held above a table to obtain 
a sharp shadow if the source of light is a daylight lamp in the 
form of a long tube secured on the ceiling? 

673. In autumn, when the trees have shed all their leaves, 
one can frequently see shadows from two parallel branches. 
The lower branch produces a sharp dark shadow and the 
upper branch a broader and lighter one. If two such shadows 
are accidently superimposed, one can see a bright light stripe 
in the middle of the darker shadow, so that the shadow seems 
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to be a double one (Fig. 235). How do you explain this pheno-
menon? 

674. When sunrays pass through a small opening in the foliage 
at the top of a high tree, they produce an elliptical spot on the 
ground. The major and minor axes of the ellipses are a=12 cm 
and b =10 cm, respectively. What is the height of the tree H? 
The angular dimensions of the Sun's disk are (3=1/108 
rad. 

675. A periscope is designed with two reflecting prisms. Deter-
mine the ratio of the widths of these prisms if the distance between 
them AB = L and the distance from the lower prism to the eye 
of the observer BC = l (Fig. 236). The objects viewed through 
the periscope are at a great distance from it. 

676. What minimum height should a flat mirror secured ver-
tically on a wall have for a man to see his reflection full size 
without changing the position of his head? Determine also the 
required distance between the floor and the lower edge of the 
mirror. 

677. Sunrays are reflected from a horizontal mirror and fall 
on a vertical screen. An oblong object is placed on the mirror 
(Fig. 237). Describe the shadow on the screen. 

678. In what conditions does the shape of the reflection of 
a sunbeam from a small mirror not depend on the shape of the 
mirror? 

679. How can a real landscape on a photograph be distin-
guished from its reflection in quiet water? 
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680. Find graphically the positions of an observer's eye that 
will allow him to see in a mirror of finite dimensions the image 
of a straight line arranged as shown in Fig. 238. 

681. A flat mirror is arranged parallel to a wall at a distance 
/ from it. The light produced by a point source fastened on 
the wall falls on the mirror, is reflected and produces a light 
spot on the wall. With what velocity will the light spot move 
along the wall if the mirror is brought up to the wall with a 
velocity v? How will the dimensions of the light spot change? 

682. Using the condition of Problem 681, find whether the 
illumination of the wall at the point where the light spot is 
will change when the mirror is moved. The dimensions of the 
mirror are much smaller than the distance from the mirror to 
the source of light. 

683. A flat mirror revolves at a constant angular velocity, 
making n = 0.5 revolution per second. With what velocity will 
a light spot move along a spherical screen with a radius of 
10 metres if the mirror is at the centre of curvature of the screen? 

684. When the Russian scientist A. A. Belopolsky investigated 
the Doppler optical phenomenon he observed light repeatedly 
reflected from moving mirrors (Fig. 239). The mirrors were placed 
on disks revolving in different directions. 

(a) The angular velocity o of rotation of the disks being known, 
find the angular velocity Q of rotation of a beam that is conse-
cutively reflected n times from the mirrors. 

(b) Determine the linear velocity of the n-th image at the mo-
ment when the mirrors are parallel to each other and their 
reflecting portions move with a velocity v in different directions. 

685. Solve Problem 684 if the disks rotate in the same direc-
tion. 

t 
Mirror Fig. 237 
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Fig. 239 

686. A narrow beam of light S is incident on a dihedral 
angle a= 60° formed by identical flat mirrors OM and ON 
secured on axis 0 (Fig. 240). After being reflected from the 
mirrors, the light is focussed by lens L and gets into stationary 
receiver R. The mirrors rotate with a constant angular velocity. 

What part of the light energy of the beam will reach the 
receiver during a time that greatly exceeds the period of rotation 
if the beam passes at a distance a from an axis equal to half 
the length of mirror OM? 

687. Can a flat mirror be used instead of an ordinary cinema 
screen? 

688. A projecting camera standing near a wall in a room 
produces an image with an area of A = 1 m2  on the opposite 
wall. What will the area of the image be if a flat mirror is so 
hung on the wall opposite the camera that the image is obtained 
on the wall near which the camera stands? 

Fig. 240 
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889. Two flat mirrors AO 
and OB form a dihedral angle 

21c — , where n is an inte-n 
ger. A point source of light 
S is placed between the mir-
rors at the same distance from 
both of them. Find the num-
ber of images of the source 
in the mirrors. 

690. Two flat mirrors AO and 
OB form an arbitrary dihedral 

Fig. 241 

angle q = —2n
, where a is any number greater than 2. A point a 

source of light S is between the mirrors at equal distances from 
them. Find the number of images of the source in the mirrors. 

691. In what direction should a beam of light be sent from 
point A (Fig. 241) contained in a mirror box for it to fall onto 
point B after being reflected once from all four walls? 

Points A and B are in one plane perpendicular to the walls 
of the box (i.e., in the plane of the drawing). 

692. Why does the water seem much darker directly below an 
airplane flying over a sea than at the horizon? 

693. Over what distance will a beam passing through a plane-
parallel plate be displaced if the thickness of the plate is d, 
the refraction index is n and the angle of incidence is i? 

Can the beam be displaced by more than the thickness of the 
plate? 

Fig. 242 Fig. 243 
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694. At what values of the refrac-
: tion index of a rectangular prism can 

	

c 	a ray travel as shown in Fig. 242? 
The section of the prism is an isosce- 

. les triangle and the ray is normally 
incident onto AB. 

695. A rectangular glass wedge is 

\ 	lowered into water. The refraction in- 
dex of glass is n1 = 1.5. At what ang- 

	

--►4 b 14— 	le a (Fig. 243) will the beam of light 
Fig. 244 	 normally incident on AB reach AC en- 

tirely? 
696. On bright sunny days drivers frequently see puddles on 

some parts of asphalt country highways at a distance of 80-100 
metres ahead of the car. As the driver approaches such places, 
the puddles disappear and reappear again in other places approxi-
mately at the same distance away. Explain this phenome-
non. 

697. A thick plate is made of a transparent material whose 
refraction index changes from n1  on its upper edge to n2  on its 
lower edge. A beam enters the plate at the angle a. At what 
angle will the beam leave the plate? 

698. A cubical vessel with non-transparent walls is so located 
that the eye of an observer does not see its bottom, but sees 
all of the wall CD (Fig. 244). 

What amount of water should be poured into the vessel for 
the observer to see an object F arranged at a distance of b= 10 cm 
from corner D? The face of the vessel is a= 40 cm. 

699. A man in a boat is looking at the bottom of a lake. 
How does the seeming depth of the lake h depend on the angle i 
formed by the line of vision with the vertical? The actual depth 
of the lake is everywhere the same and equal to H. 

700. The cross section of a glass prism has the form of an 
equilateral triangle. A ray is incident onto one of the faces 
perpendicular to it. Find the angle cp between the incident ray 
and the ray that leaves the prism. The refraction index of glass 
is n = 1.5. 

701. The cross section of a glass prism has the form of an 
isosceles triangle. One of the equal faces is coated with silver. 
A ray is normally incident on another unsilvered face and, being 
reflected twice, emerges through the base of the prism perpendicular 
to it. Find the angles of the prism. 
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702. A ray incident on the face of a prism is refracted and 
escapes through an adjacent face. What is the maximum permissible 
angle of refraction of the prism a if it is made of glass with 
a refraction index of n = 1.5? 

703. A beam of light enters a glass prism at an angle a and 
emerges into the air at an angle 6. Having passed through the 
prism, the beam is reflected from the original direction by an 
angle y. Find the angle of refraction of the prism y and the 
refraction index of the material which it is made of. 

704. The faces of prism ABCD made of glass with a refraction 
index n form dihedral angles: L A = 90°, L B = 75°, L C= 135° 
and L D = 60° (the Abbe prism). A beam of light falls on face 
AB and after complete internal reflection from face BC escapes 
through face AD. Find the angle of incidence a of the beam 
onto face AB if a beam that has passed through the prism is 
perpendicular to the incident beam. 

705. If a sheet of paper is covered with glue or water the 
text typed on the other side of the sheet can be read. Explain 
why? 

5-3. Lenses and Spherical Mirrors 

706. Find the refraction index of the glass which a symmetrical 
convergent lens is made of if its focal length is equal to the 
radius of curvature of its surface. 

707. A piano-convex convergent lens is made of glass with a 
refraction index of n= 1.5. Determine the relation between the 
focal length of this lens f and the radius of curvature of its con-
vex surface R. 

708. Find the radii of curvature of a convexo-concave con-
vergent lens made of glass with a refraction index of n= 1.5 
having a focal length of f =24 cm. One of the radii of curvature 
is double the other. 

709. A convexo-convex lens made of glass with a refraction 
index of n= 1.6 has a focal length of f =10 cm. What will the 
focal length of this lens be if it is placed into a transparent 
medium with a refraction index of n1 = 1.5? Also find the focal 
length of this lens in a medium with a refraction index of 
rt, = 1.7. 

710. A thin glass lens has an optical power of D=5 diopters. 
When this lens is immersed into a liquid with a refraction 
index n2, the lens acts as a divergent one with a focal length 
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V~B 	of 1= 100 cm. Find the refra- 
ction index n2  of the liquid if 
that of the lens glass is r 
1.5. 

711. The distance between an 
object and a divergent lens is 
m times greater than the focal 

A 	 length of the lens. How many 
Fig. 245 	 times will the image be smaller 

than the object? 
712. The hot filament of a lamp and its image obtained with 

the aid of a lens having an optical power of four diopters are 
equal in size. Over what distance should the lamp be moved 
away from the lens to decrease its image five times? 

713. The distance between two point sources of light is 1= 24 cm. 
Where should a convergent lens with a focal length of f =9 cm 
be placed between them to obtain the images of both sources at 
the same point? 

714. The height of a candle flame is 5 cm. A lens produces 
an image of this flame 15 cm high on a screen. Without touching 
the lens, the candle is moved over a distance of 1 = 1.5 cm 
away from the lens, and a sharp image of the flame 10 cm 
high is obtained again after shifting the screen. Determine the 
main focal length of the lens. 

715. A converging beam of rays is incident onto a divergent 
lens so that the continuations of all the rays intersect at a 
point lying on the optical axis of the lens at a distance of 
b= 15 cm from it. 

Find the focal length of the lens in two cases: 
(1) after being refracted in the lens, the rays are assembled 

at a point at a distance of a1= 60 cm from the lens; 
(2) the continuations of the refracted rays intersect at a point 

at a distance of a2  = 60 cm in front of the lens. 
716. The distance between an electric lamp and a screen is 

d= 1 metre. In what positions of a convergent lens with a focal 

.B 

N2  
Fig. 246 

• 
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length of f =21 cm will the image of the lamp filament be 
sharp? 

Can an image be obtained if the focal length is f' = 26 cm? 
717. A thin convergent lens produces the image of a certain 

object on a screen. The height of the image is h1. Without 
changing the distance between the object and the screen, the 
lens is shifted, and it is found that the height of the second 
sharp image is h2. Determine the height of the object H. 

718. What is the radius R of a concave spherical mirror at 
a distance of a =2 metres from the face of a man if he sees 
in it his image that is one and a half times greater than on 
a flat mirror placed at the same distance from the face? 

719. Figure 245 shows ray AB that has passed through a 
divergent lens. Construct the path of the ray up to the lens 
if the position of its foci F is known. 

720. Figure 246 shows a luminescent point and its image 
produced by a lens with an optical axis N1N2. Find the position 
of the lens and its foci. 

721. Find by construction the optical centre of a lens and 
its main foci on the given optical axis N 1N 2  if the positions 
of the source S and the image S' are known (Fig. 247). 

722. The position of the optical axis N 11■12, the path of ray 
AB incident upon a lens and the refracted ray BC are known 
(Fig. 248). Find by construction the position of the main foci 
of the lens. 

723. A convergent lens produces the image of a source at 
point S' on the main optical axis. The positions of the centre 
of the lens 0 and its foci F are known, and OF <OS'. Find 
by construction the position of source S. 

A 

B 
Fig. 248 
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724. Point S' is the image of a point source of light S in 
a spherical mirror whose optical axis is N1N2  (Fig. 249). Find 
by construction the position of the centre of the mirror and 
its focus. 

725. The positions of optical axis N 1N 2  of .a spherical mir-
ror, the source and the image are known (Fig. 250). Find by 
construction the positions of the centre of the mirror, its focus 
and the pole for the cases: (a) A—source, B—image; (b) B — 
source, A—image. 

726. A point source of light placed at a distance from a 
screen creates an illumination of 2.25 lx at the centre of the 
screen. How will this illumination change if on the other side 
of the source and at the same distance from it we place: 

(a) an infinite flat mirror parallel to the screen? 
(b) a concave mirror whose centre coincides with the centre 

of the screen? 
(c) a convex mirror with the same radius of curvature as 

the concave mirror? 
727. A man wishing to get a picture of a zebra photographed 

a white donkey after fitting a glass with black streaks onto 
the objective of his camera. What will be on the photograph? 

728. The layered lens shown in Fig. 251 is made of two 
kinds of glass. What image will be produced by this lens with 

 

• 49 A 

R •A 

 

N2 

Fig. 250 	 Fig. 251 
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a point source arranged on the optical axis? Disregard the reflec-
tion of light on the boundary between layers. 

729. The visible dimensions of the disks of the Sun and the 
Moon at the horizon seem magnified as compared with their 
visible dimensions at the zenith. How can it be proved experi-
mentally with the aid of a lens that this magnification is 
apparent? 

5-4. Optical Systems and Devices 

730. A source of light is located at double focal length from 
a convergent lens. The focal length of the lens is f =30 cm. 
At what distance from the lens should a flat mirror be placed 
so that the rays reflected from the mirror are parallel after 
passing through the lens for the second time? 

731. A parallel beam of rays is incident on a convergent 
lens with a focal length of 40 cm. Where should a divergent 
lens with a focal length of 15 cm be placed for the beam of 
rays to remain parallel after passing through the two lenses? 

732. An object is at a distance of 40 cm from a convex 
spherical mirror with a radius of curvature of 20 cm. At what 
distance from the object should a steel plate be placed for the 
image of the object in the spherical mirror and the plate to 
be in one plane? 

733. At what distance from a convexo-convex lens with a 
focal length of f =1 metre should a concave spherical mirror 
with a radius of curvature of R = 1 metre be placed for a beam 
incident on the lens parallel to the major optical axis of the 
system to leave the lens, remaining parallel to the optical axis, 
after being reflected from the mirror? Find the image of the 
object produced by the given optical system. 

734. An optical system consists of two convergent lenses with 
focal lengths [1 =20 cm and f 1 = 10 cm. The distance between 
the lenses is d=30 cm. An object is placed at a distance of 
a1 = 30 cm from the first lens. At what distance from the second 
lens will the image be obtained? 

735. Determine the focal length of an optical system consis-
ting of two thin lenses: a divergent one with a focal length fl 
and a convergent one with a focal length f 2. The lenses are 
fitted tightly against each other, so that the distance between 
them can be neglected. The optical axes of the lenses coin-
cide. 
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736. A parallel beam of light is incident on a system con-
sisting of three thin lenses with a common optical axis. The focal 
lengths of the lenses are equal to f1= + 10 cm, f 2 = —20 cm 
and 	+ 9 cm, respectively. The distance between the first 
and the second lenses is 15 cm and between the second and 
the third 5 cm. Find the position of the point at which the 
beam converges when it leaves the system of lenses. 

737. A lens with a focal length of f = 30 cm produces on a 
screen a sharp image of an object that is at a distance of 
a = 40 cm from the lens. A plane-parallel plate with a thickness 
of d=9 cm is placed between the lens and the object perpen-
dicular to the optical axis of the lens. Through what distance 
should the screen be shifted for the image of the object to 
remain distinct? The refraction index of the glass of the plate 
is n =1.8. 

738. An object AB is at a distance of a = 36 cm from a lens 
with a focal length of f =30 cm. A flat mirror turned through 45° 
with respect to the optical axis of the lens is placed behind 
it at a distance of l= 1 metre (Fig. 252). 

At what distance H from the optical axis should the bottom 
of a tray with water be placed to obtain a sharp image of the 
object on the bottom? The thickness of the water layer in the 
tray is d= 20 cm. 

739. A glass wedge with a small angle of refraction a is pla-
ced at a certain distance from a convergent lens with a focal 
length f, one surface of the wedge being perpendicular to the 
optical axis of the lens. A point source of light is on the other 
side of the lens in its focus. The rays reflected from the wedge 
produce, after refraction in the lens, two images of the source 
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displaced with respect to each other by d. Find the refraction 
index of the wedge glass. 

740. A concave mirror has the form of a hemisphere with 
a radius of R = 55 cm. A thin layer of an unknown transparent 
liquid is poured into this mirror, and it was found that the 
given optical system produces, with the source in a certain 
position, two real images, one of which coincides with the 
source and the other is at a distance of 1 = 30 cm from it. 
Find the refraction index n of the liquid. 

741. A convexo-convex lens has a focal length of f1 = 10 cm. 
One of the lens surfaces having a radius of curvature of 
R = 10 cm is coated with silver. Construct the image of the 
object produced by the given optical system and determine the 
position of the image if the object is at a distance of a= 15 cm 
from the lens. 

742. A recess in the form of a spherical segment is made in 
the flat surface of a massive block of glass (refraction index n). 
The piece of glass taken out of the recess is a thin convergent 
lens with a focal length f. Find the focal lengths f1 and f2  of 
the spherical surface obtained. 

743. A narrow parallel beam of light rays is incident on a 
transparent sphere with a radius R and a refraction in-
dex n in the direction of one of the diameters. At what 
distance f from the centre of the sphere will the rays be focus-
sed? 

744. Find the position of the main planes of a transparent 
sphere used as a lens. 

745. An object is at a distance of d= 2.5 cm from the surface 
of a glass sphere with a radius of R= 10 cm. Find the position 
of the image produced by the sphere. The refraction index of 
the glass is n =1.5. 

746. A spherical flask is made of glass with a refraction in-
dex n. The thickness of the flask walls AR is much less than 
its radius R. 

Taking this flask as an optical system and considering only 
the rays close to the straight line passing through the centre of 
the sphere, determine the position of the foci and the main 
planes of the system. 

747. A beam of light is incident on a spherical drop of water 
at an angle i. Find the angle 0 through which the beam is 
deflected from the initial direction after a single reflection from 
the internal surface of the drop. 
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748. A parallel beam of rays is incident on a spherical drop 
of water. 

(1) Calculate the angles 0 through which the rays are deflected 
from the initial position for various angles of incidence: 0, 20, 
40, 50, 55, 60, 65, and 70°. 

(2) Plot a diagram showing 0 versus i and use it to find the 
approximate value of the angle of minimum deflection 0„,in• 

(3) Determine the values of the angle 0 near which the rays 
issuing from the drop are approximately parallel. 

The refraction index of , water is n = 1.333. (This value of n 
is true for red rays.) 

749. What magnification can be obtained with the aid of a 
projecting camera having a lens with a main focal length of 
40 cm if the distance from the lens to the screen is 10 metres? 

750. Calculate the condenser of a projecting camera, i.e., find 
its diameter D and focal length f, if the source of light has 
dimensions of about d= 6 mm, and the diameter of the lens is 
Do  =2 cm. The distance between the source of light and the 
lens is l = 40 cm. The size of a slide is 6 x9 cm. 

751. In some photographic cameras ground glass is used for 
focussing. Why is transparent glass not used for this purpose? 

752. Two lanterns of the same luminance are at different 
distances from an observer. 

(1) Will they appear to the observer as equally bright? 
(2) Will their images on photographs be equally bright if the 

lanterns are photographed on different frames so that their 
images are focussed? 

753. An object is photographed from a small distance by two 
cameras with identical lens speeds, but different focal lengths. 
Should the exposures be the same? 

754. It can be noticed that a white wall illuminated by the 
setting Sun seems brighter than the surface of the Moon at the 
same altitude above the horizon as the Sun. Does this mean that 
the surface of the Moon consists of dark rock? 

755. Why does a swimmer see only hazy contours of objects 
when he opens his eyes under water, while they are distinctly 
visible if he is using a mask? 

756. A short-sighted man, the accommodation of whose eye 
is between a1 = 12 cm and a2  = 60 cm, wears spectacles through 
which he distinctly sees remote objects. Determine the minimum 
distance as  at which the man can read a book through his 
spectacles. 
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757. Two men, a far-sighted and a short-sighted ones, see 
objects through their spectacles as a man with normal eyesight. 
When the far-sighted man accidently put on the spectacles of 
his short-sighted friend, he found that he could see distinctly 
only infinitely far objects. 

At what minimum distance a can the short-sighted man read 
small type if he wears the spectacles of the far-sighted man? 

758. An object is examined by a naked eye from a distance D. 
What is the angular magnification if the same object is viewed 
through a magnifying glass held at a distance r from the eye 
and so arranged that the image is at a distance L from the eye? 
The focal length of the lens is f. 

Consider the cases: 
(1) L=oo  
(2) L = D. 
759. The objective is taken out of a telescope adjusted to 

infinity and replaced by a diaphragm with a diameter D. A screen 
shows a real image of the diaphragm having a diameter d at 
a certain distance from the eyepiece. What was the magnification 
of the telescope? 

760. The double-lens objective of a photographic camera is 
made of a divergent lens with a focal length of f, = 5 cm in-
stalled at a distance of l= 45 cm from the film. Where should 
a convergent lens with a focal length of f 2  = 8 cm be placed to 
obtain a sharp image of remote objects on the film? 

761. Calculate the diameter D of the Moon's image on a nega-
tive for the three different positions of the lenses described in 
Problem 760. 

The diameter of the Moon is seen from the Earth at an angle 
of cp = 31'5" = 0.9 x 10-2  rad. 

762. The main focal length of the objective of a microscope 
is fob = 3 mm and of the eyepiece fey,— 5 cm. An object is at 
a distance of a = 3.1 mm from the objective. Find the magni-
fication of the microscope for a normal eye. 



CHAPTER 6 

PHYSICAL 
OPTICS 

6-1. Interference of Light 

763. Two light waves are superposed in a certain section of 
space and extinguish each other. Does this mean that a quantity 
of light is converted into other kinds of energy? 

764. Two coherent sources of light S, and S2  are at a distance 1 
from each other. A screen is placed at a distance D -1 from 
the sources (Fig. 253). Find the distance between adjacent in-
terference bands near the middle of the screen (point A) if the 
sources send light with a wavelength X. 

765. Two flat mirrors form an angle close to 180° (Fig. 254). 
A source of light S is placed at equal distances b from the 
mirrors. Find the interval between adjacent interference bands 
on screen MN at a distance OA =a from the point of intersec-
tion of the mirrors. The length of the light wave is known and 
equal to X. Shield C does not allow the light to pass directly 
from the source to the screen. 

766. Lloyd's interference experiment consisted in obtaining 
on a screen a pattern from source S and from its virtual image S' 
in mirror AO (Fig. 255). How will the interference pattern 
obtained from sources S and S' differ from the pattern consi-
dered in Problem 764? 

Fig. 253 

• S 
1  

A 

•S2  
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767. Two point sources 
with the same phases of 
oscillation are on a straight 
line perpendicular to a 
screen. The nearest source 

b 	Sy'  
A 	is at a distance of D2■. 

 a  from the screen. What 
shape will the interference 
bands have on the screen? 
What is the distance on 
the screen from the per- 

N 	pendicular to the nearest 
Fig. 254 bright band if the dist- 

ance between the sources is 
/ -= nA >> X (n is an integer)? 

768. Find the radius rk  of the k-th bright ring (see Prob-
lem 767) if D=1=nk, nil, and k=n, n- 1, n-2, etc. 

769. How can the experiment described in Problem 767 be 
carried out in practice? 

770. Light from source S is incident on the Fresnel biprism 
shown in Fig. 256. The light beams refracted by the different 
faces of the prism partly overlap and produce an interference 
pattern on a screen on its section AB. 

Find the distance between adjacent interference bands if the 
distance from the source to the prism is a= 1 metre and from 
the prism to the screen b = 4 metres. The angle of refraction 
of the prism is a = 2 x 10-3  rad. 

The glass which the prism is made of has a refraction index 
of n = 1.5. The length of the light wave k = 6,000 A. 

771. How many interference bands can be observed on a screen 
in an installation with the biprism described in the previous 
problem? 

Fig. 255 
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772. The following method is used to facilitate the fabrication 
of a biprism with an angle close to 180° (see Problem 770). 
A biprism with an angle p that appreciably differs from 180° 
is placed into a vessel filled with a liquid having a refraction 
index n1, or serves as one of the walls of this vessel (Fig. 257). 

Calculate the angle 6 of an equivalent biprism in air. The 
refraction index of the prism substance is n2. 

Perform the calculations for n1= 1.5 (benzene), n2 -1.52 (glass), 
13= 170°. 

   

 

A 

 

Fig. 257 

 

Fig. 258 
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773. A convergent lens with a focal length of f = 10 cm is 
cut into two halves that are then moved apart to a distance 
of d = 0.5 mm (a double lens). Appraise the number of interfe-
rence bands on a screen at a distance of D = 60 cm behind the 
lens if a point source of monochromatic light (X = 5,000 A) is 
placed in front of the lens at a distance of a= 15 cm from it. 

774. A central portion with a width of d = 0.5 mm is cut out of 
a convergent lens having a focal length of f = 10 cm, as shown 
in Fig. 258. Both halves are tightly fitted against each other. 
The lens receives monochromatic light (X = 5,000 A) from a point 
source at a distance of a = 5 cm from it. At what distance 
should a screen be fixed on the opposite side of the lens to 
observe three interference bands on it? 

What is the maximum possible number of interference bands 
that can be observed in this installation? 

775. Find the distance between the neighbouring bands of an 
interference pattern produced by a lens with a radius of R = 1 cm, 
described in Problem 774, if this distance does not depend on 
the position of the screen. 

At what position of the screen will the number of interference 
bands be maximum? 

The source sends monochromatic light with a wavelength of 
= 5,000A. 
776. What will occur with the interference pattern in the 

installation described in Problem 775 if a plane-parallel glass 
plate with a thickness of d1= 0.11 cm is introduced into a light 
beam that has passed through the upper half of the lens and 
a plate d 2 = 0.1 cm thick into a light beam that has passed 
through the lower half of the lens? The refraction index of glass 
is n = 1.5. The plates are arranged normally to the light beams 
passing through them. 

777. Why are Newton's rings formed only by the interference 
of rays 2 and 3 reflected from the boundaries of the air layer 
between the lens and the glass (Fig. 259), while ray 4 reflected 
from the flat face of the lens does not affect the nature of the 
interference pattern? 

778. Will the nature of the interference pattern change in the 
installation described in Problem 765 if shield C is removed? 

Consider the distance a to be great (one metre). 'I he waves 
radiated by the source are not monochromatic. 

779. Will Newton's rings be seen more distinctly in reflected 
light or in transmitted light? 
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1 4 2 3 

Fig. 259 

780. Dust prevents contact between a plane-convex lens and 
the glass plate on which it is placed. The radius of Newton's 
fifth dark ring is r1 = 0.08 cm. 

If the dust is removed the radius of this ring will increase 
to r2 =0.1 cm. Find the thickness of the dust layer d if the 
radius of curvature of the convex surface of the lens is R = 10 cm. 

781. A plane-convex lens with a radius of curvature R2  < R, 
is placed with its convex side onto the surface of a plane-concave 
lens having a radius of curvature of R1. Find the radii of New-
ton's rings that appear around the point of contact of the lenses 
if monochromatic light with a wavelength k is normally incident 
onto the system. 

782. A thin coat of a transparent substance with a refraction 
index n lower than that of glass is applied to the surface of optical 
glass (coated glass) to reduce its reflection factor (reflectance). 

Estimate the thickness of this coat if light rays are incident 
almost normally onto the optical glass. 

783. A normal eye can discern various colour tints with a 
difference of wavelengths of 100 A. Bearing this in mind, esti-
mate the maximum thickness of a thin air layer at which an 
interference pattern caused by superposition of the rays reflected 
from the boundaries of this layer can be observed in white light. 

784. A monochromatic flux from a remote source with a 
wavelength is, is almost normally incident on a thin glass wedge. 
A screen is placed at a distance d from the wedge. A lens with 
a focal length f projects the interference pattern produced in 
the wedge onto the screen. The distance between the interference 
bands on the screen Al is known. Find the angle a of the 
wedge if the refraction index of glass is n. 
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6-2. Diffraction of Light 

785. Calculate the radii of the Fresnel zones of a spherical 
wave with a radius a for point B removed by a distance of 
a +6 from a source of monochromatic waves with a length of 2„ 
bearing in mind that a)■, and 

786. Calculate the radii of the Fresnel zones of a plane wave 
for point B removed from the wave front by a distance of 
b.?■„ where ? is the wavelength of the source. 

787. A point source of monochromatic light with a wavelength 
of X--5,000 A is at a distance of a= 6.75 metres from a shield 
having an aperture with a diameter D=4.5 mm. A screen is 
placed at a distance of b=a from the shield (Fig. 260). How 
will the illumination change at point B of the screen lying 
on the axis of the beam if the diameter of the aperture is 
increased to D1=5.2 mm? 

788. How can the fact that an increase of the aperture (see 
Problem 787) may reduce the illumination on the axis of a beam 
be agreed with the law of conservation of energy? Indeed, the 
total luminous flux penetrating behind the shield increases 
when the aperture grows. 

789. A plane light wave (7,,=6,000 A) is incident on a shield 
with a circular diaphragm. A screen is placed at a distance of 
b=2 metres behind the diaphragm. At what diameter D of the 
diaphragm will the illumination of the screen at point B lying 
on the axis of the light beam be maximum? 

790. Assuming the distances from a source to a shield and 
from the shield to a screen to be about the same and equal 
to a, find the conditions in which the diffraction of light 
waves with a length 7, on the aperture in the shield will be 
sufficiently distinct (the intensity on the axis of the beam will 
depend on the diameter of the aperture). 

Fig. 260 
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Fig. 261 

701. Prove that a bright spot will be observed at point B 
behind circular screen C (Fig. 261) if its dimensions are suffi-
ciently small. 

792. At what distance from each other should two men stand 
for an eye to distinguish them from a distance of about 11 km? 
The resolving power of a normal eye is approximately F. 

793. A plane light wave (with a length k) is normally inci-
dent on a narrow slit with a width b. Determine the directions 
to the illumination minima. 

794. Find the optimum dimensions of the aperture in a pin 
hole camera depending on the wavelength, i.e., the radius r 
of the aperture at which a point source will appear on the 
camera wall as a circle of minimum diameter, if the distance 
from the source of light to the camera is great as compared 
with its depth d. 

Note. The directions to the illumination minima are deter-
mined in the order of their magnitude by the same formula as 
in the case of a slit (see Problem 793), the diameter of the 
aperture 2r being used instead of the width of the slit b. 

795. A monochromatic wave is normally incident on a diffrac-
tion grating with a period of d = 4 x 10-4  cm. Find the wave-
length k if the angle between the spectra of the second and 
third orders is a=2°30'. The angles of deflection are small. 

796. A plane monochromatic wave (? =5 x 10-5  cm) is incident 
on a diffraction grating with 500 lines. Determine the maximum 
order of the spectrum k that can be observed when the rays 
are normally incident on the grating. 

797. Find the constant d of a grating that can analyse infra-
red radiation with wavelengths up to k=2 x10-2  cm. The 
radiation is normally incident on the grating. 

798. A monochromatic wave is normally incident on a diffrac-
tion grating with a period of d=4 x 10-4  cm. A lens with a 
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focal length of f = 40 cm that produces an image of the diffrac-
tion pattern on a screen is arranged behind the grating. 

Find the wavelength ? if the first maximum is obtained at 
a distance of 1 = 5 cm from the central one. 

799. A source of white light, a diffraction grating and a 
screen are immersed into water. What will the changes in the 
diffraction pattern be if the angles by which the light rays are 
deflected by the grating are small? 

800. Light passed through a light filter is normally incident 
on a diffraction grating with a period of d= 2 x 10-4  cm. The 
filter passes wavelengths from k, = 5,000 A to k, = 6,000 A. Will 
the spectra of different orders be superposed? 

801. Solve Problem 796, assuming that a plane wave 
(k =5 x10-5  cm) is incident on the grating at an angle of 30°. 

802. Solve Problem 797, assuming that the rays may fall on 
the grating diagonally. 

803. Find the condition that determines the directions to the 
principal maxima if light waves fall diagonally on a grating 
with a period d> (k is the order of the spectrum). 

6-3. Dispersion of Light and Colours of Bodies 

804. A beam of white light falls at an angle of a= 300  on 
a prism with a refraction angle of y = 45°. Determine the angle 
0 between the extreme rays of the spectrum when they emerge 
from the lens if the refraction indices of the prism for the 
extreme rays of the visible spectrum are nr  = 1.62 and n,„ = 1.67. 

805. White light is incident from a point source on the 
optical axis of a convexo-convex lens at a distance of a = 50 cm 
from it. The radii of curvature of the lens are R1 = R, =40 cm. 
A diaphragm with a diameter of D= 1 cm that restricts the 
cross section of the light beam is placed tightly in front of 
the lens. The refraction indices for the extreme rays of the 
visible spectrum are nr  =1.74 and n0 = 1.8, respectively. What 
pattern can be observed on a screen arranged at a distance of 
b =50 cm from the lens and perpendicular to its optical axis? 

806. Using the results of Problem 748, construct the elemen-
tary theory of the rainbow, i. e., show that the centre of a 
rainbow lies on a straight line drawn from the Sun through the 
eye of an observer and that the arc of the rainbow is a part 
of a circle all of whose points can be seen at an angle of 42° 
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(for red light) with reference to the straight line connecting 
the eye of the observer and the centre of the rainbow. 

807. Explain from a qualitative point of view the appearance 
of a double rainbow. How do the colours alternate in the pri-
mary and the reflection rainbows? 

808. Can a rainbow be observed at midday in Moscow during 
the summer solstice (on June 22)? 

Note. At this time the Sun is the highest above the horizon 
in the northern hemisphere. 

809. The length of a wave in water diminishes n times, 
n being the refraction index. Does this mean that a diver cannot 
see surrounding objects in their natural colours? 

810. The word "excellent" is written on a sheet of white 
paper with a red pencil and the word "good" with a green 
pencil. A green and a red pieces of glass are available. Through 
which glass can the word "excellent" be seen? 

811. Why do coated lenses (see Problem 782) have a purple-
violet (lilac) tint? 

812. Why do the colours of thin films (for example, oil films on 
water) and the colours of a rainbow have different tints? 

813. A thin soapy film is stretched over a vertical frame. 
When the film is illuminated by white light it shows three 
bands coloured purple (crimson), yellow and light-blue (blue-
green). Find the arrangement and the order of the bands. 

814. Why does the Moon, purely white in the daytime, have 
a yellowish hue after sunset? 

815. Why does a column of smoke rising above the roofs of 
houses seem blue against the dark background of the surrounding 
objects, and yellow or even reddish against the background of 
a bright sky? 

816. Why do the colours of moist objects seem deeper and 
richer than those of dry ones? 



ANSWERS AND SOLUTIONS 

CHAPTER 1 
MECHANICS 

1-1. Kinematics of Uniform Rectilinear Motion 

I. During the first hour after the meeting, the boat travelled away from 
the rafts. During the next 30 minutes, when the engine was being repaired, 
the distance between the boat and the rafts did not increase. The boat overtook 
the rafts in one hour because its speed with respect to the water and hence 
to the rafts was constant. Thus the velocity of the current 

7.5 o= = 	 km/h =3 km/h 
t 	1+0.5+1 

2. As can be seen from Fig. 262, 
S—HFI 

 s. Since the man moves uniformly, 

s=vt. Hence 
S=HH 

h vt. The shadow moves with a constant velocity 

H—h ' 
diagram has the form of a straight line parallel to the axis of abscissas. 

3. The time of the meeting was 8 a. m. The man's speed was 4 km/h. 
The other questions can easily be answered with the aid of the chart in Fig. 
263—the man met the twelfth bus at a distance of 10.7 km from the mill; 
the cyclist was overtaken by four buses. 

Fig. 262 

Hy 
greater than the speed of the man. For this reason the velocity 
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4. The distance between the trains is s=vt; on the other hand, S=VT+UT. 

Hence u—
v (t 

-r 
—T)=--- 45 km/h. 

5. In Fig. 264, AMN shows the usual trip of the car, SC—the engineer's 
walk until he met the car at point C, CB—the motion of the car after it 
met the engineer. 

According to the conditions, BN=-.1(M= 10 minutes. The time during 
which the engineer had walked before he met the car is 

SD=SM—DM=SM--KM  =55 minutes 

6. The chart in Fig. 265 shows the movement of the launches between 
the landing-stages M and K. It follows from the chart that the landing-stages 
are served by eleven launches. A launch travelling from M to K meets eight 
launches, as does a launch travelling from K to M. 

Fig. 264 

6-1865 
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4 	5 	5 	7 	Bthowu'S Fig. 265 

7. Each tourist will walk half the distance and ride the bicycle the other 

half. The entire distance will be covered in 
1=2

v-F  s  =5 hours 20 min- 
i  20 2  

utes. 

Hence, the mean speed is v=--t—=7.5 km/h. The bicycle remains unused 

during half the time of motion, i.e., during 2 hours 40 minutes. 
8. Assume that the first candle burns down by the amount Ah1  and the 

other by Ah2  during the time At (Fig. 266). The shadow on the left wall 
(from the first candle) will then lower over the distance 

Ax=Ahi d- (Ahi  — Ah2) = 2A/4— Ah2  

and that on the right wall over the distance 

Ay= Ah2 —(Ahi — Ah2)=-2Ah2 — Ahi  

Remembering that Ahi=—
h 

At and Aha = —4  At, we get 
1.2 

vi_ Ax_ 2h h 	h  
(2t 2 	tl) At 	ti 	t2 	tits 

Ay 2h h 	h 
(2ti — t2) 

	

02  = At t 2 	t1 — t1t2 

If t2  > t1, then 01  > 0 and 02  may be negative, i.e., the shadow on the 
right wall may move upward. 

U. The bus is at point A and the man at point B (Fig. 267). Point C is 
the spot where the man meets the bus, a is the angle between the direction 
towards the bus and the direction in which the man should run, AC=--viti, 
BC =vat s, where t1  and t2  are the times required for the bus and the man, 
respectively, to reach point C. 
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Fig. 266 

b a 	 a 
A glance at triangle ABC shows that AC= — where sin [3-- 

sin p 	 BC • 

Consequently, sin ex= 
a 
 001t5

—„ 	. According to the condition, t1  > t2, and 
Vg 2 

av 
therefore sin a, 	i = 0.6. Hence 36°45' --< a< 143°15'. 

uv2  
The directions in which the man can move are within the limits of the 

angle DBE. Upon running in the directions BD or BE, the man will reach 
the highway at the same time as the bus. He will reach any point on the 
highway between D and E before the bus. 

10. The minimum speed can be determined from the conditions 

avi  
ti= t2, sin ce=—,.. = 

uv2  

Hence v2 =2„. v1=2.4 m/s. 

Here a=90°. Therefore, the man should run in a direction perpendicular 
to the initial line (AB, Fig. 267) between him and the bus. 

11. Since the man's speed in water is lower than that along the shore, 
the route AB will not necessarily take the shortest time. 

Assume that the man follows the route ADB (Fig. 268). Let us determine 
the distance x at which the time will be minimum. 

The time of motion t is 
rd2,  x2 s— X 02 -ra2  ± X2  —VIX ViS 

02 	 UO2 

This time will be minimum if Yr=v2 lid2 ±x2 —vix has the smallest value. 
Obviously, the value of x that corresponds to the minimum time t does not 

Fig. 267 

6* 



B 

a 

d 

Fig. 269 
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depend on the distance s. To find the value of x corresponding to the minimum 
value of y, let us express x through y and obtain the quadratic equation 

x2  
2yv1 	4d2 —y2  (.1  

„2 _2 .1"- 	2 
v2 	v1 	v2 v ,i 

2 4—vf 

Since x cannot be a complex number, y2 ± d2v1 v:c12. 
The minimum value of y is equal to ymin=c1V 4-4, and x= 

vl_vt 
If s< 	do1 
	

, the man should immediately swim to point B along AB. 
4—  vi. 

Otherwise, the man should run along the shore over the distance AD=s 

	 , and then swim to B. 
4-012  

Let us note that sin cc=—
vi 

for the route corresponding to the shortest 
V2 

time. 
12. (1) Graphically, it is easier to solve the problem in a coordinate system 

related to the water. The speed of a raft equal to the velocity of the river 
current is zero in this system, and the speed of the ship upstream and down-
stream will be the same in magnitude. For this reason tan cci=tan 
on the chart showing the motion of the motor-ship (Fig. 269). When the ship 
stops at the landing-stage, its speed with respect to the water will be equal 
to the river current velocity v2. Hence tan a=v2. 

Its solution leads to the following expression 

vly± V2 VY2  d2O1  — v2d2 
x- 

dvi     corresponds to it. 
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It can be seen from Fig. 269 that 

02 = tan cc=— 
BF tan av t3—tan 	( 

't3— el)   —2.5 km/h 
AF= 	t2   

(2) From the moment the ship meets the rafts to the moment it overtakes 
them, the rafts will cover a distance equal to 

s--=v2  (4++ 44) 

On the other hand, this distance is equal to the difference between the dis-
tances travelled by the ship upstream and downstream: 

s= t3  (v1 v2)—t1  (01-02) 

Hence, 
02 (t/ t2+ t3)=t3 (VI -FLP2) - t1  (01-00 

and 

, 	t3-41)  =2.5 km/h 
" 	2 

13. The motion of the launches leaving their landing-stages at the same 
time is shown by lines MEB and KEA, where E is their meeting point 
(Fig. 270). Since the speeds of the launches relative to the water are the same, 
MA and KB are straight lines. 

Both launches will travel the same time if they meet at the middle bet-
ween the landing-stages. Point 0 where they meet lies on the intersection of 
line KB with a perpendicular erected from the middle of distance KM. The 
motion of the launches is shown by lines KOD and COB. It can be seen from 
Fig. 270 that AMAF is similar to ACOF, and, therefore, the sought time 
MC=45 minutes. 

14. The speed of the launches with respect to the water v1  and the velocity 
of the river current 02  can be found from the equations s=ti  (v1+02) and 
5=12  (v1-02), where t1  and t2  are the times of motion of the launches down-
stream and upstream. It follows from the condition that t1=1.5 hours and 
12 =3 hours. 

t2 
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Hence 
s (4+ t2)  

2tit2 —15 km/h = 

v2  —  2 
s (t,— ti) 

=5 km/h 
titz 

The point of the meeting is at a distance of 20 km from landing-stage M. 
15. Let us assume that the river flows from C to T with a velocity of 00. 

Since the duration of motion of the boat and the launch is the same, we can 
write the equation 

where s is the distance between the landing-stages. Hence, 

4+40,00 + 4v2v1  -4-0 

vo-= —2v2 f 1154-4v1v2 -= —20 ± 19.5 

The solution v0 = — 39.5 km/h should be discarded, since with such a current 
velocity neither the boat nor the launch could go upstream. 

For this reason, 00 = — 0.5 km/h, i. e., the river flows from T to C. 
16. The speed of the boat v with respect to the bank is directed along AB 

(Fig. 271). Obviously, v = v0 + u. We know the direction of vector v and the 
magnitude and direction of vector v0. A glance at the drawing shows that 
vector u will be minimum when u j_ v. 

Consequently, 

umin  =v0  cos a, where cos a= 	 
V a2 -Fb2  

17. Let the speed u be directed at an angle a to the bank (Fig. 272). Hence 
t (u cos a—v)=BC --= a, and to sin a= AC=b 

where t is the time the boat is in motion. 
By excluding a from these equations, we get 

ta (u2 —v2)-2vat—(a2 -Fb2).---0 
whence t=15/21 hour. It is therefore impossible to cover the distance AB in 
30 minutes. 

S 

01 + 00 
2 	 

(02 + Vo 
+ 

02  — 00 

and therefore 
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18. Let u, be the velocity of the wind 
relative to the launch. Hence the flag on 
the mast will be directed along uo. If 
v is the speed of the launch with respect 
to the bank, then u=-Aio +v (Fig. 273). 

In triangle FCD the angle DCF = [3+a-7  

and the angle FDC=a—p. According 
to the sine theorem, 

Fig. 273 
sin — 13) 

sin (cc+ (3— a  
2 ) 

(cc+ P — 221  sin 

sin (at-3) 	• 
It is impossible to determine the velocity of the current from the known 

speed of the launch with respect to the bank, since we do not know the di-
rection of the moving launch with respect to the water. 

19. (1) If the speed of the plane relative to the air is constant and equal 
to v, then its speed with respect to the Earth with a tail wind (along side BC) 
is vBc=v+u, with a head wind vDA.---v—u and with a side wind vAB= C D 
= 1/ 2  _u2 (Fig. 274 a and b). 

Hence, the time required to fly around the square is 
v+ 

v2  — u2  

(2) If the wind blows along the diagonal of the square from A to C, then 
(see Fig. 274c) 

V2  = V 2A B  + U2  —2uvAB cos 45° 

B 	CB 

ll 

  

(6) (c) (d) 

and therefore v=u 

ti— a 
	a 	2a  
	=2a 

v-hu v—u V v2 u2 

Fig. 274 



t2 = 
V2  — U2  

4a Vv2 — u2  
2 
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The speed along sides AB and BC is 

VAB=VBc=11 U+1/ v2 142  

The speed along sides CD and AD (Fig. 274d) 

2 	 /22 
VCD=VDA= 	

, 	
V 2  — 

Let us leave only the plus sign before the root in both solutions to preserve 
a clockwise direction of the flight. The time required to fly around the square is 

Fig. 276 
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20. Let us use the following notation: u12 .=speed of the second vehicle 
with respect to the first one; un  =speed of the first vehicle with respect to 
the second one. 

Obviously, uiz=u„ and 42=4+4+ 2viv2  cos a (Fig. 275). The time 

sought is t=i-i—s  . 

21. During the time At the straight line 
and the straight line CD a distance v2At. 
lines will travel to position 0' (Fig. 276). 

from triangle OFO' or 0E0', where OF =
vi At 

00' =-.1(0F2+0E2+20F•OE cos a=v At 
whence 

v= 1 
	

tl+ 2viv2  cos a 
sin a 

1-2. Kinematics of Non-Uniform and Uniformly 
Variable Rectilinear Motion 

22. The mean speed over the entire distance vm  =ti+ t2+ ts  where 4, 

t, and t3  are the times during which the vehicle runs at the speeds v,. v. 
and 03  respectively. Obviously, 

s 
t 	, 	, and t,=__ vi 	 v2  3 v2  

Consequently, 
3010203  

um  	/ 
0102±003±0203— 18 km h  

23. The path s travelled by the point in five seconds is equal numerically 
to the area enclosed between Oabcd and the time axis (see Fig. 6): si = 10.5 cm. 

The mean velocity of the point in five seconds is vi  = 	= 2.1 cm/s 
and the mean acceleration of the point during the same time is 

Av 	, 
a2=---=v.a cm/s2  - 

ti  

The path travelled in 10 seconds is s2 =25 cm. 
Therefore, the mean velocity and the mean acceleration are 

02 =-s-1. =2.5 cm/s, a2=0.2 cm/s2  

24. During a small time interval At the bow of the boat will move from 
point A to point B (Fig. 277). The distance AB=vi  At, where 01  is the speed 
of the boat. A rope length of 0A—OB=CA=--v At will be taken up during 
this time. The triangle ABC may be considered as a right one, since AC . OA. 

Therefore 01= 	 
cos a 

sin a 

AB will travel a distance viAt 
The point of intersection of the 
The distance 00' can be found 

=E0' and OE=
v

2 
 At 

=FO', i. e., 
sin a 
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O 

Fig. 277 

25. Assume that at the initial moment t 0 the object was at point S 
(Fig. 278), and at the moment t occupied the position CD. The similarity 
of the triangles SCD and SBA allows us to write the equation 

AB 	
hl 	hl 

=SD vit 
BB' 

The velocity of point B at a given moment of time is v2 =---t-A  if the 

time At during which the edge of the shadow is shifted by the disi-ance BB' 
tends to zero. 

Since BB'=AB—AB'— hi  ( 1 	
1 	hi At 	 hl  

vi 	t At 	t (t+ 	then 
2  Vit (t AO' 

or, remembering that At < t, we have v2=—hl . 
vit 2  

at 2  
26. For uniformly accelerated motion x,---xo -Foot ±-

2
. Therefore 

35 cm/s, a=82 cm/s2, and x0 = 11 cm is the initial coordinate of the point. 
27. It follows from the velocity chart (see Fig. 8) that the initial velocity 

OA 
v0=-4 cm/s (0A=4 cm/s). The acceleration a=a =1 cm/s2. First the ve-

locity of the body decreases. At the moment t1=4 s it is zero and then 
grows in magnitude. 

The second chart (see Fig. 9) also shows uniformly variable motion. Before 
the body stops, it travels a distance of h= 10 cm. According to the first 

chart, the distance to the stop 
.9 equal to the area of triangle 

OAB is 8 cm. Therefore, the 
charts show different motions. 

A different initial velocity 
, 	2h 

5 cm/s and a differ- 
' 	t, 

.L
,  

ent acceleration a 	2h --= = — 1.25 
tl 

cm/s2  correspond to the second 
chart. 

28. The mean speeds of both 
the motor vehicles are the same 
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and equal to 

v„,— 
 v

20102 
 =36 km/h 

Therefore, the distance between points A and B is 72 km. The first vehicle 
travelled half of this distance in t'=6/5 h, and the other half in t"=4/$ h. 
The second vehicle travelled all the time with the acceleration 

a= 
2s  
-7=36 km/h2  
to 

and reached a speed of vi=ato =72 km/h at the end of its trip. It acquired 
a speed of 30 km/h in 

Vac, 	5 
ti=— 

a -6  
h 

and a speed of 45 km/h in t2 =v-'15-a  =5/4 h after the moment of departure. 

At these moments the first vehicle moved at the same speed as the second. 
At the moment when one vehicle overtook the other, both of them travelled 

the same distance, and therefore the following equalities should be true 
at 2 	6 

vit=-
2 

for t <-5- h and 

at 2 	6 
+ v2  (t 	T  for -g- h t 2 h 

In the first case t=0 (the vehicles run side by side at the initial moment) 
or t =5/3 h, which disagrees with the condition that t<6/5 h. In the second 
case t=2 h (the vehicles arrive simultaneously at point B), and t= 1/2 h. 
This does not satisfy the condition that t>6/5 h. Hence, neither vehicle 
overtakes the other. 

29. The maximum velocity of the ball when it touches the support is 
vniax =)12gH. 

During the impact the vel ocity of the ball is reversed, remaining the same 
in absolute magnitude. The velocity chart has the form shown in Fig. 279a. 

Figure 2796 shows how the coordinate changes with time. 

30. The time during which the first ball falls is t1= 	
2/4 =0.3 s. The 

ratio of the maximum velocities of the balls is V2 	h2 	I 

t71—  = 	1- 	• 

Fig. 279 
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Fig. 280 

It follows from the velocity chart (Fig. 280) that the minimum time 
T=0.3 s. Besides, the second ball may begin to fall in 0.6, 0.9, 1.2 s, etc., 
after the first ball begins to drop. 

The time t during which the velocities of the two balls are the same is 
0.3 s. The process periodically repeats every 0.6 second. 

31. The initial equations are 

gt2 	g (t — Tr 

where T is the duration of motion of the body over the n-th centimetre of 
its path. 

Hence, 

V 2n
— T 	

2 (n— 1) 

T= 

32. Upon denoting the coordinate and the velocity of the first body with 
respect to the tower by xi  and vi  and those of the second by x2  and 02, we 
can write the following equations 

a 
xi=vol — gt -- • 	vi=vo — gt; 

2 

xo = — Vo 	
g (t

2 
 Tr 

 ; 02 = -vo-g (t-t) 

(The upward direction is considered to be positive here.) 
The velocity of the first body relative to the second is u.---vi —v2 =200 —er 

and it does not change with time. 
The distance between the bodies is 

gt2 s 	— x2 = (200  —gr) —voT + 

The bodies move uniformly with respect to each other and therefore the 
distance between them changes in proportion to the time. 

2 —n' 	2 	
n— 1 
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Fig. 281 

at2 
CC/=7  (Fig. 281). From 

CC/0 we have 

33. According to the condition, AA'=vt and 

the similarity of the triangles AA'0, BB'0 and 

AA' BB' CC' 
AO =EDI -= CO 

A glance at Fig. 281 shows that A0=-.AB±B0 
These ratios allow us to determine 

BB' = 	 
AA'—CC' vt 

— 2 

and CO-=BC-80. 

ate 
4 

Hence, point B moves with the initial velocity 7  directed upward and a 

constant acceleration 
a directed downward. After reaching the height 

4a 
2 

4 
h = 	the point will move downward. 

' 
34. Let us denote the speed of the left-hand truck at a certain moment 01 

time by 01, of the right-hand one by 02, and of the towed one by 03. Then, 
during the time t the left-hand truck will cover the distance 

• , alt2  
,s1=vit-t- 

2 
the right-hand truck the distance 

a2t2  
S2 =V21-  + 

2 

and the towed truck the distance 
a3t2  

S3 V31-  

▪ 

 + 
2 

-F s2 At the same time it is easy to see that 83= 
Si 	. Since this equality 2 

must be true at any value of t, then 

u1 02 03 = + 
2 	and 

H-a2  
a3 —  .2  
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35. The acceleration of the book with respect to the floor of the lift 
depends on the direction of acceleration of the lift and not on the direction 
of its motion (the direction of its velocity). 

If the acceleration of the lift is directed upward, the acceleration of the 
book will be g- F a. If it is directed downward, the acceleration of the book 
will be g —a. 

36. The acceleration of the stone with  respect to the Earth is g and with 
respect to the railway carriage Ya2 H-g2. 

37. If the speed of the lift did not change, the ball would jump up to a 
height H. 

In a system of reading having a constant speed equal to that of the lift 
at the moment the ball begins to fall, the lift will rise during the time t to 

the height
2 at 

' and during the next time interval t to the height h2= 
2  

2 2 
. Its total height of rising is h=h1-j-h2 =a12. 

The sought height which the ball will jump up to above the floor of the 
lift is x=H—h=H—at2. 

V 
38. The time during which the load is lifted to the height h is t= 	

2h 
 

al  
The speed of the load relative to the crane in a vertical direction at this 
moment is vi=ait and in a horizontal one v2= a2t. 

The total speed of the load with respect to the ground is 

v=1/ vt +4+ og 
2  

39. In free falling, body A will travel a vertical distance s1= 
gt

during 

the time t. During the same time the wedge should move over a distance 

. If the body is constantly in contact with the wedge, then S2 
2  

-=cot a, as can be seen from Fig. 282. 
Therefore, the acceleration sought a=---g cot a. 
If the acceleration of the wedge in a horizontal direction is greater than 

g cot a, the body will move away from the wedge. 

1-3. Dynamics of Rectilinear Motion 

40. The force F applied to the sphere determines, according to Newton's 
second law, the magnitude and direction of acceleration of the sphere, but 
does not determine its velocity. For this reason the sphere can move in any 
direction under the force F, and may also have a velocity equal to zero. 

41. The resultant of all the forces is 6 kgf and coincides in direction with 

the force 5 kgf. Therefore, the acceleration of the sphere is a=—=--14.7 misa 

and is directed towards the force 5 kgf. 
Nothing can be said about the direction of motion (see the solution 

to Problem 40). 
42. In the MKS (or SI) system the weight of the body G -=mg=9.8 N. 

The unit of force in the technical system is 1 kgf, i. e., the force with which 
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Fig. 283 

the Earth attracts a body with a mass of 1 kg. In the CGS system the weight 
of the body is 980,000 dynes. When Newton's second law is used to find the 
force in the technical system of units, it should be borne in mind that the 
mass should also be expressed in technical units. 

43. The sought angle a can be determined from the ratio (Fig. 283): 
mg 

tan a.= — 

44. The body sliding along the vertical diameter AB will cover the entire 

distance in the time 
tAa= y 2AB 

—. For an arbitrary groove arranged at 

an angle a to the diameter AB, the time of motion is t Ac= 

Since AC= AB cos a, then tAc.-=tAB. All the bodies will reach the edge of 
the disk simultaneously. 

45. The force of air resistance F will reach its minimum after the 
parachutist's speed becomes constant, and we have F =mg=75 kgf. 

48. According to Newton's second law, N —mg= ± ma. Therefore, 
N =mg+ ma if the acceleration of the lift is directed upward, and N =mg—ma 
if downward, irrespective of the direction of the speed. 

When a=g, then N=0. (Here and below N denotes the force of normal 
pressure, or the force of normal reaction.) 

47. According to Newton's second law, ma=kmg. Hence, the coefficient of 

friction k=2- . Since in an elastic impact only the direction of the velocity 
g 

g 	 a' 
2AC 
cos r 

v2  
changes, irrespective of the angle, then a= 2s , 

where s= 12.5 metre._ is the 

total path travelled by the puck before it stops. 
v2 

Therefore, k= 
2gs 

=0.102. 

48. Assuming the acceleration of a motor vehicle to be constant, we can 
va 

write a= 
2s 

. Since the maximum force of friction in braking is kmg, then, 

according to Newton's second law, m z24=kmg, where in is the mass of the 

motor vehicle. 
v2  

Hence, k= 
2gs 

. Upon inserting the values of o and s from the table in 

this formula, we can find the coefficients of friction for various pavements. 
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ice 	 k=0.1 
dry snow 	 k=0.2 
wet wood block 	k=0.3 
dry wood block 	k=0.5 
wet asphalt 	 k=0.4 
dry asphalt 	 k=0.6 
dry concrete 	 k=0.7 

The coefficient of friction does not depend on the speed if the accuracy to 
the first digit after the decimal point is wanted. 

49. When the motor vehicle accelerates, the rear wall of the fuel tank 
imparts an acceleration v/t to the petrol. According to Newton's second law, 

the force F required for this acceleration is Alp v — ' where A is the area of t  
the rear wall of the fuel tank. In conformity with Newton's third law, the 
petrol will act with the same force on the wall. The hydrostatic pressure of 
the petrol on both walls is the same. Hence, the difference of pressures exer- 

ted on the walls is Ap=—=-./p —
v 

A 	t 

50. The mass of the left-hand part of the rod m1=-17 1 and of the 

right-hand part trr 2=--E– (L-0, where M is the mass of the entire rod. 

Under the action of the applied forces each part of the rod moves with the 
same acceleration a. Therefore, 

F1 —F=rnia 
F — F2 = m2a 

Hence the force F is 
F im2 H Fsml _ F  L-1 	1 

±M2 	I 	I  2  7 
51. The motion of the ball will be uniform. The images of the ball on the 

film appear at intervals of 1=1/24 s. 
The distance between the positions A and B of the ball in space that 

OE correspond to the positions C and D of the images on the film is AB=CD 
OF 
 , 

as shown in Fig. 284. The focal length of the lens OF =10 cm, 0E=15 met- 
res, and CD=3 mm. The velocity of the ball 

v1=AB  —
t

=10.8 m/s. 

When the ball is In uniform motion, mg= 
-=- kv2  In the second case 4 mg= kq. Hence, 

Yr  4=4v! and 02 =21.6 m/s. 

17 3.9 x 10-5  kgf • s2/m2  

52. Figure 285 shows the forces that act 
Fig 284 	 on the weights. The equations of motion for 
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the weights can be written as follows: 

mia=T—m fg and m2a=m2g—T 

where T is the tension of the string and a is the acceleration. (The accelera-
tions of the weights are the same since the string is considered to be 
unstretchable. The weightlessness of the string and the pulley determine the 
constancy of T.) 

Therefore, 
#12  

a= 
 m1+ tn2 

g-327 cm/s2 

T =m, (a + g)= 130,700 dynes= 133 gf 

The time of motion t=
2H, 

I s. 

53. If the mass of the pulleys and the rope is negligibly small, then 
(Fig. 286) 2F— T=0, and T—G=ma. 

Hence, F=
2 	g 

(1 + (1). 	When a=0, we have F= 2 
54. If the mass of the second weight is much greater than 200 g, both 

weights will move with an acceleration somewhat below g, the acceleration 
of the lighter weight being directed upwards. To make a weight of mass m 
move upward with an acceleration g, a force of 2mg should be applied to it. 

For this reason the string should withstand a tension of about 400 gf. 
55. The dynamometer first shows F=3 kgf. If the reading of the dynamo-

meter does not change, the weight 2 kgf is acted upon by the upward forcz 
of the string tension equal to 3 kgf. Therefore, this weight rises with an 

acceleration of a= g  The other weight lowers with the same acceleration. 
2 

Fig. 286 



2 ' 
a2ta l=  2 

178 	 ANSWERS AND SOLUTIONS 

The additional weight on the second pan can be found from the 
equation 

G±Gi. 
X 

g 
 —(G+Gi— F)  g 	2 

Hence G1=3 kgf. 
56. The sphere is acted upon by three forces: the force of 

gravity, the force of tension of the upper rope and the force 
applied to the lower one when it is pulled (Fig. 287). 

The acceleration imparted to the sphere by the pull can be 
found from the equation ma=F1+mg—F2. 

For the lower rope to break, the force applied to it should 
be greater than the tension of the upper one, i.e., F1  > F2. 
For this condition, the acceleration imparted to the sphere 
is greater than that of gravity, i.e., a > g. 

57. According to Newton's second law, 

(mi  + m2) a=mig sin a—m2g sin p—km,g  cos a —km2g cos 3 
The weights will be at the same height after travelling the distance s, 

a-r2  
s=

2
. 

Upon eliminating s and a from the three equations we obtain 

m1  g-r2  (sin a+ sin  p) (k  cos p+  sin p) + 2h  
m2  gr2  (sin a+ sin f3) (sin cr—k cos a) — 2h 

58. The equations of motion give the following formulas for the accelera-
tion of the stone: 

a1=g (sin a+ k cos a) in upward motion 
a2=g (sin a—k cos a) in downward motion 

The kinematic equations can be written as follows: 

f. 

my 

Fig. 287 

which conforms to the following equations: s sin a=h—s sin p and 

aiti2  
; 

We find from these five equations that 
21—gt2  sin a 

k= 	
.21 	

"=-." 0.37 
gt cos a 

0 

t2=t117.  gti 
sin a-1 

—4.2 s 

59. For this case the equations of dynamics can be written as 
mg—T =ma, and T =Ma 

where T is the tension of the string. 
Hence, 

m 	2 
a= M m g --Tg 

1 
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2  
The equations of kinematics give x=vot--- at 

' and vt=v0  — at. Upon 2  
solving this system of equations, we find that in 5 seconds the cart will 
stay at the same place (x=0) and will have a speed vt=7 m/s directed to 
the right. The car t will cover the distance 

(4)2  a 1 
s=-2 f 2 	 

2 	
—17 5 metres 

60. The ice-boat can move only in the direction of its runners. When the 
speed of the boat exceeds that of the wind, the velocity of the latter with 
respect to the boat has a component directed backward. If the velocity of 
the wind with respect to the boat also has a component perpendicular to 
the direction of motion, the sail can be so set that the force F acting on 
it will push the boat forward (Fig. 288). 

Therefore, the speed cf the boat can exceed that of the wind. In practice 
It can be two or three times greater. 

61. (1) At the initial moment the acceleration is a0=,-■", 13.1 m/s2. It 

changes with time according to the law a=„,  F 
[It 

, where 11=200 kg/s is 
 

the mass of the fuel consumed by the rocket in a unit of time. A diagram 
of the acceleration is shown in Fig. 289. In 20 seconds the velocity is nu-
merically equal to the hatched area, v = 300 m/s. 

(2) Newton's second law can be written as 

(M — RI) a =-. F — (M — pi) g — f 

According to the initial conditions, 1=20 s and a=0.8 g. Hence, the force 

a; 117182  

Fig. 288 	 Fig. 289 
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Fig. 290 Fig. 291 

of air resistance is 
f=F—(M—Rt)g—(M—µt) 0.8 g=12,800 kgf 

(3) Newton's equation for the weight gives mia=kx—m1g, where m, is 
the mass of the weight at the end of the spring, a is the acceleration of 
the rocket, k is the coefficient of elasticity of the spring, x is the elonga- 
tion of the spring. According to the condition, mlg=k10. Therefore, 

(a+g). The scale of the device should be graduated uniformly 

(Fig. 290). An acceleration of g corresponds to a division of one centimetre. 
62. The only force acting on the bead is the reaction force of the rod N 

directed at right angles to the rod. The absolute acceleration we  of the bead 
(relative to a stationary observer) will be directed along the line of action 
of the reaction force N. The relative acceleration w,. is directed along the 
rod (Fig. 291) 

wa =a+wr  

It follows from the triangle of accelerations that wr=a  cos a and 
wa =--a sin a. 

From Newton's second law, the reaction force is N=ma sin a. 
The time t during which the bead moves along the rod can be found from 

2 
the equation /= 

a cos a•-r
. Hence, t= 2 	 V a cos a 

63. When the bead moves it is acted upon by the friction force kN and 
the reaction force N. 

The absolute acceleration will be directed along the resultant force F. It 
follows from Fig. 292 that 

wr=a cos a — —=a (cos a—k sin a) N =ma sin a, and kN 
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Hence (see Problem 62), 

2/  
17.  a (cos a—k sin a) 

If k cot a, the bead will not move with respect to the rod, and the force 
of friction is ma cos a. 

64. The equations of motion of the block and the body have the form: 
ma= f 	 (1) 
Mb=F—f 	 (2) 

where f is the force of friction; a and b are accelerations. 
Let us assume that there is no sliding, then a=b. The acceleration and 

the force of friction can be found from the equations of motion. The force 

of friction is f=m 
M±m

. For the body not to slide, the force of friction 

should satisfy the inequality f kmg, i.e., 
M+ m 

-.<._. kg. If F > k (M+ m) g, 

the body will begin to slide. Here equations (1) and (2) will take the form: 

ma=kmg, and Mb=F —kmg 

These equations can be used to find a and b: 

a=kg, and b=
F—kmg 

M 

Obviously, b > a. The acceleration of the body relative to the block will be 
directed oppositely to the motion and will be equal in magnitude to 
F—kmg kg.  

M 
The  time during  which the body moves over the block is t 

21M 
F — kg (M m) •  

  

A 

Fig. 293 

 

Fig. 292 
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65. Initially the wagon Is in uniformly retarded motion at a speed of 

v=vo  —7kt4  t, where f is the force of friction equal to kmg. The body is in 

uniformly accelerated motion at a speed of u=—f t. 

If the wagon is long, the speeds of the body and the wagon may become 

equal. This will occur at the moment of time r= 	
vo 	

. After this, both 

m
+ M 

the body and the wagon will begin to move at a constant speed equal to 
Mv°  
	. By this time the wagon will have covered a distance 
M m 

2M 
and the body a distance 

2 

2m 

2gk (M m)< 1 

66. Let us consider the string element in the slit. Assume that the string 
moves downward. Then, the string element will be acted upon by the force 
of string tension on both sides and the force of friction (Fig. 293). 

Since the mass of this string element is neglected, T 1— F—T 2-=0. 
The equations of dynamics can be written as follows: 

mig — T 1= mia 
m2g — T2= —m2a 

Hence 

m1 -F ni2 
67. Since the weights move uniformly, the tension of the string is equal to 

the weight ml. Therefore, the force with which the pulley acts on the bar 
is 2m1g, i.e., in the first case it is 2 kgf and in the second 6 kgf. In both 
cases the balance will show the sum of the first and second weights, i.e., 
4 kgf. The force of friction equal to 2 kgf is applied to the bar at the side 
of the second weight. In the first case it is added to the force of pressure 
exerted by the pulley on the bar and in the second it is subtracted from it. 

68. Since the masses of the pulleys and the string may be neglected, the 
tension of the string will be the same everywhere (Fig. 294). Therefore, 

m fg—T=miai  
m2g —2T = m,a2  
m3g—T =---- m3a3  

a3  
a2 -= 	 2 

The distance covered by the body relative to the cart is S—s. It should 
be shorter than 1. Thus, the body will not slip off the wagon if S — s < 1, 
i.e., 

Mv,; 

a =
(nli —  m2) g—  F 
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Fig. 295 

(see Problem 34). Hence, 
4m1m3-3m2m3+  mime  

al 
4m1m3 +m2m3+ mim2  

minz2 — 4n/ens+ m2ms  a2 — 
4m1nz3 + m2m3 + mit% 
4m1m3 — 3m,m, m2m3  a3= 	  
4mim3+ m2m3  mit% 

69. The second monkey will be at the same height as the first. 
If the mass of the pulley and the weight of the rope are disregarded, 

the force T tensioning both ends of the rope will be the same and, therefore, 
the forces acting on each monkey will equal F=T—mg. Both monkeys have 
the same accelerations in magnitude and direction and will reach the pul-
ley at the same time. 

70. Since the mass of the pulleys and the string is negligibly small, the 
tension of the thread is the same everywhere. 

Therefore, 
m fg —T =mial  

m2g — 2T = m2a2  
2T —T 

Hence, T=0 and a1=a2 _=g. 
Both weights fall freely with an acceleration g. Pulleys B and C rotate 

counterclockwise and pulley A clockwise. 
71. (1) The forces acting on the table and the weight are shown in Fig. 295. 

The equations of horizontal motion have the following form: 
for the table with the pulley 

Gi  
F — F +Fir=— 

and for the weight 

F —Fir= 
g2

a2 
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Let us assume that the force F is so small that the weight does not 

slide over the table. Hence ai=a, and Fp.=F  Gi 
G1+02 .  

By gradually increasing the force F we shall thereby increase the force of 
friction F fr. If the table and the weight are immovable relative to each other, 
however, the force of friction between them cannot exceed the value F fr.max=kG2. 
For this reason the weight will begin to slide over the table when 

F > F fr•max G1±G  =k —
Gi

(Gi+G2)= 10 kgf 

	

GI 	
G2 

In our case F=8 kgf, consequently, the weight will not slide, and 

8 

	

al =a,— 	
PG1- G2 	25 g— g 314 cm/s2  

(2) In this case the equations of motion fo: the table with the pulleys and 
the weight will have the form: 

Gi  —F 1,=— 

F — F p.= 
G2 
— a2  

The accelerations of the table and the weight are directed oppositely, and the 
weight will be sure to slide. 

Hence, F fr=kG2. 
The acceleration of the table is 

	

— F kG, 	2 a1 	Gi 	 131 cm/s2 

and it will move to the left. 
72. According to Newton's second law, the change in the momentum of 

the system "cannon-ball" during the duration of the shot t should be equal 
to the impulse of the forces acting on the system. 

Along a horizontal line 

mv, cos a— Mvi=F frt 
where Fp.T is the impulse of the forces of friction. 

Along a vertical line 
mv, sin a.= NT — (Mg ± mg) T 

where NT is the impulse of forces 
area), (Mg±mg)T is the impulse 
F p.=--kN, we obtain 

of normal pressure (reactions of a horizontal 
of the forces of gravity. Remembering that 

k— m  
m

vo  sin a k
M+m gt, m 

= 
— 00 COS CX- 

or since gT v, 

vi 	vo  (cos a—k sin a) 

This solution is suitable for k < cot a. When k> cot a the cannon will remain 
in place. 
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1-4. The Law of Conservation of Momentum 

73. The momentum of the meteorite is transmitted to the air molecules 
and, in the final run, to the Earth. 

74. Let us divide the mass of the disk into pairs of identical elements 
lying on one straight line at equal distances from the centre. The momentum 
of each pair is zero, since the momenta of both masses are equal but oppo-
sitely directed. Therefore, the momentum of the entire disk is zero. 

75. The propeller of a conventional helicopter is rotated by an engine 
mounted inside the fuselage. According to Newton's third law, oppositely 
directed forces are applied from the propeller to the engine. These forces 
create a torque that tends to rotate the fuselage in a direction opposite to 
rotation of the propeller. The tail rotor is used to compensate for this torque. 

In a jet helicopter the forces from the propeller are applied to the outfio-
wing gases and for this reason do not create any torque. 

76. The velocity of the boat u can be found with the aid of the law of 
conservation of momentum. In a horizontal direction 

Mu= mv cos a 
Hence, u=--8 cm/s. 
77. At the highest point the rocket reaches, its velocity is zero. The change 

in the total momentum of the rocket fragments under the action of external 
forces (the force of gravity) is negligible since the impulse of these forces is 
very small in view of the instantaneous nature of the explosion. For this 
reason the total momentum of the rocket fragments before and immediately 
after the explosion remains constant and equal to zero. At the same time, the 
sum of the three vectors (m1v1, m2v2, m3v3) may be zero only when they are 
in one plane. Hence it follows that the vectors v1, v2  and v3  also lie in one 
plane. 

78. Let the mass of the man be m and that of the boat M. If the man 
moves with a speed v relative to the boat the latter will move at a speed — u 
with respect to the bank, and therefore the man moves with a speed v1=v—u 
with respect to the bank. 

According to the law of conservation of momentum, 

m (v — u)— Mu = 0 

Hence, 
u=m+M 

v and the speed of the man relative to the bank is 

M 
=m+M v. 

Since the signs of vi  and v coincide, the distance between the man and 
the bank will increase whatever the ratio between the masses m and M. 

79. The speed of the boat u with respect to the shore is related to the 

speed of the man v with respect to the boat by the equation 
u=m+M 

v (see 

Problem 78). The relation between the speeds remains constant during motion. 
For this reason the relation between the distances travelled will be equal to 
the relation between the speeds 
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where s is the distance travelled by the boat and 1 is its length (the distance 
covered by the man in the boat). 

Therefore, for the boat to reach the shore its length should be at least 

i= 	 m +M 
 s=2.5 metres. 

m 
80. When the spring extends, it will act on both weights. The weight at 

the wall will first remain stationary while the second weight will begin to 
move. When the spring extends completely (i.e., is no longer deformed), the 
second weight will have a certain velocity. Therefore, the system will acquire 
momentum in a horizontal direction that will be retained in the following 
period, since the external forces will not act in this direction. Thus, the 
system as a whole will move away from the wall, the weights alternately 
converging and diverging. 

81. The speed of the cart will not depend on the point of impact. The 
momentum of the revolving cylinder is zero, irrespective of its direction and 
velocity of rotation (see Problem 74). For this reason the bullet will impart 
to the "cylinder-cart" system the same momentum as it would to a cylinder 
rigidly secured on the cart. 

82. Let us denote the velocity of the rocket at the end of the k-th second 
by vk. Gas with a mass m is ejected from the rocket at the end of the (k +1)-th 
second, and it carries away a momentum equal to 

m (—u+ vk) 

It follows from the law of conservation of momentum that 

(M —km) vk=[M —(k+1) m] vk+i - m (—u+vk) 

The change in the velocity of the rocket per second is 

mu 
vit+1-- Elk —  A 4 	(k+  m  

If we know how the velocity changes in one second, we can write the 
expression for the velocity at the end of the n•th second 

m 
vn=vo -fu (mrn-r-  m 2m± • • .± m_ nm) 

83. The velocity of the rocket will grow. This becomes obvious if we pass 
over to a reading system with respect to which the rocket is at rest at the given 
moment. The pressure of the ejected gases will push the rocket forward. 

84. Let the mass of the boat be M, that of a sack m and the velocity of 
the boats 00 . When a sack is thrown out of a boat the latter is acted upon 
by a certain force in a direction perpendicular to vo. It should be noted, 
however, that the boat does not change its velocity, since the resistance of 
the water prevents lateral motion of the boats. The velocity of a boat will 
change only when a sack is dropped into it. 

Applying the law of conservation of momentum to the "sack-boat" system, 
we can write in the first case: 

for one boat (M + m) vo  — my, = (M +2m) vi  
for the other one — Moo  + mvi=(M-Fm) v, 

Here 0, and v, are the final velocities of the boats. From these simultaneous 

equations 	vo  — 
M + 2m 

vo. 
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. 
.. 	 When the-  sacks are exchanged simul- - ..--------  

taneously, the final velocities of the 

	

/ 	 \ / 

	

/ 	q 	 \ 	boats vi and v; can be found from the 
/ 	 \ 	equations: /  1 	 , 

% Mvo —mvo=(M +m) vi. ; i 
i 	 —Mvo  4- moo  = (M + m) v; 
1 
/ 	 • M—m 

/ 	Hence, v; = --v2  =M ± 	vo. Thus, the 

final velocity of the boats will be higher 
in the first case. 

85. External forces do not act in a ho-
rizontal direction on the "hoop-beetle" sys-
tem. For this reason the centre of gravity 
of the system (point C in Fig. 296) will not 
move in a horizontal plane. The distance 

Fig. 296 from the centre of gravity of the system 
m 

to the centre of the hoop is CO— 
m+ M 

R. 

Since this distance is constant, the centre of the hoop 0 will describe a circle 
with the radius CO about the stationary point C. It is easy to see that the tra-

jectory of the beetle is a circle with the radius AC= 
m+ M 

R. 

The mutual positions and the direction of motion of the beetle and the 
hoop are shown in Fig. 296. 

86. Since no external forces act on the system in a horizontal direction, 
the projection of the total momentum of the "wedge-weights" system onto the 
horizontal direction must remain constant (equal to zero). It thus follows that 
the wedge will begin to move only if the weights move. 

For the weight m2  to move to the right, the condition 

m2g sin a mig + km2g cos a 

should be observed. 

Therefore, —
mi. 

< sin a —k cos a. Here the wedge will move to the left. For 
M2 

the weight m2  to move to the left, the following condition should be observed: 

mlg> m2g sin a + km,g cos a 
Or 

—> sin a+ k cos a 
m2  

Here the wedge will move to the right. 
Hence, for the wedge to be in equilibrium, the ratio between the masses 

of the weights should satisfy the inequality 

sin a —k cos a< —< sin a+ k cos a 
m2 
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1 -5. Statics 

87. 1
1
=1 

k +1 • 
88. In the position of equilibrium (Fig. 297) mg-2mg cos a=0. Therefore, 

a=60°. The sought distance h=1 cot a.=—, . Equilibrium will set in after 
3  

the oscillations caused by the weight being lowered attenuate. 
89. The equality of the projections of the forces onto the direction of the 

vertical (Fig. 298) gives the equation 

a 	a 
2N sin —2F1, cos -2---= 0 

where N is the force of normal pressure and F 1,.<kN is the force of friction. 
The weight of the wedge may usually be neglected. 

Hence, tan < k and a< 2 arc tan k. 

90. If the weight G1  lowers over the height h, then point F will lower by h/3. 
The weight G2  will rise by 2h/3. Applying the "golden" rule of mechanics, 

we have G1h=G2  2h. 

2 
Hence, Gi = —

3 
G2. 

91. If the box is not overturned, the moment of the force F rotating the 
box in one direction, say counterclockwise, about a bottom edge is less than 
or equal to the moment of the force of gravity rotating the box clockwise. 
For the box to slide, the force should be greater than the maximum force of 
friction applied to it. Therefore, 

1 
Fh < mg 

2 
— and F kmg 

whence k' —
2h • 

 

Fig. 298 



Fig. 301 
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fi 

ttf t ftt tt i  
1 Fig. 299 

92. To turn the beam, the moment of the forces applied to its ends should 
he greater than the moment of the forces of friction when they reach their 
maximum. 

The forces of friction are distributed uniformly along the beam (Fig. 299). 
The mean arm of the forces of friction acting on the left- or right-hand part 
of the beam is 1/4, if the length of the entire beam is 1. 

The moment of all the forces of friction with respect to the beam centre 

is 
kG 

s 2 -- 
4 
 . Consequently, to turn the beam around, the applied forces F 

2  
should satisfy the inequality 

1 	kG1 
2F-

2 
> —

4 
G 

whence F > k 4- . 
To move the beam translationally, 2F should be greater than kG. There- 

fore, it is easier to turn the beam. 
Go  

93. The equation of motion of the load is 	— G0  (Fig. 300). The 

sum of the forces acting on the crane vertically is zero. Therefore, G1 + G2 = 
Since the sum of the moments of the forces relative to point A 

is zero, we have Fl+G 
2 
 =LG2. 

Solution of these simultaneous equations gives 

	

G1  = 2.23 tonf, and G2 	 1.77 tonf 

94. For the lever to be in equilibrium, the force applied at point D should 
produce a moment equal to G• AB. The force will he minimum when the 
maximum arm is equal to BD. 

0/ 4  

AA 	 

     

	 6; 

     

     

      

      

Wir  

AF 

co  

 

6' 

  

     

Fig. 300 
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AB 
Hence, F=G 	G , and it is directed at right angles to BD. 

BD -1/2 
95. If there is no friction between the floor and the boxes, the latter will 

move simultaneously. If the coefficient of friction is not zero, the right-hand 
box will move first (see Fig. 35), since the force applied to it by the rod 
will be greater than the force applied to the left-hand box. 

Indeed, the rod is acted upon from the side of the right-hand box by 
the force F1  directed opposite to F, and from the side of the left-hand box 
by the force F 2  directed along F. The sum of the forces in equilibrium is 
zero. Therefore, Fi=F+ F2, and the force F1  will reach the maximum force 
of friction of rest before F2. 

96. The equality to zero of the sum of the moments of the forces acting 
on the sphere with respect to point A (Fig. 301) gives us the equation 

F frR—NR=0  

Since Fp. < kN , then k > 1. 
97. For a body to be at rest, the total moment of the forces that tends 

to turn the body clockwise should be equal to the moment of the forces 
that tends to turn the body counterclockwise around a point (around the 
centre of gravity, for example). In our case the moment of the forces of 
friction that turns the brick clockwise should be equal to the moment of the 
forces of the pressure exerted by the plane on the brick. It follows that 
the force of pressure exerted by the plane on the right half of the brick 
should be greater than on the left one. According to Newton's third law, 
the force with which the right half of the brick presses against the plane 
should be greater than that of the left half. 

98. To lift the roller onto the step, the moment of the forces turning the 
roller around point A (Fig. 302) counterclockwise should at least be equal 
to the moment of the forces turning it clockwise, i.e., 

G (R—h)=G R2 —(R—h)2  

Hence, h=
2  ± 

 2 
	Since h < R, then 2 

h=(1-119 R 0.29R 2 

99. Since the force of friction is zero on one of the planes, it is also zero 
on the other one. Otherwise, the sphere would rotate around its centre, for 

Fig. 802 Fig. 303 
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the moment of all the other forces relative to this centre is zero (because 
the arm of each of these forces with reference to the centre of the sphere 
is zero). 

The sums of the projections of the forces on the vertical and horizontal 
directions are equal to zero (Fig. 303). For this reason 

N1  cos a2 —N2  cos a1=0 
G—N1  sin a2 —N 2  sin al  =0  

where N1  and N 2  are the sought pressure forces. Hence, 

G 
N1_ sin a2 + cos al • tan al 

= 2.6 kgf

G  N2= 
sin al  -j- cos a, • tan a2 

--='" 1.5 kgf 

100. Let us denote the force applied to one handle by F. The force F 
will turn the drawer and induce elastic forces AT, and N2 at points A and B 
(Fig. 304) which will act on the drawer from the side of the cabinet. These 
forces are equal: NI  =-- N2=N. Since the moment of all the acting forces 

relative to the centre of the drawer C is zero, N=F —
2a

. 

The drawer can be pulled out if the applied force F is greater than the 
maximum force of friction of rest: F > 	f2=2kN. 

For the last inequality to be satisfied, k should be smaller than -Ta  . 

101. A board on a rough log forming an angle a with a horizontal plane 
is similar to a body retained by the forces of friction on an inclined plane 
with an angle a at its base. Therefore, in equilibrium, Fp=mg sin a. Bea-
ring in mind that F p. < kmg cos a, we have tan a<k. 

B 

Fig. 304 

 

Fig. 305 
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Fig. 306 Fig. 307 

102. The forces applied to the ladder are shown in Fig. 305. In equilib-
rium the sums of the projections of the forces along a vertical and a hori-
zontal lines are equal to zero. 

Therefore, Ni---F fr  and N,=mg. 
Since the sum of the moments of the forces relative to point B is zero, 

we can write another equation 

N1 cos a= mg 
sin a 

2 

Hence, F 	
tan a

. Since the force of friction satisfies the inequality 

F ir <kN,, the ladder will be in equilibrium if 

tan a <2k 

103. The forces applied to the ladder are shown in Fig. 306. Since the 
sum of the forces and the sum of the moments of the forces are equal to zero: 

f N 2=-.mg 

1 
f sin a+ 	-=-- 	

2 
N 1  cos a mg —sin a 

The forces of friction f and Fr,. satisfy 
F p...<kN 2. By using the first inequality and 

N, k 	 Ni  
cot a _..._— . Since k> — , then cot a 

2Ni  — 2 	 N, 
k=tan p, the inequality can be written in a 

the inequalities f<kN, and 
equations (1) and (3), we get: 

1— 2kk2 
	 . If we assume that 

more convenient form for cal- 

(1)  
(2)  

(3)  
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culations: 
cot a cot 20 or a< 2D 

104. If at the moment when end B of the rod begins to rise, the force 
of friction F11.<kN proves sufficient for end A not to slip, the rod will 
begin to rotate around point A. Otherwise, end A will begin to ¢lip until 
the force of friction F fr=kN can keep the rod in equilibrluni (Fig. 307). 
After this the rod will begin to rotate around end A. 

Let us find the coefficient of friction k at which slipping stops with 
a definite angle a between the rod and the string. 

The equality of the forces at the moment when the rod is almost hori-
zontal gives us the equations: 

F p.=T cos a 
G=N+T sin a 

The equality of the moments of the forces with respect to point A can 
be written as 

1 
G 2  

—=T1 sin a 

By using this system of equations, we find that 

k= N
r
=cot a 

1 
For the rod not to slip at all it is necessary that k 	cot 60°=  V3 

105. The sum of the moments of the forces acting on the man relative to 
his centre of gravity is zero. For this reason the force F acting from the 
Earth is always directed towards the man's centre of gravity C (Fig. 308). 
The horizontal component of this force cannot be greater than the maximum 
force of friction of rest: F sin a< kF cos a. Hence, k tan a. 

Fig. 308 Fig. 309 Fig. 310 

7 —1865 
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Fig. 311 Fig. 312 

106. The ladder is acted upon by three forces: its weight G, the force 
from the Earth F and the reaction of the support N (Fig. 309). Since the 
wall is smooth, the force N is perpendicular to it. 

It will be the easiest to determine the force F if we find the point with 
respect to which the moments of the forces G and N are equal to zero. This 
will be the point at which the straight lines ON and OG intersect. The 
moment of the force F relative to this point should also be zero. Therefore, 
the force should be directed so that it continues past point 0. 

Figure 309 shows that the direction of the force F forms with the ladder 
1  

3 
the angle p=30°—arc tan 2 V _,. ==--- 14°10'. 

The force which acts on the ladder from the Earth will be directed along 
the ladder only if all the other forces are applied to the centre of the lad-
der masses or act along it. 

107. The ladder cannot be prevented from falling down by means of a rope 
tied to its middle. The moments of the forces of reaction of the floor and 
the wall as well as the moments of the force with which the rope is tensio-
ned with respect to point 0 are zero whatever the tension T (Fig. 310). 
The moment of the force of gravity with respect to the same point differs 
from zero. For this reason the ladder will fall down without fail. 

108. From the wall the ladder is acted upon by the reaction of the sup-
port N1  perpendicular to the wall. The bottom end of the ladder is acted 
upon by the forces N 2  (reaction of the support) and Fp. (force of friction) 
(Fig. 311). If, for the sake of simplicity, we disregard the weight of the 
ladder, these forces will be supplemented by the weight of the man G. The 
equality of the projections of the forces along a horizontal and a vertical 
lines gives us: N 2=0 and 

Let the man first stand on the lower part of the ladder (point A). The 
equality of the moments of the forces with respect to point 0 gives us the 
equation NiCB=G• cos a • AO. 

Hence, the higher the man, the greater will be the force N1. But Fp.=Ni. 
For this reason the force of friction retaining the ladder grows as the man 
climbs up. As soon as Fir  reaches its maximum value equal to kG the lad-
der will begin to slip. 
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109. In equilibrium the sum of the forces acting on the picture is zero 
(Fig. 312). Therefore, G=-Fp.+T cos a, and N=T sin a. The force of fric-
tion should satisfy the inequality 

F 
F

p. 
<kN or k p.  

The equality of the moments relative to point B gives us the equation 

2 
—I sin a= T (1 cos a+ lid2 — / 2  sin2  a) sin a 

Hence, 
F fr 1 cos a+  2 -17d2  — /2  sin2  a 
N 	 I sin a 

and 

k 	
cos  a+2  rd._  /2  sin2  a 

I sin a 

110. Let us first find the direction of the force f with which rod BC acts 
on rod CD. Assume that this force has a vertical component directed upward. 
Then, according to Newton's third law, rod CD acts on rod BC with a force 
whose vertical component is directed downward. This contradicts the symmetry 
of the problem, however. Therefore, the vertical component of the force f 
should be equal to zero. The force acting on rod CD from rod DE will have 
both a horizontal and a vertical components, as shown in Fig. 313a. 

Since all the forces acting on CD are equal to zero, F=mg and f=-f'. 
The equality to zero of the moment of the forces with respect to D gives us: 

cos p 
f sin f!) CD -= mg — CD 

2 
or 

tan p 

Figure 313b shows the forces acting on rod DE. Since the moment of the 

Fig. 313 

7* 
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Fig. 314 Fig. 315 

forces with respect to E is equal to zero, it follows that 

f sin a DE = F cos a DE 
mg co 2s a DE  

Or 

tan a.-- —
2f

3mg  

Consequently, tan a=3 tan 13. 
111. The forces acting on the box are shown in Fig. 314. The conditions 

of equilibrium have the form: F cos a=F f,. and G=N+F sin a. 
At the moment equilibrium is disturbed, the force of friction reaches its 

kG  
— maximum: F f,.—kN. Hence, F=

cos a+ k sin a ' The value of F will be mi-

nimum at an angle a corresponding to the maximum denominator. To find 
the maximum let us transform the denominator, introducing a new quantity 
cp instead of k so that tan p=k. 

Then, 
cp) cos a ±k sin a= 

cos  (a — 

 

or 
cos a 	sin a= y-1 ±k2 cos (a— p) 

Since the maximum value of cos (a— IT) is unity, then 
kG  

ri +k 

Hence, k— 

 

F 

 

= 0.75. 

   

   

112. The forces acting on the cylinder are shown in Fig. 315. Since the 
cylinder does not move translationally, 

F fr —F cos a=0 
F sin a— mg+ N=0 

cos p 
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The force of friction Ftr=kN. Hence, 

king 
F — 

cos a+k sin a 

The denominator of this expression can be written as A sin (a--I- q), where 
A=1/- l  +k2  (see Problem 111). 

Therefore, the minimum force with which the string should be pulled is 
king 

Fin 	V r 
	 
1 +k2  

The angle al  can be found from the equation cos al -{-k sin a1= ri +k2, 
and tan a, =k. 

113. The forces acting on the piston and the rear lid of the cylinder are 
F1=-F 2-=pA (Fig. 316a). Point C of the wheel is also acted upon in a hori-
zontal direction by the force F 2  transmitted from the piston through the 
crank gear. 

The sum of the moments of the forces acting on the wheel with respect 
to its axis is zero. (The mass of the wheel is neglected.) Therefore, Fp.R=F,r, 
where Fp. is the force of friction. Since the sum of the forces which act on 
the wheel is also zero, the force F3 applied to the axis by the bearings of 
the locomotive is F3=Fp.+F2. According to Newton's third law, the force 
F4 =-- F3  acts on the locomotive from the side of the axis. Hence, the tractive 

A  r 
R 

effort F=F4 —Fi=Fir=pri — 

In the second position of the piston and the crank gear, the forces we are 
interested in are illustrated in Fig. 3166. For the same reason as in the pre-

vious case, F f,.=-F2  

The tractive effort F=Fi —F4--=-F f,.=--pA—
R • 

As could be expected, the tractive effort is equal to the force of friction, 
for the latter is the only external force that acts on the locomotive. 

114. The maximum length of the extending part of the top brick is //2. 
The centre of gravity of the two upper bricks C., is at a distance of //4 from 
the edge of the second brick (Fig. 317). Therefore, the second brick may 
extend by this length relative to the third one. 

The centre of gravity of the three upper bricks C3 is determined by the 
equality of the moments of the forces of gravity with respect to C3; namely, 

1 
' 	• 

G 
2 	 6 

—x)=2Gx. Hence x= 	i e the third brick may extend over the 

Fig. 316 
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A' 
Fig. 317 
	

Fig. 318 

fourth one by not more than //6. Similarly it can be found that the fourth 
brick extends over the fifth one by 1/8, etc. The nature of the change in the 
length of the extending part with an increase in the number of bricks is 
obvious. The maximum distance over which the right-hand edge of the upper 
brick can extend over the right-hand edge of the lowermost brick can be 
written as the series 

L=-1  (
1+ 1 -

1  
+ +-

1 
 ...) 

2 	3 	4 

When the number of the bricks is increased infinitely this sum tends to 
infinity. 

Indeed, the sum of the series 

-E  2 + 3 + 4 5 1- 1+ 7 	8 
_ 1 

6 	+ ' 	' 

is greater than that of the series 

ix Y2 

1 	1 	1 
1  + 

1 
-8± 

1 
-8-  

1 	1 
+ -8-  ±-vP 

and the latter sum will be infinitely great if the number of terms is infinite. 
The centre of gravity of all the bricks passes through the right-hand edge 

of the lowermost brick. Equilibrium will be unstable. The given example 
would be possible if the Earth were flat. 

115. Let us inscribe a right polygon into a circle with a radius r (Fig. 318). 
Let us then find the moment of the forces of gravity (with respect to the 
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axis AK) applied to the middles of 
the sides of the polygon AB, BC, 
CD, DE, etc., assuming that the 
force of gravity acts at right ang-
les to the drawing. This moment is 
equal to pg (ABx,± BCx2 +CD.x3+ 

DEx4 +EFx5 H-FK.x,), where p 
is the mass of a unit of the wire 
length. 

From the similarity of the cor- 
responding triangles it can be shown 

Fig. 319 	 that the products ABx1, BC.x2,CDx3, 
etc., are equal respectively to AB'h, 

B'C'h, C'D'h, etc., where h is the apothem of the polygon. 
Therefore, the moment is equal to 

pgh (AB' B'C' C' D' D'E' E'F' F'K)=pgh2r 

If the number of sides increases infinitely, the value of h will tend to r 
and the moment to 2r2 pg. On the other hand, the moment is equal to the 
product of the weight of the wire arpg and the distance x from the centre 

of gravity to axis AK. Therefore, 2r2 pg=arpgx, whence x=-2-r. 

116. Let us divide the semicircle into triangles and segments, as shown in 
Fig. 319. The centre of gravity of a triangle, as is known, is at the point 
of intersection of its medians. In our case the centre of gravity of each 

2 
triangle is at a distance of —

3
h from point 0 (h is the apothem). When the 

sides are increased infinitely in number the centres of gravity of the triangles 
2 

will lie on a circle with a radius of —
3

r, while the areas of the segments 

will tend to zero. 
Thus, the problem consists in determining the centre of gravity of a se- 

micircle with a radius of —
2 

r. 
3 

It follows from the solution of Problem 115 that x, which is the distance 
between the centre of gravity of the semicircle and point 0, is equal to 

2 2 	4 
•x=-21 —3 r =

3
-31 r 

117. By applying the method used to solve Problems 115 and 116, it can 
be shown that the centre of gravity is at point C at a distance 

a 
2 sin 

= 	r from the centre of curvature of the arc (see Fig. 45). 
a 

118. From the solutions of Problems 115, 116 and 117, it can be shown 

sin c
-2

c-- 
4  

that the centre of gravity is at point C at a distance of CO= 
3 a 
	r from 

point 0. 
119. When the centre of gravity is determined, the plate with a cut-out 

portion can formally be considered as a solid one if we consider that a se- 
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micircle with a negative mass equal in magnitude to the mass of the cut-out 
portion is superposed on it. 

The moment of the gravity forces of the positive and negative masses with 
respect to axis AB is equal to 

r nr2  4  
pg(2

r2 
) 3  

—2— — r r3pg 

if the force of gravity acts at right angles to the drawing (see Fig. 47), 
where p is the mass of a unit area of the plate (see the solution to Pro-
blem 116). On the other hand, this moment is equal to the product of the 
weight of the plate and the distance x=-0C from its centre of gravity to 
axis AB. 

2-cr2 	1 
Hence, xpg(2r2--

2
) —

3 
r3 pg. 

Therefore, x=3 
 (4

2  
r. 

1-6. Work and Energy 

120. The work of a force does not depend on the mass of the body acted 
upon by the given force. A force of 3 kgf will perform the work 
W =Fh=15 kgf-m. This work is used to increase the potential energy 
(5 kgf-m) and the kinetic energy (10 kgf-m) of the load. 

121. k=0.098 J/kgf -cm. 
122. First let us find the force with which the air presses on one of the 

hemispheres. Assume that its base is covered with a flat lid in the form of 
a disk with a radius R. If the air is pumped out from this vessel the force 
of pressure on the fiat cover will be F1=pA=_pnR2. Obviously, the same 
pressure will be exerted on the hemisphere by the air, otherwise the forces 
will not be mutually balanced and the vessel will perpetually move in the 
direction of the greater force. The number of horses should be F1/F, since 
the other hemisphere may simply be tied to a post. The tensioned rope will 
produce the same force as the team of horses pulling at the other side. 

123. The change in the momentum of a body is equal to the impulse of 
the force of gravity. Since the forces acting on the stone and the Earth are 
the same and act during the same time, the changes in the momenta of 
these bodies are also the same. 

The change in the kinetic energy of a body is equal to the work of the 
forces of gravitational attraction. The forces are equal, but the paths traver-
sed by the stone and the Earth are inversely proportional to their mas"ses. 
This is why the law of conservation of energy may be written in a form 

2 which disregards the change in the kinetic energy of the Earth: —mv 
+ E9-=const, 

2 
where m is the mass of the stone and E p  the potential energy of interaction. 

124. According to the law of conservation of energy, 

inigh=- In2lv21  

where m1  is the mass of the pile driver, h the height from which it drops, 
and v1  its velocity before the impact. 
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Since the impact is instantaneous, the force of resistance cannot appreciably 
change the total momentum of the system. 

Seeing that the impact is inelastic 

m1o1 = (m1 + m2) 02 

where m2  is the mass of the pile, 02  the velocity of the driver and the pile 
at the first moment after the impact. 

The mechanical energy of the driver and the pile is spent on work done 
to overcome the resistance of the soil F: 

2 	(mi m2)gs Fs 

where s is the depth which the pile is driven to into the soil. 
Hence, 

F= 	mig+ nzig+ m2g= 32,500 kgf 
+ m2 s 

125. As a result of the inelastic impact, the linear velocity of the box 
rnv 

with the bullet at the first moment will be equal to u=M +in , where v is 

the velocity of the bullet. On the basis of the law of conservation of energy, 
the angle of deflection a is related to the velocity v by the expression. 

(M+ m) u2 
 2 (M 

m2v2
-Fm)—(M+m)

L (1—cos a) g 
2  

whence 

v-2 sin 
2  
a  M+ni  m YLg 

126. Since the explosion is instantaneous, the external horizontal forces 
(forces of friction) cannot appreciably change the total momentum of the 
system during the explosion. This momentum is zero both before and directly 
after the explosion. 

Therefore, mold- m2v2 = 0. 

Hence, IA— 	. 02 	m1  

Since the carts finally stop, their initial kinetic energies are spent on work 
against the forces of friction: 

m  2 
/7210 =ktnigh, and 2v2  km2gs2  

2 	 2 
o2 s  

Hence, -J,= , and, therefore, s2=2 metres .  

s2 
127. Let us denote the speed of the body and the wagon after they stop 

moving with respect to each other by u. According to the law of conserva-
tion of momentum, 

(M m) u = Mvo  

+ m2) z.4  
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The wagon loses its kinetic energy in view of the fact that the force of 
friction f acting on it performs negative work 

Mv!, Mu2  
2 — 2 	1 `' 

where S is the distance travelled by the wagon. 
The body acquires kinetic energy because the force of friction acting on it 

performs positive work 
mug 

2 =Is  

Here s is the distance travelled by the body. 
It is easy to see that the change in the kinetic energy of the system 

iMu2  mu1 
2 — L 2 m  2 =f (S—s)  

is equal to the force of friction multiplied by the motion of the body rela-
tive to the cart. 

It follows from equations (1) and (2) that 

mMv!  
S—sr=

21(M-Fm) 

Since S—s <1, then 
/> 2f (M-Fm) 

Bearing in mind that f kmg, we have 
2kg (M± m) • 

128. The combustion of the second portion increases the velocity of the 
rocket v by Au. Since combustion is instantaneous, then according to the law 
of conservation of momentum, 

(M tn)v=M (v+ AO+ m (v—u) 

where m is the mass of a fuel portion, M the mass of the rocket without 
fuel, u the outflow velocity of the gases relative to the rocket. 

The velocity increment of the rocket Av= 
m 

u does not depend on the 

velocity v before the second portion of the fuel burns. On the contrary, the 
increment in the kinetic energy of the rocket (without fuel) 

M (v Av)2 	Mv2  
AEk — 	— mu ( m  u v) 

2 	2 	2M 

will be the greater, the higher is v. 
The maximum altitude of the rocket is determined by the energy it receives. 

For this reason the second portion of the fuel can be burnt to the greatest 
advantage when the rocket attains its maximum velocity, i. e., directly after 
the first portion is ejected. Here the greatest part of the mechanical energy 
produced by the combustion of the fuel will be imparted to the rocket, while 
the mechanical energy of the combustion products will be minimum. 

(2) 

mMv,! 
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129. It will be sufficient to 
consider the consecutive combus-
tion of two portions of fuel. Let 
the mass of the rocket with the 
fuel first be equal to M+ 2m. 

After combustion of the first 
portion, the velocity of the rock-

et et v—   ,where u1  is the 

velocity of the gases with respect 
to the rocket. The initial velo-
city of the rocket is assumed to 
be zero. 

The increment in the velocity 
of the rocket after the second 

portion burns is Av=— 
mu2 

' where u2  is the new velocity of the gases with 
M  

respect to the rocket. 
Combustion of the first portion produces the mechanical energy AEI  = 

	

(M + 	
-I- 

mu m) v2 	! 
and  of the second portion the energy 

	

2 	2 ' 

M (v+ Av)2  m (v—u2)2  (M )70 212  
AE2 = 	2  	+  2  

2 

But F f,=kmg cos a and As =  3/ . Therefore, F fr As=krrigAl. The total 
cos a 

work AW = mg (Ah-FkA1). If we consider all the inclined surfaces and sum 
up the elementary works, the total work will be 

W=/AW=- mg (1/  Ah- 	AO= ingh+ krrigl 

The work is determined only by the height of the mountain h and the length 1 
of its foot. 

131. The force applied to the handle will be minimum if it forms a right 
angle with the handle. Denoting the force sought by F, we shall have from 

the golden rule of mechanics: 2nRF =Gh. Hence, F= Gh 

According to the initial condition, AEi = AE2. Hence, 

1 
1 \ 2 (M + m) -F  2 

in  —4 ( n22
m  

/4 	 + 
2M 2 

2 1 	 ",  

Therefore, al  > u2; the velocity of the gases with respect to the rocket di-
minishes because the mass of the rocket decreases as the fuel burns. 

130. Both slopes may be broken into any arbitrary number of small in-
clined planes with various angles of inclination. Let us consider one of 
them (Fig. 320). 

The work done to lift the body up such an inclined plane is equal to 
the work against the forces of gravity mg Ah plus the work against the forces 
of friction Fir As. 

2nR 
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132. According to the definition, the efficiency i= 	
Wi-FW 

 , where W1  = 
2 

= GH is the work done to lift the load G to a height H, and W2  is the work 
done against the forces of friction. Since the force of friction is capable of 
holding the load in equilibrium, the work of this force cannot be less than 
the work W1. The minimum work of the forces of friction is W2 = W 1. There-
fore, rl < 50%. 

133. As the man climbs the ladder the balloon will descend by a height h. 
Therefore, the work done by the man will be spent to increase his potential 
energy by the amount mg (1—h) and that of the balloon by mgh (the balloon 
without the man will be acted upon by the lifting force mg directed upwards). 
Hence, 

W = mg (1 — h)-1- mgh=mg1 

This result can be obtained at once in calculating the work done by the man 
in the system related to the ladder. 

If the man climbs with a velocity v with respect to the ladder, he moves 
at v—vi  with respect to the Earth, where vi  is the velocity of the ascending 
balloon. 

According to the law of conservation of momentum, (0-01) m = Mv1. 
Hence, 

m 
01= 	 

M m 
v 

134. To deliver twice as much water in a unit of time, a velocity two 
times greater should be imparted to the double mass of the water. The work 

2  tr/v 

	

of the motor is spent to impart a kinetic energy 	to the water. Therefore, 

the power of the motor should be increased eight times. 
135. (I) The work done to raise the water out of the pit is 

H 3 
W1= pg--2- Ax H= 

3
pgAH 2  

where p is the density of water. 
The work 

1 
Wg = --2- p 2 Ave 

is required to Impart kinetic energy to the water. 
The velocity v with which the water flows out of the pipe onto the 

ground can be found from the ratio —
2 

A=ItR 2vt. 

The total work is 

3 	I 	H3 A 
8 	

3 W = —pg AH 2  + 
16 

p 
 a2R4T2 

(2) In the second case the work required to raise the water is less than 
W I  by AW; -=pgAih(H— —h  ). The work required to impart kinetic energy 2 
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to the water is 
(H: h A1)3  

W 	2 13 	TE2R4T2  

The total work W'=Wi—AW1-1-W2• 
136. It is the simplest to solve the problem in a coordinate system rela-

ted to the escalator. The man will walk a distance l— 	 zn relative 
sin a 

to the escalator, where VT is the distance covered by the escalator. He should 

perform the work W 
 sin a 	

trr mg sin a, since during the ascent the 

force mg is applied over the distance l and forms an angle of 90°—a with it. 
Part of the work mgh is spent to increase the potential energy of the 

man, and the remainder mgzrr sin a together with the work of the motor 
that drives the escalator is spent to overcome the forces of friction. 

137. The relation between the elastic force and the deformation is shown 
in Fig. 321. The work done to stretch (or compress) the spring by a small 
amount Ax is shown by the area of the hatched rectangle AW =FAx. The total 
work in stretching or compressing the spring by the amount 1, equal to its 

k 2  
potential energy Ep, is shown by the area of triangle OBC: W 	

P
=-- 
 2 

Let us recall that an expression for the distance covered in uniformly ac-
celerated motion can usually be obtained by similar reasoning. 

138. The man acting with force F on the spring does the work W 1=— FL. 
At the same time, the floor of the railway carriage is acted upon from the 
side of the man by the force of friction F. The work of this force W,--=-FL. 
Therefore, the total work performed by the man in a coordinate system 
related to the Earth is zero, in the same way as in a system related to the train. 

139. In the system of the train the work done is equal to the potential 

energy of the stretched spring (see Problem 137) W = 
2 k/ 

' since the force of 
2  

friction between the man and the floor of the railway carriage does not do 
work in this system. 

In the system related to the Earth, 
the work the man does to stretch 
the spring is equal to the product 

l 
of the mean force 

k 
 and the distan-

ce L-1, i. e., W1
=2

(L-1). The 

man acts on the floor of the carria-

ge ge with the same mean force — The 

.2" total work in the given coordinate 
k/2  

system W= W /  +172 -= —2— is the 

Fig. Fig. 321 

kl 
work of this force

2
L. The 

same as in the system of the carriage. 
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140. On the basis of the laws of conservation of momentum and energy 
we can write the following equations: 

mivi  ±m2v2 =m01  m2v2  

MO? 
+ 

MA M1.012  M + 2 142  
2 	2 	2 	2 

where vi  and 02  are the velocities of the spheres after the collision. 
Upon solving these simultaneous equations, we obtain 

01= (m
1— m2)  vi  + 2m2v2 

 . and 02 
, 
=

(m2 — m1) v2 + 2mivi.  
,  

m1-1-m2 	 1121+172 2 

(1) If the second sphere was at rest before the collision (02 =0), then 

V1 • — (mi. —  m2) 01 
rn2 

2M/Vi 
02= 	 

M1+ M2 

If mi.  > m2, the first sphere continues to move in the same direction as before 
the collision, but at a lower velocity. 

If m1  < m2, the first sphere will jump back after the collision. The se-
cond sphere will move in the same direction as the first sphere before the 
collision. 

2mv, 
(2) If mi. = m2, then v1= 	 t —

2m 	
and 	

2mvi 
-2 =-

2m 	
Upon collision 

the spheres exchange their velocities. 
141. The elastic impact imparts a velocity v to the left-hand block. At 

this moment the right-hand block is still at rest since the spring is not de-
formed. 

Let us denote the velocities of the left-and right-hand blocks at an arbit-
rary moment of time by u1  and u2, and the absolute elongation of the spring 
at this moment by x. 

According to the laws of conservation of momentum and energy, we have 

m (u/ H--u 2)=-mv 

mui mug kx2  
2 r  2 	2 	2 

or 
kx2=m [v2 — (0.  + 4)] 

Upon substituting ui  ±u2  for v in the last equation, we obtain 

kx2  = 2muiu2  
kx2  

Therefore, u1u2=2—m and u1+ u2 =v. 

It can be seen from the last two equations that u1  and u2  will have the 
same sign and both blocks will move in the same direction. 

The quantity x2  will be maximum when the product of the velocities u, 
and u2  is also maximum. Hence, to find the answer to the second question, 
it is necessary to determine the maximum product uiu2  assuming that the 
sum ui -Fu, is constant and equal to v. 
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1 

Fig. 322 

Let us consider the obvious inequality (u1 —u2)2 ...>_0, or ul-2u,u2+4_›...-0. 
Let us add 4u1u2  to the right and left sides of the inequality. Hence, 
u21 ±2u1u2 + 4 4u,u2  or (th-Fu2)2 4u1u2. Since u1+u2 =-0, then 
4u,u2< v2. 

Therefore, the maximum value of u1u2  is equal to 02/4 and it is attained 

when u„-= U 2= — 
2 " 

At this moment the distance between the blocks is 

m 
i f xmax=I fv 	277 

142. The lower plate will rise if the force of elasticity acting on it is 
greater than its weight: kx2  > m2g. Here x2  is the deformation of the spring 
stretched to the maximum (position c in Fig. 322). Position a shows an un-
deformed spring. 

For the spring to expand over a distance of x2  it should be compressed 
by x1  (position b in Fig. 322), which can be found on the basis of the law 
of conservation of energy: 

kx! k.4  
2 	2 

, 
(xi+ x2) 

Hence, 

.x
2mig m2g 

1 > 

To compresscompress the spring by x1, the weight of the plate should be supple-
mented with a force which satisfies the equation F mig=kxi. 

Therefore, the sought force F > mig+ m2g. 
143. In a reading system related to the wall, the velocity of the ball is 

v+ u. After the impact the velocity of the ball will be—(v+u) in the same 
reading system. The velocity of the ball after the impact with respect to" a 
stationary reading system will be 

—(v+u)—u=— (v+ 2u) 
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The kinetic energy after the impact is 2(v+2u)2  and before the impact 

02
. 

The change in the kinetic energy is equal to 2mu (u +v). 
Let us now calculate the work of the elastic forces acting on the ball 

during the impact. Let the collision continue for 'r seconds. For the sake of 
simplicity we assume that during the impact the elastic force is constant 
(generally speaking the result does not depend on this assumption). Since 
the impact changes the momentum by 2m (0+ u), the elastic force is 

2m (v+ u) 

The work of this force is 

W=FS=FUT- 
2m (v+ u)  tit 

—2m (v+ u) u 

It is easy to see that this work is equal to the change in the kinetic 
energy. 

144. (1) Up to the moment when the rope is tensioned the stones will 
fall freely 

	

gt 2 	. 	(t —T)2  sl= —2— and s2 — 
2 

The moment of tensioning of the rope can be determined from the con-
dition 1= sl — s2. Hence, t=3 seconds, s1=44.1 metres, s2 =4.9 metres. The 
time is counted from the moment the first stone begins to fall. When the 
rope is tensioned, there occurs an elastic impact and the stones exchange 
their velocities (see Problem 140). At the moment of impact v,-=gt --=-29.4 m/s, 
and v2  -= g (t — = 9.8 m/s. 

The duration of falling of the first stone t1  (after the rope is tensioned) 
can be found from the condition 

gt? h—si==v2t1+ 
2 

and of the second stone t2  from the condition 

, gt 
h — S2 v t 2  -r 

	

Therefore t j.  = 1.6 seconds, and 	t2 	1.8 seconds. 
The first stone falls during 4.6 seconds and the second during 2.8 seconds. 
(2) If the rope is inelastic, the velocities of the stones after it is tensioned 

are equalized (inelastic impact): v=
01 + 02

=19.6 m/s. The duration of fal-

ling ling of the stones with the rope tensioned is determined from the equations: 

ut 2' 2  , 
and h — s2  

	

2 	
,

2 

s1  and s2  are the same as in the first case. 

F= 
T 
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Hence, (1 =- 1.2 seconds, and t; 	3.3 seconds. 
The first stone falls during 4.2 seconds and the second during 4.3 seconds. 
145. If only the right-hand ball is moved aside, the extreme left-hand 

ball will bounce off after the impact through an angle equal to that by 
which the right-hand ball was deflected. 

If two right-hand balls are simultaneously moved aside and released, then 
two extreme left-hand balls will bounce off, and so on. 

When the first ball strikes the second one, the first 14.11 stops and trans-
mits its momentum to the second one (see the solution to Problem 140), the 
second transmits the same momentum to the third, etc. Since the extreme 
left-hand ball has no "neighbour" at its left, it will bounce off (provided 
there is no friction or losses of energy) through the same angle by which 
the extreme right-hand ball was deflected. 

When the left-hand ball, after deviation through the maximum angle, 
strikes the ball at its right, the process of transmission of momentum will 
take the reverse course. 

When two right-hand balls are deflected at the same time, they will 
transmit their momenta to the row in turn after a very small period of time. 
In this way the other balls will receive two impulses that will be propagated 
along the row at a certain time interval. The extreme left-hand ball will 
bounce off after it receives the "first portion" of the momentum. Next, its 
"neighbour" will bounce off after receiving the next portion of the momentum 
from the extreme right-hand ball. 

If three right-hand balls are deflected, the row of balls will receive 
portions of momentum from the third, second and first ball following each 
other in very small intervals of time. If four balls are deflected and released 
at the same time, four balls will bounce off at the left while the other two 
will remain immobile. 

146. The striking ball will jump back and the other balls up to the steel 
one will remain in place. The steel ball and all the others after it will 
begin to move to the left with different velocities. 

The fastest velocity will be imparted to the extreme left-hand ball. The 
next one will move slower, etc. The balls will move apart (see the solutions 
to Problems 140 and 145). 

147. Assume that the weight 2m lowers through a distance of H. The 
weights in will accordingly rise to the height h (Fig. 323). 

2tnv2 
On the basis of the law of conservation of energy, 2mgh+-

2 
2mv2 
 +-

2 
= 

= 2mgH, or vf 	2g (H—h), where v1  is the velocity of the weights m 
and 02  that of the weight 2m. 

When the weight 2m lowers, its velocity 02  approaches the velocity 
since the angles between the parts of the string thrown over the pulleys tend 
to zero. In the limit, 02 	01. At the same time, H — h = 1. 

Therefore, the maximum velocity of the weights is 

v=-- 

148. The velocities of the weights are the same if they cover identical 
distances As in equally small intervals of time. These distances will .be the 
same at such an angle ANB at which lowering of the weight m1  through 
As-=NK (Fig. 324) is attended by an increase in part ANB of the string 
also by the amount As. Therefore, when the velocities are equal, HK 
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21 

h 
	

h 

Ii 
	

Fig. 323 

A 	 As 
BK—BN=- —

2
s 
 and FK= AK — AN=-

2 . The triangles NHK and NFK 

will be the closer to right ones, the smaller is the distance As. When 
As —÷ 0, the angles NHK and NFK tend to be right ones, while the angles 
KNH and KNF tend to 30°. Therefore, the velocities will be equal when L ANB= 120°. 

Let us use the law of conservation of energy to find these velocities 

m,gh =2 (2— 1/-3) m2gh+m1-12-1712  

Hence, 

v2= 2gh 
mi —  2 (2—  -11) m2  0 

m1+ m2 

The weights will oscillate near the position of equilibrium, which corres-

ponds to the angle ANB=2 arc cos mm tii 149°. The maximum deviation from 
2 

the position of equilibrium corresponds to the angle ANB=120°. 
149. Since there is no slipping of the board on the rollers and of the 

rollers on the horizontal surface, the distance between the axes of the rollers 

Fig. 324 
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Fig. 325 

in motion remains constant. For this reason the board will move translation-
ally in a horizontal direction and at the same time down along the rollers. 
When the rollers move through a certain distance 1, each point on the 
board (in particular, its centre of gravity A) will move in a horizontal 
direction through the same distance 1 and will also move the same distance 
along the rollers: AB=BC=1 (Fig. 325). (This is particularly obvious if 
we consider the motion of the rollers in a coordinate system travelling 
together with the rollers.) As a result, the centre of gravity of the board 
will move along straight line AC inclined to the horizon at an angle a/2, 
since ABC is an isosceles triangle. The motion will be uniformly accelerated. 
The board acquires kinetic energy owing to the reduction of its potential 

mv2  
energy —=-tngl sin a, or v2 =-.2g1 sin a. On the other hand, in uniformly 

a 
accelerated motion v2 =2as, where s= AC=21 cos 

2 
 . Hence, the accelerat ion 

02 	
2 
a 

2s 
a=--=g sin  . 

150. Let us calculate the difference between the potential energies for the 
two positions of the chain—when it lies entirely on the table and when a 
part of it x hangs from the table. This difference is equal to the weight 

xg of the hanging part multiplied by x/2, since the chain is homogeneous 

and the centre of gravity of the hanging end is at a distance of x/2 from 
the edge of the table. 

On the basis of the law of conservation of energy, 
Mv2 

= 
Mg 

x2  
or 

2 	4/  
2 

v= 	
gx

/ 
. At this moment of time the acceleration can be found from 

2 
gx 

Newton's second law: Ma= 7  gx. Therefore, 
a  =g 

To calculate the reaction of the table edge, let us first find the tension 
of the chain at the point of its contact with the table. It is equal to the 
change in the momentum of the part of the chain lying on the table 

M ,„, 	 9  Mg 
F =— (21— x) a— -- = — —x)x 2/ 	 2/ 	2/2 
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Fig. 326 Fig. 327 

Let us now consider a very small element of the chain in contact with 
the table edge. This element is acted upon by the three forces (Fig. 326). 
Since this element is infinitely small, the sum of the three forces which act 
on it should be zero. 

Therefore, the force of reaction is 

N = F112=172 M  (1 
22 
—
1

z) x  x 

When x > 1, the chain no longer touches the edge of the table. 
151. Let us denote the velocity of the wagon by v. The horizontal 

component of the velocity of the pendulum with respect to the wagon is 
u cos f3 (Fig. 327). Since the wagon moves, the velocity of the pendulum 
with respect to the rails is v+ u cos 13. The external forces do not act on 
the system in a horizontal direction. Therefore, on the basis of the law of 
conservation of momentum, we have 

m (v+ u cos 13)±mv=0 	 (1) 
since the system was initially at rest. 

The vertical component of the pendulum 
wagon and the rails is u sin 13. 

According to the Pythagorean theorem, the square of 
velocity relative to the rails is (0+ u cos 

It can be found from equations (1) and (2) that 

02- 2m2g1 (cos 13—cos a) coo p 
(M+m) 	(m -Fin sine 13) 

In a particular case, when 13=0 ( assuming -A- m  
4— < I 

m2 
v2  = 2 —M2 gl (1—cos a) 

CI 

With the aid of the law of conservation of energy, we can obtain a second 
equation interrelating the velocities v and u: 

7  m [(u cos (3+v)2  + u2  sin2  PI + 
M 
— v2 = mgl (cos 13—cos a) 	(2) 2 

13)2 + 02 sing 13. 

velocity with respect to the 

the pendulum 

v=2 11  sin -1-6  j/F1 M 2 
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Fig. 328 

152. Let us denote the velocity of the wedge by v, and the horizontal 
and vertical components of the velocity u of the block with reference to a 
stationary reading system by ux  and uy  (Fig. 328). 

On the basis of the laws of conservation of momentum and energy we 
can write 

Mv 2  m 	2) —Mv+mux=0, and 	T ( x 
u

y
=_.mgh  

It should be noted that the angle a with the horizontal surface is formed 
by the relative velocity ura, i.e., the velocity of the block with respect 
to the moving wedge, and not the absolute velocity of the block u, by 
which is meant the velocity relative to a stationary horizontal surface. 

uy  
It follows from the velocity diagram (Fig. 329) that 

v
=tan a. Upon + u,  

2mgh 

	

M-1-m[
\ 	
7n—M  )2 + 1 7-1M  +1)2  tan2a] 

	

M 	M 
2gh  

M 
—+()

2 
 -1--( t-7  +1)

2 
 tan2  a m m 

At the same moment of time the absolute velocity of the block is 

u=r4-1-4=V2gh 	1 

When the mass of the wedge is much greater than that of the block, 
u tends, as should be expected, to 1/2gh. 

153. The velocity of the rod with respect to the moving wedge is directed 
at an angle a to the horizon, If the velocity of the wedge is added to this 
relative velocity, the result will be the absolute velocity u of the rod 

solving these equations with respect to v, we obtain 

1 

1 + m (1 + 111m  )2  tang a 
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Fig. 329 Fig. 330 

(Fig. 330). The relation between the velocities is obviously equal to 
u 
—
v 

tan a 

v2  mu 2  
It follows from the law of conservation of energy that — 

M
T 	= mgh. 

Upon cancelling u from these two equations, we get an expression for v: 

2mgh  
v= 

M±nz tang 

We can then write for the relative velocity of the rod: 

1 	2mgh 
urea — cos a ; M 	tan2  a 

The velocity of the rod is 

u= tan a 
2mgh_ 
	

2  mg tan2  a 4  
rn+ M tan2  a 1/  tn-1- M tan2  a - 

It can be seen from this formula that the velocity of the rod changes with 
the path h travelled according to the law of uniformly accelerated motion 

2ah. Therefore, the acceleration of the rod is 
m tan2  a 

a=
m+M tan2  a 

1-7. Kinematics of Curvilinear Motion 

154. The driving pulley rotates with an angular velocity of co1 =23-cn1  and 
the driven one with a velocity of co2 =2tn2. The velocity of the drive belt 
is v=---(o,r,-=o),r 2• 

Hence, a =(`— . 
r2 	co, 	n, 

The sought diameter is D,--=D2?=-100 mm. 

155. (1) Let us denote the length of the crawler by L=na. Hence, 

1= L 
 is the distance between the axes of the wheels. 

2 
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The number of links taking part in translational motion is n1= 	
— 

a 
L—  2nR  

The same number of links is at rest relative to the Earth. 
2a 

2riR 
In rotary motion there are 	links. 

(2) The time during which the tractor moves is to= sz-7- . During a full re-

volution of the crawler the link will move translationally a distance 2/ at a 

speed of 2v. The duration of motion of one link during a revolution is —
2/

. 
2v 

Altogether, the crawler will make N= 	Therefore, the duration 

of translational motion of the link is
v 
NI 
 . This is the time during which 

the link is at rest. 
The link will participate in rotary motion during the time 

2N1 s+23-cRN—NL 
t 2=to  

If s> L, the number of revolutions may be assumed as a whole number, 
neglecting the duration of an incomplete revolution. 

156. The duration of flight of a molecule between the cylinders is t---= 12—r  

During this time the cylinders will turn through the angle of and, therefore, 

Rot (OR R—r 

 

Hence, v= (oR (R—r) 

157. Let us denote the sought radius by R and the angular speed of the 
tractor over the arc by o. Hence (Fig. 331), 

vi=-6.) (R-7) , and vo= (R 2 ) 

Thus 

R-7 o vi  
	 and R— 0 	=--6 m 

vo 	 z 
d 
 v 

ti
o
±
—v1  

R+ 7 

158. First the observer is at the pole (point 0 in Fig. 332). The axis of 
the Earth passes through point 0 perpendicular to the drawing. Line OA 
(parallel to BC) is directed toward the star. The mountain is at the right 
of point A. The angle cc= coAt is the angle through which the Earth rotates 
during the time At with the angular velocity co. To see the star, the observer 

OC 
should run a distance 0C--=---0AcoAt. The observer's speed v=at   =0/4(1)=-0.7 m/s. 
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159. Let us take point A from which the boat departs as the origin of the 
coordinate system. The direction of the axes is shown in Fig. 333. The boat 
moves in a direction perpendicular to the current at a constant velocity u. 
For this reason the boat will be at a distance y from the bank in the time 

t=--Y  after departure. Let us consider the motion of the boat up to the 

middle of the river (y 
2 
 . The current velocity is v= 

2
y at a distance 

y from the bank. 

Upon inserting y=ut into the expression for the current, we get v-
2vout 

It follows from this relationship that the boat moves parallel to the banks 
2v u 

with a constant acceleration a=---(1- . The boat will reach the middle of the 

Fig. 333 
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1 

4 

river in the time T---=—c 
and will be carried downstream during the same 

2u 
2 

time over a distance of s=aT
2 	4u  =voc. When moving from the middle of the 

river (point D) to the opposite bank, the boat will again be carried away 

over the same distance s. Thus, the sought distance is 	. When the boat 

u 
moves to the middle of the river x= at2  =v–L-t 2  and y=ut. 

2 
Let us use these ratios to determine the trajectory of the boat from A to D. 

We get y2=—ocu  x (a parabola). The other half of the trajectory (DB) is of the 

same nature as the first one. 
160. It is obvious from considerations of symmetry that at any moment 

of time the tortoises will be at the corners of a square whose side gradually 
diminishes (Fig. 334). The speed of each tortoise can be resolved into a radial 
(directed towards the centre) and a perpendicular components. The radial 

speed will be equal to v,.=—. Each tortoise has to walk a distance of 
11-j- 

1=--a 
to the centre. 

Therefore, the tortoises will meet at the centre of the square after the time 
, 	1 	a 	, r=—=— eiapses. 

Or 	V 

161. Ship B moves toward ship A with the speed u. At the same time 
ship A sails away from ship B with the speed v cos a (Fig. 335). Therefore, 
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Fig. 335 

the distance AB reduces with a speed of v (1—cos a). Point C (the projection 
of point B onto the trajectory of ship A) moves with a speed of v (1 —cos a). 
For this reason distance AC increases with a speed of v cos a. Therefore, the 
sum of the distances s= AB-1- AC remains constant as the ships move. At the 
initial moment point C coincides with A, and therefore s=-AB=--a. After 
a sufficiently great interval of time point C will coincide with B, and 

2 
s 	

2  
a 

' 

	

AB= AC=- = 	and the ships will move at a distance of 1.5 km from 

each other. 
162. With respect to the reading system shown in Fig. 336, the coordinates 

and the velocities of 	the body 	can 	be determined 	at 	any moment of time 
from the following formulas: 

X  = CIOX1 	 (1) 
gt2 

y=voyt (2)  

fix=-vox (3)  
vy=voy —gt (4)  

Here vox =vo  cos a and voy =vo  sin a are the projections of the initial velo-
cities on the axes x and y. Equations (1), (2), (3) and (4) provide an answer 
to all the questions stipulated in the problem. 

The duration of flight T can be found from equation (2). When y=0, we 
gT 2  

have vo  sin ca.  — —
2 

=O. Hence, T-
2vo sin a 



The distance of the flight is L=--vo  cos a T=  — 
vg sin 2a  

will be maximum when a=45°: 
g 

This distance 
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2 vo  
L max 

The height at which the body will be after the time t elapses is equal 

to h=v0  sin at—g÷ 

The velocity of the body at the moment T is equal to v=1/-  vX + 4, where  
vx--=v0  cos a and vy =v, sin a—gt. Hence, v=-- -liv:4-g1/42-2vogy sin a and 
it forms an angle of p with the vertical that can be found from the equa- 

vo  cos a  tion tan [3 =-- 
vo sin a- 

163. The coordinates of the body x and y change with time according to 
the law 

at
-g2 

sin at -- 
2 

x =v0  cos at 

Upon excluding the time from these expressions, we obtain an equation 

for the trajectory y— 	x2 + tan a•x. This is an equation of a pa- 
cos2  

rabola. By denoting the coordinates of the vertex of the parabola (p oint A 
in Fig. 336) by xo  and yo, the equation of the trajectory can be written as 
y— yo  (x— x0) 2, where 

k 	
g 	 sin2  

=- 
cos2 

, go— 2g  

and 

o20  sin 2a 
xo =  2g  

164. The trajectory of the ball takes the form of a parabola passing through 
a point with the coordinates h and s. Therefore (see the solution to Pro-
blem 163), 

h= 	g  	s2  + tan as 
cos 2  

Hence, 

02  = 	  
gs2 
	— 	

gs2 	 gs2  

	

0  2 cos2  a (tan as —h) (s sin 2a— h cos 2a)— h 	s2 h2 sin  (2c4-0—h 

where tan cp=h/s. The minimum velocity 
gs2 

y0— 	 —17
s2+h2—k V g (h+ V  h2  + 82) 
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Fig. 337 Fig. 338 

is attained when 

a= '4D +-4-31  = arc tan 
h+ Ys2±h2 

 — arc tan 	 h2+ s2 h 
(Fig. 337.) 

165. The coordinates and the velocities of the body at any moment of 
time with respect to the reading system shown in Fig. 338 are determined 
by the same equations as in Problem 162. 

At the moment when the body falls into the water its coordinate y=— H. 
For this reason the duration of flight T can be found from the equation 

gT 2  
H = vo  sin aT — 

2 

Hence, 

T —
vo  sin a + 	sin2  a+ 2gH 

g 
Since T > 0, we shall retain the plus sign. The distance from the bank is 

vn2  sin 2a vo  cos a 	  
L=vo  cos aT 	" 

 2g 
+ 
 8 v sin2  a +2gH 

The body will be at a height h above the water after the time 

vo  sin a f Yv2 sin2  a+ 2g (H—h) 

g 

If Ihl < IH I, only the plus sign has a physical meaning. When h 	H, 
both solutions have a meaning. During its motion the body will be twice at 
the same height above the water. 

It is the simplest to find the final velocity v with the aid of the law of 
conservation of energy 

mv2  + mgH 

Therefore, 

v=i7  v)--1-2gH 
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Fig. 339 

166. In the reading system depicted in Fig. 339, the coordinates of the 
stone are determined at any moment of time by the following equations: 

x=v0  cos at 
gt2 

y=ho +vosin at -- 
2 

At the moment when the stone falls, y=0 and x=s, where s is the distance 
covered by the stone. 

Upon solving these equations with respect to the angle a, we obtain 

v2 , 	2gh0 g2s2 
tan a= -2– ( I ± 17.1  — — —) 

gS 	 0 	0 

	

v2 	v4 

This expression has a meaning when 

1 + 
2gho g2s2 

>. 0 vs  o 	0 

vo  vg +2gh
0 
	 vol7 

 vg 
 + 2gho  

Hence, s< 	  . Its maximum value is sm„=— 

When s is smaller, two values of the angle a correspond to each of its va-
lues, the difference between which is the less, the nearer s is to its maximum 
value. 

Fig 340 
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Therefore, for the maximum distance of flight, 

0 	0  2 	v 	1 
tan a— ° =  	; and a=30° 

gsmax y  vt +2gho  13 

167. The components of the velocities of the bodies along x and y at any 
moment of time are determined as 

	

viy=v0  sin al  — gt ; 	0211=00  sin a2 —gt; 
vi.x=vo cos a1; and 02,_=— 00  cos a2  

Let u be the velocity of the second body with respect to the first one. Hence 

uu=v0  sin al —gt—vo  sin a2+gt =v0  (sin al —sin a2) 
ux=v, (cos a, +cos a2) 

Therefore, the velocity u is equal to 

u=1/- +  2  = 2 cos (al  + a2) vo  

	

x tiv 	2 

The bodies move with respect to each other at a constant velocity. After the 
time T the distance between them will be 

s— 2v, cos ( (11 	
2 	

T 

168. The horizontal path of the bomb s=1/./ 2 —h2 =v cos at, where I is 
ot2 

the duration of falling of the bomb. The vertical path is h--=v sin at+.= 
2 

(Fig. 340). 
Upon excluding the time from these equations, we find 

	

z,2 	 +
g

21w2  

	

tan a= — — 	
_ 

17.(
02 	2 

	

gs 	gs 	s2  

The solution with the plus sign has a meaning. The minus sign corresponds 
to a < 0, i.e., the bomb is dropped when the dive-bomber is flying upward. 

169. It will be convenient to solve this problem in a reading system rela-
ted to the uniformly moving vehicles. 

In this system, the highway moves back with the speed of v=50 km/h, 
the vehicles are at rest with respect to each other and their wheels rotate. 
The linear speed of points on the circumference of the wheel and that of the 
stuck stone is also y. The stone will fly the maximum distance if it flies out 
when its speed forms an angle of 45° with the horizon. Let us find this 
distance. Neglecting the fact that the stone is somewhat above the level of 

the highway when it is thrown out, we obtain 1— v2 sin 2a
-=

02 
---- 19.6 met-

res. The minimum distance between the vehicles should be 19.6 metres. 
170. It will be much easier to solve the problem if the axes of coordinates 

are directed along the inclined plane and perpendicular to it (Fig. 341). 
In this case the components of the acceleration o' the ball on the axes x 

and y will be respectively equal to cl,==gx=g sin a and ay=gy=— g cos a. 
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Fig. 341 Fig. 342 

Upon the first impact with the inclined plane, the velocity of the ball will 
be 00 = r2gh. The initial velocity of the ball after the first impact is v0  
and forms an angle a with the y-axis (Fig. 341). 

The distance between the points of the first and second impacts is 
n /1=v0  sin at, + 

g si
2 
 0112 

where t1  is the duration of flight and is determi- 

ned by the equation 

g cos at? 
vo cos cal 	 u 

2 

2v 
Hence, t1 =2g and 11=8h sin a. The velocity of the ball at the second 

impact can be found from the equations 

vlz=vox +axti= vo  sin a d-g sin at1=3v0  sin a 
v,y=voy-kayt1=v0  cos a— g cos at — vo  cos a 

After the impact these velocities are equal to 

V2X = V  DO and v2y =— viy  

The distance between the points of the second and third impacts is equal to 

12=3v,, sin ate -k
g sin ate 

2 

where 12  is the time during which the ball is in flight. Since the initial 
velocity along the y' axis is the same as during the first impact, t2 =t1. 
Therefore, 12 =16h sin a. 

Similarly, it can be shown that the distance between the next points 
13 =24h sin a. 

Consequently, 11: / 2 : / 3... =-- 1 : 2: 3, etc. 
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171. The motion of the body can be considered as superposition of move-
ment along a circumference with a radius R in a horizontal plane and verti-
cal falling. Accordingly, the velocity of the body v at the given moment 
can be represented as the geometrical sum of two components: vi =v cos a 
directed horizontally and 02 =0 sin a directed vertically (Fig. 342). Here a 
is the angle formed by the helical line of the groove with the horizon. 

In curvilinear motion the acceleration of a body is equal to the geomet-
rical sum, of the tangential and normal accelerations. The normal acceleration 
that corresponds to movement along the circumference is 

vi2 	v2  cost a 

The vertical motion is rectilinear, and therefore abi  =O. 

The sought acceleration a=V cdT -1- 4-r -Faln, where al, and a2., are the 
tangential accelerations that correspond to motion along the circumference 
and along the vertical. The total tangential acceleration ct, is obviously 
equal to a,=1/- 	adv. 

The value of at  can be found by mentally developing the surface of the 
cylinder with the helical groove into a plane. In this case the groove will 
become an inclined plane with a height nh and a length of its base 2nRn. 

Apparently, at -=- g sin a=g 
Yh2  + 43c2R2  

To determine a1„, let us find v from the law of conservation of energy: 
8n2nhgR  

—

mv2=mghn. Consequently, v2 = 2ghn and a,n=
h2 + 4312 R 2 

. Upon inserting 
2 

Fig. 343 



a— 
h2 + 4a2R2  

ghlih2±4n2R2+64214n2R2 
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the found accelerations a, and alr, into the expression for the sought accele-
ration, we get 

172. As usual, the motion of the ball can be considered as the result 
of summation of vertical (uniformly accelerated) and horizontal (uniform) mo-
tions. 

The simplest method of solution is to plot a diagram showing how the 
coordinates of the ball along the horizontal depend on the time for the limi-
ting velocities 267 cm/s and 200 cm/s (Fig. 343). The lower broken line cor-
responds to the maximum velocity and the upper one to the minimum 
velocity. In the course of time, as can be seen from the diagram, the inde-
finiteness of the ball coordinate x shown by the section of the horizontal 
straight line between the lines of the diagram increases. The vertical hatching 
in Fig. 343 shows the movement of the ball from M to N, and the horizontal 
hatching—from N to M. The cross-hatched areas correspond to indefiniteness 
in the direction of the horizontal velocity. 

(1) The diagram shows that after the ball bounces once from slab N the 
direction of its horizontal velocity will be indefinite when the duration of 
falling OK<t <OL or t > AB (where 01<=0.15 s, OL=0.2 s and AB=0.225 s). 

2  Hence, 10 cm < H -< 20 cm or 	gt 	26 cm. 

(2) The ball may strike any point on the base supporting the slabs if the 
duration of falling of the ball t> AF=0.3 s. 

Therefore, Hmin =44 cm. 
173. (1) During the time T of a complete revolution the disk will cover a 

distance equal to the length of its circumference, i.e., s=2Itr, where r is the 
radius of the disk. Therefore, the translational velocity of any point on the 

disk vt,.= 
Tr 

 =v. On the other hand, the linear velocity of rotation of 

points on the disk rim with respect to the centre 0 is viin=cor, where to is 
2o-c 

the angular velocity of rotation. Since e.)=-T.- , then vii,,=
2r
— =vtr• 

(2) The velocity of points on the disk rim with respect to a standing obser-
ver will be the sum of the translational and rotational velocities. The total 
velocity for point A will be equal to 2v. 

For points B and D the velocities being added are equal in absolute mag-
nitude and their sum is -1/1) (Fig. 344a). 

For point C the total velocity with respect to a standing observer is zero, 
since the translational and rotational velocities are equal in absolute magni-
tude and oppositely directed. 

(3) The instantaneous velocities of points on diameter AC increase in direct 
proportion to the distance from point C. For this reason the motion of the 
disk may be considered at the given moment of time as rotation around the 
point where the disk touches the path. The axis passing through point C 
perpendicular to the plane of the disk is known as the instantaneous axis of 
rotation. When the disk moves, this axis constantly passes through the point 
of contact between the disk and the path. 

Therefore, all the points on the disk equidistant from point C at the given 
moment of time will have the same total velocity with respect to a standing 

8 —1 8 6 5 
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A 21r 

Fig. 344 

observer. The points which are at a distance equal to the disk radius from 
the instantaneous axis (point C) will have the same velocity (in absolute 
magnitude) as that of the axis, i.e., v (Fig. 344b). 

174. The angle between adjacent spokes of the front wheel is cp= 2n
ATI 

The wheel will seem stationary on the screen if it turns through the angle 
a= kcp during the time between the filming of two successive frames T=1/24 s. 
Here k is a positive integer. On the other hand, the angle of rotation of the 
wheel during the time r is equal to a= or, where (I) is the angular speed of 

the wheel. Therefore, the front wheel will seem stationary if.6)--=-27-ji and 
NiT ' 

the speed of the cart v=cor=
2akr 

. The minimum speed of the cart omin  = 
NIT 

21ckir ___2ak2R 
Nit 	N 2 T 

Hence, N 2 --= 
liR 

-= 9 when k1= k,=1. 

175. (1) The spokes will seem to rotate counterclockwise if during the 
time T (see Problem 174) the wheel turns through the angle 131  which satisfies 

the condition kq > 131  > kg)— —q)  , where k=1, 2, 3, ... . The consecutive po-

sitions sitions of the wheel spokes are shown for this case in Fig. 345a. It seems to 

the audience that each spoke turns through the angle a <-LP  counterclock- 
2 

wise. The possible angular velocities lie within the interval 

krp 	(2k-1) q) 
> col  > 2-r 

22-tr 	, 
—=0.0 mis. 
NI  
The rear wheel will also seem stationary if 



MECHANICS 
	

227 

Since the front and rear wheels have the same number of spokes, the wheels 
will seem to revolve counterclockwise if the speed of the cart is 

kyr 	kqv yr 
	 (1) > v  > 

-r 	T 

kp
R 	kcp1R (pR > v > 	--2T, 	 (2) 

Since R =1.5r, the second inequality can be rewritten as follows: 
1.5  kcpr > v  > 1.5kyr 	1.5 pr 

2T 

Both inequalities, which are congruent only when k=1, give the permissible 
speeds of the cart in the form 

yr > v > 0. /0 - 

2Tc 
Or, since cp=T  , we have 8.8 m/s > v > 6.6 m/s. 

(2) The spokes of the rear wheel will seem to revolve clockwise if during 
1 the time x the wheel turns through the angle 3, which satisfies the condition 

(2k-1) 	> 132  > (k-1) p  (Fig. 345b). Hence, the following inequality is true 

for the speed of the cart: 

1.5 (2k — 1) cpr  > v > 
1.5 (k-1) qr  

2r 

At the same time inequality (I) should be complied with. When k=1, both 

inequalities are congruent if 0.75 124.- > v > 0.5 
it  . When k=2 they are con- 

gruent if 	
r > v > 1.5 —Tr . If k > 2 the inequalities are incongruent. 

A d' 

 

27'22 
(b) 

Fig. 345 
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Therefore, 

6.6 m/s > v > 4.4 m/s 

or 

17.6 m/s > v > 14.2 m/s 

176. The instantaneous axis of rotation 
(see Problem 173) passes through point C 
(Fig. 346). For this reason the velocity 
of point A relative to the block is 

R+r 
VA =v 	. 

Point B has the velocity 	R —r  

Points on a circle with the radius r whose 
centre is point C have an instantaneous 
velocity equal to that of the spool core. 

Fig. 346 	 177. The trajectories of points A, B and 
C are shown in Fig. 347. Point B descri-

bes a curve usually called an ordinary cycloid. Points A and C describe an 
elongated and a shortened cycloids. 

178. The linear velocity of points on the circumference of the shaft 

v,=co 	and that of points on the race v2=52-
2

. Since the balls do not 

slip, the same instantaneous velocities will be imparted to the points on the 
ball bearing that at this moment are in contact with the shaft and the race. 
The instantaneous velocity of any point on the ball can be regarded as the 
sum of two velocities: the velocity of motion of its centre vo  and the linear 
velocity of rotation around the centre. The ball will rotate with a certain 
angular velocity coo  (Fig. 348). 

Therefore, 
Vi=Vo—Wor 

V2= Vo (Dor 

Hence, 	
vo = 	2.  4- V2) = (cod+ D) 

In this expression, each angular velocity may be positive (clockwise rota- 
cod tion) and negative (counterclockwise rotation). When ,C2=0, 

dIP 

Fig. 347 
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Fig. 348 Fig. 349 

179. Since the cone rolls without slipping, the points on the generatrix 
OA (Fig. 349) should be stationary. This fact is used to determine the ve-
locity 52 with which the cone rotates around its axis. 

For point A we have 
 coh

-=5212 tan a. Hence, 52= 
sin a 

. The velocity 
a. cos  

of an arbitrary point D1  on diameter AB of the cone base is the sum of two 
velocities: 

r 
v,==co (h cos cc —r sin a) + 

co 
 sin a 

where r is the distance from the centre of the base C to the given point. 
For point D2 below centre C we have 

v2-= (h cos a + r sin a)— 
sin a 

The velocity of the lowermost point is zero and of the uppermost point 
v=- aoh cos a. 

180. The linear velocities should be the same where bevel gears E and C, 
and E and D, mesh. Since gears E rotate with the velocity co around axle A, 
and the axle rotates in another plane with the velocity SZ, the following 
equation is true for gears E and C to mesh: 

ro.)/ =--no+riS2 

For meshing of gears E and D, a similar equation has the form 
r1o12 = — ro..)+ ri.52 

Hence, 
252= + co, 

20)=7  (co, —o2) 

ra.) 

When wheel B rotates at a speed of Q, the angular velocities of the driv- 
ing wheels may differ from each other from zero to 2Q. 
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1-8. Dynamics of Curvilinear Motion 

181. On the basis of Newton's second law, 
(M+ in) tia  

—T (M+ m)g, where u=2 sin T  11 Lg (see Problem 125). 

Hence, 

T =(M±m)g (4 sing +1) 

182. T1= 10mco2/; T2 =9mco21; T3 = 7mo.)2 /, and T4--=4/7/co21. 
183. The distances from the centre of gravity to the masses m1  and m2  

are equal, respectively, to 
m2 	 m1  

x= 	1 and y= 	1 
m1-1-  in2 	 mi. + 1112 

Let us denote the velocity of the centre of gravity by u and the angular 
velocity of rotation by co. Thus u+ cox=v j  and u— coy =v2. 
Hence, 

v j  — v2  (0=  1  , and u— mlul  ±tri2v2  
-F m2 

184. The velocity of rotation will be retarded. The platform imparts to 
the shell an additional momentum along a tangent to the trajectory of the 
end of the cannon barrel. According to Newton's third law, the shell ejected 
from the barrel will press against its inner part in a direction opposite to ro-
tation. 

185. When the body touches the horizontal plane, the vertical and hori-
zontal components of its velocity will be v„,.= Y  2gH sin a and vh„ = 

2gH cos a. If the impact is absolutely elastic, the vertical component 
will change its sign, while the horizontal component will remain the same. 
The trajectory of the body will take the form of sections of parabolas 
(Fig. 350), with h=H sine a and 1=2H sin 2a. 

If the impact is absolutely inelastic, the vertical component of the velo-
city will be zero, and the body  will move uniformly over the horizontal 
plane with the velocity v= Y 2gH cos a. 

186. The Earth acts on the motor-cycle with two forces (Fig. 351), name-
ly, N— the reaction of the support, and f —the force of friction. The sum of 

H 

Fig. 350 
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these forces T is directed along the motor-cycle. 
(Otherwise, the moment of the forces tending to 
tip the motor-cycle would be acting with res- t p 	pect to the centre of gravity 0.) 

Thus, the centre of gravity is acted upon by 
the resulting force F =T+ G, where G is the 
weight of the motor-cyclist. Since F=T cos a= f, 
a centripetal acceleration will be imparted to 
the motor-cycle only by the friction force f. 

According to Newton's second law, f 
= rcivz

- 

and f kmg. Figure 351 shows that mg= f tan a. 
The minimum value of R from this system 

02 
of equations is Rmin=k—g= 147 metres, when 

tan a = Rg 
33.3, and therefore a 73°20'. 

187. Let us consider the intermediate position 
of the rod when it has moved through the angle 

a from the vertical. In accordance with the law of conservation of energy, 

MgR= MgR cos a-{ m 2
o)2R2 
 , where R is the distance from the end of the 

rod to the centre of gravity of the sphere. 
Therefore, the angular velocity co can be expressed as 

6)=2 sin --2-a  17-1Fg  

With the given value of a, it will be the smaller, the greater is R. 
Hence, the rod will fall faster if it is placed on end B. 

188. According to Newton's second law, tre2R -= mg cos a —N, where N is 
the force which the deformed rod acts on the sphere with. 

The deformation of the rod will disappear when the rod no longer presses 

on the floor, and N=O. As shown in Problem 187, w=2 IT 
g 
 sin 2 . 

Upon inserting this value of co in the equation of motion, we find that 
2 cos a= —
3 

. Hence, cc=48°10'. 

For the rod not to slip, the condition N sin a< kN cos a should be ful- 

filled (Fig. 352). Therefore, k > tan a. Hence k> 11 5   
2 

189. If k > —
2 , 

the rod will not slip until N is zero, i.e., until a < 

arc cos —
2 
3 . 

When a > arc cos 
2

, the equation tro2R =mg cos a— N will give us 

N <0. This means that if the end of the rod had been attached to the ground, 
the rod would have been stretched. If the rod is not secured, the sphere 

f 
Fig. 351 
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4 

Fig. 352 	 Fig. 353 

will begin to fall freely from the moment when the angle a reaches the 

value ao  = arc cos 2 . 

VAt this moment v=coR= 	
2
-
3

gR forms an angle ao  with the horizon 

2 
and the height of the sphere above the ground is CD— s. R (Fig. 353). Let 

us find the distance sought by using the laws of free falling: 

175 	n 	
1.12R 

27 
4 	r  

AB= AD-FDB=R 	 IN= 
 

190. The bead moves along section ADB under the action of the force of 
gravity (Fig. 354). For the bead to reach point B after it leaves point A, 
the horizontal path which it travels should be 2R sin a. For this purpose the 
velocity of the bead at point A should satisfy the condition 

2u2  sin a cos a 

(see Problem 162). Hence, u2=  gR  
cos a • 

At point A the bead will have the velocity u if at point 0 it is given a 
velocity v equal, according to the law of conservation of energy, to: 

±2gR (1+ cos 0)= 	gR (2+2 cos a + cols 	rx) 

191. Assume that no segment has been cut out. Hence at point C 
(Fig. 355) 

mvz 
mg=- 	 (1) 

According to the law of conservation of energy, 

2  
/ugh= mg •2R + 

mv 	 (2) 

—2R sin a 
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5 
From equations (1) and (2) we get h= T  R. The velocity at point A can be 

found from the law of conservation of energy 

5 	171V 2A 
mg 

2
R= ---2- + mg R (1+ cos ce) 	 (3) 

The body thrown at an angle a to the horizon will fly a horizontal dis-
tance of 

AB— 
OA  sin 2a 

(4)  

 

On the other hand, 
AB -=2R •sin cc. 

It follows from equations (4) and (5) that 

v2A — cRosea 

Upon inserting this value into equation (3), we obtain: 

5 tngR  
mg 

2 R=  2 cos a + 
mgR + mgR cos a 

Therefore, cos a=3 	
1 

and, consequently, a1=0, and a2 =60°. 
4 

It is easy to see that if a > 60°, the body will fall inside the loop; if 
a < 60° it will fly out. 

192. Let us consider the forces that act on the string thrown over the 
left nail (Fig. 356). The vertical components of the forces of tension T acting 
on the weights are mg if the string is secured on the nail. According to 

(5)  

Fig. 354 Fig. 355 
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Newton's third law, the knot (point 0) is acted upon by the same forces T. 
Their sum is directed vertically downward and is equal to 2mg. 

If only one weight is rotating, the vertical component of the string ten-
sion T' is equal to 2mg (if the weight does not move downward). The ten-
sion of the string itself, however, is T' > 2mg (Fig. 356). Therefore, the 
system will not be in equilibrium. The right-hand weight will have a grea-
ter pull. 

193. The direction of the acceleration coincides with that of the resultant 
force. The acceleration is directed downward when the ball is in its two 
extreme upper positions B and C (Fig. 357). The acceleration will be di-
rected upward if the ball is in its extreme bottom position A and horizon-
tally in positions D and L determined by the angle a. 

Let us find a. According to Newton's second law, the product of the 
mass and the centripetal acceleration is equal to the sum of the projections 
of the forces on the direction of the radius of rotation: 

mat 
— =T — trig cos a 

On the other hand, as can be seen from Fig. 357, we have T= 
 mg 
 . On cos a 

the basis of the law of conservation of energy: 

mv2  
2 =-mg1 cos a 

1 
We can find from these equations that cos a-= 	, and therefore 

 3
3 

a = 54°45'. 
194. Let us denote the angular velocity of the rod by o at the moment 

when it passes through the vertical position. In conformity with the law of 
conservation of energy: 

 (02 
— (mid+ m2r1)=g (1 —cos a) (miri+ m2r 2) 
2 

or 

(0=2 sin 
2 
—
a y tniri  ±m2r2  

g 	2 miri-Fm2r2 
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Fig. 357 	 Fig. 358 

whence 

a 	miri+In2r2  = 2ri  sin -2- 

02 =cor, = 2r2  sin2- 	g mirii- M2r2  
rrigl±nz24 

195. The resultant of the forces applied to the ball F =-- mg tan a should 
build up a centripetal acceleration a=---a)2r, where r =1 sin a (Fig. 358). 
Hence, 

mg tan a=mo)2/ sin a 

This equation has two solutions: 

a1=- 

a, = arc cos--(og1  

Both solutions are valid in the second case: a1=0 (here the ball is N a 
state of unstable equilibrium) and a2 =60°. 

In the first case the only solution is a1=0. 
196. Let us resolve the force F acting from the side of the rbd on the 

weight 171 into mutually perpendicular components 1' and N (Fig. 369). 
Let us project the forces onto a vertical and a horizontal lines and write 

Newton's equations for these directions 

mo)2/ sin (ID = T sin cp — N cos q) 
mg =T cos p+N sin 7 

Let us determine T and N from these equations 

T =m (6)2i sine q)+ g cos q)) 
m —01 cos 7) sin cp 
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Fig. 359 
	

Fig. 360 

Therefore, 
F = 	N2=  in  rg2 	4_ 0/2 sing 

197. The forces acting on the bead are shown in Fig. 360: f is the force 
of friction, mg the weight and N the force of the normal reaction. 

Newton's equations for the projection of the forces on a horizontal and a 
vertical directions will have the form 

f sin q) 	N cos q)--=-mo)21 sin IT 
f cos q) f N sin q)— mg=0 

The upper sign refers to the case shown in Fig. 360 and the lower one to 
the case when the force N acts in the opposite direction. We find from these 
equations that 

f=mco2/sin2  q)--F- mg cos q) 
N=± (mg sin q)—nzo)2/ sin q) cos (p) 

In equilibrium f kN or 
k sin cp —cos cp 

/ 	 when k> cot cp sin q) (k cos q)--F sin q)) rt)2  

and 

k sin cp + cos q) 
/ 	 when k tan cp sin (k cos (p—sin IT) (J)2  

198. Figure 361 shows the forces acting on the weights. Here T1  and T2  
are the tensions of the string. Let us write Newton's equations for the pro-
jections onto a horizontal and a vertical directions. 
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For the first weight 
T1  sin cp—T, sinV=mcon sin cp 
T1  cos cp — T 2  cosi,— mg=0 	 (1) 

For the second weight 

mco2 / (sin cp -F sin 1)) = T2 sin iV 	 (2) 
T2 cos V=mg 

Upon excluding T1  and T2 from the system of equations (1) and (2), we 
obtain the equations 

a sin cp 2 tan IT — tan Ap 
a (sin W+ sin 1p) = tan 1p 

(2 
where a = — • 

From these equations we get 2 tan (p—tan p < tan ip  and, therefore, (p < 
199. The forces acting on the weights are shown in Fig. 362. Here T1, N1  

and T2, N 2  are the components of the forces acting from the side of the rod 
on the weights in and M. 

The forces AT, and N2 act in opposite directions, since the sum of the 
moments of the forces acting on the rod with respect to point 0 is zero be-
cause the rod is weightless: Nib —N 2 (b+a)=0. The equations of motion of 
the masses in and M for projections on a horizontal and a vertical directions 
have the form 

=IA sin IT -=Ti  sin q)— N1  cos p; T1  cos cp + NI  sin (p =mg 
Mco2  (b + a) sin cp =T2  sin cp ± N2  cos q; T2 cos (p— N2  sin cp -= Mg 

Upon excluding the unknown quantities T1, T2, N 1  and N 2  from the system, 
we find that 

(1) cp=0, and (2) cos (1)— 
g mb+M(a+b)  

co2  mb2  +M (a+ b)2  

O 

/71.9 

Fig. 361 
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The first solution is true for 
any angular velocities of rotation, 

7 and the second when 0) 
mb + M (a + b) 

ginb2+114  (a+ b)2  
(see the 

solution to Problem 195). 
200. In the state of equilib-

rium MO x=kx, where x is the 
distance from the body to the 
axis. 

It is thus obvious that with 
any value of x the spring imparts 
the centripetal acceleration ne-
cessary for rotation to the body. 
For this reason the latter will 

move after the impetus with a constant velocity up to stop A or as 
long as the law of proportionality between the force acting on the spring and 
its deformation is valid. 

201. Let us write Newton's second law for a small portion of the chain 

having the mass 7  R Aa and shown in Fig. 363: 

R Aa (2nn)2 R=-- 2T sin Am 
2 

Act. 	Aa 
Since the angle Aa is small, sin 	, whence T=- m(n2 .-_- 9.2 kgf. 

202. Let us take a small element of the tube with the length R Aa 

(Fig. 364). The stretched walls of the tube impart an acceleration a=v1  to the 

water flowing along this element. According to Newton's third law, the water 
will act on the element of the tube with the force 

ad 2  
A F=p-T- RAa 02  

where p is the density of the wa-
ter. The force AF is balanced by 
the tension forces of the ring T. 
From the condition of equilibrium, 
and remembering that Aa is small, 
we have 

Aa 
— 

A F=2T sin — T Aa 
2 

Therefore, the sought force is 
pad2  

T= —v-. 
4 

203. Let us divide the rod into 
n sections of equal length and con- Fig. 364 
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Fig 365 

sider an arbitrary section with the number i (Fig. 365). The acceleration of the 
various points in this section will be different, since the distances from the 
points to the axis of rotation are not the same. If the difference r;+1—r1 is 
small, however, the acceleration of the i-th section may be assumed as equal 

-Fri i+i  
to (1.)2  r 
	, and this will be the more accurate, the smaller is the 

2 
length of the section. 

The i-th section is acted upon by the elastic force Ti+1  from the side of 
the deformed section i--I-1 and the force Ti from the side of the section 

i-1. Since the mass of the i-th section is T  (r1+1 —r1), on the basis of 

Newton's second law we can write that 
m , 	

,
„2 Ti—Ti±i 	vi+,- 	2  

or 
mw2  (,2 v +1-4) 
2/ 

Let us write the equations of motion for the sections from k to n, inclusive, 
assuming that rn+1=1 and rk=x: 

nun2 

(12-11)  

M(.02  2 	2 T 
21 (rn—rn-1)  

nu.02 2  
Tk+2—Tk+1=--- 21 (rk+2,--4-1-1) 

mop 2  
Tk +1 	 2/ (rk+i—x2) 

The first equation in this system takes into account the fact that the 
elastic force does not act on the end of the rod, i.e., Tn+1=0. Upon 
summing up the equations of the system, we find that the sought tension 

is equal to T„=
mco2
-7- (12 _ x2). 
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The closer the sections of the rod are to the axis of rotation, the more 
will they be stretched. 

204. In the reading system that is stationary with respect to the axis, the 
force of tension of the rod does not perform any work, since this force cons-
tantly remains perpendicular to the velocity of the ball. In the moving system 
this force performs work other than zero, and this changes the kinetic energy 
of the ball. 

205. Section AB of the hoop with a mass m at the highest point has an 
m (202  

energy of mg 2R 	During motion the kinetic and potential energies 
2 

of section AB begin to decrease owing to the work of the forces of the elastic 
deformation of the hoop whose resultant produces a centripetal force always 
directed towards the centre. The velocity of section AB forms an obtuse angle a 
with the force F (Fig. 366). For this reason the work of the force W i=FAS cos a 
is negative, and, consequently, the energy of the section with the mass m 
diminishes. 

After section AB passes through the lowermost position, it is easy to see 
that the work of the force F becomes positive and the energy of section AB 
will grow. 

206. Let us draw a tangent to the inner circumference of the spool (Fig. 367) 
from point A, which is the instantaneous axis of rotation (see Problem 173). 

If the directions of the thread and the tangent AC coincide, the moment 
of the forces that rotate the spool around the instantaneous axis will be zero. 
Therefore, if the spool is at rest, it will not rotate around the instantaneous 
axis and, consequently, it will not move translationally. 

The angle a at which the motion of the spool is reversed can be found from 

triangle AOB; namely, sin a 	If the thread is inclined more than a, 
R 

the spool will roll to the right, if a is smaller it will move to the left on 
condition that it does not slip. If the tension of the thread T satisfies the 
condition Tr<fR, where f is the force of friction, the spool will remain in 

place. Otherwise, when sin a=--1:— it will begin to rotate counterclockwise 

around point 0. 
207. Break the hoop into equal small sections each with a mass of Am. 

Consider two symmetrical sections (relative to the centre). All the particles of 
the hoop simultaneously participate in translational motion with the velocity 

Fig. 366 Fig. 367 
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v and in rotational motion with the 
velocity vi=(oR. The resultant veloci-
ty v, of the upper section of the hoop 
can be found as the geometrical sum of 
the velocities v and v, (Fig. 368): 

4=44-v2  2vv1  cos a 

For a symmetrical section 

4= v2 4- — 2vv1  cos a 
Zfr• 	The total kinetic energy of both sec- 
/ 	Lions is 

AEk = 

/ 	Am4 Ann/  = Amv2 Amco2R2 
2 	-1- 	2 

Since this expression is valid for any 
two sections, we can write for the entire hoop 

Mv2  MR2(02  
Eh _=_— 	 

2 	2 

If the hoop rolls without slipping, y=coR and, therefore, Ek=Mv2. 
2  

208. Ek—  2Gv 	+ 1). 
209. The cylinder made of a denser material will obviously be hollow. At 

the same translational velocities without slipping the kinetic energy of rotation 
will be greater in the hollow cylinder, since the particles of its mass are 
further from the centre and, therefore, have higher velocities. 

For this reason the hollow cylinder will roll down an inclined plane with-
out slipping slower than the solid one. At the end of the plane, the total 
kinetic energies of both cylinders are the same. This is possible only when 
the velocities are different, since when the velocities are the same, the ener-
gies of translational motion are identical, while the energy of rotational motion 
of a solid cylinder will always be smaller than that of a hollow one. 

210. When the drum moves, the force of friction performs no work, since 
the cable and the drum do not slip. Hence, the energy of the system does 
not change: 

G 
v2+ GR

Gpx  u2-1-(G—px)R 

	

Gv2 H-pR gx 	where u is the sought velocity. Therefore, u= 	 It is equal px 
to infinity when G=px because the mass of the drum is neglected. 

The momentum is diminished by the action of the force of friction, which 
is opposite to the direction of motion. 

211. Since the force of friction is constant, motion will be uniformly retarded. 
The power developed by the friction force is fv, where v=cor is the instan-

taneous velocity of the point on the pulley which the force f is applied to. 
The work during the time t is equal to the mean power multiplied by the 

Fig. 368 
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time t: 

f  co  or -  or  t 
2 

The change in the kinetic energy of the pulley is equal to this work: 

mr2 2( 2 
6)5 — (02) 	(coo 0)) 2 

Hence, co=coo--
ft

. mr 
212. Since the force of friction f is constant, the change in the momentum 

of the hoop during the time t is mv=ft. If the hoop rolls without slipping, 
the velocity of the point on the hoop which the friction force is applied to 
is zero. 

Upon equating the work of the friction forces to the difference between 
the kinetic energies, we have 

	

me
2
Ar 	coor+0 

mv2 = f 	t 
2 

(see Problem 207). 
Upon solving the equations with respect to v, we find: 

(Dor v=— 
2 

213. The equations which show the change in the momentum and the kine-
tic energy of the hoop have the form: 

m (vo —v)= ft 

	

MEI° 	, 00 + 0 
c Mt)" = 

	

2 	 2 

where v=cr is the velocity of the centre of the hoop when it rolls without 
slipping. 

Upon solving these equations with respect to v, we have: 

vo  
v= 2 

Therefore, the sought value is cv=—
vo 
2r 

214. The equations that show the change in the momentum and the kinetic 
energy of the hoop have the form: 

m (vo  — v)-= ft 
moil mco(2,r2 	mo 	morz 

	= f  (vo + coor)+(v + cor)  t + 
2 	2 	2 	2 	 2 

where v is the velocity of the hoop centre at any subsequent moment of time. 
Upon solving this system of equations, we find that 

 v=t10-- t, and co= (00 
f t 

-  

m 	 mr 



MECHANICS 	 243 

If 00  < wor, the hoop will stop at the moment of time V--=---T-niv°  when rotat-

ing with the angular velocity a)--=coo--+2  . Then the hoop begins to move 

with slipping in the reverse direction. In a certain time the hoop will stop 
slipping and will roll without slipping to the left with a translational velocity 

(Dor 
2 
 vo  (see Problem 213). 

If vo  > (Dor, then after the time -r— 
 mrco o 

elapses the hoop will stop rotating 

and will move to the right with a translational velocity v -=vo  —rcoo. Next 
the hoop will rotate in the reverse direction, and in some time it will roll 
without slipping to the right. Its angular velocity will be 

00 - /1.00 

Practice shows that the loop will also be braked when it does not slip. 
We did not get such a result since the specific rolling friction was neglected. 

215. Since the hoops do not slip, vo  (velocity of the centre of gravity of 
the hoops) and v (velocity of the weight) are related by the expression 

R  vo=v R r  

Assume that the weight lowers through the distance h. If the system was at 
rest at the initial moment, from the law of conservation of energy we have 

2  
nigh 

mv 	
Mvo2 

2 

(see Problem 207). 
This expression can be used to find the velocity of the weight: 

o vrm±2m2mgh  
(  R  

R—r 

Hence, the acceleration of the weight is 

a= 
	mg 

m+2M 

The weight lowers with the acceleration a under the action of the force of 
gravity mg and the tension T of the string. 

The sought tension T is 

co = 
2r 

) 2  

T =m (g a)— 
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Since the centre of gravity of the hoop moves with an acceleration equal to 

a RR 
 —r 

 under the action of the force T and the force of friction F, Newton's 

second law gives us the following equation for the force F 

	

F =T — Ma 	 
RR  

or 

F= 
M mg ( RR 	r ) 2  (2 RR r  

m + 2M RR  ( 	r 	 m (1 -vr  )2  tri +2M 
2 
	Mmg (1 ±vr  

The friction force of rest cannot exceed the value kMg. For this reason 
slipping occurs when 

Mmg ( R 2  R — r) ( 1+i) 

	

m+2M ( 	 
R —r R )2 

> kMg 

Or 

1+17  

2--114 -1-(1—L) 2  
m 	R 

216. The centre of gravity of the spool will not be displaced if the ten-
sion of the thread satisfies the equation 

T = Mg sin ce 

Let us find the acceleration of the weight with a mass m to determine the 
tension of the thread T. Let the weight lower through a distance h. Since, 
according to the initial condition, the centre of gravity of the spool should 
remain at rest, the change in the potential energy is equal to mgh. If v is 
the velocity with which the weight having a mass m moves, the velocity of 

r 
Hence, the kinetic energy of the system is 

mva Mv2 R2 
gk =-1-  2 r2  

It follows from the law of conservation of energy that 

R2 N v2  
(111±1/4  ) 7 =mgh  

Or 

k< 

the points on the spool at the distance R from the axis of rotation is v 

v= R2 
2mgh  
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Therefore, the acceleration of the weight is 
mg a- 

If we know the acceleration of the weight, we can find the tension of the 
threa d 

R2 

M  r2  
T 	(g— a)= mg  R2  

M
r2 

m 

Thus, for sin a we get the expression 

sin a— n4 	r2  

+R2 

The centre of gravity of the spool can be at rest only if 
M r2  
m R 2 I  

217. If the velocity of the board is v, the velocity of the centre of gra-
vity of each roll will be v/2 (see Problem 173). The kinetic energy of the 
system (the board and the two rolls) is 

Mv2  2mv2
= 
 M-fm 

v2 
2 	4 	2 

By equating the kinetic energy to the work of the force Q over the distance s, 
we obtain 

M-1-m
v2=Qs, 

2 
and 

2Qs  
V Md-nt 

(Fig. 369). (The forces of friction perform no work since there is no slipping.) 
It follows from the expression for the velocity of the board that its acce-

leration is 

a=
M +az 

To determine the force of friction applied to the board from the side of 
a roll, let us write the equation of motion of the board Ma= Q —2F. 

Upon inserting the value of the acceleration a in this equation, we get 

mQ  
F 2 (M ±m) 

Since the velocity of the centre of gravity of the roll is half that of the 
board, the respective accelerations will be in the same ratio. Therefore, the 
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F 

Fig. 369 

equation of motion of the centre of gravity of a roll will have the form: 
a 

m 
2  
—=F — f 

It follows from this equation that f =O. 
218. Let us assume, to introduce determinancy, that m1R > m2r. In this 

case the first weight will lower and the second one will rise. If the first 

weight lowers through a distance of h, the other one will rise through h  

The decrease in the potential energy will be 

m2gh =gh 	m214 

If the absolute velocity of the first weight is v, that of the second weight 

will be v— 
R 

All the points of the first step of the pulley move with the velocity v, 

and those of the second step with the velocity v . The kinetic energy of 

the system will be 

Mi 	ms+ Ms  r2  02+ 	2 	PI
2  

2 

It follows from the law of conservation of energy that 

m1 +M1  Ti2 

' 	2 	R2  
m22 ± M2   r2  vs 	in, 	gh 2  

Or 

r _V- 	2 (m1— m2 p--) gh 
v= 

r2 
(M1+ M1) ± (m2+ MO -pi 

Therefore, the acceleration of the first weight is 
r 

m1-m2 7 
r2 g 

(ni1+M1)±0n2+ 



(mi+M2 4) 
T2 2 

tni+Mi+(m2+M2) 
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Fig. 370 

From the ratio 
a  
-1-=  R— , where a2  is the acceleration of the second weight, 
a2 	r 

we can find that 
(mi _ m2  )g  

a2= 	 r2 
( 111+ Mi.)+ (m2+ M2) /7-  

On the basis of Newton's second law, the tensions of the strings Ti  and T2 
are equal to: 

R+ 
 r2 

Mi+m27-? + —R2 (m2+M2) 

rz 
tni+Mi+(1/24- M2) —R2 

T1  =-- mig 

m2g 

The force F which the system acts on the axis of the pulley with is 

F = T1+ T2 + (M1+ M2) g 

219. Let the path travelled by the centre of gravity of the cylinder during 
he time t be equal to s, and the velocity of the centre of gravity be v at 
his moment (see Fig. 370). 

Hence, from the law of conservation of energy we have 

Mv2=Mgs sin a 

Thus, the velocity is v= 	ci and the acceleration a— g sin a 
2 

The velocity of the centre of gravity of the cylinder and the angular ve-
locity of its rotation will be 

si17 
n a 

v=g sin a t and co =
g 
 T—- t 

2 
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1-9. The Law of Gravitation 
220. According to Newton's second law, mig=F, where mi is the inertial 

mass—a quantity that characterizes the ability of bodies to acquire an acce-
leration under the influence of a definite force. 

o.Mo. 

' 
On the other hand, according to the law of gravitation F=y m 

	
where 

R2   
y is the gravity constant and m and Mg  are the gravitational masses of 
the interacting bodies. The gravitational mass determines the force of gravity 
and, in this sense, can be referred to as a gravitational charge. 

It is not obvious in advance that tni=nzg. If this equation (proportionality 
is sufficient) is satisfied, however, the gravity acceleration is the same for all 
bodies since, when the gravity force is introduced into Newton's second law, 

the masses m1 and mg  can be cancelled, and g will be equal to y R2 

Identical accelerations are imparted to all bodies irrespective of their 
masses, only by the force of gravity. 

221. The gravitational acceleration g=--y -R2  (seeProblem 220). Assuming 

that g=982 cm/s, we find that y=6.68 X 10-8  cm3  g-1  s-2. 
222. The bodies inside the spaceship will cease to exert any pressure on 

the walls of the cabin if they have the same acceleration as the spaceship. 
Only the force of gravity can impart an identical acceleration in this space 
to all the bodies irrespective of their mass. Consequently, it is essential that 
the engine of the spaceship be shut off and there be no resistance of the 
external medium. The spaceship may move in any direction with respect to 
that of the force of gravity. 

223. The force of gravity imparts the same acceleration to the pendulum 
and the block. Gravity does not cause any deformations in the system during 
free falling. For this reason the pendulum will so move with respect to the 
block as if there is no gravitation (see the solution to Problem 222). The 
pendulum will move with a constant angular velocity as long as the block 
falls. 

224. On section BCA (Fig. 371) the force of gravity performs positive work 
(the angle 01  is acute) and the velocity of the planet will increase, reaching 
its maximum at point A. 

Fig. 371 
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On section ADB the force of gravity performs negative work (the angle 02  
is obtuse) and the velocity of the planet will decrease and reach its minimum 
at point B. 

225. For the satellite to move along a closed orbit (a circle with a radi-
us R±h) it should be acted upon by a force directed toward the centre. In 
our case this is the force of the Earth's attraction. According to Newton's 
second law, 

mv2 	mM 
R-F-h 	(R+h)2  

where M is the mass of the Earth, R=6,370 km is the radius of the Earth, 
and v  is the gravitational constant. 

At the Earth's surface 

7
R2

mM 
=mg 

Therefore, 

	 7.5 km/s 
R± h 

226. The resistance of the atmosphere will cause the satellite to gradually 
approach the Earth and the radius of its orbit diminishes. 

Since this resistance is small in the upper layers, the decrease of the ra-
dius is insignificant during one revolution. Considering the orbit to be appro-
ximately circular, we can write 

mv2  mM 
=7  IF 

117
-vM  

	

where R is the radius of the orbit. Therefore, v= 	' 	i.e., the velo- 

city of the satellite increases with a reduction of R. 
This can be illustrated as follows. In view of the atmospheric resistance, 

a satellite placed, for example, into a circular orbit (dotted line in Fig. 372) 
will actually move along a certain helix (solid line in Fig. 372). For this 
reason the projection of the force of gravity F onto the direction of the sa-
tellite velocity v differs from zero. It is the work of the force F (greater 
than the atmospheric resistance f) that increases the velocity. 

When the satellite moves in the atmosphere, its total mechanical energy 
diminishes but, as the Earth is approached, the potential energy drops faster 
than the total energy, causing the kinetic energy to grow. 

It should be stressed that the high force of resistance in the dense layers 
of the atmosphere does not allow us to consider, even approximately, the 
motion of the satellite as rotation along a circle, and our conclusion is not 
correct. 

227. If the container is thrown in the direction opposite to the motion of 
satellite A, it will begin to move along a certain ellipse 2 inside the orbit 
of the satellite (Fig. 373). The period of revolution of the container will be 
slightly less than that of satellite B. Therefore they can meet at the point 
of contact between the orbits only after a great number of revolutions. 

The container should be thrown in the direction of motion of satellite A. 
It will begin to move along ellipse 3. The velocity u should be such that 

g R2 
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Fig. 373 
	

Fig. 374 

during one revolution of the container, satellite B also makes one revolution 
and in addition covers the distance AB This is quite possible, since the 
period of revolution along ellipse 3 is somewhat greater than along circular 
orbit I. The container will meet the satellite at the point where orbits 3 
and I coincide. 

228. Assuming the Earth's orbit to be approximately circular, the force of 
gravity can be determined by the equation F=--m(o2R, where m is the mass 

22-c 
of the Earth, and (1.)=—

T 
is its angular velocity (T=365 days). On the other 

hand, according to the law of gravitation, F=y 
 mM 

 , where M is the mass 
R 2  

of the Sun. Hence, 
mM =m(02R 

7  R2  

Or 

w2 R3 -2X1033  g 

229. Since both the Moon and the satellite move in the field of gravity 
of the Earth, let us use Kepler's third law , 

Ti (h+H±2R0)3  
8R3  

(Fig. 374). Therefore, 

h=2R (E1)213  —H---2R0 =220 km 
T2  

230. Since the mass of the ball is greater than the mass of the water in 
the same volume, the field of gravity will be greater near the ball than away 
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from it. Therefore, the water near 
— , the ball will be compressed addi- 

	

— 	 / 	tionally. The pressure of the water 

—

- 

 acting on the bubble from the left 
 will be smaller than the pressure 

	

R 	 that acts from the right. On the 
other hand, the force of gravity bet- 

Fig. 375 	 ween the air in the bubble and the 
ball is greater than the force of 

attraction between the air and the volume of the water shown by dotted 
circle a (Fig. 375). 

Since the mass of the air in the bubble is very small, the first factor 
becomes decisive. The bubble will be repulsed from the ball. 

Conversely, the motion of the iron ball will be determined by the fact 
that the force of attraction between the air in the bubble and the ball is 
much less than that between the ball and the volume of the water shown by 
dotted circle b. 

To calculate the force, let us reason as follows. A homogeneous medium 
(water) contains a sphere almost devoid of mass (the bubble) and a sphere 
with an excess mass (the ball). From a formal standpoint, this can be re-
garded as the presence of negative and positive masses. 

The force of interaction between the spheres in the water is equal 
to the interaction in vacuum of a negative mass equal to the mass of the 
water in the bubble and a positive mass equal to the mass of the iron ball 
that exceeds the mass of the water in the same volume. 

Therefore, 

Y 
mi ( 712 — m1) 

R2  

Here m1  is the mass of the water in a sphere with a radius r, and m2  is the 
mass of the iron ball. 

231. The field of gravity is smaller near the bubble than in a homogeneous 
liquid, and the liquid is compressed less. For this reason one bubble will 
move into the volume of liquid near the other one, and the bubbles will be 
mutually attracted. 

Two bubbles in a homogeneous liquid with negligibly small masses can 
be considered from a formal standpoint as negative masses superimposed upon 
the positive mass m of the medium in the volume of a bubble: 

( — m) ( — m) m2  F=y 	R2  	--=17 1- 

232. If the ball were solid, the force of gravity F1=y 
Mm

, where 

4 
M=7- aR3p is the mass of the ball without a spherical space. The presence 

of this space is equivalent to the appearance of a force of repulsion 
nem 	 4 

, where m'=v-crsp, and s is the distance between the centre of 

the space and the material particle. 
The sought force F is the geometrical sum of the forces F1  and F2 

(Fig. 376). 

a 	_ 
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Fig. 376 

According to the cosine rule, 

F-=-1/ Fl-FF1-2F1F2  cos 3= 

 

    

	

4 	 ro 	2R3r3  cos  p _7  ILIIMP V /4 -1-  (12 d2)2 	/202— d2) 	5.8X 10-4  gf 

233. The sought force of attraction is the geometrical sum of the forces 
created by separate elements of the sphere. The small elements al  and a2  
(Fig. 377) are cut out of the sphere as cones with vertices at point A obtained 
when the generatrix BC revolves around axis S1S2. The areas of the elements 

(AS1)2  co 
are 	 and 

(AS2)2 °)
, respectively, and their masses are 

(AS1)2  wp 
 

	

cos cci 	cos a2 	 cos a1  

and 
(AS2)2  cup 

, where co is the solid angle at which both elements can be 
cos al  

seen from point A; p is the surface density of the sphere (the mass per unit 
of surface); L al = L a2, since S10S2  is an isosceles triangle. The forces of 
attraction created by the elements are equal, respectively, to: 

m (AS1)2  copmop  
(AS1)2  cos a1  —Y  cos al  

and 
m (AS2)2  cop=-  mop 

y 
(AS2) 2  cos a2 17 cos a2  

where m is the mass of the body. These forces act in opposite directions and 
their resultant is zero. 

Reasoning in the same way for the other corresponding elements of the 
sphere, we convince ourselves that all of them compensate one another in pairs. 

Therefore, the force of attraction acting from the sphere on the body inside 
it is zero. 

It should be noted that this result is also true for a sphere with a finite 
thickness; it can be divided into any arbitrary number of thin spherical 
shells, for each of which the assumption proved above will be true. 

234. The force of attraction will be equal to the force with which the 
body with the mass m is attracted to a sphere with a radius r and a den-
sity p. The outer layers of the Earth do not act on the body, as was proved 
in Problem 233. 
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Fig. 377 

Therefore, the sought force 

pr3m 
F=7  3r2 	

4
3 pmr 

This force decreases in proportion to r as the centre of the Earth is approached. 

1-10. Hydro- and Aerostatics 

235. The level of the water will not change because the quantity of water 
displaced will remain the same. 

236. Equilibrium will not be violated, since according to Pascal's law the 
pressure on the bottom of the vessel will be the same everywhere. 

237. (1) Since the piece of ice floats, the weight of the water displaced by 
it is equal to the weight of the ice itself or the weight of the water it pro-
duces upon melting. For this reason the water formed by the piece of ice 
will occupy a volume equal to that of the submerged portion, and the level 
of the water will not change. 

(2) The volume of the submerged portion of the piece with the stone is 
greater than the sum of the volumes of the stone and the water produced by 
the melting ice. Therefore, the level of the water in the glass will drop. 

(3) The weight of the displaced water is equal to that of the ice (the 
weight of the air in the bubble may be neglected). For this reason, as in 
case (I), the level of the water will not change. 

238. In the first case the weight of the body submerged into the liquid is 
G1=(y-71) V and in the second G2 =(y—y2) V, where V is the volume of 
the body. 

Therefore, 
, G271-  G172  
r 

 

C. 
- G1  

239. The ice can be supported by the edge of the shore only in small 
ponds. It will always float in the middle of a large lake. The ratio between 
the densities of the ice and the water is 0.9. Therefore, nine-tenths of the 



Fig. 378 Fig. 379 

A2  

f 
	 VO 
	-B 

254 	 ANSWERS AND SOLUTIONS 

entire thickness of the ice will be in the water. The distance from the sur-
face of the ice to the water is one metre. 

240. After the stone is taken out, the match-box becomes lighter by the 
weight of the stone, and, consequently, the volume of water the box displaces 
decreases by 1/1=Gly1, where G is the weight of the stone and yi  the specific 
weight of the water. When dropped into the water, the stone will displace 
a volume of water equal to its own volume V2 =G/y2, where y2  is the 
specific weight of the material of the stone. Since Y2 > Yl, then VI  > V 2. 
Therefore, the level of the water in the cup will lower. 

241. In both cases the pumps perform identical work, since the same 
amount of pumped in water rises to the same level. 

242. The inverted L will be stable on the bottom of the empty vessel, 
since a perpendicular dropped from the centre of gravity of the figure is 
within the limits of the supporting area. As water is poured into the vessel, 
the expulsion force acting on the rectangle will grow in magnitude (it is 
assumed that the water can flow underneath the figure). When the depth 
of the water in the vessel is 0.5a, the sum of the moments of the forces 
which tend to turn the body clockwise will be equal to the sum of those 
acting in the opposite direction. As the vessel is filled further, the figure 
will fall. 

243. The length of the tube x can be found from the condition 
yx=y, (x —h), which shows the equality of the pressures at the depth of 
the lower end of the tube. Here yo  is the specific weight of the water. 

Hence, 
h yo  

x= 	=50 cm 
Yo — Y  

244. Let us separate a column with .a height of h inside the water 
(Fig. 378). The equation of motion of this column has the form: ma=-- mg — pA, 
where m=pAh is the mass of the water and p is the pressure at the depth h. 

Therefore, p= ph (g— a). 
245. In accordance with the solution of Problem 244, the force of expulsion 

can be written as follows: F=pV (g—a), where V is the volume of the 
submerged portion of the body. The equation of motion of a floating body 
with a mass M has the form: Ma=Mg—pV (g —a). 
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Hence, V = 	, as in a stationary vessel, and the body does not rise to 

the surface. 
246. If the tank were at rest or moved uniformly, the pressure at the 

depth h would be equal to p1=pgh. 
On the other hand, if the tank moved with an acceleration and the 

force of gravity were absent, the pressure at point A would be equal to 
p,-.= pal. It is this pressure that would impart, in conformity with Newton's 
second law, the required acceleration a to the column of water with a length 1. 

In accelerated motion of the tank, both the pressure pi  and the pressure 
p2  appear in the field of gravity. According to Pascal's law, the pressure 
in the water is the same in all directions. For this reason the pressures pi  
and p2  are summated, and the resulting pressure at point A is p=p  (gh- al). 

247. Using the law of conservation of energy and Archimedes' principle, 
we obtain the following equation 

mgx= (-
3
4 

TER 3p—m) gh 

where p is the density of the water and x is the sought height. 
Hence, 

3 nR3p_m) 

248. If the level of the water in the vessel is the same, the level of the 
mercury will also be the same before the piece of wood is dropped. 

Dropping of the piece of wood gives the same result as adding of the 
amount of water that will be displaced by this piece, i. e., the amount of 
water equal to it by weight. Therefore, if the cross sections of the vessels 
are the same, the levels of the water and the mercury in both vessels will 
coincide. 

If the cross sections are different, the water will be higher and the 
mercury lower in the vessel with a smaller cross section. This will occur 
because the pressure on the surface of the mercury will increase differently 
when amounts of water equal in weight and volume are added to the 
vessels with various cross sections. 

249. After the block is dropped into the broad vessel, the level of the 
mercury in both vessels will rise by the amount x and occupy position AB 
(Fig. 379). 

The required height of the water column in the broad vessel is determined 
by the equality of the pressures, for example, at level CD 

(y x) pig = hp,g 

where pi  is the density of the mercury and p, that of the water. The value 
of y can be found by using the condition that the volume of the mercury 
is constant: 

(x+ y) Ai=V2 

where V 2  is the volume of the mercury displaced by the block after the 
water is poured in. 
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If the water covers the block en-
tirely, then according to Archimedes' 
principle,VoPog=1/2101g+ (Vo — I/2) Peg, 
where po  is the density of iron. 
Solving the equations, we obtain 
h=  Pi (Po — P2) Vo  

P2 (Ps — P2) Al  
If the water does not cover the 

block, Archimedes' principle can be 
Fig. 380 written as V °Ng =V 2 pig hAp2g, 

where A=1/ 0213  is the area of a block 

face. In this case the sought height h— 
p2  (AP:±V°00/3) 

The first solution is true when Al < Ps (Po — P2)  v .,2013 and the second one 
P2 (Ps — Po) 

when A l  > Pi (Po — PO  v2/3 

where Gi= An°  and G=AIT. Here A is the cross-sectional area of the 
board and yo  the specific weight of the water. 

Hence, 

x = (1— a) ± 1/ (1— a)2  — 1(1-2a) 

Since x < 1—a, only one solution is valid: 

x (1—a)— V (1 - a)2  — / (/ — 2a) 
yo 

251. The pressure on the "bottom" of the vessel is pgh and the force with 
which the hatched portion of the liquid (Fig. 381) presses on the table is 
pghn (2Rh tan a—h2  tan2  a). According to Newton's third law, an identical 
force acts on the liquid. The condition of equilibrium of the liquid at the 
moment when the vessel stops exerting pressure on the table has the form 

G 4-Gi=pghn (2Rh tan a—h2  tan2  a) 
where G1  is the weight of the hatched portion of the liquid (the truncated 
cone minus the cylinder volume) 

pgh 
G 1 	TCR 2  ± (R—h tan a)2  asR (R —h tan a) } —pghn (R—h tan a)2  

Therefore, 
G 

agh2  tan a (R 
h tan  

3 

P2 (P1 -PO) 
250. It follows from the equality of the moments of the forces acting on 

the board with respect to point C (Fig. 380) that 

G1  (1— a— Lc ) cos a=G (-
2 

—a) cos a 
2 

1)—  
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Fig. 381 Fig. 382 

252. A liquid moves in a syphon by the action of the forces of cohesion 
between the elements of the liquid. The liquid in the long elbow outweighs 
the liquid in the short one, and pumps it over. It could be assumed on this 
basis that water can be pumped over a wall of any height with the aid of 
a syphon. This is not so, however. At a lifting height of 10 metres the 
pressure inside the liquid becomes zero. The air bubbles always present in 
water will begin to expand, and the water column will be broken, thus 
stopping the action of the syphon. 

253. The device will first act as a syphon and the water will flow through 
the narrow pipe into the reservoir. Then an air bubble will slip through A 
and divide the liquid in the upper part into two portions. After this the 
liquid will no longer flow out. 

254. The pressure of the water directly under the piston of each pump 
is less than atmospheric pressure by pg (H h), where p is the density of 
water. Therefore, to keep the piston in equilibrium, it should be pulled 
upward with the force F =pg (H+ h) A, where A is the area of the piston. 

Hence, a greater force should be applied to the pistons with a greater area. 
255. The pressure on the bottom is p=pg (H -Fh) (Fig. 382). On the 

other hand, since the vessel is a cylinder, p 	
+ mg 
nR2  

The height h can be determined if we equate the forces acting on the piston 
pghn (R2  —r2)-= G 

Hence, 
1 (

m 	

2   ) H =
It 	

G 	
s----' 

R2p 	g R2r  — r2 	
10 cm 

 
256. To prevent flowing out of the water, the vessel should be given such 

an acceleration at which the surface of the water takes the position shown 
bcA 

in Fig. 383. The maximum volume of the water is —
2/ 

and the mass of the 

bcA 
entire system is M ± —

2/ 
p. The required acceleration can be found from the 

condition that the sum of the forces acting on a small element of the water 
with a mass Om near the surface is directed horizontally (Fig. 383). 

9 -1865 
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According to Newton's second law, 
Ama=Amg tan a. 

Therefore, the sought force is 

bc A ) b 
F 	

2
p g 

1 	c 

257. The lower part of a chamber 
is filled with denser air. The air leaves 
the chambers in the upper part. The 
pressure is gradually equalized. The 
machine will continue to function only 
as long as the difference in the pres-
sures between the two halves of the 

vessel is sufficient to raise the water along the tube to the upper portion. 
258. Here the disk is not asymmetrical and the air pressure on the right-

hand side of the disk will be greater than on the left-hand one. The surplus 
force of the pressure acting on the right-hand side of the disk is F=(Pi— PO A, 
where A is the cross-sectional area of the chamber. The weight of the cham-

bers filled with water cannot exceed G=pgAh. Since hcG1pgG 2  , then F 

The disk will begin to rotate counterclockwise, and the chambers will rise 
from the bottom of the vessel to the top filled with air. The disk will rotate 
counterclockwise until the reduced difference of the pressure can no longer 
lift the water to the height h. 

259. The bottom of the cylindrical vessel will fall off in all three cases, 
since the pressure exerted on the bottom from the top will always be equal 
to 1 kgf. In the vessel narrowing upward the bottom will fall off only when 
oil is poured in, since its level here will be higher than in the cylindrical 
vessel. In the vessel widening toward the top the bottom will fall off when 
the mercury is poured in, because its level will be higher than in the cylin-
drical vessel. This will also occur when the weight is put in. In this case 
the weight will be distributed over a smaller area than in the other two cases. 

260. The reading of the balance will increase if the mean density of the 
body being weighed is less than the density of the weights. The reading will 
decrease if the mean density of the body is greater than that of the weights. 
The equilibrium of the balance will not be disturbed if the weights and the 
body have the same mean density. 

261. The man's aim will not be achieved, since, while increasing the expul-
sive force, he will also considerably increase the weight of the tube (the 
density of the compressed air in the tube is greater than that of the atmos-
pheric air). 

262. The true weight of the body is 

G -=Gi+ (17-1) 	801.16 gf 

The error is equal to 

G—G1  
G 

100%=0.14% 

263. When the atmospheric pressure changes, the Archimedean force acting 
on the barometers from the side of the air will change owing to the change 
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in the density of the air and in the volume of the barometers when the level 
of the mercury changes in their open parts. 

If all the conditions in the problem are taken into account, the barometers 
have not only the same weight, but also the same volume. For this reason 
the change in the expulsion force due to the first reason will be identical for 
each of them. The change in the volumes will be different. To change the 
difference in the levels by a certain amount in a U-shaped barometer, the 
level of the mercury in each elbow should change by only half of this amount. 
In a cup barometer the level of the mercury in the cup changes negligibly, 
and in the tube practically by the entire change in the difference of the 
levels. Here the change of the volume of the mercury in the tube should be 
the same as in the cup. 

Therefore, the change of the volume in the cup barometer will also become 
less, and it will therefore outweigh the U-shaped barometer. 

264. The normal atmospheric pressure is approximately equal to 1 kgf/cm2, 
This means that an atmospheric column of air with an area of 1 cm2  weighs 
1 kgf. If we know the surface of the Earth, we can find the weight of its 
atmosphere. 

The Earth's surface A=43tR 2, where R=6,370 km is the mean radius of 
the Earth. 

The weight of the atmosphere G = 4n,R2 X1 kgf/cm2  = 5x1015  ton f. 
265. If the man stands on the mattress, his weight will be distributed 

over a smaller area (that of his feet) than if he lies down. Therefore, the 
state of equilibrium will set in in the first case at a higher air pressure in 
the mattress than in the second. 

266. Let us first consider the tube inflated with air (Fig. 384a shows a 
cross section of the tube). For sections AB and CD of the tube to be in 
equilibrium it is obviously necessary that the tension of the expanded walls 
of the tube T balance the excess pressure inside the tube p. 

Let us now consider the forces that act on sections AB and CD when the 
tube is fitted onto a loaded wheel (Fig. 384b). The distribution of the forces 

(a) 
	

(6) 
Fig. 384 Fig. 385 

9* 
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acting on AB does not appreciably change in the top of the tube. There 
will be a difference in the bottom. Section CD will be acted upon by an 
elastic force from the side of the rim equal to the load applied to the wheel 
(the weight of the wheel and one-fourth of the weight of the motor vehicle). 

This additional force flattens the tube and the angle between the forces T 
tensioning the rubber increases. The total force of tension acting on CD 
diminishes and the excess pressure of the air in the tube equalizes the force 
of tension, and also the weight of the wheel and of part of the motor vehicle. 

Thus, the rim does not lower because it is supported by the excess pres-
sure of the air in the tube. In the top of the tube the excess pressure is 
equalized by the tension of the tube walls, and in the bottom it equalizes 
both the reduced tension of the walls and the force applied to the wheel. 

267. The force per unit of length with which the cylindrical portion of 
the boiler is stretched in a direction perpendicular to axis 001  is 

2R1 = R 21 P P  

where 2R1 is the cross-sectional area ABCD of the boiler and p is the pres-
sure inside it (Fig. 385); 2Rlp is the force acting on one half of the cylinder 
(see Problem 122). 

The maximum force per unit length of the hemispherical heads can be found 
from the formula 

TER2 	pR 	f 1  
f  2  = 2R P=  2 -T 

Consequently, the heads can withstand twice the pressure that the cylin-
drical portion of the boiler does if their walls are equally thick. For the 
strength of all the parts of the boiler to be identical, the thickness of the 
head walls may be half that of the cylindrical walls, i. e., 0.25 cm. 

268. The shape of the boiler should be such that the force applied per 

=PA unit length of its cross section is minimum. This force is f=-
1 ' where A 

is the cross-sectional area of the boiler, 1 the perimeter of the section and p 
the pressure of the steam. 

The force f will be minimum with the smallest ratio between the cross-
sectional area and the perimeter. 

As is known, this ratio will be minimum for a circle. It is also known 
that a circle can be obtained by cutting a sphere with any plane. Therefore, 
a sphere is the most advantageous shape for the boiler. 

269. The ceiling of a stratosphere balloon is determined not by the maxi-
mum altitude which it can ascend to, but by the altitude ensuring a safe 
velocity of landing. The envelope of a stratosphere balloon is filled with a 
light gas (hydrogen or helium) only partly, since when the balloon ascends, 
the gas in the envelope expands and forces out the air, making it possible 
to maintain the lifting force approximately constant. At a certain altitude, 
the gas will fill the entire envelope. Even after this the lifting force of the 
balloon continues to increase at the expense of the gas flowing out from the 
bottom hole in the envelope. The weight of the balloon de:reases and it will 
reach its ceiling only after a certain amount of gas has leaked out. 

For the balloon to descend, some gas should additionally be expelled through 
the upper valve in the envelope, so that the lifting force is only slightly 
smaller than the weight of the balloon. At a small altitude the velocity of 
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descent will be too high, since the volume of the gas decreases and less of 
it remains in the balloon than during the ascent. The ballast is dropped to 
reduce the velocity of descent. 

1-11. Hydro- and Aerodynamics 

270. Let us denote the distance from the level of the water to the upper 
hole by h, the sought distance from the vessel to the point where the streams 
intersect by x, and the distance from the level of the water in the vessel to 
this point by y (Fig. 386). 

The point of intersection will remain at the same place if the level of 
the water in the vessel does not change. This will occur if Q=Avi+ Ave, 
where 01= -Ii2gh and 02 =--- -1/2g (H ±h) are the outflow velocities of the 
streams from the holes. 

On the basis of the laws of kinematics, 

X=Viti =02/2 and y=h+
gt1

=h+ H
2

2  
2 

where t i  and t2  are the times during which the water falls from the holes 
to the point of intersection. 

Hence, 

	

x=  ( Q2 	H2 
2Q2 2 	

\

1 cm 

	

2gA 2 	Q2 

	

1 ( Q2 	2gA2 
Q2  ) =130 cm 

	

Y= OgA2 	2  

271. The velocity of water outflow from a hole is v=)(2gh. The impulse 
of the force acting from the side of the vessel on the outflowing water 
F At --= Amy, where Am=pAvAt is the mass of the water flowing out during 
the time At. Hence, F =p2 A=2pghA. The pressure at the bottom p=-- pgh 

	

and therefore 	The same 	force acts 	on the vessel from the side of 
the stream. 

Fig. 386 
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Thus, the water acts on the wall with the hole with a force 2pA smaller 
than that acting on the opposite wall, and not with a force smaller by pA 
as might be expected. This is due to a reduction in the pressure acting on 
the wall with the hole, since the water flows faster at this wall. 

The vessel will begin to move if kG < 2pA or 

k 
<2pghA  

272. According to Newton's second law, the equality pA0 =-2pA should 
exist. Therefore, if the liquid flows out through the tube, the cross-sectional 
area of the stream should be halved 

A  A 
2 

This compression of the stream can be explained as follows. 
The extreme streamlets of the liquid approaching the tube from above 

cannot, in view of inertia, flow around the edge of the tube directly adhering 
to its walls, and move towards the centre of the stream. Under the pressure 
of the particles nearer to the centre of the stream, the lines of flow straighten 
out and a contracted stream of the liquid flows along the tube. 

273. By neglecting splashing of the water, we thus assume the impact of 
the stream against the wall to be absolutely inelastic. According to Newton's 
second law, the change in the momentum of the water during the time At is 

a 2  
Amy= FAt, where Am=p -Tr  vAt is the mass of the water flowing during 

the time At through the cross section of the pipe. 
Hence, 

-- -=-
4

pad2 
v2  r"---  8 gf 

274. When the gas flows along the pipe (Fig. 387), its momentum changes 
in direction, but not in magnitude. 

A mass of pAv passes in a unit of time through cross section / of the 
vertical part. This mass brings in the momentum p1=pAvv1  where vi  is the 

Fig. 387 
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vector of the velocity with which the gas flows in the vertical part, nume-
rically equal to the given velocity v. 

During the same time the momentum p2 =pAvv2  is carried away through 
cross section II. Here v2  is the vector of velocity in the horizontal part, 
also numerically equal to v. 

The change in the momentum is equal to the impulse of the force F that 
acts from the side of the pipe on the gas: F=pAv (v2 —v1). In magnitude 
F-=pAv2 11. 

According to Newton's third law, the gas acts on the pipe with the same 
force. This force is directed oppositely to the pipe bend. 

275. The initial velocity of the water with respect to the blade is 
v.=-17-2gh—coR. Therefore, a mass of water m=pA (112gh—coR) impinges on 
the blade in a unit of time. After the impact, the velocity of the water 
with reference to the blade is zero, and for this reason the change in the 
momentum of the water in a unit of time is my. According to Newton's 
second law, the sought force is 

F-=pA (112gh—coRY 

276. At the first moment the ship will begin to move to the right, since 
the pressure on the starboard side diminishes by 2pA, where p is the pressure 
at the depth h of the hole, and A is its area (see Problem 271). As soon as 
the stream of water reaches the opposite wall, this wall will be acted upon 
by the force F=pAv2, where v is the velocity of the stream with respect to 
the ship (see Problem 273). The force F is slightly greater than 2pA, since 
v > -1/2gh because the ship moves towards the stream. As a result, the mo-
tion will begin to retard. 

277. The velocity of the liquid in the pipe is constant along the entire 
cross section because the liquid has a low compressibility and the stream is 
continuous. This velocity is v=112gH. 

The velocity of the liquid in the vessel is practically zero, since its area 
is much greater than the cross-sectional area of the pipe. 

Therefore, a pressure jump which we shall denote by p j. —p2  should exist 
on the vessel-pipe boundary. The work of the pressure forces causes the velo-
city to change from zero to JI2gH. 

On the basis of the law of conservation of energy, 

Amv2  
2 

where A is the cross-sectional area of the pipe, Ah is the height of a small 
element of the liquid, and Am=pAAh is the mass of this element. 

Hence, 
pv2  
—2 =P1— P2=Pgll 

Since the flow velocity is constant, the pressure in the pipe changes accor-
ding to the law 

P=Po — Pg (h — x) 
as in a liquid at rest. Here Po  is the atmospheric pressure and x is the 
distance from the upper end of the pipe. 

= (pi  — p2) AM 
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The change of pressure in height is shown in Fig. 388. The pressure is 
laid off along the axis of ordinates, and the distance from the surface of the 
liquid in the vessel along the axis of abscissas. 

278. The water flowing out of the pipe during a small interval of time At 
will carry with it the momentum Ap=pilv2At, where v=11-577 is the ve-
locity of the outflowing stream (see Problem 277). According to Newton's 
law, FAt=-2pgHAAt. The same force will act on the vessel with the water 
from the side of the outflowing stream. Therefore, the reading of the balance 
will decrease by 2pgHA at the initial moment. 

279. At the first moment when the stream has not yet reached the pan, 
equilibrium will be violated. The pan will swing upwards since the water 
flowing out of the vessel no longer exerts pressure on its bottom. 

When the stream reaches the pan, equilibrium will be restored. Let us 
consider an element of the stream with the mass Am. This element, when 
falling onto the pan, imparts to it an impulse Am1r2gh in a vertical di-
rection, where h is the height of the cock above the pan. On the other hand, 
after leaving the vessel, this element will cease to exert pressure on its 

271 
bottom and on the pan during the time of falling t=-- 1/

T 
 — . This is equi-

valent 	
g 

valent to the appearance of an impulse of force acting on the vessel verti-
cally upward when the element of the liquid is falling. The mean value of 
this impulse during the duration of the fall is 

A mg j7 221:  = A m1i2gh 

Thus, each element of the liquid Am is accompanied during its falling by 
the appearance of two equal and oppositely directed impulses of force. Since 
the stream is continuous, the balance will be in equilibrium. 

At the moment when the stream stops flowing, the pan will swing down, 
since the last elements of the liquid falling on the pan act on it with 
a force that exceeds the weight of the elements, and there will no longer be 
a reduction in the pressure on the bottom of the vessel. 

280. On the basis of the law of conservation of energy we can write 
Mv2=mgh 

2 

where M is the mass of the water in the tube stopped by valve V 2  and m 
is the mass of the water raised to the height h. 

Therefore, 
pind 2 	v2  

4 T=PVgh  

where V, is the volume of mass m. 
The average volume raised in two seconds is 

/Tcd2v2  
v0=  8gh =13 X  10-3m3  

One hour of ram operation will raise 

V=1.7 x 10-3 X 30 X 60 3m3 
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Fig. 389 

281. The pressure of the air streaming over the roof is less than of air at 
rest. It is this surplus pressure of the stationary air under the roof that 
causes the described phenomena. 

282. Since the gas in the stream has a high velocity, the pressure inside 
the stream is below atmospheric. The ball will be supported from the bottom 
by the thrust of the stream, and on the sides by the static atmospheric 
pressure. 

283. When air flows between the disks, its velocity diminishes as it 
approaches the edges of the disks, and is minimum at the edges. The pressure 
in a jet of air is the lower, the higher its velocity. For this reason the 
pressure between the disks is lower than atmospheric. 

The atmospheric pressure presses the lower disk against the upper one, 
and the flow of the air is stopped. After this the static pressure of the air 
again moves the disk away, and the process is repeated. 

284. The pressure diminishes in a stream of a flowing liquid with an 
increase in its velocity. The velocity with which the water flows in the 
vessel is much smaller than in the tube and, therefore, the pressure of the 
water in the vessel is greater than in the tube. The velocity increases at the 
boundary between the vessel and tube, and the pressure drops. For this 
reason the ball is pressed against the screen and does not rise. 

285. The piston will cover the distance ut during the time t (Fig. 389). 
The force F will perform the work W=Fut. The mass of the liquid flowing 
out during the time t is pAut. The outflow velocity of the liquid v can be 
found from the equation Au=ay. The change in the kinetic energy of the 
liquid during the time t is 

pAut 	— 14) 

This change should be equal to the work performed by the force F: 

Fut pAut (11; c) 

Upon eliminating u, we find that 
2F 	I 

v"=— Ap 1 _ a2  
A2  

If a< A, then v= 1
/2F 

p.  
286. It was assumed 

A
in solving Problem 285 that the velocity of any 

element of a liquid in the pump is constant. The velocity changes from u 
to v when the liquid leaves the pump. This does not occur immediately after 
the force begins to act on the piston, however. The process requires some 
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time to become stable, i. e., after the particles of the liquid in the cylinder 
acquire a constant velocity. When a A this time tends to infinity and, 
for this reason, the velocity acquired by the liquid under the action of the 
constant force becomes infinitely high. 

287. Let us introduce the coordinate system depicted in Fig. 390. Accor-
ding to Torricelli's formula, the outflow velocity of a liquid is V =-17 2gy, 
where y is the thickness of the water layer in the upper vessel. Since water 
is incompressible, aV = Av, where v is the velocity with which the upper 
layer of the water lowers, A is its area, and a is the area of the orifice. 

If we assume that the vessel is axially symmetrical, then A-=-31x2, where x 
is the horizontal coordinate of the vessel wall. 

Therefore, 

	

JVC2 	a 
	— —const 

	

17-2gy 	v 

since in conformity with the initial condition, the water level should lower 
with a constant velocity. Hence, the shape of the vessel can be determined 
from the equation 

y = kx4  
where 

k= 
2ga2  

288. The pressure changes in a horizontal cross section depending on the 
distance to the axis r according to the law 

PW2 r2 P=Po 

where po  is the pressure on the axis of the vessel and p the density of the 
liquid. 

The compressive deformation of the liquid will be maximum near the walls 
of the vessel, while the tensile deformation of the revolving rod (Problem 203) 
is maximum at the axis. 

Fig. 390 Fig. 391 

n202 
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289. The excess pressure at a distance r from the 

2  axis of rotation is p=1) 2  (1) r 3  (see the solution to Prob- 

fern 288). On the other hand, this pressure is deter- 
mined by the elevation of the liquid level in this sec- 
tion above the level on the axis: p=pgh (Fig. 391). 

Upon equating these expressions, we have 
(02 

h=-
2g 

r2 

This is the equation of a parabola, and the surface 
of the liquid in the rotating vessel takes the form of 
a paraboloid of revolution. 

Fig. 392 	 290. The stirring imparts a certain angular veloci- 
ty co to the particles of the water in the glass. The 

pressures in the liquid will be distributed in about the same way as in the so-
lution to Problem 288. The excess pressure inside the liquid balances the 
pressure due to a higher level of the liquid at the edges of the glass (see 
Problem 289). 

When stirring is stopped, the velocity of rotation of the liquid near the 
bottom will begin to decrease owing to friction, the greater the farther the 
elements of the liquid are from the centre. 

Now the excess pressure caused by rotation will no longer balance the weight 
of the liquid column near the edge of the vessel. This will cause the liquid 
to circulate as shown in Fig. 392. This is why the tea leaves will gather in 
the middle of the glass. 



CHAPTER 2 

HEAT. 

MOLECULAR PHYSICS 

2-1. Thermal Expansion of Solids and Liquids 

291. At = 420° C. 
292. Reinforced-concrete structures are very strong because the expansion 

coefficient of concrete is very close to that of iron and steel. 
293. The quantity of heat transferred from one body to another in a unit 

of time is proportional to the difference between the temperatures of these 
bodies. When the temperatures of the thermometer and the surrounding objects 
differ appreciably, the volume of the mercury will change at a fast rate. 
If the temperature of the thermometer is nearly the same as that of the sur-
rounding bodies, the volume of the mercury changes slowly. 

For this reason it takes longer for the thermometer to take the temperature 
of a human body. If the warm thermometer is brought in contact with rela-
tively cool air in the room, the mercury column "drops" so fast due to the 
great temperature difference that it can be shaken down in a moment. 

294. When the scale cools down from t i  to 4=0° C, the value of each 
graduation diminishes. Therefore, the height of the mercury column read off 
the scale with a temperature of to =0°C will be different and equal H=H 1 X 
x(14-at1). The heights of the mercury columns at different temperatures and 
identical pressures are inversely proportional to the densities: 

Ho _ p 	I 
H1 Po 1 + 74 

Hi(l± 
+Id,

ccti) 
Ho = 	= H1 (1 + at i — WI) 

I  

295. The thermometer can be precooled in a refrigerator and shaken. If no 
refrigerator is available, put the thermometer into your mouth or in your 
arm-pit for a time sufficient for the entire thermometer to reach the body 
temperature, then take it out and shake it immediately. The thermometer will 
show the temperature of the body. 

296. The difference in the lengths of the rulers at a temperature t1  is 

40+0(.00-4 (1H-a.24)=f 

At a temperature t 2  this difference is equal to 

to ± aiI2)--/O (1  + azI2) ---= 

The plus sign corresponds to the case when the difference in lengths is 
constant (see Fig. 393a). The relation between the lengths and the temperature 
shown in Fig. 393b corresponds to the minus sign. 

In the first case the system of equations gives 

to a> = 
az  I = 6.8 cm; 10 (1) 	 I.-- 4.8 cm 

4.2 — al 	 a2 — al 

Hence, 
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Lo 

(a) 

(6) 	 Fig. 393 

In the second case 

2 + (ti t2)   1=206 cm 
2 + a2  (t1 t2)  1— 208.5 cm; 10 (2) — 	o (cc,— 10 (2, -= 	t1) 	 t  

When t=0° C, the iron ruler should be longer than the copper one. 
297. A possible way of suspension is depicted in Fig. 394, where I and 2 

are rods with a small coefficient of linear expansion al.  (e. g., steel rods), and 3 
are rods with a high coefficient of expansion a2  (e. g., zinc or brass rods). 
The lengths of the rods can be so selected that the length of the pendulum 
does not change with the temperature. With this aim in view it is essential 
that al  (11+ 12)=a213. 

298. When the cylinder is heated, its volume increases according to the 
same law as that of the glass: v1=vo  (1 ± yti), where y is the coefficient of 
volume expansion of glass. If the densities of mercury at the temperatures to  
and t1  are denoted by Po  and pi, we can write that' trio  ---=voPo and mi==viPi, 
where 

P1=  1+ yiti 
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This system of equations will give the following 
expression for ': _ 

m, (1 + Yeti)—mu  3X 10-5  deg–' 
mots  

The coefficient of linear expansion y4=1 =410-5  

deg – I. 
299. Let the pendulum of an accurate clock 

perform N oscillations a day. At the temperatu-
re t1  the pendulum of our clock will perform N 
oscillations in n-5 seconds (where n = 86,400 
is the number of seconds in a day) and at the 
temperature t 2  in n + 10 seconds. The periods of 
oscillations will respectively be equal to 

T 
n-5 

 and 7.2=
n +10

N  
1= 	 

N 
15 

Hence T1  — 
 n —5 

— 1 
—n . On the other 

T2 n + 10  
hand, bearing in mind that the period of en-

dulum oscillations T =2:t 	, we obtain 

TT'— 17-11  aatt, 
V r 
	  
I +a (ti — t 2) 1+ 

°4- (t1 — t2)  

Upon equating the expressions for the ratio of 
the periods, we find that 

30 
	--- 2.3x 10-5  deg–' 
(t2 —ti) n 

300. According to the law of conservation of energy, the liberated heat is 
equal to the loss of kinetic energy 

Mut (M +m)  v2  
= 2 	2 

where v is the velocity of the cart after the brick has been lowered onto it. 
This velocity can be found from the law of conservation of momentum: 

Mvo  

Mmt4, 	 Mmvt, 
In mechanical units Q =

2 (M + m) 
and in thermal units 0  

=• 2 (M + m)' 
where j is the thermal equivalent of work. 

   

• 
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Fig. 394 

2-2. The Law of Conservation of Energy. 
Thermal Conductivity 

M + m • 
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301. On the basis of the law of conservation of energy, 
aw2  k (1-102  
2 ± 2 + Q 

where 1 is the length of the cord at the moment when the washer leaves it. 
On the other hand, we can write that 

m = in22  e 	+ wi+ w2  

where W 1=f10  is the work of the force of friction acting on the washer (the 
washer travels a path of /0  relative to the cord), and W2=1(1-10) is the work 
of the force of friction acting on the cord. Therefore, 

k (1-10)2  
Q=Wi.+W2 	2 

Using Hooke's Law 

we find that 
f = k (1— lo) 

Q = flo +•ck- 

ns The work W1  is used entirely to liberate heat. Only half of the work W2=
, 

however, is converted into heat, the other half producing the potential energy 
k (1 — / o)2  

2 
302. The electric current performs the work W-=P-r. At the expense of 

this work the refrigerator will lose the heat Q 2=qH +qct, where c is the 
heat capacity of water and H is the heat of fusion of ice. According to the 
law of conservation of energy, the amount of heat liberated in the room will be 

Q1=W+ (22=PT qct gH 

since in the final run the energy of the electric current is converted into heat. 
303. The temperature in the room will rise. The quantity of heat liberated 

in a unit of time will be equal to the power consumed by the refrigerator, 
since in the final run the energy of the electric current is converted into heat, 
and the heat removed from the refrigerator is returned again into the room. 

304. It is more advantageous to use a refrigerator that removes heat from 
the outside air and liberates it in the room. The heat liberated in the room 
in a unit of time is P--1-Q 2, where P is the power consumed by the refrige-
rator and Q2  is the heat removed from the outside air in a unit of time (see 
Problem 302). 

It is only the high cost and complicated equipment that prevent the use 
of such thermal pumps for heating at present. 

305. When salt is dissolved, its crystal lattice is destroyed. The process 
requires a certain amount of energy that can be obtained from the solvent. 

In the second case, part of the intermolecular bonds of the crystal lattice 
have already been destroyed in crushing the crystal. For this reason, less 
energy is required to dissolve the powder and the`water will be higher in 
temperature in the second vessel. The effect, however, will be extremely 
negligible. 
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306. The quantity of heat removed from the water being cooled is it/2c (t2 — 0), 
where 0 is the final temperature. The cold water receives the heat triic (0 —t1). 
The heat imparted to the calorimeter is q (0 — t1). On the basis of the law 
of conservation of energy, 

'nip (0-11)+q  (0 —ti)=m2c (t2-0) 

whence 
0 (mill + mst2) 	4° 

(rni ±m2) c+ q  

307. The power spent to heat the water in the calorimeter Is 
pVct.1 

ri 	T  

where p is the density of the water, c is its specific heat, and J=4.18 J/ca 1 
is the mechanical equivalent of heat. The sought value is 

Q  P—Pli  pVctJ  5  

308. Q= —a. 
(T1 — T o)At = 9,331 kcal 

309. The quantity of heat Q passing through the first panel a second is 
T2 	1 Q 	di T   A, where A is the area of a panel. Since the process is statio- 

nary, the same amount of heat passes through the second panel: Q =7 2 
Tod-2  T2 A.  

T2 — T1  '1— .1 TO —7.2  A that We find from the condition 2t1 	di 	 d2  

X2diTo Al(12Ti  

A'2d1+ X1d2 

310. Upon inserting the temperature T2 into the expression for Q (see Pro-
blem 309) when di  =d2-=d, we find that 

22,1%2 To —T1  A  Q = 
22,1%2 
	2d 

Therefore, the coefficient of thermal conductivity of the wall is 
= 

2■,2 
311. The quantity of heat passing a second through the cross-sectional areas 

of the blocks with coefficients of thermal conductivity Xi  and a2is  equal, 
respectively, to 

P PT 	
per cent 

Q1=—X1  (Ti —T 0) A and Q 2  =--d (Ti —T o) A 

The quantity of heat passing through two blocks whose entire cross-sectio-
nal area is 2A is 

(2=Q+ Q2= x1+2  x27.1 T°  2A 
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Hence, the coefficient of thermal conductivity of the wall is equal to 

2 

312. The coefficients of thermal conductivity of walls I and II are equal to 

2 221X2,/=2"1+ 221X22  X'  and Xi/  = 

(see the solutions to Problems 310 and 311). It follows from the obvious ine-
quality (2,i  —A.2)2  > 0 that 

Oq+k2)2  > 
Hence, 

ki +t,2 	2  
2 	

> k2X.1%
l+k2 

I. e., 	
> III 

313. The quantity of heat supplied by the heater into the water through 
the pan bottom is 

Q= d (T —T1) A= mr 

where T1  is the boiling point of the water and r is the specific heat of va-
porization. 

Therefore, 
mrd 

T 

2-3. Properties of Gases 

314. The removable cap acts as a pump and under it a rarefied space is 
formed that sucks out the ink. The orifice serves to maintain a constant pres-
sure under the cap. 

315. Assuming that the temperature remains constant, let us app ly Boyle's 
law to the volume of air above the mercury: 

(poi —p,) (1-748 mm)=-(Poz — /92) (1-736  mm) 

whence 1=764 mm. 
316. In a position of equilibrium f —G—F =0, where f is the force of 

expulsion equal to yh1A (here y is the specific weight of the water, and h1  
the height of the air column in the tube after submergence). In our case the 
force of expulsion is built up by the difference of pressure on the soldered 
end of the tube from below and from above: f = 	—(po+vh) A, where pi  
is the air pressure in the tube after submergence. According to Boyle's law, 

It follows from this system of equations that 

A r 	  
E= 2

- ji (po  vh)2 + 4po  y/ — (po  yh)] —G=8.65 gi 
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P 

R7 

   

   

   

47 	Fig. 395 

317. First, the pressure p of the air will decrease approximately isother-
mally owing to the drop of the level of the water in the vessel. This will 
continue until the total pressure at the level of the lower end of the tube 
becomes equal to the atmospheric pressure po; i. e., pd-pgh=p0, where h is 
the height of the water column in the vessel above the level of the lower 
end of the tube. From this moment on air bubbles will begin to pass into the 
vessel. The pressure at the level of the lower end of the tube will remain 
equal to the atmospheric pressure, while the air pressure p=po —pgh will 
grow linearly with a drop in the water level. The water will flow out from 
the vessel at a constant velocity. 

The relation between p and Q is shown in Fig. 395. The negligible fluctu-
ations of pressure when separate bubbles pass in are not shown in Fig. 395. 

318. When the air is being pumped out of the vessel, the pressure in the 
poV  

vessel after one double stroke will become equal to pi—
V -Fvo 

. After the 

second double stroke ALI/ =p2 (V -Ho) and, consequently, p2=p0  

etc. 
After n double strokes the pressure in the vessel will be 

P‘ =Po 

 

/  V  a 
1/ + Vo 

When air is being delivered into the vessel, after n double strokes the 
pressure will be 

P=P 
  _L ponvo=p0  (  V  y _1  nvo } 

' V 	V -Fuo  -1—  V 

Here p > pc, at any n, since during delivery the pump during each double 
stroke sucks in air with a pressure p0, and during evacuation vo  of the air is 
pumped out at pressures below po. 

319. Applying Boyle's law to the two volumes of gas in the closed tube, 
we obtain 

L-111 
	

L— 
p 	- =-- pi  (—T 

1
- — Al) A 

1 L— 
p —I— A= p2  (--

L-1 
 d - AI) A 

131=P2-Fill 

i 	V  Ni 2  

VH—  VO ) ' 



HEAT. MOLECULAR PHYSICS 	 275 

Here p is the pressure in the tube placed horizontally, Pi  and p2  are the 
pressures in the lower and upper ends of the tube placed vertically when its 
ends are closed, y is the specific weight of the mercury, A is the cross-sectio-
nal area of the tube. 

Hence, the initial pressure in the tube is 
P=.__ 1 10  _Al) 

1 2 0/ /o f 

Here, for the sake of brevity we have designated 
L1 

2 
— by I. 

If one end of the horizontal tube is opened, the pressure of the gas in the 
tube will become equal to the atmospheric pressure. 

According to Boyle's law, pl0 A=y1 liA (here H is the atmospheric pres-
sure), and, therefore, 

	

= 110 	Al 
1  2H (Al — 20  

The mercury column will shift through the distance 

6'11=4-11=-2 7—  
[2ii 	( lo  

T/ AlA/ /0  LI 

For the mercury not to flow out of the tube, the following condition is required 

 
AJ —  V (

H\ 	2
7.) +1+  

When the upper end of the vertical tube is opened 

pl 0 A =1? (II + 1)12A 
Hence, 

	

no  	1  
A/2=--/o-12=  (H + 1) L

2H ( 	A 

	

A/ 	/0  f 

The mercury will not flow out of the tube if 

/0
l 	

(1-1+/)}2 +1+   (H+1) 
1 

When the lower end is opened 

pl0 A--=1? (H —1)13 A 
whence 

	

110  	[21/( 	 2  

	

10 	Al 	] 
Al3 = 	

13  = 2 (H-1) L 1 	Al 10  ) 

The following condition should be satisfied to prevent the mercury column 
from being forced out of the tube 

10  
I
,
/ 
 4 (H 1)2 

 +1+   
2 (H —1) 

1 
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320. Since for one gramme-molecule of any gas at p= 1 atm and T=237° K 
V 

we have VP- =22.4 litres, then for one mole C=
p  
—Y. = 0.082 lit • atm/mole• deg. 

This constant is usually denoted by R and called the universal gas constant. 
The values of R in the various systems of units are: 

R=0.848 kgf-m/mole • deg = 8.3 X 107  erg/mole • deg =1.986 cal/mole • deg 

321. At a fixed pressure and temperature the volume occupied by the gas 
is proportional to its mass. A volume of VI, corresponds to one gramme-mo, 

lecule and a volume of V to an arbitrary mass m. Obviously, V p.=1, 	, where ji 

is the molecular weight expressed in grammes. 
Upon inserting this expression into the equation of state for one gramme-

molecule, we have 

PV= RT 
P,  

322. If the attraction between the molecules suddenly disappeared, the 
pressure should increase. To prove this, let us mentally single out two layers 
1 and II inside a fluid (Fig. 396). The molecules penetrating from layer I 
into layer II owing to thermal motion collide with the molecules in layer 
II, and as a result this layer is acted upon by the pressure forces pi  that 
depend on the temperature. The forces of attraction act on layer II from the 
side of the molecules in layer I in the opposite direction. The resultant pres-
sure of layer 1 on layer II p=pi —pi, where pi  is the pressure caused by 
the internal forces of attraction. When pi disappears, the pressure grows. 

323. If the forces of attraction between 
Pt 

	

	the molecules disappeared the water would 
be converted into an ideal gas. The pressure 

cP 	 can be found from the equation of state of 
an ideal gas: 

     

m RT 
p= V 

IA 	
1,370 atm 

     

     

      

     

     

     

     

     

     

     

     

     

     

     

Fig. 396 

   

Fig. 397 
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324. Let us separate a cylindrical volume of the gas in direct contact 
with the wall (Fig. 397). The forces acting on the side surface of the cylin-
der are mutually balanced. Since the volume is in equilibrium, the pressure 
on the gas from the side of the wall should always be equal to the pressure 
on the other base of the cylinder from the side of the gas. We can conclude, 
on the basis of Newton's third law, that the pressure of the gas on the wall 
is equal to the pressure inside the vessel. 

325. The pressure in the gas depends on the forces of interaction between 
the molecules (see Problem 322). The forces of mutual interaction of the 
molecules and of the molecules with the wall are different, however. Hence 
the pressures inside the gas and at the walls of the vessel (see Problem 324) 
can be identical only if the concentrations are different. 

326. Since the volume is constant 

P2 = T2 or  P2—  Pi — T2 - T1  =- 
Pi 	T 	PI 	

0.004 
T1  

Hence, 

T — T2  - T1  —250°K 
0.004 

327. From Archimedes' law, rng+G=-7V, where y is the specific weight 
of water and V is the volume of the sphere. The equation of state gives 

(oo + yh) V =--fn  RT 

Upon deleting V from these equations, we find that 

Gµ(Po +  m=
yRT —11g (po±yh)

=-_—_- 0.666 g 

and equilibrium will be unstable. 
328. When the tube is horizontal, the device cannot be used as a thermo-

meter, since the pressures exerted on the drop from the right and from the 
left will be balanced at any temperature. 

If the tube is placed vertically, the pressure of the gas in the lower ball 
will be higher than in the upper one by a constant magnitude. If the volume 
is the same, the pressure will grow with a rise in the temperature the faster, 
the higher is the initial pressure. To maintain a constant difference of the 
pressures in the balls, the drop will begin to move upward, and in this case 
the device can be employed as a thermometer. 

329. Since the masses of the gas are the same in both ends and the piston 
is in equilibrium, 

V2=  T 
V 1 	T 1  

V 2  T 2 =—Ti -= 330°  K 

Applying Boyle's law to the volume of the gas whose temperature does not 
change, we obtain 

=P°V° =-- 1.05 atm 

Hence, 
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330. When the external conditions are the same, equal volumes of various 
gases contain an equal number of molecules (Avogadro's law). Therefore, 
Vi : V2 :V3:1/4 = NI : N 2: N3 : N4, where Vi is the volume of a gas and Ni  the 
number of molecules of this gas. 

The mass of a certain amount of a gas is proportional to the number of 
its molecules and the molecular weight of the gas: 

mi. :M2: ins: 	= N1111: N2112: N3113• N4114 

On the other hand, denoting the relative volume of this gas in per cent 
V 

by n —i 100%, we have 
V 

111 .  V2 V3  .V4 _Ni.  N2.  A13 .  N4 

	

1/ . 17 . 1/ 'V 	N'N'N•N 

If the composition of air in per cent is described by n;=—mmt  100% (com-

position by weight), we can obtain from the previous ratios that 

n • „, . „• . 	m2 .1123 . m4 	N1111. N2112 . N3R3 . N4114  
=1/111.1 :n2112: n3113: n4114 t71 172 171 	NNNN 

Hence, 
ni  n; --En;±  

n n41-1,4 

Remembering that n; + n; + n; + n'd  100 per cent, we obtain 
nitti100% 

ni- 
+ n2112 -1-  n3123+ n4I14 

Therefore, 
n1=75.52%; n2 =23.15%; n3 =1.28%; n; = 0.05% 

331. For each gas, the equation of state can be written as follows: 

RT 
1

• 	

-11 

• = m2 RT 
112 

p3V = 
m3

RT 
113 

RT 
1

• 	

14 
Hence, 

	

(1014 -P2+133+ P4)V=Htn 	 n  RT 

	

RI 	112 	113 	114 

On the other hand, for a mixture of gases pV = —
m 
 RT, where 

± m2-1-m3-1-m4 m3 -1- - tn4  and IA is the sought molecular weight. 

m _=_- + 
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palm 
7 

025 

7 	2 	3 	4 Kat Fig. 398 

According to Dalton's law, p=p1 --1-132±p3±p4• Therefore, 

tri1±n12+ tn3+In4 +  n2+ n3  ± n4   — 28 966 

	

= 	, 	, 	, 	, 
mi 	m2 	mz 	m4 	ni  nz  nz 	n4 
114 	I-1, 2 	Ps 	I-1,1 	[Li 	1L5 	113 	124 

Mi 
where ni-=—

m 
100% is the composition of the air in per cent by weight. 

The result obtained in the previous problem allows us to find p. from the 
known composition of the air by volume 

1-1,04±1-1,2/22+113n3-1-1L4n4_  28.966 
/21  + n2 + n3  n4  

332. On the basis of Clapeyron's equation, 

nzRT pRT  

	

µ= 	= 
	
_72 g/mole 

pV 	p 

The sought formula is C5 F-112  (one of the pentane isomers). 
333. When the gas is compressed in a heat-impermeable envelope, the 

work performed by the external force is spent to increase the internal energy 
of the gas, and its temperature increases. The pressure in the gas will in-
crease both owing to a reduction in its volume and an increase in its tempe-
rature. In isothermal compression the pressure rises only owing to a reduc-
tion in the volume. 

Therefore, the pressure will increase more in the first case than in the 
second. 

334. A diagram of p versus V is shown in Fig. 398. The greatest work 
equal to the hatched area in Fig. 398 is performed during the isothermal 
process (1-2). 

The temperature does not change on section 1-2, and is halved on sec-
tion 2-3. After this the temperature rises, and T4 =7.1  when V4 =-1 lit. 

335. Line 1-2 is an isobaric line (Fig. 399). The gas is heated at a con-
stant pressure, absorbing heat. 
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Line 2-3 is an isochoric line. The 
gas is cooled at a constant volume, 
the pressure drops and heat is libera-
ted. 

Line 3-1 is an isothermal line. The 
volume of the gas diminishes at a 
constant temperature. The pressure ri-
ses. The gas is not heated, although it 
is subjected to the work of external 
forces. Hence, the gas rejects heat on 
this section. 

336. The amount of heat liberated 
per hour upon combustion of the meth-  	 ane is 

Fig. 399 	 Q 	I oil 
1—°P  RT 

where u=16 g/mole is the mass of one mole of the gas and T=1+273° = 
= 284° K is its temperature. The amount of heat received by the water in 
one hour is 

ziD2  
vpc (t 2 —t1) 3,600 

where p 1 g/cm3  is the density of the water and c = 1 cal/deg • g is the 
specific heat. 

According to the condition, 

Q2 Q =1=0.6 

Upon solving these simultaneous equations, we find that 

92P1/2111  = 93°C 
t2  = ti  900:-ED2opcRT 

337. In the initial state p1V=m RT1, where ui  is the molecular weight 

of the ozone. In the final state, p2V=
11
-

2 
RT2, where 1.12  is the molecular 

weight of the oxygen. The heat balance equation gives 

m ==cv  m (7,2-7,1)  
111. 	112 

Upon solving these simultaneous equations, we find that 

Pl cvT1 112 

338. In view of the linear dependence of pressure on volume we can write: 
p=aV +b. 
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.1176:2" 

Fig. 400 

The constants a and b can be found from the condition of the problems 

0.5 atm/lit 
- v 1 — v 2 

b — P2111 —  MY 2  — 20 atm 
171—V2 

Upon inserting the expression for p into the equation of state of an ideal 

gas pV=— RT =const T, we find that 

aV 2  bV = const T 	 (1) 

The relation between T and V (see Fig. 400) is a parabola. The curve 

reaches its maximum at Vmax = — -272 = 20 lit when the roots of quadratic 

equation (1) coincide. Here 

Pmax=alimax-+b=-Tb= 10 atm 

Therefore, 

T 
_Pmaxl max11  — 490°K max—  mR 

339. The energy of a unit volume of gas u1=CTp, where p is the density of the 
pV 

air. According to the equation of state of an ideal gas, T, = n B (B is a constant). 

Since p=v- , then pT=-ITI3  . Therefore, tzi=y p is determined only by the 

pressure. The energy of all the air in the room is also determined only by 
the pressure. The pressure in the room is equal to the atmospheric pressure 



282 ANSWERS AND SOLUTIONS 

h A 

A 

T 	Fig. 401 

and does not change when the air is heated. For this reason the energy of 
the air in the room also does not change. As the air is heated, some of it 
flows outside through cracks, and this ensures a constancy of energy despite 
the heating. The energy would increase with heating only in a hermetically 
closed room. 

340. On the basis of the equation of state, the sought mass of the air 
will be 

Am—
RV T2-Ti 

1.3 kg 
T i T 2  

341. Let the tube first be near the bottom in a state of stable equilibrium. 
Upon heating, the air pressure in the tube and, correspondingly, the force of 
expulsion increase. At a certain temperature T 1  the tube begins to rise to the 
surface. Since the pressure of the water gradually decreases upwards from the 
bottom, the volume of the air in the tube and, therefore, the force of expul-
sion continue to increase. The tube will quickly reach the surface of the 
water. Upon a further increase in the temperature, the tube will be at the 
surface. If the temperature lowers, the tube will not sink at T 1, because it 
has a great reserve of buoyancy caused by an appreciable increase in the 
force of expulsion as the tube rises. It is only when T 2  < T1  that the tube 
begins to sink. Here the force of expulsion will drop because, as submergen-
ce continues, the air in the tube will occupy a smaller volume. The tube 
will reach the bottom very quickly. 

The relation between the depth of submergence h of the tube and the 
temperature T is shown in Fig. 401. 

The tube will always be at the bottom when T < T 2  and at the surface 
when T > T 1. If T 2  <T < T1, the tube will be either at the bottom or at 
the surface, depending on the previous temperatures. 

342. The gas expands at a certain constant pressure p built up by the 
piston. The work W =p (V 2 —V1), where V1  and V 2  are the initial and final 
volumes of the gas. By using the equation of state, let us express the pro-
duct pV through the temperature T. Then, 

W = R ( T 2  — T1 ) 33.9 kgf-m 17  
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343. The heat imparted to the gas is used to heat it and perform mecha-
nical work. According to the law of conservation of energy, 

Q= C v (T 2 — 7' +11  R (T2— 7' =t-L1  (7.2 — T 1) (Cy+ R)---=' 354.6 cal 
I-t 

2-4. Properties of Liquids 

344. It is more difficult to compress a litre of air, since more work has 
to be done in this case. 

Water has a small compressibility, and a small reduction in volume is 
required to increase the pressure inside it to three atmospheres. 

345. A maximum thermometer can be made as follows. A small unwettable 
freely moving body is placed inside the tube of a horizontal thermometer 
(Fig. 402). The position of the body will show the maximum temperature, 
since the body will move along the tube when the liquid expands and will 
remain in place when the liquid in the tube is compressed. 

To make a minimum thermometer, a wettable body should be placed 
inside the liquid in the tube. 

346. When an elastic rubber film is stretched, the force of tension depends 
on the amount of deformation of the film. The force of surface tension is 
determined only by the properties of the liquid and does not change with 
an increase of its surface. 

347. The surface tension of pure petrol is less than that of petrol in 
which grease is dissolved. For this reason the petrol applied to the edges 
will contract the spot towards the centre. If the spot itself is wetted, it will 
spread over the fabric. 

348. Capillaries of the type shown in Fig. 403 form in a compact surface 
layer of soil. They converge towards the top, and the water in them rises to 
the surface, from which it is intensively evaporated. Harrowing destroys this 
structure of the capillaries and the moisture is retained in the soil longer. 

349. Leather contains a great number of capillaries. A drop of a wetting 
liquid inside a capillary having a constant cross section will be in equilib-
rium. When the liquid is heated, the surface tension diminishes and the 
liquid is drawn towards the cold part of the capillary. The grease will be 
drawn into the leather if it is heated outside. 

350. The grease melts, and capillary forces carry it to the surface of the 
cold fabric placed under the clothing (see Problem 349). 

351. The end of the piece of wood in the shade is colder, and the capil-
lary forces move the water in this direction. 

352. The hydrostatic pressure should be balanced by the capillary pres- 

sure: pgh=.- —
d

. Hence, h = 30 cm. 

353. The following forces act vertically on section abcd of the film: weight, 
surface tension Fab applied to line ab and surface tension Fad applied to cd. 

.1- 111111111111110 
1./.7  Fig. 402 
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Equilibrium is possible only if Fab 
is greater than Fcd by an amount 
equal to the weight of the section 
of the film being considered. 

The difference between the forces 
of surface tension can be explai-
ned by the difference in the concent-
ration of the soap in the surface 
layers of the film. 

354. The force of expulsion ba-
lances the weight of the cube mg 
and the force of surface tension 4acc, 

Fig. 403 i.e., a2xpg=mg+4aa, where x is 
the sought distance. Therefore, 

mg+ 4aa 
2.3 cm 

	

x- 	
a2 pg 

The forces of surface tension introduce a correction of about 0.1 cm. 

355. The water rises to a height h= 
2a
wr 

. The potential energy of the wa-

ter column is 
mgh —  

2 	Pg 

4acta 
The forces of surface tension perform the work W =2nroch=— . One half 

Pg 
of this work goes to increase the potential energy, and the other half to 
evolve heat. Hence, 

Q  
Pg 

356. The pressure inside the liquid at a point that is at a height h above 
a certain level is less than the pressure at this level by pgh. The pressure 
is zero at the level of the liquid in the vessel. Therefore, the pressure at 
the height h is negative (the liquid is stretched) and is equal to p= —pgh. 

357. The forces of attraction acting on a molecule in the surface layer 
from all the other molecules produce a resultant directed downward. The 
closest neighbours, however, exert a force of repulsion on the molecule which 
is therefore in equilibrium. 

Owing to the forces of attraction and repulsion, the density of the liquid 
is smaller in the surface layer than inside. Indeed, molecule I (Fig. 404) is 
acted upon by the force of repulsion from molecule 2 and the forces of 
attraction from all the other molecules (3, 4, . . .). Molecule 2 is acted upon 
by the forces of repulsion from 3 and 1 and the forces of attraction from the 
molecules in the deep layers. As a result, distance 1-2 should be greater 
than 2-3, etc. 

This course of reasoning is quite approximate (thermal motion, etc., is 
disregarded), but nevertheless it gives a qualitatively correct result. 

An increase in the surface of the liquid causes new sections of the rare-
fied surface layer to appear. Here work should be performed against the for-
ces of attraction between the molecules. It is this work that constitutes the 
surface energy. 



HEAT. MOLECULAR PHYSICS 
	

285 

358. The required pressure should exceed the atmospheric pressure by an 
amount that can balance the hydrostatic pressure of the water column and 
the capillary pressure in the air bubble with a radius r. 

2a 
The excess pressure is p+pgh+—

r
=4,840 dyne/cm2. 

359. Since in this case p gh < —
2a 

, the water rises to the top end of the 

tube. The meniscus will be a part of a spherical segment (Fig. 405). The 
radius of curvature of the segment is determined from the condition that the 
forces of surface tension balance the weight of the water column: 
23-ira cos T=Ttr2hpg. 

Hence, cos p =rhpg 
 . It is obvious from Fig. 405 that the radius of cur-

2a 
2a 

vature of the segment R =-- cos cp 	=hgp =0.74 mm. 

360. When the tube is opened, a convex meniscus of the same shape as 
on the top is formed at its lower end. For this reason the length of the 
water column remaining in the tube will be 2h if l 	h, and l+h if 1.<h. 

361. (1) The forces of surface tension can retain a water column with a 
height not over h in this capillary tube. Therefore, the water will flow out 
of the tube. 

(2) The water does not flow out. 
The meniscus is convex, and will 
be a hemisphere for an absolutely 
wetting liquid. 

(3) The water does not flow out. 
The meniscus is convex and is less 
curved than in the second case. 

(4) The water does not flow out. 
The meniscus is flat. 

0 

0 

0 

_ — 
Fig.  404 	 Fig. 405 
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(b) 

(5) The water does not flow out. The meniscus is concave. 
362. The pressure p inside the soap-bubble with a radius R exceeds the 

atmospheric pressure by the amount of the double capillary pressure, since 

the bubble film is double: 	
4a 

p=p0+—

R • 

The pressure inside the bubble with a radius R together with the pressure 
of the section of the film between the bubbles should balance the pressure 

4a. 4a 4a 
inside the smaller bubble. Therefore, —

R

, where Rx  is the ra- 

- 	 dius of curvature of section AB. Hence, R x R
Rr
—r  •  

At any point of contact the forces of surface tension balance each other 
and are mutually equal. This is possible only when the angles between them 
are equal to 1200. 

363. According to the law of conservation of energy, the cross will not 
rotate. The components of the forces of surface tension are balanced by the 
forces of hydrostatic pressure, since the hydrostatic pressure of the water 
higher than the level in the vessel is negative (see Problem 356). 

364. If the bodies are wetted by water, its surface will take the form shown 
in Fig. 406a. Between the matches, above level MN, the water is tensioned 
by the capillary forces, and the pressure inside the water is less than the 
atmospheric pressure. The matches will be attracted toward each other, since 
they are subjected to the atmospheric pressure on their sides. 

For unwetted matches, the form of the surface is shown in Fig. 406b. The 
pressure between the matches is equal to the atmospheric pressure and is 
greater than the latter on the sides below level MN. 

Fig. 406 
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=M 	 

(b)  

In the last case two various forms of the surface correspond to the wetting 
angles when the matches approach each other (Fig. 407). One of them, howe-
ver, cannot be obtained in practice (Fig. 407a). The pressure at level KL 
should be the same everywhere. In particular, the pressure of columns AB 
and CD of different height should be the same. But this is impossible, since 
the position of the column can be so selected that their surfaces are identical 
in form. In this case the additional pressure of the surface forces will be the 
same, and the hydrostatic pressure different. As a result, when the matches 
approach each other, the surface of the water between them will tend to 
assume a horizontal form (Fig. 4076). In this case, as can be seen from the 
figure, the pressure between the matches at level MN is equal to the atmos-
pheric pressure. The pressure exerted from the left on the first match is also 
equal to the atmospheric pressure below level MN. The pressure acting 
on the second match from the right is less than the atmospheric pressure 
above level MN. As a result, the matches will be repulsed. 

2-5. Mutual Conversion of Liquids and Solids 

365. Water will freeze at zero only in the presence of centres of crystalli-
zation. Any insoluble particles can serve as such centres. When the mass 
of the water is great, it will always contain at least one such centre. This 
will be enough for all the water to freeze. If the mass of the water is divi-
ded into very fine drops, centres of crystallization will be present only in a 
comparatively small number of the drops, and only they will freeze. 

Fig. 407 
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366. The water and the ice receive about the same amount of heat in a 
unit of time, since the difference between the temperatures of the water and 
the air in the room is approximately the same as that for the ice and the 
air. In 15 minutes the water receives 200 calories. Therefore, the ice receives 
8,000 calories in ten hours. Hence, H=80 cal/g. 

367. v=2,464 m/s. 
368. The heat balance equations have the form 

Q1= miciAt C At 
At 	 At Q 2 	 /72111+ tnic2 —+CAt 
2 	 2 

where m1  and c1  are the mass and heat capacity of the ice, C Is the heat 
capacity of the calorimeter, c2  is the heat capacity of the water, and 

= 2`C. 
Hence, 

Q1 ( 2c c, 	H 	n _Q2  

	

CiAt 	2  ) 
C 	

-.-
150  cal/deg 

	

c2  At At 	H 
ci  2 	2 	ci  

369. The amount of heat that can be liberated by the water when it is 
cooled to 0°C is 4,000 cal. Heating of the ice to 0°C requires 12,000 cal. 
Therefore, the ice can be heated only by the heat liberated when the water 
freezes. One hundred grammes of water should be frozen to produce the 
lacking 8,000 calories. 

As a result, the calorimeter will contain a mixture of 500 g of water and 
500 g of ice at a temperature of 0°C. 

370. The final temperature of the contents in the vessel is 0=0°C. The 
heat balance equation has the form 

mici — 0) = m2c2 — t2)i-  (m2-1113) H 

where tn, is the sought mass of the vessel and c2  is the heat capacity of 
the ice. Therefore, 

mace  (8 —  t2) + (m2 — m3) H 
—200 g mi= 	(ti — 0) 

371. (1) The sought mass of the ice m can be found from the equation 
mH = Mc (-0. Hence, m=100 g. 

(2) The heat balance equation can be written in this case as MH =Mc (—t). 
Hence, t = —80° C. 

372. The melting point of the ice compressed to 1,200 atm will drop by 
At =8.8° C. The ice will melt until it cools to —8.8°C. The amount of heat 
Q =mi ll is absorbed, where m1  is the mass of the melted ice and H is the 
specific heat of fusion. From the heat balance equation tniH=mcAt, where 
c is the heat capacity of the ice. 

Hence, 
crrtAt 	5.6 g 

inl=  H 
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2-6. Elasticity and Strength 

A  
373. F=  AE  (R—r)  =60 kgf. 

374. When the rod with fastened ends is heated by t degrees, it develops 
an elastic force F equal, according to Hooke's law, to 

AE 	Al  
F = 	— AEat 

where E is the modulus of elasticity of steel and a is its coefficient of ther-
mal expansion. 

If one of the rod ends is gradually released, the length of the rod will 
increase by Al =lat. The force will decrease linearly from F to zero and its 
average magnitude will be F/2. 

1 
The sought work W =L Al 

= 2 
— AEla2t2. 

2 
M 

375. The tension of the wire T=2 

	

	
It follows from Hooke's law 

sin 
g 
a  

A/ 
that T= 	EA. 21 

Since A/ =2 ( 	 /), then T —
1 —cos a 	Mg 

At small an- 
c 

	

os a 	 cos a
. 

Bearing this in mind, we 

V Mg 
a  = AE 

376. The rod heated by At would extend by A/ = /octAt in a free state, 
where /0  is the initial length of the rod. To fit the heated rod between the 
walls, it should be compressed by Al. In conformity with Hooke's law, 

Al= 
IF 

Therefore, F = E AaAt =110 kgf. 
377. When the rods are heated in a free state, their total length will 

increase by Al = A/1  ± A/2  =(a111+ a21 2) t. 
Compression by the same amount Al will reduce the lengths of the rods 

by Ali and A1'2, where Ai; A/;=A/. This requires the force 

	

F— 
 E1A 	E 2AAI;  
 — 1 

12 

Upon solving this system of equations, we find that 

F =_ c(1.11-1-a2/2  At  
I- I2 

	

E, 	E2  
The rods will act upon each other with this force. 

a2 
gles, sin a a, and cos a= 1 —2 sine 2 —

a 	
1— 

2  
obtain 

EA 

10-1865 
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378. It is obvious from cons iderations of symmetry that the wires will 
elongate equally. Let us denote this elongation by Al. On the basis of 

Hooke's law, the tension of a steel wire F5=
41 

AEs  and of a copper one 

AI 
Fe = AE, 

• 
It follows that the ratio between the tensions is equal to the ratio between 

he respective Young's moduli 

	

Fc  E 	1 c 
Fs  Es  2 

In equilibrium 2Fc+ Fs=mg- 
Therefore, Fc=7 

mg 
4---=25 kgf and Fs=2Fc=50 kgf. 

379. On the basis -of Hooke's law, 
Al 	 Al 

	

AcEc  and 	AiEt 

It follows that ---LF  =2. 
F 

Thus, two-thirds of the load are resisted by the concrete and one-third by 
the iron. 

380. The compressive force F shortens the tube by 
Fl

and the tensile AcE, 

force F extends the bolt by 
Fl

AsEs  . 

The sum 
Fl 	

is equal to the motion of the nut along the bolt: 
AsEs+ 

Fl 
AcE, 

Fl 	Fl  
AsE,

+ 
11,,Ec

=h 

Hence, 
h  ASES ACEC  

F = 
AsEs+ A,E, 

381. Since the coefficient of linear thermal expansion of copper a, is grea-
ter than that of steel as, the increase in temperature will lead to compression 
of the copper plate and tension of the steel ones. In view of symmetry, the 
relative elongations of all the three plates are the same. Denoting the comp-
ressive force acting on the copper plate from the sides of the steel plates 

by F, we shall have for the relative elongation of the copper plate: Al  

F 
act—  AE, • 
Either steel plate is subjected to the tensile force F/2 from the side of 

the copper one. Upon equating the relative elongation of the plates, we 
obtain: 

ac
t— AE;=a51+  2AEs 

T 
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On upper nut 

8 Fig. 408 

Hence 
2AE E (oc  —cc  )t 

F=__ 	cs 	s  
2E,±E, 

mv2  
382. When the ring rotates, the tension T..=-27–r  appears In It (see Prob-

lem 201). For a thin ring m=2nrAp, where A is the cross section of the 

ring. Therefore, --x=pv2. 

Hence, the maximum velocity v= 	 m/s.  

383. Initially, an elastic force F, acts on each nut from the side of the 
extended bolt. 

The load G <F, cannot increase the length of the part of the bolt bet-
ween the nuts and change its tension. For this reason the force acting on the 
upper nut from the side of the block will not change as long as G<F0. 

The lower nut is acted upon by the force Fo  from the side of the top part 
of the bolt and by the force G from the bottom part. Since the nut is in 
equilibrium, the force exerted on it from the block is F=F0 —G. Thus the 
action of the load G < F, consists only in reducing the pressure of the lower 
nut on the block. 

When G > Fo, the length of the bolt will increase and the force acting 
on the lower nut from the side of the block will disappear. The upper nut 
will be acted on by the force G. 

The relation between the forces acting on the nuts and the weight of the 
load G is shown in Fig. 408. 

2-7. Properties of Vapours 

384. The calorimeter will contain 142 g of water and 108 g of vapour at 
a temperature 100° C. 

385. By itself, water vapour or steam is invisible. We can observe only 
a small cloud of the finest drops appearing after condensation. When the gas 
burner is switched off, the streams of heated air that previously enveloped 

10* 
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the kettle disappear, and the steam coming out of the kettle is cooled and 
condenses. 

386. On the basis of the equation of state of an ideal gas p= 	 =  
V RT 

If the pressure is expressed in mm Hg and the volume in m3, then R = 
760 x 0.0224 mm Hg • m3  

273 	deg • mole 
273 

Therefore, p =1.06 p — . At temperatures near room temperature, p=p g/m3. 

387. It seems at first sight that the equation of state of an ideal gas can-
not give values of the density or specific volume of saturated vapours close 
to the actual ones. But this is not so. If we calculate the density of a ya- 

m 	tip 
pour by the formula p= = — 

V RT 
and compare the values obtained with 

those in Table 2 (p. 85), we shall observe good agreement. 
This is explained as follows. The pressure of an ideal gas grows in direct 

proportion to the temperature at a constant volume of the gas and, there-
fore, at a constant density. The relation between the pressure of saturated 
vapours and the temperature depicted in Fig. 146 corresponds to a constant 
volume of a saturated vapour and the liquid which it is in equilibrium 
with. As the temperature increases, the density of the vapour grows, since 
the liquid partially transforms into a vapour. An appreciable increase in the 
mass of the vapour corresponds to a small change in the volume it occupies. 
The pressure-density ratio becomes approximately proportional to the tempe-
rature, as with an ideal gas. 

The Clapeyron-Mendeleyev equation mainly gives a correct relationship 
between p, V and T for water vapour up to the values of these parameters 
that correspond to the beginning of condensation. This equation, however, 
cannot describe the process of transition of a vapour into a liquid and indi-
cate the values of p, V and T at which this transition begins. 

388. At 30° C the pressure of saturated vapours p = 31.82 mm Hg. Accor-
ding to the equation of state of an ideal gas, 

	

m 	n,„ , 
V = 	T hut) lit 

	

ILL 	P 

389. When the temperature gradually increases, the pressure of the water 
vapours in the room may be considered constant. 

The vapour pressure p=   
100 

 corresponds to a humidity of tvo  = 10 per 

cent, where p0 -= 12.79 mm Hg is the pressure of the saturated vapours 
at 15° C. At a temperature of 25° C the pressure of the saturated vapours is 
p, =23.76 mm Hg. For this reason the sought relative humidity is 

woPo =5.4o/0  — —P— 1000/0= 

390. According to the conditions of the problem, the relative humidity 
outside and in the room is close to 100 per cent. The pressure of saturated 
water vapours outside, however, is much smaller than in the room, because 
the temperature of the air in the room is higher and much time is required 
to equalize the pressures owing to penetration of the vapours outside through 
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slits. Therefore, if the window is opened, the vapours will quickly flow out 
from the room and the washing will be dried faster. 

391. (1) The water levels will become the same as in communicating 
vessels. The water vapours in the left-hand vessel will partly condense, and 
some water will evaporate in the right-hand vessel. 

(2) The levels will become the same because the vapours will flow from one 
vessel into the other. 

At a given temperature the pressure of saturated vapours is identical in 
both vessels at the surface of the water and will decrease at the same rate 
with height. For this reason the pressure of the vapours in the vessels at the 
same level is different. This causes the vapour to flow over and condense in 
the vessel with the lower water level. 

392. When t 2 =30° C, the pressure of the vapours is equal to the pressure 
p20 of saturated vapours (p20=31.8 mm Hg) only if the air pressure is 10 at. 

Upon isothermal reduction of the air pressure to one-tenth, the volume of 
the air will increase ten times. Hence, at atmospheric pressure and a tempe-
rature of 3'0° C, the pressure of the water vapour is p=3.18 mm Hg. It fol-
lows from the Clapeyron equation that at a temperature of t1= 10° C, the 

vapour pressure p,=p 77'  where T1=283°  K and T2 =303°  K. 2   

The sought relative humidity is 

w =LI 	 = -P— L 10001 	32 60/o  o = — 
Po

1000/ 
° Po T2 

where po  = 9.2 mm Hg is the pressure of saturated vapours at 4=10° C. 
393. The pressure p=6.5 mm Hg is the pressure of saturated water va-

pours at t = 5° C. A sharp drop of the pressure shows that all the water has 
been converted into vapour. The volume of the vapour pumped out until the 
water is evaporated completely is V=3,600 litres. 

On the basis of the Clapeyron-Mendeleyev equation of state, the sought 
mass of the water is 

pV  
RT =

23.4 g 

394. An amount of heat Qi  =-tnc At =3,000 cal is required to heat the 
water to 100°C. Therefore, Q 2-=Q— Q1=2,760 cal will be spent for vapour 
formation. The amount of the water converted into vapour is m1  = 
= Q2 =5.1 g. 

In conformity with the equation of state of an ideal gas, this vapour will 

occupy a volume of V= 
P,  P 

—PT  . Upon neglecting the reduction of the vo-

lume occupied by the water, we can find the height which the piston is 

A 

	rai- 

sed sed to: h-= 	=--17 cm. 



4Q2  F= 
12 y3 

CHAPTER 3 
ELECTRICITY 
AND MAGNETISM 

3-1. Electrostatics 
2 

395.
2

= 918 kgf. 

The force is very great. It is impossible to impart a charge of one coulomb 
to a small body since the electrostatic forces of repulsion are so high that 
the charge cannot be retained on the body. 

396. The balls will be arranged at the corners of an equilateral triangle 

with a side — / . The force acting from any two balls on the third is 
2 

The ball will be in equilibrium if tan a=— (where a=30°). Hence, 
mg 

Q =-
2 
 J= 100 CGSQ. 

397. Since the threads do not deflect from the vertical, the coulombian 
force of repulsion is balanced by the force of attraction between the balls 
in conformity with the law of gravitation. 

Therefore, in a vacuum 
Q2 	p2V2 
r2 =7  r2  

and in kerosene (taking into account the results of Problem 230) 

Q 2 
	(p po)2 V2 

8Tr2  = 7 	r2  
where V is the volume of the balls. 

Hence, 
Po VEr  p 

11  er—  I 
2.74 g/cm3  

398. The conditions of equilibrium of the suspended ball give the follow-
ing equations for the two cases being considered: 

QQs 
2 

T1  sin ccI 
2a2  

-- X --=0 

QQ, 	QQ, ,,,, 	0  T 1  cos cc, — x 	— 	—g= 2a2 	2 	a2  
QQs

>(
17—Q T2 sin cc2-- 

	

2a2 	2 	
0 

 

QQ, QQs -11-2 _aig=0  
T2 cos CG2 —a2 	

2a2  — 2 



Fig. 410 
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a, = 82°04' and a2 =164°08' when 

72.  

Qs • 	OQ's 	QS 

Ca `Ǹ   ZaZ  
• / ay 

a2 	• / 
/ 	I 1 \ 

171g / \\ I I/  \ 
goc---- a' —D.A.) 
17 	 47  

Fig. 409 

49,9s 
07  

where T, and T2 are the tensions of the thread, a1  and a2  
deflection of the thread, + Q and — Q the charges of the fixe 
the charge of the suspended ball, and mg is the weight of 
ball (Fig. 409). 

Upon excluding the unknowns from the above simultaneous 
get 

the angles of 
d balls, +Qs  
the suspended 

equations, we 

cot a1 —cot a, = cot a1 —cot 2a1=2 	—1) 

whence, 

cot a, = 2 (2 / 	1) ± 1735 — 16 "1/–  

Thus, a, = 7°56' and a, = 15°52' when mg > QQs ( 1 _ 1/--  ) Qs 

	

 \ 	4 	, and 

mg  < ---, (1— ,M) 
QQ 	li  

399. In uniform motion the drop is acted upon by the force of gravity G, 
the expulsive force of the air (Archimedean force) F, the force of the electro-

static static field eE and the force of friction against the air kv-=-k —t 
. All the for-

ces are balanced. Therefore, 

G—F—eE+k ti -=0 

G—F+eE—k,--=.0 

G—F—k T=0 

where e is the charge of the drop. E the intensity of the electric field, and s 
the distance covered by the drop. 
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Upon solving the equations, we get 
t_  6.4 

ti --t2  
2 

400. It can, if we use the phenome- 

1E2 	
non of electrostatic induction. Bring a 

r2 	conductor on an insulated support up 
to the charged body and connect the 

4-q 	 conductor to the earth for a short time. 
QZ 
	

The conductor will retain a charge op- 
posite in sign to the given one, while 

	

Fig. 411 	 the like charge will pass into the 
earth. 

The charge can be removed from the conductor by introducing the latter 
into a metallic space. The operation may be repeated many times with a 
charge of any magnitude. 

Electrostatic machines operate on a similar principle. 
401. The energy is produced by the mechanical work that has to be per-

formed in moving the conductor from the oppositely charged body to the 
body that accumulates the charge. 

402. They can, if the charge of one ball is much greater than that of the 
other. The forces of attraction caused by the induced charges may exceed the 
forces of repulsion. 

403. Since Q 	q, the interaction between the separate elements of the ring 
can be neglected. Let us take a small element of the ring with a length RAa 
(Fig. 410). From the side of the charge Q it is acted upon by the force 

QAq 
—
R2  ' 

where Aq-=—
qa

. The tension forces of the ring T balance AF. 

From the condition of equilibrium, and remembering that Au is small, we 
have 

AF =2T sin (–TAa) =TAa 

The sought force is the tension T=
23-c

Q
R2 

404. Let us consider the case of opposite charges Q1  > 0 and Q2 < 0. The 
intensities created by the charges Q1  and Q2  are equal, respectively, to 

	

Q1 	Q2 and E2=--7 . A glance at Fig. 411 shows that 
r2 

E 2= El+ 4-2E1E2 cos 

From triangle ABC 

cos q)— 
2ri r2  

Hence, 

4—d2  
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Fig. 412 Fig. 413 

If the charges are like 

QT. Q 	QQ2 

	

E =1/ + 4- 3 3  ( r2 	— d2) 
rl 	r1 	rir2 	1  

405. Each charge creates at point D a field intensity of E1=7  . The 

total intensity will be the sum of three vectors (Fig. 412). The sum of the 
horizontal components of these vectors will be zero, since they are equal in 
magnitude and form angles of 120° with each other. The vectors form angles 
of 90° —a with the vertical, where a is the angle between the edge of the 
tetrahedron and the altitude h of triangle ABC. 

The vertical components are identical, each being equal to —Q sin a. It 0 

follows from triangle ADE that sin a= V 
2 
 . Therefore, the sought 

intensity of the field is 

E=VZ 

406. The intensity of the field E at an arbitrary point A on the axis of 
the ring can be found as the geometrical sum of the intensities produced by 
separate small elements of the charged ring (Fig. 413). 

Upon summation of the vectors of intensity at point A, account should 
be taken only of the components directed along the axis of the ring. Owing 
to symmetry, the components of the intensity vectors perpendicular to the 
axis will be zero. 

Therefore, the intensity of the field at point A is 
Qr 

E= 
R2+ r2 

cos a= 	 
(R2+ ryi 2 
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407. The intensity of the field at an arbitrary point A on the axis of the 
ring is 

E= R2+ r2 cos a= —Q sin2  a cos a R2 

Q2 =2 sin4  a cost a =2 cost a 1— cos2  a) (1 — cos2  a) 	(2) 

is the product of three positive factors 

a=2 costa 	 (3) 
b=1—cost a 	 (4) 
c=1— costa 	 (5) 

whose sum is constant (a+b+c=2), and b=c. 
The product abc=ab2  will be maximum if the factors are equal, i.e., 

2 
a=b=c=— 

3 	
(6) 

and, therefore, 

abc=ab2= —
8
7  (7) 2 

Let us prove this. If 
2 

a=-
3 

+2d 

where d is a certain number that, as follows from Eq. (3), can be within 
1 	2 	 (8) < a < 7   

then, on the basis of Eq. (4) 
2 

The product 

ab2= 
3 	3 	27

(-2 +2d) (-2  —d 	—8  )2= +2d2 (d-1) 

is maximum, as follows from Eq. (8), when d=0. Hence, 

2 	 11-3  and cos a= 

2 -r5 
E max = 9  R2 

(1) 

(see Problem 406). 
Obviously, E reaches its maximum at the same values of a as the 

E2R4  
expression 2 Q2 	. But 

2E2R4  

3 

The maximum intensity of the field will be observed at points at a di- 

stance of r= 2 R from the centre of the ring. This intensity is equal to 



moment of this molecule (F2 —=-). 
kr 3  

4,2n2 

The masses of the molecules are the same, and for this reason the acce-
leration of the second molecule when it approaches the cylinder grows faster 
than that of the first one and it will reach the surface of the cylinder 
quicker. 

412. Since the thickness of the plate is small it may be assumed that 
the charge is uniformly distributed on both surfaces, each having an area ab. 

Thus, the surface density of the charge o-=—Q  The field inside the metal 
201 . 

is zero, and the intensity outside the metal is 

Q 	22-EQ 
E= 411  = 

2ab 	ab 

(see Problem 410). The force F2 that acts on the "elastic" molecule grows 
faster, in proportion to 1/0, owing to the continuous increase in the electric 
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408. 
211  

EB=7 (Qi — Q2), Ec=7,-4 
2n 

 (C21-1-  Q2) 

23-c 
EA= — —A  (Q1+Q2) 

The intensity is positive if it is directed from the left to the right. 

409. The charges induced on the surfaces of the other plate are +-- -Qf  

and — Q  . Only in this case will the electric field inside the plate be zero, 2 
as it should be when the charges are in equilibrium. 

410. The molecule will be attracted to the charged cylinder. The force of 
attraction is 

F-=2q4 ( 1 	1  	—  27121  
r+1 	r(r+1) 

In this expression we can neglect the quantity 1 (1 	10-8  cm) as compared 
with r (r cannot be smaller than the cylinder radius). 

We finally obtain 

F= 
2q Q1  

r2  

411. At the initial moment the forces acting on both molecules are iden-
tical. When the molecules approach the cylinder, the force Fl  acting on the 
molecule with a constant electric moment grows in proportion to 1/r2: 

2qQ1 
F1 — r2  

413. The negative charges induced on the surface of a conductor are so 
distributed that the field inside the conductor resulting from a positive point 
charge and induced negative charges is zero. (The induced positive charges 
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F= 
ab 	4d2  

Fig. 415 

will move to the remote edges of the plate and their field may be neglected.) 
This distribution of the induced charges does not depend on the thickness 
of the plate. 

Let us place a charge —Q on the left of the plate and at the same 
distance d. Obviously, the induced positive charges will be distributed on 
the left side of the plate in the same manner as the negative charges on 
the right side. The charge —Q placed on the left of the plate will not 
cause a change in the electric field at the right of the plate. Thus, at the 
right of the plate, the electric field induced by the charge +Q and the 
induced negative charges coincides with the field produced by the charges 
+Q and — Q and the charges induced on the surfaces of the plate (Fig. 414). 
If the thickness of the plate is small as compared with d, the plate 
may be regarded as infinitely thin and hence the field created by the induced 
charges outside the plate is zero. 

It has been shown that the field on the right of the plate produced by 
the charge +Q and the induced negative charges is equal to the field 
caused by the point charges +Q and —Q. 

Since the intensity of the field caused by the induced negative charges 
at the point where the charge +Q is equals the intensity of the field caused 
by the point charge —Q at a distance of 2d from + Q, the sought force 

of attraction will be F=-0 
rd2  • 

414. Since a and b are much greater than c and d, it can be assumed 
that the plate is infinitely large. Remembering that the intensity of a field 
caused by several charges is equal to the sum of the intensities produced by 
each of these charges, and using the results of the solutions of Problems 
412 and 413, we can obtain the sought force: 

21tQQ, Qt 

The plus sign corresponds to the force of repulsion and the minus sign to 
the force of attraction. 
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The positively charged plate will attract the positive point charge if 
(2? 	2aQQ, 

4d2 > 	ab 
or 

Q1  8nQ 
d2  > ab 

415. The maximum charge that can be imparted to the sphere is deter-
mined by the equation 	

E0= Rz 
The potential will be V=-77=-E0 R--=30,000RV if the radius of the sphere 

is in centimetres. 
416. If the charged body is placed into the centre of the sphere, an 

additional charge —q uniformly distributed over the surface will obviously 
appear on the external surface of the sphere, and a charge 	q on its 
internal surface. The potential VR at a distance of R from the centre of the 
sphere will be 

Q — 9  
VR__  

When the body moves inside the sphere, the outside field will not change. 
Therefore, the potential will be VR at any position of the charged body in 
the sphere. 

417. The housing and the rod connected by the conductor will have equal 
potentials. For this reason the leaves will not deflect. 

After the conductor is removed and the rod is earthed, both leaves will 
deflect. This is the result of a potential difference appearing between the 
rod and the housing, since the work of the electrostatic field is zero when 
the charge moves along a closed path ABCDEFA shown by the dotted line 
in Fig. 415. The work on section AC is zero, and the work on section AB 
is equal to that on BC taken with the reverse sign. The potential difference 
between the earth and the housing is equal to that between the housing 
and the rod. 

418. When the housing of the electrometer is given, for instance, a positive 
charge, electrostatic induction will charge the ball of the electrometer rod 
positively and the end of the rod negatively. A potential difference will 
appear between the housing and the rod, and for this reason both leaves 
will deflect. The potentials of the housing and the rod are positive with 
respect to the earth, the potential of the housing being higher (that of the 
earth may be considered as zero). 

When the rod is connected to the earth, the potential difference between 
the rod and the housing will increase, as can be proved by the method 
used in Problem 417. Therefore, the angle of deflection of the leaves will 
be greater. 

419. The electrometer measures the potential difference between the given 
body and the earth. Since the surface of the wire is equipotential, the leaves 
will deflect in the first case through the same angle with the ball in any 
position (if the capacitance of the wire is negligibly small). 
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In the second case the deflection of the leaves is determined by the 
potential of the ball with respect to the earth at the moment when the ball 
is brought in contact with the electrometer. This potential depends on the 
charge of the ball, its dimensions and the arrangement of the surrounding 
objects. With a constant arrangement of the objects, the potential changes 
only when the charge of the ball changes. When the ball touches the bucket, 
the former acquires the potential of the latter, but the charge of the ball 
will depend on the section of the surface being touched. If the internal 
surface of the bucket is touched, the charge of the ball will be zero, and 
if the external surface is touched, the charge will obviously be other 
than zero. 

As the charge is transferred by the ball, its potential continuously changes, 
since its position with respect to the surrounding objects also changes. As 
a result, this method can be used to measure the distribution of the charge 
on the surface of the metal, but not its potential. 

420. The answer follows from the solution of Problem 419. 
In the second case the potential of the ball and the readings of the 

electrometer are determined by the magnitude of the charge carried by the 
ball from the surface of the wire being investigated. Upon contact with the 
wire, the potential of the ball is the same irrespective of the point of contact. 
The capacitance of the ball, however, depends on the shape of the section 
of the surface (particularly, on its curvature) which the ball is brought in 
contact with. Correspondingly, the charge transferred to the ball is also 
determined by the curvature of the section of contact. 

421. The potential of all the points of the sphere is the same. To solve 
the problem it is sufficient to find the potential of only one point. It is 
easiest to find the potential of the centre of the sphere. It is equal to the 

potential created at the centre of the sphere by a point charge U=1-2- plus 

the potential created by the charges appearing at the surface of the sphere 
owing to electrostatic induction. The latter potential, however, is equal to 
zero, since the total charge on the sphere is zero and all the elements of 
the charge are at equal distances from the centre. 

Therefore, the potential of the sphere U=.--d- 
422. The energy of the charged sphere is equal to the work that can be 

performed by the charges on the sphere if they leave it and move away 
over an infinitely great distance. 

Let the charges flow off the sphere gradually. Then, as it moves to 
infinity, the first charge + q1 (q1<Q) will perform work equal to mpi, 

where =—Q is the initial potential of the sphere. The following 
C R 

charges will perform less work, because the sphere gradually loses its charge 
and its potential decreases. The work of the last charge gran,----0, since the 
potential of an uncharged sphere is zero. The average potential of the sphere 

is Cp=—̂p . Upon multiplying it by the initial charge, we obtain the energy 

of a charged sphere: 
Q' 

We== (29)  = 2—R- 

(This energy in known as the intrinsic energy.) 
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The same result can be obtained if we use a diagram showing the change 
in the potential of the sphere as the charge decreases. The diagram will 
have the form of a straight line passing at an angle to the axis of the 
charges, and the work will be numerically equal to the area limited by the 
diagram and the axes. 

Q2  RU2  
423. The energy of the charged sphere We=--

2R
=--- , where R is the 

2 
radius of the sphere and U its potential (see Problem 422). 

Upon a discharge this energy will be liberated as heat. Expressing the 
energy in calories, we obtain We =0.13 cal. 

424. The potential difference between the balls should be e. Therefore, 
Qi Q2 

— — =e, where Q1  and Q2  are the charges of the balls. According to 
r1 	r2  
the law of conservation of charge, Q1+ Q2= 0. 

Hence, 

Q — Q 2 = rf  r  r±r:  
According to Coulomb's law, 

F  = e2rM 	a-- 0 0044 dyne 
R2 (r +r2)2 

 

425. Let the initial charges of the balls be q1  and q2. Then the work 

Ii? = T, where 1 is the distance between the balls. After the balls are 

connected, their charges become identical: q= 91 + 92  and the work 
2 

W = (n 
4/ 

71 I 72)2 
	

is obvious that W2  > W1. Besides, the heat Q is libe- 

rated in the conductor. 
According to the law of conservation of energy, however, the total amount 

of energy in the balls should be the same in both cases. Since the work W1  
and, correspondingly, W2, is the potential energy of the second ball in the 
field of the first one in the first and second cases, then 

W1+Wei=W2+Q+We2 
2 

q2 where Wei =- —
2r 

+— 
2r 

is the intrinsic energy of the balls before connection 
,2 

r ' 2r 
and W„=2  2

+ 	is the intrinsic energy of the balls after the charges are 

redistributed (see Problem 422). 
The energy liberated as heat is 

Q =wel We2+ W1 W 2 — (q1 	— 4 q2)2  ( 1 	1  ) 

	

r 	1 

426. Assume that the radius of the envelope increases by 6, which may 
be an infinitely small quantity. The expanding force will perform the work 
W-=41tR2f6, where f is the force per unit of area. This work is done at the 
expense of a reduction in the electrostatic energy. First the electrostatic 
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Here, a=
4aR2 

2 
energy is -b-z  , and after expansion 

The change in the energy 
Q2 	Q2 	Q2 	6 

2R 2 (R+6) —  2 R (R +6) 
is equal to the work W, i. e., 

4rER2/6=
2R (R+8) 

Taking into account the fact that 6 can be 
infinitely small, we obtain the following expres-
sion for the force: 

t_  Q2 

T—  8nR

4=2na2 

 

is the density of the electricity, i.e., the charge per unit 

Q2 

2(R+6) • 

of area. 
The sought force can also be found directly. Let us consider a small area 

a on the sphere (Fig. 416). 
Let us find the intensity E, of the electric field created on the area being 

considered by all the charges except the ones on the area itself. To intro-
duce definiteness, let us consider the case when the sphere carries a positive 
charge. 

Let us denote by E2 the intensity of the electric field created by the 
charges on the area itself. Since the resulting intensity is zero inside the 
sphere, then E1=E2. 

2E1  =R ----4rca. Hence, E1=2na. 

To find the force that acts from all the charges outside the area on the 
charges on the area, the intensity E1  should be multiplied by the magnitude 
of the electric charge of the area cr a: 

F --=Eicra=2ncr2a 

The force per unit of envelope area will be f=2rta2. 
427. For the charge q to be in equilibrium, the charges — Q should be 

at equal distances a from it (Fig. 417). The sum of the forces acting on the 
charge —Q is also zero: 

Q2 Qg  —0 
4a2 	a2  

The resulting intensity on the sphere Ei+E2=—Q ' and, therefore, 
R2   

Hence, q=.--4- . The 

stable since when the 
distance x, the force of 

distance a may have any value. Equilibrium is un 

charge —Q is shifted along 001  to the left over a 
attraction 

Q2 

Fq 4 (a+ x)2 
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acting from the side of the charge q is less than the force of repulsion 
Q2 

F 
Q

— 
(2a+ x)2  

and the charge —Q moves still farther from the position of equilibrium. 
When the charge —Q is shifted along 001  over a distance x towards the 
charge q, then Fq  > FQ  for x < a, and the system does not return to the 
position of equilibrium. 

As can easily be seen, equilibrium is also violated by arbitrary motion 
of the charge q. 

The potential energy of the charge —Q in the field of the other two 
charges is 

We1=--(2 	
Q2  3y—a  C y a+ y 	4 y (a +y) 

where y is the distance between the charge q and one of the charges —Q. 
When 0<y < oo, the relation between W ei  and y is shown by curve ABC 

for one charge and curve DEF for the other (Fig. 417). 
When the charges —Q are stationary, the energy of the charge q is 

-QQ ) 	Q2  a 
W e2=q  (a—z —  a+z J =  2 a2 +z2  

where z is the displacement of the charge q from the position of equilibrium. 
When z changes from 0 to a, the energy changes according to curve MNP 
(Fig. 417). 

It is interesting to note that the maxima of all the three potential curves 
correspond to the position of the charges in equilibrium. It is for this reason 
that equilibrium is not stable. 

428. The work performed by the field of induced negative charges when 
the charge +q moves is equal to the work done by the field of the charge 
—q (see Problem 413). The work performed during the motion of both +q 

n

d  

2 

2 
and —q is 	Hence, the sought kinetic energy of the charge, equal to 

the work of motion of only one charge, will be 

Fig. 417 
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Fig. 418 
	

Fig. 419 

429. Let us first prove that the intensity of the electric field at all points 
in the plane of section 00' is directed perpendicular to this plane. 

Let us take an arbitrary point in the plane of the section and two small 
areas arranged arbitrarily but symmetrically on the cylinder with respect to 
section 00'. It is easy to see that the resulting intensity of the field induced 
by the charges on these areas will be directed along the axis of the cylin-
der (Fig. 418). Since another element arranged symmetrically with respect 
to the plane of the section can be found for each element, it follows that 
the intensity produced by all the elements will be parallel to the axis of 
the cylinder. 

Let us now prove that the intensity will be the same at all points equi-
distant from the axis of the cylinder. 

Let A and B be two such points (Fig. 419). The intensity of the field 
inside the cylinder will not change if, apart from the available charge, each 
square centimetre of the cylinder surface receives the same additional nega-
tive charge so that the density of the charges at point C is zero. This is 
obvious from the fact that the field inside an infinite uniformly charged 
cylinder is zero. 

In this case the densities of the charges will be distributed on the cylin-
der surface as shown in Fig. 152. Therefore, the intensities at points A and 
B are the same. 

It now remains to prove that the intensities of the fields at points at 
different distances from the axis of the cylinder are identical. 

For this purpose let us consider circuit BKLD (Fig. 420). With an electro-
static field the work in a closed circuit is known to be zero. The work is 
zero on sections KL and DB because the intensity of the field is perpendi-
cular to the path. The work on section BK is —EBI and on section LD it 
is ED/ (as proved above, EB =EK , and ED  ---=E L ). 

Hence, —EB /4-E D /=0, i. e., EB  
It has thus been proved that the intensity of the electric field at all 

points inside the cylinder will be the same everywhere and directed along 
the axis of the cylinder. It should be noted that such an arrangement of the 
charge on the surface of a conductor appears when direct current passes 
through it. 

430. The concept of capacitance can be used because the ratio between 
the charge imparted to a conductor and the increment of the potential indu- 
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ced by this charge does not depend 
on the magnitude of the charge. In 
the same way, the ratio between 

= 
A 	 the quantity of liquid poured into 

a vessel and the increase of the 
level in it should be a constant 
quantity. This will be true for any 

27 	L 	vessel with a constant cross section. 
431. It is impossible to calcu- 

0' 	 late accurately the capacitance of 
a human body because it is extre- 

Fig. 420 	 mely complicated in form. But the 
capacitance can be estimated in the 
order of its magnitude. 

Let us find the capacitance of the body if it is shaped as a sphere. It 
should be expected that this assumption will give the approximate va-
lue of the capacitance. Since the mean specific weight of a human body 
y = 1 gf/cm3, the radius of a sphere whose weight is equal to that of a body 
can be found from the equation 

4 
rcR37=60,000 gf 

3 

Hence, bearing in mind that the capacitance of the sphere is equal to its 
radius, we find that 

3  73x 	6x 104  C= 	 '"=" 25 cm 
4rt 

AU t  
The charge on the capacitor will be Q =C11/1= 41cd . Upon series con- 

nection, the charge of all the capacitors is the same. Therefore, the voltage 
Q 

on the capacitor with glass will be U2= 	
Ur 

. The entire battery may 
C2 e 

thus receive not more than U=3U1  + U2= 6.6x 104  V. 
If the voltage exceeds 6.6x 104  V, all four capacitors will be punctured. 

The capacitor with the glass dielectric will be punctured last. 
434. When a charge moves in a closed circuit, the work of the forces of 

an electrostatic field is zero. Therefore 

The charges on the capacitors are the same, since the sum of the charges 
present on the upper and the lower conductors is zero. Hence, Q=ClU i  

C2 U2. 

Measurements give a close value: C ==. 30 cm. 
432. The electrometer will show the e. m. f. of the galvanic cell irrespec-

tive of the capacitance. 
433. (1) U----4Ead=8.4X 104  V. 
(2) A voltage of U,,---Ead=2.1x 104  V can be supplied to each "air" ca-

pacitor. 
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U 	+I- 	+II- 
I 	  Fig. 421 

Fig. 422 

Therefore, 

C  U 
1  CI C2 (el + 	17.5 kV 

CI  
2  = C C2 (el +1 	 7.5 kV 

435. Let the potential difference across the battery terminals be U and 
the charge of the battery Q. To find the capacitance of the battery means 
to find the capacitance of a capacitor which would have the same charge 
Q on its plates as the battery at the voltage U. Hence, 

C - 0-u 

where 
Q=q1±q2 -1- q4=_q4±q5+q6  

(Fig. 421) and U= U 4=qe- . In a closed circuit the work of the forces of 

an electrostatic field is zero. Therefore, 

ql q2  - q3  = 0 (12  - q4 q5 0 
C 	 C 

and 

gC11C 	—° 

Besides, the conductor that connects the second, third and fifth capacitors 
is electrically neutral. Hence, 

go+ go —go= 0 

Upon solving these equations, we obtain 

91=92=95=96= 24  , and 93  =0 

Therefore, Co  =2C. 
436. Let the battery of capacitors 

be charged. Points 1, 2 and 3 will 
have the same potential and they can 
be connected to one another. Points 
4, 5 and 6 can also be interconnec- 
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ted (Fig. 155). The result will be the equivalent diagram shown in 
Fig. 422. 

The capacitance of the separate sections is 3C, 6C and 3C. The total 
capacitance can be found from the formula 

1=_ 2 	1  
Co  3C + 

..1_ 
 6C 

Hence, Co  =1.2C. 
437. When the spark gaps are punctured, the parallel connection of the 

capacitors automatically changes to series connection; the voltage between 
the corresponding plates of the capacitors grows, since the capacitance of the 
system drops. 

Indeed, the high resistance of conductors AB and CD makes it possible 
to neglect the currents flowing through them during the time of discharge 
and consider them as insulators through which the capacitors are not discharged. 

An equivalent diagram after the first spark gap is punctured is shown in 
Fig. 423. 

Upon puncturing of the first gap, the potential difference across the second 
gap will be equal to the sum of the voltages across the first and the second 
capacitors, i. e., it will double. This will cause puncturing of the second gap. 

When the n-th gap is punctured, the voltage in it will reach V=nVo. 
The resistances of conductors AB and CD should be high enough so as 

not to allow the capacitors to be discharged through them when the gaps 
are punctured with the plates connected in series. 

438. Yes, it will. Each plate has a definite, usually small, capacitance 
with respect to the earth (the force lines are distorted near the edges of the 
plates and reach the earth). 

An equivalent diagram is shown in Fig. 424. The capacitance of the plates 
with respect to the earth is shown in the form of small capacitances C1  and 
Co. 

When the left-hand plate is short-circuited, part of the charge present in 
It is neutralized. This will also occur if the right-hand plate is short-circuited. 
The capacitor will continue to be discharged the slower, the higher is the 
capacitance of the capacitor as compared with that of the plates relative to 
earth. 

439. The initial state of the system is illustrated by an equivalent dia-
gram (Fig. 425a). The full charge of the capacitor is Q±q. The force lines 
of the charge + Q terminate on the 

force lines of the charges +q and 

Since C -. C1=--Co, then Q 	q. 
—q terminate or start on the earth. 

	+ 

+ 
+ — 

_ 
_ 

other plate of the capacitor. The 

I IS 	c 

7 	NI ,T Ti-,7 
++  

Fig. 423 	 Fig. 424 
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2q' 
::U=0 	72,11 

(0) Fig. 425 

C 

+0-,99 

U 

-41  

When the capacitor C2 is short-circuited, the charge —q is neutralized. 
The potential difference between the plates of the capacitor C should remain 
approximately equal to U, since q < Q. The work required to move the charge 
along the circuit ABCDA is zero. Therefore, the voltage across the capaci-
tor C1  should become equal to U and the charges on it to +2q and 
—2q. The charges on the plates of the capacitor C will be +Q —q and 
—Q +q, respectively (Fig. 4256). 

When the capacitor C is disconnected from the earth, the distribution of 
the charges and, hence, of the potentials will not change. 

If the capacitor C1  is shorted, the charges will be redistributed as shown 
in Fig. 425c. It is only in this case that the required potentials relative to 
the earth will be obtained: zero on the left plate and U on the right 
one. When the plates are earthed alternately, the potential difference between 
the plates will gradually drop because the charge decreases. 

440. No, they will not. When the plates are alternately earthed the same 
processes will take place as in the absence of the battery (see Problem 439). 
The only difference is that the potential difference between the plates is 
always kept constant. 

441. The total energy of the two capacitors before connection is 
1 

Weo==-2 (CM ±C2UZ) 

and after connection 
1 	Q2  	1 (CIPI C2U2r 

We_  2 Ci+C2  2 	C, +C2  

It is easy to see that Weo  > We. The difference in the energies is 
C,C2  

2 We0 — We=Ci+ C 
	(U2 + U:-2U,U2) > 0 

When U1,-- U2, we have Weo —We.- 	0, and when C1=C2  and U2 =0, then 
We0 ==2We• 

The electrostatic energy diminishes because when the capacitors are con-
nected by conductors, the charges flow from one capacitor to the other. Heat 
is liberated in the connecting conductors. The quantity of heat evolved will 
not depend on the resistance of the conductors. When the resistance is low, 
the conductors will allow greater currents to flow through them, and vice 
versa. 



ELECTRICITY AND MAGNETISM 	 311 

442. Since the dielectric is polarized, the intensity will increase at points A 
and C and decrease at point B. 

23-a2 
443. E= 	=50.2 CGSE. 

er A 
444. The capacitances and, therefore, the charges of the balls immersed in 

kerosene increase e,. times: 

and q2=6,.q2  

The force of interaction of the charges in the dielectric, on the contrary, 
diminishes Er  times. 

Hence, 

F =  "  — erc iq   =  842411   =0.0088 dyne 
8,R2 	R2 	R2  (ri --1-r2)2  

The force of interaction increases e,. times, while if the balls were discon-
nected from the battery it would decrease er  times. 

445. As a result of motion of the plates, the charge on the capacitor will 
be increased by 	

AQ=Q2 —  Q1=V7t  (7;1 —T1  ) 

The battery will perform the work w  = 6AQ 	(cli2 

di 
The electrostatic energy of the capacitor will be increased by 

AW e =IV e2 —  Wel r---c22_t912 —682aA  (cT1  —T1  ) 

The mechanical work W 1  was performed when the plates were moved closer 
to each other. On the basis of the law of conservation of energy, W= WI + AWe. 
Therefore, 

S2  A (1 1 
Wi=W—AW  

e 	8n d2  d1 ) 

At the expense of the work of the battery, the electrostatic energy of the 
capacitor increased and the mechanical work W1  was done. 

446. Let us consider for the sake of simplicity a dielectric in the form of 
a homogeneous very elongated parallelepiped (Fig. 426). 

Let us resolve the field Ea  in which the piece of dielectric (for example, 
a rod) is placed into components directed along the rod and perpendicular 
to it. These components will cause bound charges to appear on surfaces AB, 
CD, BC and AD. The field of the bound charges between surfaces AD, BC, 
and AB, DC weakens the components of the field E0  inside the dielectric, 
the component perpendicular to the rod being weakened more since the bound 
charges on surfaces AD and BC are close to each other and their field is 
similar to the homogeneous field of a plane capacitor, while the charges on 
the surfaces of the small area are moved far apart. For this reason the full 
field inside the dielectric will not coincide in direction with the field Eo. 
The dipoles appearing will therefore be oriented not along B0, but along a 
certain direction OP forming the angle p with E.  (This refers to both ordi-
nary and dipole molecules.) From an electrical standpoint, a polarized dielect-
ric can be regarded as a large dipole forming the angle p with the field Ea  . 
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Fig. 426 C 

The dielectric will rotate in this field until it occupies a position along the 
field. The field of the bound charges is an internal force and cannot cause 
rotation of the dielectric. 

447. (a) The capacitance of the capacitor will be equal to that of capaci-
tors connected in parallel, one of which is filled with a dielectric, and the 
other not, i. e., 

8,Ali  A (l—ll)A 
C 

	

4ndl 	43-01 = 41(d 	1+ (Er —1) 1  11  } 
(b) The electric field between the plates of the capacitor will not change, 

and, consequently, the capacitance will not change if the upper surface of 
the dielectric is coated with an infinitely thin layer of a conductor. Therefore, 
the sought capacitance will be equal to the capacitance of two capacitors 
connected in series: 

C C o 	where Co— 
 4n (d

A__ 
di) 

and 	
E A  

C 

	

Co  -FC1  ' 	 1 	43-idi  • 

43-( {di  -1- sr  (d—di)} 
448. To simplify reasoning, assume that two parallel metallic plates car-

rying the charges 	Q and —Q are placed into a liquid dielectric. The in- 

tensity of the electric field between the plates is E=— . The intensity of E=
E 

2nQ 
El= E 2  

ErA 

F 
Er A 

Let us assume that the first plate is fixed and the second can slowly move 
(we disregard the change in the mechanical energy of the dielectric). The 
work that the electric field can perform in moving the plates up to direct 
contact is equal to the product of the force F (constant) by the distance d, 

Hence, C— erA 

the field induced by each plate will be 

Let us find the force acting, for example, from the side of the first plate 
on the second. For this purpose the intensity of the field induced by the 
first plate should be multiplied by the charge on the second one. Thus, 

231(2 2  
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W 
, 231Q2d 

er A 

This work is done at the expense 
of a reduction in the electric ener-
gy of the capacitor. Thus, the elect-
rostatic energy will be equal to 

2aQ2d  Q2  r  w  
W e= e = 2C ° e= Q2 

where U is the potential difference. 
The above formula is true for any 
dielectric. 

449. The intensity of the field 
inside the space consists of E and 

Fig. 427 	 the intensity induced by the charges 
that appear on the surfaces of the 

space owing to polarization of the dielectric (Fig. 427). In the first case the 
influence of the polarizing charges is negligibly small, and E1=E. In the 
second case the action of the charges exerted on the surfaces of the space is 
fully compensated by the action of the charges on the surfaces of the dielect-
ric adjoining the metal plates of the capacitor. For this reason the sought 
intensity is equal to that which would be induced if the dielectric were re-
moved altogether, i. e., 

E2= erE 

450. If the dielectric is drawn into the capacitor over the distance x, the 
energy of the capacitor will be 

w 	Q 2  AU2 	1  

1 + (et  — 1) -zr  

since C---= 44d  1 ± (et  —1) 
x 
—} and 0

= 4
A

d 
 U (see Problem 447). 

/ 	- 	J-c 

If x is increased by 6, the energy will be reduced and become equal to 

AU 2 	1 
Wee  — 8ad 

I + (sr —  1) 
x+ 6 

/ 

The difference between the energies 

e1— 2C = 8td 

(et  —1) T  
W 	W e2 gad { + (sr 	(5X 	1 + (Er  — I 

x 
) T 

 

will be equal to the work of the sought force F over the path S. Generally 
speaking, the magnitude of the force will change over this path, but if a 

AU 2  
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sufficiently small value of 6 is taken we can write 

Wei — Wez =-F6  
It follows therefore that 

AU 2 	c,.-1 
F=83-Ed1 

1 ±(8r —  1) Tx  

if 6 is neglected in the denominator. 
It should be noted that if when calculating the energy we assumed that 

the field inside the capacitor was homogeneous and neglected the boundary 
effects, it is necessary to take into account the heterogeneity of the field near 
the edges to explain the action of the force acting on the dielectric from the 
physical viewpoint. 

451. When the dielectric is drawn over the distance x into the capacitor, 
the energy of the latter will be 

1 	1 	A 

	

Wei= T U2C=7 U2  ,tor.ci 	(8r — 1)  +} 
If x increases by 6, the energy of the capacitor will increase by 

	

U 2 A , 	6 
We2 — Wei= td 1.8r 

„ 

When the dielectric moves over the distance 6, the charge on the plates 
of the capacitor will increase by 

	

UA 	6 

	

Q2— Q1  — 4n d 	" 

The work performed by the battery in moving such a quantity of electri-
city will be equal to 

2 A 	„ 6 
W=(‘22—  Q1) v,  = 4Jic/ ker—  " T 

Some of this work is spent to increase the electrostatic energy of the capa-
citor and some to pull in the dielectric. Let us denote, as in the previous 
problem, the force with which the dielectric is drawn into the capacitor by F. 
Then, on the basis of the law of conservation of energy, we have: W = Wez-
- Wei ±FO, i.e., 

U 2 A 	„ 6 U 2 A 	„ 6 , 
r 8 — 1) =

n  
—  

4TEd ( 	8d r
— 1) 
 I 

Therefore, 
U 2A 

F =-
8ndl 

(s
r
-1) 

As can be seen, in this case the force is constant and does not depend on x. 
452. Apart from the weight directed downward, the kerosene is acted upon 

by electrostatic forces directed upward. All the forces are applied to all the 
elements of the liquid volume. As a result, the hydrostatic pressure in the 
kerosene will decrease as if its specific weight were reduced. For this reason, 



6,  

Go  

Fig. 429 

ELECTRICITY AND MAGNETISM 
	

315 

the lifting force acting on the balls in the left-hand part will be the same 
as in the right-hand one despite the fact that the left-hand part contains 
more balls. 

453. The intensity of the field in the dielectric will be 

E= 
U Q 

—
431Q-431 

d Cd Er  A er  

where Go = . 

This intensity is created by the free charges on the plates of the capacitor, 
and by the bound charges induced owing to polarization of the dielectric. 
The bound charges are on the surface of the dielectric. Let us denote the 
density of these charges by of  (Fig. 428). The intensity of the field created 
by the free charges is E0 =-43na0, and that of the field created by the bound 
charges is E1=4na1. 

This equation can be used to find al=Sr
8  1 

  ao. 
,. 

To determine the force acting, for example, on the upper surface of the 
dielectric, it is necessary to calculate the intensity of the field on this surface 
created by all the charges except for the charges on the surface itself. This 
intensity will be equal to 

Ei  
E0 -- -----431130-2510).=251Go gr + 1  

2 	 er  

The force acting on the upper surface of the dielectric will be directed upwards 
and be equal to 

F =_.2nao Er +1 sr-1 0.0A 
Er 	sr  

An identical force will act on the lower surface of the dielectric. 
Thus, the dielectric will be stretched and a unit of area of the dielectric 

will be acted upon by a force equal to 

—1  f 2ac r 02  4 
 

454. Since the action of the field causes complete orientation of the mole-
cules, the ends of the "dumb-bells" with negative electric charges will be in 

Thus the resulting intensity E =--E0 —Ei  =431(cro  — ai) =--
43-too 

Er  
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a layer with a thickness 1 near the positively charged plate, and the ends 
of the "dumb-bells" with a positive electric charge near the negatively char-
ged plate (Fig. 429). 

The quantity of negative and positive charges is the same at a distance 
greater than 1 from the plates inside the dielectric. 

The intensity of the field inside the dielectric produced by the charges in 
layers A and B is E.,-.=4acr1=43-cQ1n and the total intensity is E=E0  

E1=E0-4aQIn. 
It should be noted, however, that the orienting action of the field will 

always be hampered by the disorienting thermal motion, which is not taken 
into account in the calculations. 

455. Let us denote the sought full intensity of the field in the dielectric 
by E. The distance 1 over which the charges moved apart in each molecule 
can be found from the expression kl=qE. As in solving Problem 454, we 
obtain 

El  =4acci  =4aQ/n= 4ri kn  E 

and 
2n 

E=E0 —E1=E0-4m 	E 

The permittivity e, can be determined from the ratio E= 

Hence, Sr  -= 1+41c 	n. 

456. When the charges +Q and —Q move apart in the molecule over 
2   

the distance 1, the work 	is performed (see Problem 137). 

The energy stored in the dielectric is 

Wet=k N 

where N=ALn=Vn is the number of molecules in the volume V of the die-
lectric located between the plates of the capacitor. Thus, 

2  , 
Wei=n — v 

QE 	 2  
Since 1-==-T  , then Wei-=n 

Q 
2k

E 2 
" • 

By expressing 
nQ2  
-7— through e„, i.e., er-1_nQ2 

4xc 	k 

Wei =
8 1 

8n 
	E2V 

The total energy of the capacitor is 

Q2 8r F v  
We  = 2C 8a -2.  

we obtain for Wei 
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This energy W e  can be represented as the sum of purely electrostatic 
energy 

E 2  
W 

and the energy stored in the dielectric 

Er-  

Wet= 83.t  E2V 

3-2. Direct Current 

457. When a direct current flows along a conductor, the electric field inside 
it is constant and directed along it. If the charge moves in a closed circuit abcd 
(Fig. 430) the work of the electric field is zero. Let us assume the sections 
ad and be to be infinitely small so that the work done on them may be 
neglected. Therefore, the work along ab is equal to that along dc. For this 
reason the tangential component of the field near the surface of the conductor 
should be equal to the field inside it. 

458. The arrangement of the force lines is shown in Fig. 431. The increase 
in the slope of the line near the bend can be explained by the fact that the 
tangential component of the field at the surface of the conductor with an 
invariable cross section is constant (see Problem 457), while the normal com-
ponent decreases towards the curvature since the potential difference between 
the corresponding sections lying on the opposite sides of the arc diminishes. 

459. By applying Ohm's law to section AB of the circuit, we have 

1 =+ 
V r R 

Hence, 
V 	1 	V ( 1 _ V 

, V 	I 	R/ 
1R 

V 
since m  =0.008 	1; finally r=20.16 Q. 

460. A reduction in the sensitivity n times means that the galvanometer 
carries a current 	which is n times smaller than the current in the rest of 

Fig. 430 
	

Fig. 431 
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the circuit before the branching off. Therefore, the current / 2  through the 

shunt is n —1 of the current / in the rest of the circuit. Hence, 

	

r 	1 	1 
R 12 — n-1  

Therefore, r = n
R 

1 	204 S2. 

V V 
461. The error sought is —V V 

	
, where Vo  is the voltage across the 

o  
resistance R before the voltmeter is switched on and V the voltage after it 
is switched on. 

According to Ohm's law, Vo= /R and V=1 
R
R
+
R

R
°

0 , where Ro  is the re- 

RIR°  

Ro  

is determined only by the ratio between the resistances of the section of the 

	

circuit and the voltmeter. When Ro 	R, the error may be neglected. 

462. Before the ammeter is connected, /0= 
V 
 and after It is connected 

V  I—
R±Ro' 

where Ro  is the resistance of the ammeter. The error is 

	

/0 --/ 	1 

	

8= 	 

	

/0 	R 
R 0 

When Ro  < R the error may be neglected. 
463. In series connection, the resistance of the circuit is 

R= Ro1+ R02+ chRoit alRort 
On the other hand we can write R =Ro  (1 + a't), where R0=Roi  Ro2  and 
a' is the sought temperature coefficient. Therefore, 

_--Rnai. Roza2 

In parallel connection 
RoiRoz (1 + ccit) (1  + ct21)  R -= 

Rol(i±a11)+Ro2 (1  + a2t) =R0  (I c
ot) 

where 

R01+ RO2 
Omitting the terms proportional to the products of the temperature coeffl-

cierffs as being small, we obtain 
a  RO2CC1 R 01% ,,= 

Ro2 

sistance of the voltmeter. Hence, 

R01+ RO2 

R„,=, RoiR02 



ELECTRICITY AND MAGNETISM 
	

319 

Fig. 432 Fig. 433 

464. Points A and C have the same potentials because they are connected 
by a wire whose resistance can be neglected. The potentials of points B and 
D are also identical. For this reason the ends of resistors A, C and, corres-
pondingly, B, D can be assumed as connected together. Thus, resistors AB, 
CB and CD are connected in parallel. The equivalent diagram is shown in 
Fig. 432. 

The total resistance is R/3. 
465. Owing to symmetry, it is obvious that the current in conductor 1-7 

is equal to that in 7-4, the current 2-7 is equal to 7-3, and the current 
6-7 to 7-5 (see Fig. 165). For this reason the distribution of the currents 
and, hence, the resistance of the hexagon will not change if conductors 2-7, 
7-3, 6-7 and 5-7 are disconnected from the centre (Fig. 433). It is easy 
to calculate the resistance of this circuit, which is equivalent to the initial 
one. The resistance of the upper and lower parts is 8R/3. 

The total resistance R., can be found from the relation 
11 	6 —R,==  2R+  8R 

Hence, R 	4 
X=T  R. 

466. Owing to symmetry, it Is obvious that the potentials of the cube 
vertices 2, 3 and 6 are the same, as are those of vertices 4, 5 and 7 (see 
Fig. 166). 

Therefore, vertices 2, 3, 6 and 4, 5, 7 can be connected by conductors 
without resistance, i.e., by bus-bars. This will not change the resistance of 
the cube. The bus-bars will thus be connected by six conductors 2-7, 2-4, 
3-5, 3-4, 6-7 and 6-5. The resistance of the circuit (Fig. 434) is equal 
to the sought resistance of the cube: 

Rx= —3 1 - 
R 

' -
,
r - =6R  

2r 467. The resistance of section CD is equal to RCD= 17
R
7-0.-40 52, and 

that of the entire circuit is RAB=-R -4- R -1 -CD= =1010R:D. The current 	1.2 A. /=R AB 
 voltage drop across section CD is Ui 	=48 V. 



320 
	

ANSWERS AND SOLUTIONS 

468. The resistance between points A and B is 

1 	(ra+ rb) rc  
RAB —  2  1 ra+ rb+2r, 

ra+ rb r, 

where 

a 	b 	lia2 +  b2  
ra =P 	rb=P -Ti 	—P 	A 

The resistance between points C and D can be found if we consider the 
currents flowing in the branches of the circuit (see Fig. 435). It is obvious 
from considerations of symmetry that the currents in conductors DB and AC, 
and also in AD and BC, are mutually equal, the current in AD being equal 
to i, i 2, since the sum of the currents at junction A is equal to zero. 

On section DAC 

01+ ra + iirb=17 - DC 

and on section DABC 

2 (i,±i2)ra+ i2rc = UDC 
Hence, 

r a  -F re  
tl 

2rarb -I-  rare + rbr 
UDC 

 
rb — r a  

i2= 	2rarb+ rarc + rbrc UDC 

The sought resistance is 

U CD U CD 	2r arb+ ra  (r  a+ rb) 
RCD-= 	— •

1+1  
• = 

21'2 	r a+ rb+2r, 

469. If no current flows through the galvanometer, the potentials of points 
C and D are the same and the current 	passing through the resistance Rx  
is equal to the current flowing through the resistance R0, while the current 
12  along slide wire AB is the same in all the cross sections. 
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Fig. 436 

According to Ohm's law, 

/1R, = 1 211 	and /1Ro = / 2/2  4. 

where p is the resistivity and A is the cross section of the slide wire. 

Therefore, RTh,' = 
Eke 	/2 

470. Such a resistance r should be connected between points C and D that 
the resistance of the last cell (Fig. 436) is also r. In this case the last cell 
can be replaced by the resistance r, then the same can be done with the next 
to last cell, etc. Now the total resistance of the circuit will not depend on 
the number of cells and will be equal to r. 

The following equation can be written for r: 

(2R+ r) R 
3R + r =r  

Hence, r = R (113-1) = 0.73R. 
471. The last cell is a voltage divider that reduces the potential of the n-th 

point k times as compared with the (n —1)th point. Hence, U n= 
Un- 1  D 	tin 	RI 

= 
	
R3 =— , or —=K — (see Fig. 437). 

Ri+ R3 	k 	R3 

The relation U1= 
Ui_ 1 

	be true for any cell. For this reason the 

resistance of the last cell, of the last two, of the last three, etc., cells should 
also be R3 (see Problem 470). Therefore, 

1 	1 	1  
R3 R2 RI + R3 

R2 = R3 (R1+ R3)  = R3 k 
R1 

and finally 	
R1: R2: R3 =(k —1)2 : k:(le —1) 

472. Devices whose action is based, for example, on the deflection of a 
current-carrying conductor in a magnetic field cannot be used. The angle 

Fig. 437 

11-1865 
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through which the pointer is deflected in such a device is proportional to the 
current flowing through it. Determination of the potential difference with the 
aid of this kind of devices is based on Ohm's law: the current flowing through 
a voltmeter is proportional to the potential difference applied to it. To verify 
Ohm's law, an electrostatic voltmeter and an ordinary ammeter are required. 

473. Let us denote the charges on the first and second capacitors at the 
moment of time t by q1  and q 2. The latter are related by the expressions 

qi+ q 2=Q and
— 

q2  
 C2 

Since 
A 	 A 

C1 — 
4a (do  vt) 

and C2= 
41t (do  —vt) 

q1  do —vt 
q2  do+vt 

and it therefore follows that 
do—vt 

and g2 —'4 

do-Fvt 
ql— 	2d, 	' 	2d, 

The reduction in the charge on the first capacitor is equal to the increase 
of the charge on the second capacitor. The current intensity is 

	

Aqi  Aq2 	Qv 
At = = 

I = 

The current will flow from the positively charged plate of the first capacitor 
to the positively charged plate of the second capacitor. 

474. The forces of attraction acting between the plates of the capacitors 
are equal, respectively, to 

9, qi 	TE Q 2  (do  —V02  

	

F1=--  A 11=  2 A 	do 
for the first capacitor and to 

F 	Q 2  (do + vt)2  
2=  2 A 	dg 

for the second capacitor (see Problem 473). 
Since the plates of the first capacitor move apart, the forces of the electro-

static field perform the negative work W 1. These forces perform the positive 
work W2 in the second capacitor. The work AW done by the field when each 
plate moves over a small distance Ax is 

where x=vt. 
Thus the work performed on a small section is proportional to the displa-

cement x, as when a spring is stretched. Therefore, the total work can be found 
with the aid of the method employed in solving Problem 137: 

j-,(22a2 
W 

then 

231Q 2  x 
AW=AWi +AW2 =--(F2 —Fi)Ax,---- 	 Ax 

A d, 

Adg 
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The work W can also be calculated 
by another method. Since the resistance 
of the connecting wires is zero, the 
quantity of heat liberated is also zero. 
For this reason the change in the elect-
rostatic energies of the two capacitors 
will be equal to the work of the elect-
rostatic field. 

At the moment of time t, the ener-
gies of the first and the second capaci-
tors will be 

2 
91 	a Q2  

W e = 2C = 2–  Ad: 
— (c10-01)2  (do  ± vt) 

and 

Fig. 438 

  

2 

	

q2 	21  Q2  
Wee= + V 2  (do —00 

	

We2  = 2C2 	Ad2 	
0  0 

The total energy 

 

We = Wel ± W e2 = Ado (dO — a2) 

3-EQ2 
Therefore, the energy will drop by

Ado
a2  during the time t. This 

change wi 11 be equal to the work W of the electrostatic field. 
475. Rubbing of the clothes against the chair produces electrification, and 

the body of the experimenter and the chair form a sort of capacitor. When 
the experimenter stands up, the capacitance of this capacitor sharply decreases, 
and therefore the potential difference sharply increases between the chair 
(i. e., "earth") and the experimenter's body. The body should obviously be 
well insulated from the earth (rubber soles). 

When the experimenter touches the table, the potential difference between 
his hand and the earth levels out. An electric current is generated, a negli-
gible part of which is branched off into the galvanometer. To deflect the 
pointer, the resistance between one end of the galvanometer coil and the 
earth should be lower than that between the other end and the earth. 

The path of the current is shown schematically in Fig. 438. Here W is the 
winding of the galvanometer, K is the key and R shows a very high but 
finite resistance between one of the winding ends and the earth. 

The pointer of the galvanometer deflects despite the tremendous resistance 
of the circuit owing to the great potential difference appearing when the 
capacitance is reduced. 

476. There is obviously a definite asymmetry between the conductors which 
the ends of the galvanometer winding are connected to. This occurs when the 
resistance of the insulation between one end of the coil and the earth is less 
than between the earth and the other end. It should also be taken into 
account that the resistance between the conductors coming from the coil is 
not infinite, despite good insulation. 

The path of the current is illustrated in Fig. 439. W is the winding of the 
galvanometer, C1  and C2  are the conductors leading from the ends of the 

11* 
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Fig. 439 

winding, E is the earth and R1, R2 and R3 show schematically very high 
but finite resistances appearing because the insulation is not ideal; R3 *  

R1+ R2. The dash line shows the path of the current if a negatively 
charged body is brought up to C2. If the body is brought up to C1, the current 
path is shown by dots. In both cases the current will flow through the win-
ding of the galvanometer in the same direction. 

This problem illustrates the presence of conductivity in all bodies, which 
is especially important in working with sensitive devices. 

477. Point A in Fig. 440 shows the potential of the positive (copper) elec-
trode and point D that of the negative (zinc) electrode. In the ZnSO4  solu-
tion, the zinc electrode is charged negatively as a result of evolution of 
positive ions of Zn, while the copper electrode in the CuSO4  solution is 
charged positively since it receives positive ions of Cu. The potential of the 
electrolyte is depicted by the line BC. Lines AB=e1  and CD=e2  show 
the jumps of the potential on the electrode-electrolyte boundaries. The e.m.f. 
equal to the potential difference at the ends of the opened cell is 

e=ei+e2 
478. When the circuit is closed, a voltage drop * occurs both on the 

internal resistance of the element r and on the external resistance R of the 
circuit. The magnitude of the jumps of the potential (and of the e.m.f.) does 

   

   

 

.5 

B 

sz 

Fig. 440 

  

Fig. 441 

     

* Here and below the term "voltage drop" denotes the product it, while 
"voltage" is equivalent to "potential difference". 
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(c) (d) 

Fig. 442 

not change. The corresponding distribution of the potential is shown in 
Fig. 441. The voltage drop on the internal resistance of the element occurs 
along CB and on the resistance R along AFD. The section CB' shows the 
voltage drop on the internal resistance r equal to Ir and the section AL the 
voltage drop on the resistance R. 

Since the line depicting the potential ABCDFA is closed, the sum of the 
voltage drops should be equal to the sum of the potential jumps: 

e1+e2=1R+Ir 

Hence, /=  e  
479. The potential is distributed as shown in Fig. 442a, 6, c and d. 

(a) ,_e1+632 ; BA-V B V A-ei Iri — (e2  /r2)—eifr:+— re22.,,0 
ri+r, 

(b) /= 	; V BA=,0 
ri  

The potentials of the conductors connecting the elements are the same, but 
the current is not zero. 

(c) /=e1—e2  • vBA=_-e, 	e,r2+632r1.  
ri d-r2  ' 	 ri±r2  

(d) 1=0; 	V BA=63,=e2 

There is a potential difference between the conductors, but no current flows 
through them. 

480. In sections BA and DC the chemical forces that cause reactions bet-
ween the electrodes and the electrolyte perform positive work (see Fig. 441). 
This work is equal to the sum of the potential jumps on these sections, i. e., 
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to the e. m. f., because in a state of equilibrium the chemical forces that act 
in the layer of the electrolyte adjacent to the electrode are equal to the 
electrostatic forces. 

Since the forces of non-electrostatic origin do not act in the other sections 
of the circuit, the work performed by these forces is also equal to the e.m.f. 
of the battery when a single positive charge moves along the closed circuit. 
(The work of electrostatic forces in a closed circuit is zero.) 

481. An energy of We =106,000-56,000=-50,000 calories =2X1012  ergs 
is liberated per mole of the substances reacting in the cell. Owing to this 
energy, the electric current performs the work w-ee, where e is the e.m.f. 
of the cell and Q is the quantity of transferred electricity. Since the copper 
and the zinc are bivalent, the charges of their ions are equal in magnitude 
to the doubled charge of an electron. One mole of the substance contains 
6.02 X 1023  atoms. Therefore, Q = 2 X 4.8 X 10 –1° X 6.02 X 1023  CGSQ. 

W e  
Hence, e=_Q 3.5X 10-3  CGSQ=1.05 V. 

482. The ratio between the intensities of the currents flowing through the 

cells is
r2

since the e.m.f.s of the cells are the same. According to Ir 
Faraday's 2 law,1  the masses of the dissolved zinc are proportional to the 
currents: 

-rn  =14-  = 	1.625 
I M2 	2 7. /  

483. As it passes into solution in the form of an ion Zn+ +, each atom 
of the zinc gives off to the external circuit two electrons carrying a charge 
of q=2e -= —3.2X10-19  C. At the same time the copper ions Cu+ + are depo-
sited on the copper plate as neutral atoms, owing to which the concentration 
of the CuSO4  solution decreases. To maintain the concentration constant, it is 
necessary to continually dissolve crystals of CuSO4 .5H20 in an amount that 
will compensate for the passing of the ions Cu+ + and SO4--  out of the so-
lution. 

According to the initial conditions, a charge of Q =2,880 C passed through 

the cell. This corresponds to a transfer into the solution of n= Q  =9X 1023  

atoms of zinc, i. e., about 0.98 g of the zinc. Correspondingly, the same 
amount of copper atoms (about 0.95 g) will pass out of the solution and 3.73 g 
of crystals of blue vitriol will have to be dissolved to restore the concentration 
of the CuSO4  solution. 

484. When the zinc is dissolved, the positive ions Zn+ + pass into solution 
and the liberated electrons flow along the wire onto the graphite layer and 
neutralize the positive ions of copper in the CuSO4  solution. Therefore, the 
graphite will be covered by a layer of copper. 

This phenomenon can be used in galvanoplasty. 
485. The change in the e.m.f. of the battery depends on the ratio between 

the dimensions of the electrodes and those of the vessel. If the two middle 
plates are almost equal in size to the section of the vessel, the e.m.f. of the 
battery will change insignificantly. If they are small, the e.m.f. will be 
almost halved. 

486. The zinc rod forms a short-circuited galvanic cell with each half of 
the carbon rod. The resistance of half of the carbon rod, the resistance of the 
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zinc rod and the zinc-carbon contact are 
the external resistance of the cell (see the 
equivalent diagram in Fig. 443). 

 

When the zinc rod is vertical, the cur- 
rents  rents 	and i 2  in both halves of the car- 
bon rod are identical and the voltmeter will 
show zero. If the rod is inclined, the inter- 

1; -.IF-. IR nal resistance of one of the cells will dec-
rease and of the other increase. The cur-
rents it  and i 2  will be different and a 
potential difference will arise between the 
ends of the carbon rod that will be registe-
red by the voltmeter. 

487. Since r e  R, there will be practi-
cally no field inside the sphere and no 

Fig. 443 	 current on its internal surface. Therefore, 
the mass of the deposited copper is 

m— A 4riR2  It  = 1.86 g 

where A/n is the electrochemical equivalent of copper (A is the atomic weight 
and n the valency) and F is Faraday's number. 

488. The matter is that the electrodes are polarized during electrolysis and 
each bath acquires an e.m.f. directed against the current flowing from the 
capacitor. For this reason the capacitor cannot be discharged completely. The 
more baths we have, the greater will the total e.m.f. of polarization be, and 
the greater the charge remaining on the capacitor. The energy of the detona-
ting gas will always be smaller than that of the charged capacitor. 

489. In the electrolysis of water, the electrodes are polarized and an e.m.f. 
of polarization 	appears that is directed against the e.m.f. of the battery. 
For this reason electrolysis will occur only if the e.m.f. of the battery is 
greater than ep. 

When a charge Q flows through the electrolyte, the battery performs work 
against the e.m.f. of polarization: W=epQ. This work decomposes the water 
and detonating gas is formed. On the basis of the law of conservation of 
energy, the chemical energy of the detonating gas W e  liberated during the 
flow of the charge Q is equal to epQ. 

In accordance with Faraday's law, the evolution of one gramme of hydrogen 

on the cathode is accompanied by the flow of electricity Q =m A —
n 
 F= 96,500 C. 

Therefore, eP Q _ We 1.5 V. 

The e.m.f. of the battery should be greater than 1.5 V. 
490. A definite concentration of ions is the result of dynamic equilibrium: 

the number of ions produced by electrolytic dissociation is equal to the re-
duction in the number of ions due to the reverse process—recombination 
(when they collide, ions of opposite signs may form a neutral molecule). 

Near the electrodes the concentration of the ions drops, and this equilibrium 
is violated. The number of ions that appear owing to dissociation is greater 
than the number of recombined ions. It is this process that supplies the elec-
trolyte with ions. The process takes place near the electrodes. Dynamic equi-
librium inside the electrolyte is not violated. 
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491. During a second the cathode receives 
n + v +  A positive ions (A is the area of the 
cathode). At the same time n_v_A negative 
ions leave it. When the negative ions move 
away, the dynamic equilibrium between the 
neutral molecules of the electrolyte and the 

Fig. 444 	 ions into which they are dissociated is viola- 
ted (see Problem 490). There again appear 

n_v_A negative ions and the same number of positive ions. The positive 
ions are also liberated at the cathode and, as a result, the number of posi-
tive ions liberated at the cathode per second will be equal to the full current. 

492. When the temperature changes by At, the current changes by Al. 

On the basis of Ohm's law, Al =
R+
aAt

r 
 (a=50 X 10-6  V/deg). The minimum 

change in the current registered by the galvanometer is A/ =10-9  A. Hence, the 
minimum change in the temperature that can be registered will be 

At = 	(R + r)._  5 X 10-4  deg 

493. The maximum theoretically possible efficiency of the thermoelectric 
battery is 

eq T1—T2 
Q — T1 

where Q is the quantity of heat absorbed in a unit of time by the hot joints, 
q the charge flowing in the circuit in a unit of time, and T1  and T 2  the ab-
solute temperatures of the joints. According to Faraday's law, the mass of 

copper liberated at the cathode per second is m=-- —A — F 
q . Upon inserting the 

n  
value of q from the first equation, we have 

AQ  tn 	T i T, =_ 	 1.7X 10-4  g nFe T
,  

i  

494. If the current flows in the direction shown in Fig. 444 (the storage 
battery is being discharged), then V=e —IR. If the current flows in the 
opposite direction (the battery is being charged), V=-e+IR (see the answer 
to Problem 479c). 

495. If the voltmeter is connected, then, according to Ohm's law, V--=64 — 
er 

R I  -F r ' 
where r is the internal resistance of the cell. 

For the second circuit, 

e  I — 
R+R2 +r  

and therefore 
IV (R1—R—R2)_ 2.1 V 

R11 —V 

496. The internal resistance of the galvanic cell is small and that of the 
electrostatic machine very great. It is the resistance of insulators (tens and 
hundreds of millions of ohms). 
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497. At the first moment after the key K is closed, a potential difference 
will appear between the plates of the capacitors C1  and C2. The current will 
flow in the circuit until the capacitor C1  is charged. After this the potential 
difference across the capacitor C1  becomes equal to the e.m.f. of the battery, 
and the potential difference between the plates of the second capacitor will 
be zero. 

498. For two cells 

r2
(6'2  

+ 

	

/= 	
+R 

where e and r are the e.m.f. and the internal resistances of the cells, and R 
is the external resistance. 

For one cell (the first one, for example) 

/1 _
r1+

ei 
R 

	

According to the initial condition, I < 	i.e., 

rel.+ e2  <  e,  
r1+r2±R ri d-R 

Therefore, it is necessary that 

	

e2 	(9).  
r2  

499. From Ohm's law 

11 (2r-ri  -1-p+R)=e 

( 	2r (1 — 	R 

	

I t  2r T-:+p+ 	  =e 
2r (I--

L 
 +R 

13p=63  
where 1 is the distance from the battery to the breakdown and p is the internal 
resistance of the battery. 

From these simultaneous equations we find that 

e 1/-(e_e_) (-6-3-6--F 2r)=-- (4 ± 3)Q 
R=7-1-7-2 	T, 	1, 1, 

The value R = 1 52 should be discarded, since in this case the point of break- 
down will be at a distance of 5.9 km from the battery. Actually, when R=1 

I=L Le—li Lp—I / LR 5.9 km  
2r /1  

500. On section Ae2B we have V A — VB =632-lir 2, where /1 — ei+ e 2  
ri  + r2+ I? 

and r1  and r2  are the internal resistances of the cells. According to the initial 

The sought resistance is R =7 O. 
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condition, the potential of point A is lower than that 
of point B. Therefore, ul=VB—VA > O. 

For the other circuit 

u2 =- 17B- 1/ A  (6)2  ± 	12r2) 
where 

—6)2  Jo ._.__ 
ri+r2+R 

Upon solving this system of equations, we find that 

2eie2+,41 	cei.-6)2)=+  u2 = 	 1.86 V 
ei+e2 

501. In this case the potential of point A, when the 
+ 	key is closed, is higher than that of point B, since when 

the key is open V B > VA. For this reason 6)2  —11r 2=.-ui. 
The other equations have the same form as in the so-

Fig. 445 	 lution of Problem 500. 
Therefore, 

u2=2eie2— ui (el — 	1.57 V 
ei+e2 

502. Assuming arbitrarily that the currents are directed as shown in Fig. 445, 
Ohm's law may be used to write the equalities 

U AB= ei_11r1 

U AB= (6)2_12r2 
U AB= I 3R 

Since no point in the circuit accumulates a charge 
11+12=13  

Upon solving these simultaneous equations, we can find the currents /1,12  and /3: 
5 A 	, 	1 	„ 	3 A  

11=4 	 12=-4- 	a nd 	
2 

tl  

The positive values of the currents obtained show that the directions of the 
currents selected initially are correct. 

503. When / 2 =0, we have /1=/3, and - AB = 6)2. Hence, as before 
U AB=  e 	

I/
i-  /iri, and 

r1  R — 
 e2  =152 
631 —  e2 

If the current / 2  is directed against 6)2, the simultaneous equations will take 
the form 

1 AB= el—lir, 

uAB=e2+ 11r2  
U AB= I 3R3 

11=12+13 

Si 
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Hence, 

1,_. 
631- e2-e2-ri 

ri±r2+ R  
rir 2  

Our condition will be fulfilled if / 2  > 0. Therefore the following inequali-
ties should exist 

e1-(92-e2 R> 0 

or 

63  R > „ 	= 
01-62 152 - 

504. There are two methods of connecting the storage battery cells. Either 
the batteries are connected in series in the separate groups, and the groups 
themselves in parallel, or vice versa. 

Denoting the total number of cells by N and the number of cells in a se-
parate group by n, we shall have in the first case: 

— 	 neo 	6).  /  
rn2  R rn 

R± -171-  

since the e. m. f. of one group is ne0 , the resistance of the group is rn and 
the number of groups connected in parallel is N In. The current /1  reaches 

its maximum if rT
R r

n is minimum. The minimum of an expression of the 

type ax-j- 7  can be found as follows The relationship 

ax (1) 

is shown graphically by the curve in Fig. 446 which has its minimum at 
point x0, at which the roots of quadratic equation (1) coincide. For this 
reason, 

Therefore, 

and 

zo --= 1/ —a
b  

1 RN =__.4  
n= 

21, = V 

	

6). 	A  1 	A 

	

"x 2 	Rr  0  
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U 

710v 

Fig. 446 
	

Fig. 447 

The current reaches its maximum when 
_ irN 

n=  V 17=6.  

	

j_ 
"X 

 =e. 	N  =II max 

	

2 	Pr 

In the second case 

	

12= 	rN 	rN 
n2 nR+ 

Hence, 

Thus, it is impossible to get a current exceeding 20 A. 
505. What is to be done is shown in Fig. 447. 
506. The temperature in the calorimeter remains equal to 0° C. Therefore, 

R
= 	 rnHP  

0.24 —
R 

t=--- mH and t =0 
 24u2 =5 min. 

507. At a room temperature of to  = 20° C (i.e., at the moment the lamp 

is switched on) a lamp consumes a power of Po = -! (R0  is the resistance 

of the filament at the temperature to). When 1=2,500° C, the consumed po- 
V2  

wer is P=
R 
 where R=Ro {l+ (t —t0)}. Therefore, the sought power is 

P0=P -I-a (t —t 0)} --='• 600 watts 
508. The power consumed by the device at the first moment is very much 

higher than the rated one (see Problem 507) since the resistance of the cold 
heating coil is small. Correspondingly, there will be a large drop of voltage 
in the conductors leading from the mains to the room. As the coil gets 
heated, the consumed power drops and approaches the nominal rating. 

N 
Neo 
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509. The permissible drop of voltage on the feeding wires is AU= /R0 =7 V, 
where I is the maximum current. Hence, the maximum power is 

,, -= AU U
=1,680  watts 

Ro  

510. Since in all cases the kettle is connected to the same electric mains, 
it is more convenient to find the quantity of heat evolved from the formula 

Q=0.24 (1-
2 t. Hence, R=0.24 

U2  t. Since U and Q are the same in all ca- 

2 
ses, the latter equation can be rewritten as R=at, where a=0.24 

Denoting the resistances of the windings by R1  and R2, we have RI  = 
and RS  -=a,t2. In parallel connection of the windings 

R 	R, R2 	cetit2 	—at = a  
Ri + R2 a (ti t2) 	

a 

and in series connection 

(t i±t2)=atb 
Therefore, 

ilt2 	and tb= /1+ t, to 
	t, 	t2  '  

511. (1) to  = 57 minutes, (2) tb= 3 minutes 30 seconds (see the solution to 
Problem 510). 

512. When a direct current flows through a conductor, the potential diffe-
rence does not change. When a capacitor is discharged, the potential diffe-
rence changes from U to zero. 

513. When the losses of heat in high-voltage wires are calculated by the 
2 

formula Q=0.24 —
U t, the value of U is the potential difference at the ends 

of the line (voltage drop in the wires), but not the voltage in the secondary 
winding of the step-up transformer. This potential difference is small (as 
distinct from the voltage in the winding of the transformer) and decreases 
with a reduction of the current flowing in the line. 

514. In conformity with the initial conditions, k=-1r  100, where e is the 

e. m. f. of the battery, and / =TT  is the current in the circuit. Remembering 

that e 	--F. Ir, we obtain 
2'112  

r=- P (100—k) 52 

515. The power liberated in the external resistance R is P=IU. In our 

case U-=e—Ir and, therefore, / 
e_u 	. 

Thus, 
?U—U2P- 	
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whence 

  

U=43- ± V 
4 

— Pr 
2  

Ul =---9 V or U2 =1 V. 
The ambiguity of the result is 

due to the fact that the same po-
wer can be liberated on various 
external resistances R, each R having 
its own current: 

when U1=9 V, we have /1=1 A 

and R, =— 
P 

=-u /2  

when U2 =1 V, we have /2 =9A 

and R2=—/2 -= 1/9 f:2 
2 

Fig. 448 

516. The useful power (see Problem 
of,D 

515) is equal to P=  -  U— U2 
 

r 
For 

simplicity let us denote eu- U2  by x. It is necessary to determine the 
value of U at which x will reach its maximum. 

Graphically, x versus U is depicted in Fig. 448. The curve has the form 
of a parabola, two values of U corresponding to each value of x. At the gi-
ven x we have a quadratic equation with respect to U. The maximum of x 
is reached when the two roots of the equation coincide. Therefore, when x is 
maximum the discriminant of the equation should be equal to zero: 82 

Xmax --=-4-  • 

Hence, 

U----  e  and 
P.ax 

 
4r 
2=25 watts 

2  

Here 

/='- and R—  ,„P 	x 4r2  
2r 	 /2 	4r632  —r' 

i.e., the external resistance is the same as the internal one. 
517. By definition, the efficiency 11  is the ratio of the useful 

entire power produced by a battery: 
IU U =--rw 

power to the 

rP-,1? where U 	— 	is R+r 
Therefore, 

the potential difference in the external resistance R. 

R 
r-FR 

In problem 515, 711=90 per cent and 112 =10 per cent. 
In problem 516, ri=50 per cent. 
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77 
1 

7 
Z. 

R=r (a) 
	 R 

 

(b) Fig. 449 

	

1 when R 	co , but in this case the useful power P—
(R  e3R   evol- 

ved tends (the same as the total power) to zero (Fig. 449). 

518. rll— 	 
R r

= 0.6, where r is the internal resistance of the source of 

current (see Problem 517). 
Hence, 

In per cent 112 =90%. 

519. According to Ohm's law, U 	/r. Hence, /= 
U_e  

The useful power spent to charge the battery is 

pi=e1- 	 Uee2  

The amount of heat liberated per unit of time is 

P2= 12r -.=
(U  —

r
)  

The total consumption of power is 

6R 
12=  6R r —CL9  



520. The useful power is 

P1= e(U-e)  
(see Problem 519). The heat evolved 
per unit of time is 

(u _e)2 

 

S 

   

    

     

r 

P2=  
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Fig. 450 	 Ordinarily, U—e<e when a sto- 
rage battery is charged. For this reason 

P1 > P2. Therefore, only a small part of the power of the charging station 
is spent to evolve heat. 

521. During one second all the electrons contained in the volume Avl will 
pass through section S of the conductor (Fig. 450). 

Therefore, the intensity of the current is I.= Avine (e is the charge of an 
electron). 

Hence, v= —Ane 10-4  cm/s. 

522. Electrons in a metal may be considered free. Redistribution of the 
electrons inside the block will end when the resulting electric field is capable 
of imparting an acceleration a to the electrons. In this way the sought inten-
sity of the field can be found from the relation ma=eE (m and e are the 
mass and the charge of an electron). 

Therefore, E=—
e 

a. 

The front surface of the block perpendicular to the direction of motion will 
be charged positively, and the rear one negatively. 

The density of the charges is 
1 m —  

4n 4n e 
a 

523. Free electrons rotate together with a cylinder. Therefore, an electron 
that is at a distance r from the axis has an acceleration of a=co2r. This 
acceleration can be produced only by an electric field directed along a radius 

from the centre of the cylinder and equal to E= me  r .  Here e and m are the 

charge and the mass of an electron. 
1 

The potential difference U=-
2 

—e 010, since the average force acting on 

a single charge when it moves from the axis of the cylinder to its surface is 
1 

equal to —
2 —e 

3-3. Electric Current in Gases and a Vacuum 

524. During a glow discharge the electrons are knocked out from the cath-
ode by the positive ions. These ions are produced when electrons collide 
with atoms of the gas. In the region of the cathode dark space there are 
practically no collisions. For this reason the anode should be placed beyond 
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the region of the potential drop of the cathode. Otherwise, there will be no 
discharge. 

525. For a discharge to occur in the tube, the anode should be placed 
beyond the region of the cathode drop (see Problem 524). But in this case 
the electrons approaching the anode upon collision with the molecules of the 
gas lose energy and will not generate X-rays when they impinge on the 
anode. Two electrodes are therefore necessary. The anode is located in the 
region of the glow and serves to maintain the discharge. The anticathode in 
the region of the cathode drop is bombarded by the electrons that did not 
lose their energy. 

Tubes with a heater cathode have one electrode that acts as an anode and 
an anticathode. 

526. The electrons striking the anticathode flow along the wire onto the 
anode. If the wire is removed, the anticathode will be gradually charged 
negatively and retard the electrons. In a certain time after it is switched 
on the X-ray tube will stop functioning. • 

527. Before the discharge, the voltage on the counter is equal to the 
e.m.f. of the source e. At the moment of discharge a current flows through 
the circuit and the voltage between the housing and the wire becomes equal 
to U=e—IR. The resistance R is very high, and the voltage drop IR is 
so great that the discharge stops. 

528. According to Ohm's law, the sought voltage drop U=/R, where I 
is the current in the circuit. 

The current is the same in all the cross sections inside the capacitor. 
The positive plate owes its current only to the negative ions, and the ne-
gative plate to the positive ions. Some positive and negative ions pass 
through an arbitrary cross section inside the capacitor. 

I -=enAd, where e is the charge of an electron and A is the area of the 
plates. 

For a plane capacitor Ad=4nCd2. 
Therefore, U enx4nCd2R = 1.4X 10-11  V. 
529. If the negative carbon is cooled, the arc will be extinguished, since 

the arc burns owing to strong thermionic emission from the cathode that 
ceases upon cooling. Cooling of the positive carbon will not affect functioning 
of the arc. 

530. When the contacts of the controller open, an electric arc may appear, 
since the current in the iron becomes very high and the distance between 
the contacts is small. With an alternating current the arc is unstable and 
extinguishes at once. A direct current produces a stable arc that at least 
will burn the contacts and put the iron out of commission. 

531. 1 eV (one electron-volt)-----1.6x10-12 erg. 
532. No, it does not. The tangents to the trajectory show the direction of 

the velocity of the particle and the tangents to the force line show the di-
rection of the force acting on the particle and, therefore, the direction of 
acceleration. 

The trajectory of the particle will coincide with a force line only in a 
field with straight force lines if the initial velocity of the particle is directed 
along a force line. 

533. As the charge approaches the plate, electrostatic induction causes the 
charges on the plate of the same sign as the flying one to pass into the 
earth, while the charges of the opposite sign accumulate on the surface of 
the plate. A current pulse passes through the galvanometer (Fig. 451). No 
current flows through the galvanometer when the charge moves above the 
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I 

Fig. 451 

plate. An opposite current is generated when the charge moves away from 
the plate. 

534. Positive induced charges will appear on the neck of the tube and 
accelerate the electron. The kinetic energy of the electron will increase owing 
to the drop in the potential energy of the electron-tube system. 

535. The total energy of an electron is equal to the sum of its kinetic and 
potential energies. 

As the electron approaches the ring, its potential energy diminishes in the 
field of the ring, and as a result the kinetic energy increases. After passing 
through the ring, the electron moves away from it. The potential energy of 
the electron increases and the velocity gradually drops to zero. 

536. The work done to move the charge — Q is proportional to the po-
tential difference between point 0 and remote point A on the axis (see 
Fig. 186). At infinity the potential is taken equal to zero. If the distance 
OA 	R, the potential of point A can also be assumed to be zero. The po- 
tential at point 0 can be found by summing up the potentials produced by 

the separate small elements of the ring: U 0 -=--V 	= 
R R 

nivz 	Q 2  
On the basis of the law of conservation of energy 	

R 2 
—=-- 	we find that 

2Q2  
0=  mR 

537. As usual, the potential in infinity is considered to be zero. The 

potentials of the plates are thus respectively equal to 	and -T , 
where U = 	 . The potentials at the points of the initial location of the 

electron are respectively: 0, +71-, and — T. The initial full energies of 

the electron are 

Inv1 	trtz4 eU 	 Inv.2  eU 
(1) 	, 	(2) 	and 	(3) --t= 



Fig. 452 
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from the law of conservation of energy: 
The final velocities 01, 02  and 03  are determined 

mv:_ my? 	
hence vi=v0  2 — 2 ' 

mvg eU _mg 
2 	4 	2 ' 

mvg eU mvg 
(3)  —2 +4= = 2 ; 

2 eQ 
niv°+  

V3 

In the first case the final velocity is equal to the 
initial one, in the second case it is lower than the 

initial velocity and in the third case higher. 
In all three cases the velocity first grows (during motion in the capacitor) 

and then decreases. 
538. Electrons with energies ranging from 80 eV to 74 eV reach the anode, 

since a voltage drop of 6 V exists along the filament. 
The energy of the electrons at the anode is determined only by the poten-

tial difference passed by them and does not depend on the potential of the 
grid. The latter changes the distribution of the velocities of the electrons at 
intermediate points of the path and affects the number of electrons reaching 
the anode. 

539. On the basis of Ohm's law, 

e=/a Ra d-U, (Fig. 452) 

The intensity of the current 

I a= AU a + BUg 
Hence, 

la__ e (ARa+1)-11(ARa +1)2+ 4eBRa  —5  mA 
D -I- 
A s a 	 2BRg 

The second root of the quadratic equation has no physical meaning, since it 
corresponds to U a  < 0. 

540. The simultaneous equations determining the currents i, and i., have 
the form: 

i=i1+12 
=.11111 a+ BiUg 

i2== A2 L I a + B2Ug 
U a=e—iR 

Hence, 

U a  — (A, + A2) R-1+11  (AiR A2R ir+4e(Bi+B2)R  60 V 
2 (Bi  + B2) R 

(1)  

(2)  vz= 
m 
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The negative value of U, is discarded because it does not correspond to 
the sense of the problem. The sought currents are: 

i,=_ 
(8id-82)R [B

te+(111 82 — A,B,) RU 	a ]=22.2 mA 

1  
i2=(131+82)R[B,e+o,Bi—A,BoRU„—B,U,]=37.8 mA 

541 With the potential of the grid e2=_ 6 V, the current flowing 
U, 

through the valve is / 2 =---F  and with e,=- 3 V it is 

Therefore, an increase in the potential of the grid by 	 V raises 
the anode current of the valve by 

1 
/1 — / 2 = T- (U/, U 2)= 3.5 mA 

Since the grid characteristic of the valve in the region being considered 
is assumed to be linear, the additional increase in the potential of the grid 
relative to the cathode by 3 V (from-3 V to zero with the short-circuited 
grid and cathode) will increase the anode current by another 3.5 mA. 

The voltage drop across the resistance R will now increase additionally 
by U1 —U2 =35 V, and become equal to L/2 =-U 1  -HUI —UO=130 V, while 
the potential difference between the anode and the cathode of the valve will 

	

be equal to e 	0=120 V. 
542. The first diode begins to conduct current only when Ua  > 0, 	e., 

when V > el, the second at V > e2  and the third at V > e3 . For this 
reason, the diagram showing the full current versus the voltage will have the 
form of a broken line (Fig. 453): 

1=0 at V 
1=k (V-63,) at ei‹v 

	

I 	_eo±k (v _e2) at 6)2 ‹v‹ea  
1=k(V—e0+k(v_e2)±k(v_e3) at 

Such circuits are sometimes used in radio installations to obtain a given 
functional dependence of the current on the voltage. 
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543. In Fig. 454, A and 
B are control grids, MN is 
the screen and OC the trajec-
tory of an electron. The ori-
gin of the coordinate system 
is at point 0. 

An electron travelling bet-
ween the grids moves in the 
direction of the y-axis with 
a uniform acceleration of 

eU 
a =—

md ' 
where U is the po-

tential difference between A 
and B. The electron covers 
the distance 1 along the x- 

axis in the time 4=1–, when 
v, 

vx  is the horizontal component of the velocity of the electron determined 
from the condition 

"14
— 

eU 

	

2 	° 

During the time 1, the electron is deflected in the direction of the y-axis 
12  

by y1= r, —
eU 	The electron moves outside the grids with a constant 

2dM0x 

velocity during the time 12= 
L 
—. The velocity along the y-axis is v =at,. 
vx 

The deflection outside the grids is 

eU1L 
Y2=vyt2=

dmv,!, 

The total deflection is 
eUl ( 1_1_ 	

dmv! 

eU1L U1L 

	

Y=Yi -f-  Y2 = dmv2 	 =2Uod 

and the sensitivity is 
y 	IL 

9_U 2U od 

3-4. Magnetic Field of a Current. Action of a Magnetic 
Field on a Current and Moving Charges 

544. If the current is expressed in amperes, the coefficient k is numeri-
cally equal to 0.1. Since 1 A=-3x 109  cgs electrostatic units (CGS') the 

1 
sought value of the coefficient will be k-3x 1019 if the current is measu- 

red in these units. The dimension of the coefficient can be found directly 
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from the formula for the intensity H: 

Ekl-= [  H][li  
[I] 

[F] 	m-v, .s-i, Bearing in mind that [H]=[E] and [E]=.-w=.-g •c 	 [l]=cm, 

and Vi=g'12•cmV2•s- 2, we obtain [k]=s/cm. 

If a new constant c is introduced instead of k, so that k=-
1 

, then c will be 

equal to the velocity of light in a vacuum. 
545. The intensity of the field induced by the first winding is 

H
1 

0.4a/i 
=400 Oe 

23TR 

The second winding induces the intensity 

H2 
-0.4n/N2 

=200 Oe 
2nR 

Since the fields H1  and H2 are directed oppositely, the sought field will be 
H=- Hi  —H2 =200 Oe. 

546. The conductor BC does not induce a field at point M lying on the 
continuation of BC. According to the rule given in the note, the magnetic 
field produced by any elements of conductor BC should be perpendicular to 
line BM. For this reason the presence of a field other than zero at point M 
would disagree with the symmetry of the problem, because all the directions 
perpendicular to BM have equal rights. 

Since the intensity of the field is proportional to the current, then 1/1•=k1 
without conductor BD. The fields from the conductors AB and BD are sum-
mated. Therefore after conductor BD is connected 

kl 
H2 =kl 

whence 
H2 

 3 
Hi  2 

547. At an arbitrary point on line AB any small element of current of 
conductor ACB induces a magnetic field perpendicular to the plane of the 
drawing (see Problem 546). The element of conductor ADB symmetrical to 
it induces the same field, but directed oppositely. For this reason the field 
from any two elements arranged symmetrically will he zero. Hence, the field 
at the arbitrary point on AB induced by the entire conductor is zero, since 
the straight sections of the conductor also do not induce a field on AB. 

548. In the main, the field of the solenoid will be concentrated inside 
the toroidal winding and will not act on the magnetic pointer. A single-
layer winding, however, can simultaneously be regarded as one turn of a 
large radius that induces a magnetic field perpendicular to the plane of the 
torus. 

The magnetic pointer will be positioned along the axis of the torus. The 
direction of its poles can be determined by the right-hand screw rule. 

549. The current flowing along the pipe can be regarded as the sum of a 
great number of identical straight currents uniformly distributed over the 
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Fig. 455 Fig. 456 

surface of the pipe. The intensity of the magnetic field at any point of 
space can be represented as the sum of the intensities of the fields induced 
by these currents. 

Figure 455 shows a cross section of the pipe along which the current 
flows. Let us compare the intensities of the magnetic fields H1  and H, crea-
ted at point A by the straight currents II  and I, passing through the small 

a 	 a z  
arcs S1  and S2. The lengths of the arcs are S1— 	 

	

cos
R 

and S 2-  
cp, 	cos

R 
 cp, ' 

where R1  and R2  are the distances to point A. But as can be seen from 
R, 

the drawing, q>1= (p2. Hence, 
S, 
 =—D  . The current in the pipe is distribu-

.,2  
/ 	S, 	I, 

ted uniformly, and therefore --1=— whence --
- 

/2 
—
R2

. 
/2 S2 	 R1  

The intensities of the magnetic fields created at point A by the currents 
/1  and I, are equal, namely, 

H1=k R
-1—

I  R 
=k-=H2  -1

2  
and directed oppositely. 

Since a corresponding element that compensates completely for the mag-
netic field of the first element at point A can be selected for each element 
of the pipe cross section, the resulting magnetic field of the current flowing 
in the pipe will be zero at any point inside the pipe. 

550. The conductor with the space is equivalent to a solid conductor 
which carries a current with a density j, while through the volume that 
corresponds to the space there also flows a current of the same density in 
the opposite direction. The total current in this volume will be equal to zero, 
and this shows that a space exists in the solid conductor. 
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Fig. 457 Fig. 458 

The field created by the current with a density j  at an arbitrary point 
of space A is equal to H1-----k•22tiR (Fig. 456). Here R is the distance from 
the axis of the conductor to point A. (It is assumed that the current flows 
toward us.) 

At the same point, the current flowing through the volume corresponding 
to the space, but in the reverse direction, induces a field of 112=k•27tjr. 
Figure 456 shows that the total intensity of the field is 

H=1/- 	H-2H1H 2 cos a 

Obviously, 

cos a- 
2Rr 

Therefore, the intensity H=k•21tjd is the same for all the points of the 
space. 

551. Triangle AOC is similar to triangle BAD (Fig. 456) since they have 
one equal angle, and the sides confining these angles are proportional. 

Therefore, L AOC= L BAD. But R I H1, and therefore H 
The intensity of the magnetic field at any point of the space is perpen-

dicular to the line that connects the centres of the conductor and the space. 
The distribution of the lines is shown in Fig. 457. 

552. k=-
1 

where c is the velocity of light in a vacuum. 
c , 

553. No, it will not. Forces of attraction exist between the separate ele-
ments of the current. As a result, the density of the current increases some-
what toward the axis of the conductor. The effect is negligible. 

554. When lightning strikes, a very high current flows for an instant 
through the pipe and the separate elements of the current are mutually 
attracted with a high force. It is this force that converts the pipe into 
a rod. 

Red-r2 —d2  
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555. The currents in the adjacent turns are parallel and flow in the same 
direction. For this reason the turns will be mutually attracted. At the same 
time the currents in opposite sections of the turns flow in different direc-
tions. Therefore, opposite sections are repulsed. 

The turns of the winding will tend to increase in diameter, and the dis-
tance between them along the axis of the solenoid will be reduced. 

556. a—
HnAl 

k 
557. The action of the magnetic field will cause the ring to so turn that 

the force lines of the field are perpendicular to the plane of the ring and 
form a right-hand screw with the direction of the current. The tension of 
the ring will be maximum. Upon employing the method used to solve Prob-
lem 403, we obtain 

F=k1R11=--5 dynes 

558. The element of the ring Al is acted upon by the force AF=kIHAI 
(Fig. 458). Let us resolve it into the components AF1  and Af. The compo-
nent AF1  lies in the plane of the ring and Af =AF sin a is normal to the 
plane of the ring. The resultant of the forces AF1  that act on the separate 
elements of the ring is zero. These forces only stretch the ring. The full 
force f acting on the ring is equal to the sum of the forces Af: 

sin a•Ali=kIH• 21tR sin 	273 dynes 

559. The forces acting on BC and AD are perpendicular to the motion of 
these sides and, therefore, perform no work. 

The forces acting on AB and CD are constant, form a right angle with 
the direction of the field and are numerically equal to f=kHla (Fig. 459). 

The sought work will be equal to the double product of the force and the 
motion of side AB or CD in the direction of the force. When the circuit is 
turned through 180°, this motion is b. 

Therefore, W----2kHlab. 
560. Assuming that all the electrons move with a velocity o, the inten-

sity of the current can be expressed as follows (see Problem 521): 

I=nAev 

Upon inserting the value of I into the formula for F, we get 

F=kHnAlev sin a 

Since a piece of the conductor contains N=Aln electrons, the force acting 
on one electron is fr.---kHev sin a. 

The force f is known as the Lorentz force. 
The direction of the Lorentz force is determined by the left-hand rule 

(the magnetic field intersects the palm, four fingers are directed opposite to 
the motion of the electrons, or along the motion of a positively charged 
particle, and the thumb shows the direction of the Lorentz force). 

581. The Lorentz force is always perpendicular to the velocity of a par-
ticle and therefore performs no work. The kinetic energy and, hence, the 
absolute velocity of the particle remain constant. 

562. The electron is acted upon by the force f=-kevH. If H Is measured 
1 

in oersteds and the charge in cgs electrostatic units, then k=z  (see Prob- 
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revolution of the electron along a circle with a radius R = eH 

H 

  

  

Fig. 459 
	

Fig. 460 

lem 560). This force is constant in magnitude and perpendicular to the ve-
locity v. For this reason the acceleration of the electron is also constant in 
magnitude and constantly remains perpendicular to the velocity. The velocity 
changes only in direction. 

With a constant acceleration perpendicular to the velocity, the motion at 
a velocity constant in magnitude is uniform motion along a circle. 

mv2 
On the basis of Newton's second law, —=--oH. Therefore, the electron 

R c 

will move along a circle with a radius 
R= eH eH 

563. Let us resolve the velocity of the electron into the components v„ 
parallel to H and v1 perpendicular to H (Fig. 460). The component v„ does 
not change in magnitude or direction since the Lorentz force does not act on 
a particle whose velocity is directed along the field. The component ay chan-
ges in direction in the same way as in Problem 562. 

Thus, rotation along a circle in a plane perpendicular to H is superposed 
on the uniform translational motion along H. This produces motion along a 
helical line with a constant pitch h=v„T, where T is the duration of one 

mco sin a 

nmc 
Since T— 

23cR 2n 	 2 mc  
eH vj_ 	

, then h=— v cos a 

564. The action of the Lorentz force (see Problem 560) will cause the 
electrons to move towards the edge of the band. For this reason one edge of 
the band will receive a negative charge and the other a positive one. An 
additional electric field will be generated inside the band with an intensity E 
directed perpendicular to the current. The electrons will continue to move 
until the Lorentz force is equalized by the force acting on the electron from 
the side of the electric field E: eE-=kevH. Hence, E=kvH. 

The potential difference )A—(pB=Ea-=kvHa or, since I =nevA, then 

TA—ITB=kna— 
I 
A

. 
ne 

565. cp A - 'TB  = 2307. 
566. The Lorentz force (see Problem 560) acts on both the free electrons 

and the positive ions at the points of a crystal lattice, since both move in a 
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Fig. 461 

magnetic field. In accordance with the left-hand rule, the force f that acts 
on the free electrons will be directed as shown in Fig. 461. The electrons are 
displaced with respect to the lattice, and one side of the parallelepiped is 
charged negatively and the other positively. An electric field is produced in 
the block, and when the intensity of this field satisfies the ratio eE=kevH, 
the electrons will no longer move with respect to the lattice. 

The sought intensity 
The density of the charges a can be found from the equation 4na=E. 

Therefore, a= —
4
1
n 

kvH. 

567. For no electrostatic field to appear, the electrons should not move 
with respect to the crystal lattice when the cylinder revolves. This motion 
will be absent if the Lorentz force acting on the electrons is equal to mw2r, 
i.e., tro2r =--kevH. 

Since v=cor, then 
H="11 

The field should be arranged in the direction of the forward motion of a 
screw rotating in the same direction as the cylinder. 

3-5. Electromagnetic Induction. Alternating Current 

568. The direction of the intensity of the electric field is shown in Fig. 462. 
569. When the circuit moves, the magnetic flux passing through area ABCD 

diminishes. Therefore, in accordance with Lenz's law, the induced current 
will flow clockwise. 

570. As the iron rod flies through the coil, the magnetic flux passing 
through it changes. This induces an e.m.f. of induction in the circuit. Ac- 

Fig. 462 Fig. 463 
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cording to Lenz's law, the total current in the coil decreases when the rod 
enters it, and increases when the rod leaves it. 

A diagram of the change in the current is shown in Fig. 463. 
571. The magnetic flux changes at a constant rate, and therefore the e. m. f. 

of induction in the second coil will also be constant. If the coil is connected 
to a closed circuit, it will carry a direct current, which will set in not at 
once, but depending on the coefficient of self-induction of the second coil and 
its resistance. 

572. Yes, it will. The e.m.f. of induction is proportional to the rate of 
change of the magnetic flux, while the magnitude of the magnetic flux in 
the iron core does not change directly with the current. The relationship will 
be more complicated. 

573. According to Faraday's law, 

psi-10-8 -
At 

=-- 10-  8  kA 

The e.m.f. of induction is numerically equal to the work performed by 
the electric field when a single positive charge moves in the turn, i.e., 

el-2nrE. Hence E_ 
2nr 

Thus, we finally obtain: 
kr E= 10-8 

knr2 
2nr —

10-8 -T  

It should be noted that this electric field is induced not by the electric 
charges, but by a magnetic field varying with time. Let us recall that when 
an electric charge moves in a closed circuit in an electrostatic field the work 
is always equal to zero. By an electrostatic field is meant an electric field 
induced by electric charges. 

574. Let us divide the ring into n= — 
b a 

small rings each with a width 6. 6 
Let us consider a ring with a height h whose internal radius is x and external 
radius is x+6. If 6 is small as compared with x, the resistance of such a 
ring can be expressed by the formula 

2nx 
R=1)  oh 

The e. m. f. of induction acting in this ring (if 6.<  x) is equal to 

6)---.10-8_A(D-10-8nx2k 
At 

The intensity of the current flowing in such a ring is 

41=  —10-
8 nx2k6 

R 	p2ax
h 

—10-8 
k
2p
hx 

The current flowing through the entire ring can be found from the follo-
wing sum: 

khO 1=10-8  — ia+(a+6)+(a+26)±...-1-1a-F(n-1)On 2p 
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The expression in the braces is an arithmetical progression. Therefore, 

/ 	10-8
2p 

 (b 	a) 

This result will be the more accurate, the smaller is S. Assuming (!) as ten-
ding to zero, we obtain 

/=10-8 
4p 
kh 

(b2—a2) 

575. On the basis of the law of electromagnetic induction and Ohm's law, 
we have for the quantity of electricity that passed through the galvanometer: 

AQ= /At =10-8 
AO 

Or 
8  

Q = 0– 

	

- 	(0-00) 

Since the initial magnetic flux cD0 =-HAn and the final flux (I)=0, the quan- 
10-8  

tity of electricity in coulombs will be Q =—
R 

HAn if R is measured in 

ohms and H in oersteds. 
576. The e. m. f. of induction ei r-- 10-8 ka2  acts in circuit ABCD, and 

a2  10-8 k 	in circuit BEFC. 

The simplest equivalent circuit with galvanic cells used as the e. m. f. of 
induction will for our circuit have the form shown in Fig. 464. 

On the basis of Ohm's law, 

I 3ar 	11  3ar = 12  2ar—e2  

Since the charge is retained, 11=12+13. All three currents can easily be 
found from the given system of equations: 

, 2= 
fie 

22 
ld-2e, 	41+ 42 

 , and /3= 
41- 3e2 

/i- 	ar 	 22 ar 	 11 ar 

Taking into account the expressions for e, and e2, we have: 

	

, 	10-8  ka 3 	10-8  ka 1 
11=

10-8 ka 7 
	X 	2= 	 

r 	22 ' 1 	r 	X 11
, and l3= 	

r 	X22 

577. The third way is the worst, since eddy currents circulate in the win-
ding turns without meeting an insulated layer. 

The first way makes it possible to get rid of most eddy currents, but not 
all of them, since one layer of the autotransformer winding actually has many 
turns around the core and one turn along it (see Problem 548). 

The best is the second way, which is used in practice. 
578. The potential difference between any points of the ring should be 

equal to zero. Otherwise, there will be a contradiction in applying Ohm's 
law to the short and long sections of the ring. Besides, this is obvious from 
considerations of symmetry. 

2a +6 — a — 6 

R 
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If there is no potential diffe-
rence, the electrostatic field in-
side the ring is zero. The current 
is produced by the e.m.f. of in-
duction uniformly distributed 
along the ring: 

ei 	ei 
r 	R 

where ei and ei  are the e.m.f. s 
of induction on the short and 
long sections of the ring, and r 
and R are the respective resis-
tances of the sections. 

Fig. 464 

Despite the absence of a potential difference between points A and B, the 
electrometer will register a potential difference between the rod and the 
housing. 

The matter is that the current in conductors AC and BD is zero. Therefore, 
the applied electric field of inductive origin is equalized at each point of these 
conductors by the intensity of the electrostatic field generated by the redis-
tribution of the charges in the conductors under the effect of the e. m. f. of induc-
tion. The work of the electrostatic forces in moving along closed circuit ACDBA 
is zero. There is no electrostatic field on section AB. When a charge moves 
along AC and BD, the work of the electrostatic forces is equal to the e. m. f. 
of induction in these conductors and has an opposite sign. 

Hence, for the work of the electrostatic forces along a closed circuit to be 
equal to zero, the potential difference between points C and D should be 
equal to the e. m. f. of induction in conductors AC and DB and should coin-
cide with it in sign. Since the e. m. f. of induction in closed circuit ACDBA 
is zero (the magnetic field does not pass through this circuit), the e. m. f. of 
induction on section AB is equal in magnitude and opposite in sign to the 
e. m. f. in conductors AC and BD, if we neglect the work of the applied for-
ces of induction on the section between the rod and the housing of the elec-
trometer, as compared with the work in conductors AC and BD. 

For this reason the electrometer will show a potential difference approxi-
mately equal to the e. m. f. on the section AB. 

579. As distinct from Problem 578, the potential difference UA-UB is not 
zero. 

Let us write Ohm's law for all three sections of the conductor, denoting 
the currents in ADB, AKB and ACB by 11, 12 and /3, and the respective 
e. m. f. s of induction by ei, e2  and e3: 

ei+U A-U B  1, e2+1I 8-U A 	e3+U A-UB 
, 2= 	 , and /3 — 

R1 	 R2 	 R3 

Since the charge is retained, / 2 =4+13. Summation of the first two equa-
tions gives 

11R1+12R2=e1+e2=e 

Upon subtracting the first equation from the third, we get 

13R3-11R1— 
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But the e. m. f. of induction in circuit ACBDA is zero, since the circuit is 
not pierced by a magnetic field. Therefore, 

e1=e3  and 13R3- 11R1 = 0 

R1R2 -1-R1R3 -i-R2R3 

580. When the resistance R3 is other than zero, we can find from the 
equations of Problem 579 that: 

eR3  
= R1R2d-R2R3+R1R8 

(Ri+R3)  
'2 R1R2H-R2R3+R1R3 

eR,  
R1R2-FR,R3+R1R3 

When R3=0 

1,== 0, =.1- „ 13 

R2 
In the general case 

UA  UR 
	

(R1 +R2) (R1R2 R2R3+ RiR3) 
When R3=0 

eRi  UA-UB--= 
Rl+ R2 

Here UA-UB=--- el  (since /1=0 on section ADB), where el  is the e. m. f. 
of induction on section ADB. 

581. An alternating current should be passed through the electromagnet. 
The current should increase comparatively slowly, since at this moment the 
metal object will be repulsed weakly in view of the current induced in it, 
and diminish very rapidly, since in accordance with Lenz's law there will 
appear a high force of attraction proportional to the rate of current change. 

A possible relation between the current and time is shown in Fig. 465. 
In principle, a force of attraction also appears when the direct current in 

the electromagnet is switched off. 
582. In both cases equilibrium will set in if the moment of the forces 

acting from the magnetic field on the current induced in the ring is equal to 
zero, or if there is no induced current. This will occur only if the plane of 

The system of equations gives the following value for the sought current: 

eR,  
13- 

24  Fig. 465 
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the ring is arranged along the force lines of the field (the induced current is 
zero) or when the plane of the ring is strictly perpendicular to the force lines 
(the moment of the forces is zero). 

According to Lenz's law, the first position of the ring will be stable in an 
increasing magnetic field, and the second unstable. 

In a decreasing magnetic field, on the contrary, equilibrium will be stable 
when the angle between the plane of the ring and the force lines is a right 
one, and unstable when the plane of the ring is parallel to the force lines. 

583. Let the velocity of the conductor be v at a certain moment of time. 
The e. m. f. (in volts) at the same moment of time will thus be e=10-8 Hlv, 

and the current I= —
1

x 10-8  Hlv. The action of the magnetic field on the 

conductor carrying a current will induce a force f that prevents free dropping 
of the conductor: 

f =10-9 11212v  

Hence, at the moment of time being considered, the acceleration can be de-
termined from the relationship 

ma=mg—f=mg— 10 –  

It is easy to see that as the velocity increases, the acceleration a will di-
minish and become zero at the moment of equality of the forces f =mg. From 
this moment on, the conductor will move with a constant velocity vk  equal to 

mgRX109  
vk=  H212  

584. The e. m. f. of induction appearing in the conductor (measured in volts) 
is 6' = 10-8  Hlv. 

The charge on the plates of the capacitor can be found from the relation-
ship 

Q 6)C = 10–  8  H1vC 

The current flowing in the circuit is 

Av 
/=—

AQ =- 
At 

10– 8  HIC 
t 

—
A

= 10 –  8  HICa 

where a is the sought acceleration. 
The interaction of this current with the magnetic field will produce a force F1  

acting on the moving conductor. On the basis of Lenz's law, this force will 
be directed oppositely to the force F. 

The force F1=k1H1=10-9H 2pac, if C is measured in farads. The sought 
acceleration can be found from the equation ma=F —F1. 

Hence, 
F 

m+ 10-8  H212C 

9  H212v 

is a constant quantity. 
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Fig. 466 

The work of the force F over the path S is spent to increase the kinetic 
energy of the conductor and the electrostatic energy of the capacitor. 

585. Let the magnet be initially positioned as shown in Fig. 466. Its 
north end is at a distance R1  from the current and its south end at a dis-
tance R 2, the length of the magnet being 1=R2 —R1. Let us now move the 
magnet in the plane / around the wire, keeping the distances R1  and R2 
unchanged until after one revolution the magnet occupies its initial poSition. 
Since during this motion the total change in the magnetic flux through the 
area restricted by the straight wire and the conductors that short-circuit the 
current at a great distance from the magnet is zero, the quantity of induced 
electricity that has flown through the circuit is also zero. On the basis of 
the law of conservation of energy, the work of the forces of the magnetic 
field should also be equal to zero: 

2rc Ri 	21f R2H2m 0 

where m is the magnetic charge of the pole, and H 1  and H 2  are the inten- 
sities of the magnetic field at the distances R1  and R2  from the wire. 

Hi  Hence, 	= 2 which is possible only when H is proportional to -R- . 
112 

586. Since according to the initial condition, the intensity of the magnetic 

field is directly proportional to time, i. e., H=0.4 If T  kt, then the e. m. f. 

of self-induction is equal to 
Ai2 

ei=10-9 x0.4 —kA (A-=-3cr2) 
1 

and directed against the current. The voltage across the solenoid terminals 
should be 

N 2  
U=-4a10-9  A— 1  k±kRt 

In this case I = U— e( —kt. 

587. When R=0, the e. m. f. of self-induction ei remains constant, since 
the voltage across the solenoid terminals is u=e1-63. It follows from the 
solution of Problem 586 that when ei is constant, the current changes in 

12-1865 
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proportion to time, i.e., 1=kt, where 
U 

k— 	  

	

43" x 10— l9  AN2 	
Therefore, 

 
109 1e 
431 AN2 

t. If the resistance is finite 

and not zero, the current will increase 
according to the same law until the 
voltage drop /R across the resistance R 
becomes negligibly small as compared 
with ei. 

588. The work of the battery du-
ring the time T is w=eQ, where Q is 
the quantity of electricity that passes 
through the solenoid during the time T. 

The current in the solenoid grows di- 
Fig. 467 

rectly with time: 1 =
4
1091 et 

 (see the 
n 
 AN2  

solution to Problem 587). Therefore, Q will be equal to the product of the 
mean intensity of the current 

knit+l final 
(here 1 i nit=0) 

and the time T or numerically equal to the area of the hatched triangle (see 
Fig. 467): 

(2-  4' 12  109 
831 AN 2  

Hence, the work in ergs will be 
I 	2 T2 

8 nA N2 
1016  erg 

This work goes to increase the energy of the magnetic field. Thus, we can 
write that W =We, where W e  is the energy of the magnetic field. Bearing in 

mind that H=0.43" —/  1, and inserting the expression for the current, this 

energy can be written as 

we—  I/2/1/ 

(W e  is in ergs, H in oersteds and I in centimetres). 
589. Since the resistance of the ring is zero, its total electromotive force 

should also be zero. This will occur only if the change of the full magnetic 
flux piercing the ring is zero. For this reason the change in the external mag-
netic flux CD 0  is equal in magnitude and opposite in sign to the change of 
the magnetic flux generated by the induced current: A00 = LAI Remembering 
that the flux (1)6  grows from 0 to 3"r2H, and the induced current changes in 
this case from 0 to I, we obtain nr 2 H0=LI. 

2 
Hence I —

3-(/-1/0 

2 
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590. The magnetic flux through the ring cannot change (see Problem 589). 
Therefore, cD=nr2H. First this flux was produced by the external magnetic 
field, and after it was switched off, by the current induced in the ring. 

591. The e. m. f. of induction e1=-10-8 At if et  is in volts and CD in 

oersteds per cm2. The magnetic flux through N turns of the coil (1)=NAtt,H, 

where H=0.431 7  I (the current is in amperes). 

On the other hand, ei.---L 
Ott if et  is in volts, L in henries and / in 

amperes. 

Hence, L=10-9 
4TEN211,. A 

henries. 

592. cD = AT1d4R,H2, where N1  is the number of turns of the first winding 
and H 2  is the magnetic field created in the core of the second winding. 

Approximately, 1/2 =
4nN2/

, 	where 1 is the perimeter of the core. 

Hence, M — 43-cluTANiN2 

593. The e. m. f. of induction in the disk is shifted in phase by at/2 with 
respect to the alternating current in the electromagnet. 

On the other hand, the phase shift between the e. m. f. and the current 
in the disk tends to at/2 if Le R. In our case R is small and this inequa-
lity is observed. As a result, the eddy current in the disk is shifted in phase 
by IC with respect to the current in the electromagnet. The currents are oppo-
site in direction and will be mutually repulsed. Therefore, the disk will be 
pushed away and the string on which it is suspended will be deflected from 
the vertical. 

The same result can be obtained by another method. If the resistance of 
the disk can be neglected as compared with its inductive reactance, the full 
magnetic flux through the disk undergoes almost no change. (For a super-
conductor the change in flux is strictly zero, see Problem 589.) This means 
that the field of the eddy current in the disk is always directed against the 
field of the electromagnet. 

Hence, the disk will be repulsed. 
594. If the self-inductance of the wires can be neglected, the amount of 

heat AlVe =uAQ will be evolved (a is the potential difference between the 
plates connected by the wires at a certain moment of time) when the charge 

AQ is transferred from one plate to the other, or —AQ for the other pair 
of the plates. 

The transfer of the charge AQ leads to a change in the potential difference 
 

on both capacitors by Acp= Q — . Hence, 

AW e =uCAq) 

A decrease in the potential difference between the plates of one capacitor 
by cc' is attended by a similar increase on the other. 

Therefore, 
(U ri) — =-- U — 2cp 

where U is the initial potential difference between the plates of the charged 
capacitor and q) is the value by which this potential difference drops at the 

12* 
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given moment. Since q) changes from 
zero to U/2, the diagram showing u 
versus q  has the form shown in 
Fig. 468 by the dotted line. The 
relation uC versus IT is shown by 
the solid line AB. The quantity of 
heat A We  = uCAq) is shown in Fig. 
468 by the area of the trapezium 
with the middle line ab that corre-
sponds to the average potential in 
the given range Ay. 

The full amount of liberated 
heat W e  is depicted by the area 
of triangle OAB. It is equal to the 
loss of the electrostatic energy 

U 1 U2C Q2  __W„ 
2  e=UC 	= 

4 4C—  2 Fig. 468 

and does not depend on the resistance of the wires. 
The resistance must not be regarded as zero or very small, however, since 

the self-inductance of the wires must be taken into account. 
595. The effective value of an alternating current is the value of a direct 

current that produces the same quantity of heat in a conductor as the al-
ternating current during the same time. 

Let us calculate the quantity of heat liberated during a period: 

Q= 0.2410R 8 — 	
8 

+0.24/!R =0.24n 
4

R 
 

On the other hand, Q=0.24/e2f1RT 

Therefore, / eft=
2
°  

596. When a sinusoidal alternating current flows through the circuit, the 
d-c ammeter will show zero, since its pointer cannot follow the rapid 
changes in the instantaneous values of the current owing to the inertia of 
the movable ammeter parts. The thermal ammeter shows the effective value 

of the alternating current /2= 
10 

 

If a direct and an alternating currents flow simultaneously through the 
circuit, the d-c ammeter will show the mean value of the current equal to 
the direct current 11=6 A. 

The current flowing through the thermal ammeter is 

1=11+10  sin cot 

On an average, it evolves per second the heat 

= kR (/?+21110  sin cet + /(1 sine cot) 

The line denotes averaging in time. 
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The average value of 2/ 31, sin 6.)t a period is equal to zero and the ave-
rage value of 

n 1—cos 2 cot _12_2_ = n  sin2  cot -=- 	 
2 	2 

is equal to the square of the effective value of the alternating current. The-
refore, 

Q=kR (4+1) 

On the other hand, the quantity of heat Q liberated in the ammeter per 
second is related to the effective intensity of the current I flowing through 
the ammeter by the formula Q =k/2R. 

Hence, the a-c thermal ammeter will show 

/=_V/1+n=.-10 A 

597. Since R=0, the current I lags in phase behind the voltage U by 

A/2. Diagrams showing U= U0  sin wt, I= /0  sin (cot — —
2 

)and the instanta-

neous power P=IU are shown in Fig. 469. The sign of P changes every 
quarter of a period. The supply of energy from the source to the coil corres-
ponds to a positive value of P. When P is negative, the energy returns from 
the coil to the source. On an average, the coil consumes no power during a 
period. The mean power is equal to zero. 

598. The inductive reactance of a choke is much greater than its resistance: 
Lo.) :>> R. The advantage of a choke over an ordinary resistor is that no heat 
is liberated on the inductive reactance of a choke. For this reason a lamp 
with a choke is much more economical than a lamp with a resistor connected 
in series. 

599. If Lo> R, the phase shift between the current and the voltage is 
great and the power consumed by the mains cannot be high. When capacitors 
are switched on, the phase shift is reduced, since the current flowing through 
a capacitor leads the voltage, compensating thereby for the lag of the current 
in phase in electric devices with a high inductance. As a result, the power 
consumed by the mains increases. 

600. (a) Since ends A and B are open, no current flows in section AC. 
Therefore, the voltage drop in AC is zero. For this reason U 2 =U 1. 

(b) When a variable potential difference is applied between points B and C, 
the current flowing along BC creates a variable magnetic flux that generates 
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an e.m.f. of induction in section AC. Since Lco> R, the amplitude of this 
e.m.f. will also equal U,. For this reason the amplitude of the voltage U 2  
between points A and B will be equal to 2U, (step-up autotransformer). 

601. When an alternating current flows in a conductor the amount of heat 

U 2  
evolved is Q=/:fiRt. The expression for the evolved heat Q= Rif t is true 

only when Ohm's law can be applied in the usual form: /=—
R 

The winding of a transformer has a very high inductive reactance. For 
this reason Ohm's law in its usual form and, therefore, the expression 

2  U ei, 
(2 	' 	 t cannot be applied. The amount of heat evolved is small, since 

the intensity of the current and the ohmic resistance of the winding are 
small. 

602. If we neglect the ohmic resistance, the voltage across the terminals 
of the primary winding U, can be represented as the algebraic sum of the 
e.m.f. of self-induction of this winding and the e.m.f. of induction generated 
in it by the current flowing through the secondary winding 

, A/1 	A/ 2  
Ll'=1-1 76,T —m  At 

The minus sign is due to the fact that the currents /, and / 2  have opposite 
phases. 

If the currents change according to the laws 11=101  sin cot and 12= 
= 102 sin cot, then 

A/1 	 Al, 
-,-- w/ o, cos cot and —

At
= co/02  cos cot At 

Since the voltage U, is shifted in phase relative to the current /1  by a/2, 
we can write U,=U„,, cos cot. 

Upon dividing the expression for U, by Lico cos cot, we get 

Uo1 	• 	A4 
Lico 	01 	Li  02 

U01  is the no-load current if the ohmic resistance of the winding is neglected. 
Llco 

Disregarding the no-load current, we find that 
101 =M 
/02 	/-1 

By using the expressions for the coefficient of self-induction and mutual 
inductance from Problems 591 and 592, we obtain 

11 _101_N2  
102  N, 

603. The positive half-waves of the current will charge the capacitor to 
the amplitude voltage of the mains, equal to 127 J12 V= 180 V. When the 
diode carries no current, it receives the voltage of the mains (with an ampli- 
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tude of 180 V) plus the same vol-
tage of the charged capacitor. The 
change in the potential along the 
circuit at this moment of time is 
shown in Fig. 470. 

If the rectifier operates without 
load, the capacitor should be calcu-
lated for a puncturing voltage of at 
least 180 V, and the diode for a 
voltage of at least 360 V. 

604. The anode voltage of each 
diode is 

Ua= 
u 

sin cat—/R 
2 

A current flows through the diode when Ua  > 0 and does not flow through 
it when U a  < 0. In a quarter of a period the current will not flow durihg 
the time interval 0 t <11  (Fig. 471), where t1  is determined by the equation 

Fig. 471 

U U. 	 T 
	sin —

2 
sin coti — IR=O. Hence, 

t1=-3-c 
arc sin — . This is also the time during 

U 
which the current does not flow in the following quarters of the period. 
Altogether in a period the current does not flow during 

2T 	2/R 
=0.465 T 7  arc sin 

U 

3-6. Electrical Machines 

605. If the frequency of the alternating current remains the same, this 
means that the revolutions of the motor and the generator also remain as 
before, and the e.m.f. of the generator will not change. 

When the external resistance in the circuit is high, the circuit will carry 
a smaller current and a lower power will be supplied. For this reason the 
power of the motor that revolves the generator should be reduced. 

606. The work performed by a field in moving conductors carrying a current 
(armature windings) is not equal to the total work of the field. Apart from 
the work spent to move the conductors, the magnetic field performs work to 
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retard the electrons in the conductor, which produces an e.m.f. of induction 
in the armature winding. The first part of the work is positive and the second 
negative. The total work of the magnetic field is zero. 

The electromotive force of the source that generates a current in the motor 
armature performs positive work, and the latter compensates for the negative 
work of the magnetic field in retarding the electrons. 

In essence, the motor does its work at the expense of the energy of the 
source feeding it. 

607. The power consumed by the motor is P=IU; here U=ei-FIR, 
where ei  is the e.m.f. of induction appearing in the armature. 

Hence, 
P=lei±pR 

Here PR is the Joule heat liberated in the windings, and lei  is the work 
against the e.m.f. of induction, equal to the mechanical power P1  developed 
by the motor. 

uei  
This power P1= 	 , since 1= 	. This expression is ma- 

ximum when ei=_T  (see the solution to Problem 516). Therefore, the 

U 2  
maximum value of P1=T—

R 
180 V. The motor cannot develop a power of 

200 watts. 
608. The maximum power developed by a series motor (see Problem 607) is 

U2  
Pmax= 4 (R I + R2) 

The power consumed by the motor is 

, U—ei 	U 2  P=UI=u 	— 	 
Ri+ R2 2 (Ri ± R2) 

since ei=__2_ . 
Hence, the efficiency is 	For a shunt-wound motor 

U 2  
Pmax=  4Ri  

The power consumed is 

P 	 U 	U2  (2R1  + R2)  + R2 2R1R2 
---UI=U (  U—ei 	) 

Therefore, 
1 	I 

11= 
 2 1+2

R 
R, 

I. e., less than 50 per cent. 
609. Let us denote the length of the turn by 1 and its width by d 

(Fig. 472). The force F acting on a conductor with a length / is F=kIHI. The 
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power is 

P =2k1 Hlv = kl H Aco 

The current I can be determined 
from the formula 

where 631=10-811A. 
Fig 472 	 Finally P can be written as tol. 

lows: 

H R P=kH A —
R 

co-10-8k HA 2  

P reaches its maximum 

X 10
, U2 

Pm"=k4
U
R

2 
=4R 

U  
when co=

2H A X 
 108
.' 

Here 	and l=g-? . In a unit of time the 

2  
battery performs the work 27  . From this amount, one half is converted into 

mechanical power and the other half is liberated as heat (see Problem 607). 
The relation between P and co is shown in Fig. 473. 

610. M=kHAU k-10-2112 A2  

.108  
The moment will be equal to zero when co=

U
HA 

 (see Fig. 474). Here 

1=0, because ei =u. 
611. The nature of the relation between P and H is shown in Fig. 475 

(see the solution to Problem 609). The power reaches its maximum when 
 

H 
=2Aco 

X 108. Here 63,--. 
U  and P max=-

U2 
J. 

2 	 4R 

KHAU 

Fig. 474 
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613. As with a series motor, the 

power of a shunt-wound motor is 

R 
p uei _61  

U 
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612. The torque will reach its 
U2  

maximum M,„„=107  x —4R63 dyne• 

ZAw 
Fig. 475 	 where R is the resistance of the 

armature (see Problem 607). Two 
values of ei correspond to a power 

of P =160 watts: e1=80 V and e2 =40 V. Both values depend on the de- 
sign features of the motor. 

According to Faraday's law, ei  is directly proportional to the number of 
armature revolutions n per second and the intensity of the magnetic field 
created by the stator. With a shunt-wound motor this intensity does not 
depend on the load. Therefore, ei==an, where a is a constant quantity de-
termined by the design of the motor and the voltage applied. We obtain 
from the data in the problem that a1=8 and a2 =4. The value of ei  cannot 
exceed 120 V. 

Therefore, the maximum possible speed is either n1=15 rev's or 
02 =30 rev/s. 

614. If the voltage on the stator is kept constant, then at the given 
speed of the armature, the e.m.f. of induction in it does not depend on 
whether it is rotated at the expense of the action of the magnetic field of 
the stator on the current in the armature or with the aid of a mechanical 
drive. 

The power developed by the motor is P=Mco. In our case P=160 watts. 
The e.m.f. of induction ei  can be determined from the equation 

p=t1  ei-e2 
R 

(see Problem 607). Hence, ei=_-__ 	
4 2 

± -1/L2  - PR has two values: 6)1=80 V 

and 6)2 =40 V. The e.m.f. of the generator will also be equal either to 
80 V or 40 V. 

The existence of two results is due to the fact that the same power of 
the motor is obtained with the same product lei, while two pairs of pos-
sible values I and ei correspond to this product. 

The values of ei  and, hence, the current depend on the design features 
of the motor, the number of turns, their shape, etc. 

615. The mechanical power developed by the motor is 

M 2 an=uei —e 

(see the solution to Problem 607). 
The e.m.f. of induction in the armature ei=kHn, where k is a pro-

portionality factor determined by the number of turns of the armature wind- 

P 
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Fig 476 

kU 
, the speed 

will be maximum. (This value can be found by the method described in the 
solution of Problem 516.) Therefore, if Hm  > H> 110, the speed increases 
when the current grows in the windings of the stator, and decreases when H>H„,. 

If the motor operates without load (M =0), the speed will be n =—
kH ' 

r 
At any moment, the potential difference U across the terminals of the 

motor is equal to ei, since the resistance of the winding is zero. 

Therefore, the power P=IU= eeir-61  • ts determined by the e.m.f. of 

the mains, their resistance and by ej. 
617. Assume that the voltage at the ends of winding W1  changes in con-

formity with the law U01= eo  sin cot. Hence u„-e, sin (cot —120°). The 
potential difference U 12  is equal to that on the windings W1  and W2, i.e., 

U12 = 630  sin cot — eo  sin (o)t — 120°)= 

= 26% sin 60° cos (wt — 60°) = 80 Y  3 sin (wt + 30°) 

since sin 60°= 
23 

 and cos (cot —60°)= sin (cot+30°) 

Hence, the amplitude of the linear voltage is 1I3 times greater than that 
of the phase voltage. 

618. When the load resistances are the same, the currents /1, 12  and /3  
2 

are identical in amplitude and shifted in phase by Tn. Therefore, 

2 
/1+ / 2 =/0  sin cot+/0  sin (cot + —

3 
n) =/ 0  sin (cot+ 3) 

ing and their area, and H is the in-
tensity of the magnetic field of the 
stator, which is directly proportional 
to the current. 

Upon excluding el  from these equa-
tions, we find that 

U 2 nMR 
n=

kH k 2H 2  

that the motor armature will not 

The relation between to and H is 
shown in Fig. 476. 

If H <Ho=  2nMR  
, then n 

kU 
From a physical viewpoint this means 

rotate. When H=H — 
4nMR 

,„— 

i.e., it always decreases with an increase of H. 
616. The intensity of the current flowing in the winding of the motor 

will be determined by the e.m.f. of the mains 63, their resistance r and the 

e.m.f. of induction ei  generated in the motor armature:   . 

12** 
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and 

ii+ / 2 +4=/ osin(cot+i)+/0  sin (cd+-1 J.e)= 

=-2/0  sin (c.ot 	al) cosT=u 

619. The magnetic fields H1, H2  and H3 can be written as follows: 

H, =Ho  sin cot, H2  = Ho  sin (cot + 
2
7  at), and I/3 = Ho  sin (cot +4 le) 

Let us select the axes of coordinates x and y as shown in Fig. 220 and find 
the sum of the projections of the intensities of these fields on these axes: 

2 	2 	 4 	4 
1-1„=-- Ho  sin cot+ Ho  sin (cot + 	2-e) cos —3— a +Ho  sin (wt + T  Tc) cos —3- n 

4 
rte sin  4 a  

H — H sin (cot + —2  a sin 2  Te+Ho  sin (cot + 
3  y — o 	3 	3 	 3 

After simple transformations, we have 

	

3 	 3 
Ho  sin cot and Hy= 7 110 cos cut 

Such projections are possible only if the vector showing the magnetic field 
rotates clockwise with a constant angular velocity w. 

620. In these conditions the currents in coils 1-2 and 3-4 are shifted in 
phase by almost It/2. Correspondingly, the magnetic fields created by them 
are shifted by the same magnitude. Thus, the space between the coils contains 
the fields: 

Hi  ----Ho  sin cot 
directed vertically and 

IC 
H2 = Ho sin (cot + —

2
) =Ho  cos cot 

directed horizontally. 
This means (see Problem 619) that a revolving magnetic field is produced 

in the space. As the field rotates, it carries along the cylinder. 
This principle underlies the design of single-phase induction motors. 



Fig. 477 

CHAPTER 4 

OSCILLATIONS 

AND WAVES 

4-1. Mechanical Oscillations 

621. The vertical component of the tension force T is equal to F =t cos a 
(Fig. 477). For the conical pendulum F =mg, since the weight has no acce-
leration in the vertical plane. 

When the mathematical pendulum is deflected the maximum from the 
position of equilibrium (through the angle a), the resulting force is directed 
at a tangent to the trajectory of the weight. 

Therefore, T = mg cos a. 
When the weight is deflected through the angle a, the tension of the thread 

of the conical pendulum will be greater. 
622. The period of oscillations of the pendulum on the surface of the Earth 

	

is To  =2a
/ 

and at an altitude of h above the Earth T,= 21t 	
/ 

	

The number of oscillations a day is N1=24 X 60x 60 1 
	k

. Therefore, 
T1  T1  

at an altitude of h above the Earth the clock will be slower by the time 

Ati=Ni  (Ti —T0)=k (1— 

	

The ratio between the periods is -,-TT  = 	g  =R  +h  To  

as follows from the law of gravitation. Hence, 

kh 	kh 
Ati= 	

R h 	R = 	 seconds 

If the clock is lowered into a mine, the acceleration 
. . g, 	R 	h 	. 	43-t 	1 

	

ratio is —g =
h 

, since g=7 –5– Rap 17  and 	02-= 
4a 

=1, ---T  (R—h)3 p (R _1 hr  (see Problem 234). 

Hence, 

To = 7 g2  =. 	R — h 	h 
T2 	g 	R 	2R 

In this case the clock will be slower by the time 

	

At2,---k (1 --
To ) -= —kh 	1.35 seconds 
T, 	2R 
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623. Each half of the rod with a small sphere on its end is a mathemati-
cal pendulum with a length d/2 that oscillates in the field of gravity of the 
large sphere. In the field of gravity of the Earth the period of small oscilla-

tions of a mathematical pendulum is T0 =231 	- . According to the law 

rnM  of gravitation mg—y 	and therefore R2
E 
 , 

To=-231 
17 1R2 

VME 

where y=6.67 x 10-8  cm2/g•s8  is the gravity constant, ME is the mass of 
the Earth, and R is the distance from the pendulum to the centre of the Earth. 

Correspondingly, the period of small oscillations of the mathematical pen-

dulum with a length 1= 
d 
 in the field of gravity of the large sphere will be 

2 
dL 

 M  
2 

T =2n   5.4 hours 2y 

624. The period of oscillations of a mathematical pendulum is 

T=2:1 
1/-  T 

where g' is the gravity acceleration in the corresponding coordinate system. 
In our case 

e = y g2+,2 

where g is the gravity acceleration with respect to the Earth. 
Thus, 

T =-231 17-  I  
g2 +02 

/ 
625. T=--25t 

g ± a
. Use the plus sign if the acceleration of the lift is 

directed upward and the minus sign if it is directed downward. 
626. The oscillations of the block in the cup are similar to those of a 

mathematical pendulum, with the only difference that instead of the tension 
of the spring the block is acted upon by the reaction of the support. There-
fore, the sought oscillation period is 

T=--2a, 
V g 

627. When M m, the acceleration of the cup is a=.2T-4  —g. Therefore 

(see Problem 626), 

T =2. 	=.2a-L 1/ ,-- 
g-Fa 	r 

g 

RM 



Let us note that when r 	0, we have T=22", 

T =2n  
g 

1/-
2 
 R — r 
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If F=0, i. e., with free falling of the cup, T=oo and there are no oscilla-

tions. When F = Mg, we have T =2n . 
g 

628. The oscillations of the block will periodically displace the cup in a 
horizontal plane. Hence, the oscillation period of the block will diminish, 
since an additional variable acceleration directed horizontally will appear in 
the coordinate system related to the cup (see Problem 624). 

629. Let us compare the motion of the centre of the hoop with that of the 
e nd  of a mathematical pendulum with a length R — r . Both points describe 
the arc of a circle with a radius R — r. Let us assume that the hoop and the 
pendulum are at rest at the angle (pa. On the basis of the law of conservation 
of energy, we have the following expressions for the velocity vh  of the hoop 
centre and the velocity vp  of the pendulum end depending on the angle (p 

oh= jig (R — r) (cos (pp —cos (pi) 

v = Jr 2g (R — r) (cos (pp —cos (ph) 

(See Problem 207 for the kinetic energy of a hoop rolling without slipping.) 
It follows from these expressions that 

vP  Oh= 
V 2 

Since the centre of the hoop moves j1  2 times slower than the pendulum, the 
period of motion of the hoop centre will be jr 2 times greater than that of 
the mathematical pendulum with a length R — r. Thus, we have for the 
sought period: 

V212 

seem at first sight that if r=0 there should exist the equality 

	

T=2n 	R 

This can be attributed to the fact that the energy of rotational motion of the 
hoop does not disappear when r 	0. 

630. Let the rod be initially deflected from the position of equilibrium 
through an angle a. At the moment when the rod forms an angle p with the 
vertical, the angular velocity col  of the rod will, on the basis of the law of 
conservation of energy, be equal to 

co /  = i/r2g (#1111+ m212)  (cos p —cos a) 
iniii+m2/Z 

Let us now consider a mathematical pendulum with a length 1. 
In this case at the same angles a and 0 

= - 
V 2g 

(CGS p — cos co 
1 

although it may 
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Let us so select 1 that (1)1=.1)2. For this it is necessary that 

	

, 	Inli+m21Z  
mill + m212 

The angular velocity characterizes the change in the angle 13 in the course of 
time. Since (01=-(02, the oscillation periods of the two pendulums are the same. 
For a mathematical pendulum 

T 

Therefore, the sought period is 

	

T=211 	+ m24  I 
mi./1 -1-17/212 g 

631. This problem can be solved by the same method as Problem 630. Let 
the half-ring be initially deflected from the position of equilibrium through 
the angle a. In motion, all the points on the half-ring have the same linear 

nir2(o2  

2 
mg-- r (cos cp—cos a) 

since the centre of gravity is at a distance of —
2 

r from point 0 (see Prob-

lem 115). 
Equating the changes in the kinetic and potential energies, we obtain for co 

2g  
(cos (p — cos a) 

2 

It follows from the above that a mathematical pendulum with a length 

2 will have the same period of oscillations as the half-ring. 

Thus, the sought period is equal to 

itr 
2g 

632. In the position of equilibrium the spring will be stretched by the 
amount 1 that can be determined from the expression k1=-mg. 

Let us assume that the weight is at rest at the initial moment of time and 
the length of the spring changes by x, as compared with the position of 
equilibrium. If the system is now left alone, the weight will oscillate near the 
position of equilibrium with an amplitude equal to I x0 1. With a weightless 
pulley (M=0) the period of oscillations is 

velocity. The kinetic energy is 
2 	" 

When the half-ring is turned through the angle a—ip, the change in the 
potential energy is 

To =r2a 1/ -Ln- 
1 	k 
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Let us denote the displacement of the weight measured from the position 
of equilibrium by x. The velocity of the weight as a function of x can be 
found from the law of conservation of energy 

k (x0+1)2 	mv2  k (x+ 1)2  
2 	

mgx, = 2  + 2 	mgx 

Bearing in mind that mg=k1, we find: 

	

V k 	x2) 

If M 	0, the law of conservation of energy can be written as 
k (x0 + 1)2 	(m + M) v2  k (x + 1)2  

	

mgx0= 	2   +  2  	mgx 
2 

It follows that 

	

v= 	k(4—x2)  

M ±m 

	

Thus, in the second case (M 	0) the weight moves as if its mass had 
increased by M as compared with the first case. 

Hence, the sought period is 

T = 2nj/ m M  
633. When the bottle is displaced from the position of equilibrium by x, 

the force acting on the bottle will be equal to F = — yo Ax, where yo  is the 
specific weight of the water. The minus sign means that the force is directed 
against the displacement x. According to Newton's second law, the oscillations 
of the bottle are determined by the equation ma= — yoAx. This equation is 
absolutely similar to the equation for the oscillation of a weight on a spring: 

	

2a = 
gy m ,  ma= — kx. Since for the weight we have ci)=—
T 	' 

then the oscilla- 

tion frequency of the bottle will be 

— 1  VV°A  25  1 

	

2m —2a 	
. 

m 	second 

634. The equation of motion of the mercury has the form 

ma= — TA2x 
where x is the displacement of the mercury level from the position of equilib-
rium. The equation of motion has the same form as in the case of oscillations 
of a weight on a spring. Therefore (see Problem 632), 

	

T =2r Y 
2 AA 	

1.54 seconds 

4 635. The force acting on the body is F=y —
3 rcpmr where r is the distance 

from the centre of the Earth and y is the gravity constant (see Problem L34). 
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Remembering that g=1)-5---pR, this expression can be written as: 

F=mg7  

Here R is the radius of the Earth. The equation of motion of the body has 
the form: 

ma=-- 
mg 

r=—kr 

The force is proportional to the displacement from the position of equilibrium 
and directed toward the centre of the Earth. Therefore, the body will perform 
harmonic oscillations with a frequency 

(0= 1 n2—= 1//-,1,7  

Hence, the period of oscillations is 

T = 

The body will reach the centre of the Earth during 

t=-T4 2 I g 21 minutes 

It is of interest that the time i does not depend at all on the distance from 
the centre of the Earth at which the body begins to move, provided this 
distance is much greater than the size of the body. 

636. The force F acting on the weight deflected from the position of 
equilibrium is 2f sin IT (Fig. 478). Since the angle y is small, it may be 

assumed that F =
4fx 

or 	where k=
4 

1 	 1 • 
By using the formula 

T=2:-E V 
we get the following expression for the sought quantity: 

T= 
V1714 

637. The period of oscillations of the weight on a spring is 

T=2n. Vrn  

where k is the coefficient of elasticity of the spring equal to the ratio between 

the force that caused the spring to stretch and its elongation: k=—F . 
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Fig. 478 

When two identical springs stretched by the force F are connected in series 

F F k 
k1 xi  2x 	2 

since the length of each spring increases by x. When such springs are connec-
ted in parallel, the force F1  required to increase the length of each by x 
should be two times greater than F. 

Hence 	
F1  2F 

, K2 -=-=2k 
X X 

With series connection 

T1= 2n 1/2=2st 2m 

and with parallel connection 

T2 = 23-c 	-TE  

Hence, 7
T
--c

I 
 =2. The period is halved. 

638. Let us deflect both pendulums from the vertical in the same direction 
and through the same angle. In this case the spring will not be deformed. 
It is easy to see that the pendulums released from this position will oscillate 

in phase with a frequency of o= 1/ . If the pendulums are deflected in 

opposite directions through the same angles they will oscillate in antiphase 
and the spring will be deformed. To calculate the frequency of these oscilla-
tions, let us find the force that returns the pendulums to the position of 
equilibrium. Upon deflection through the angle cp the force acting on the 
mass m from the side of the spring is 2k1 sin cp. The sum of the projections 
of the forces of gravity and elasticity on a tangent to the circumference, the 
so-called "restoring force" F,. will be equal to 

F,.= mg sin cp 2k1 sin cp cos cp 

(Fig. 479). Since cos cp = 1 at small angles, 
2k1 ) . 

F ,.=-(mg +2k1) sin cp or F,.= m (g+ —
m 	

cp 

For a mathematical pendulum the restoring force is mg sin cp. The frequency 
/ 

of oscillations at small angles T  can be found from the formula o= V —
1 
. 

2k1 
In our case the part of g is played by g+—tn 



Hence, 

(0 = 
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The period of oscillations is 

T=2n,17  g+— 
2k1 
ni 

 

639. Yes, it can. For this purpose the 
door should be gradually swung with a 
frequency equal to the natural frequency 
of oscillations of the door. Upon resonan-
ce, the amplitude of oscillations may be 
very high. 

640. From the law of conservation of 
energy: 

Fig. 479 

where co is the angular velocity 

0)2 
—  
2 

(m12+ Mr 2) = Mgra—mgl (1—cos (p) 

of pulley rotation. Hence, 

co= mi2+ mr 2 

Oscillatory motion will be obtained if the angular velocity is zero at a 

certain value of the angle a. Here Mgra=2mgl sine 7  or, upon introdu-

cing cing a=t–IT1 
, we obtain T=sin2  7. To each value of a there corresponds 

a definite maximum deflection from the position of equilibrium a that is 
determined by the given transcendental equation. 

This equation is solved the easiest by the graphical method. For this 

purpose, plot the curve y=sin2  7a  (Fig. 480). Hence intersection of this curve 

act 
with the straight line y=T  will give us point A that determines the value 

of a at the given a. (The value of a that corresponds to the intersection of 
a this straight line with another branch of the curve y=sin2  —
2 

cannot be 

obtained with the initial conditions given 
Obviously, our solution of the equation 

is smaller than a certain limiting value of 

that the straight line f./-=
aoa 

 is tangent to 

in the problem.) 
will be other than zero only if a 
ao  determined from the condition 

the curve y=sin2—
a 
2 
 at point C. 

Figure 480 shows that ao  = 133°. Hence, /10 =
2CD 

 = 0.73. The oscilla- 
ao  

Mr 
tions are possible when —

ml 	
00  '="0.73. 

-1/  2 (Mgra — 2mg1 sine ;) 

1 



OSCILLATIONS AND WAVES 
	

373 

Fig. 480 

4-2. Electrical Oscillations 

641. Without a permanent magnet the oscillation frequency would be 
doubled. When a sinusoidal current flowed through the coil of the telephone 
it would cause the membrane to make two oscillations during one period of 
current oscillations because the intensity of the magnetic field H created by 
this current would have the form shown in Fig. 481a, and the force of attra-
ction of the membrane does not depend on the sign of H. 

When there is a permanent magnet that generates an intensity of the 
magnetic field exceeding the maximum intensity •of the current field, the 
diagram of the resulting intensity has the form shown in Fig. 481b. 

For this reason one oscillation of the current will correspond to one of 
the membrane, and the sound will be much less distorted. 

642. The frequency of natural oscillations is o= 
 1 

_if—L is in henries 
jr LC 

and C in farads. As has been shown in Problem 591, for a solenoid 
A L= 10-9 	 henries. The capacitance of the capacitor is C= 	X 43id 

X 	 farads. 9X 1011 
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Fig. 481 

Hence, 

6)=3X1010 	
1V Id  

N2111112=3x 
106 

second 

643. The frequency of natural oscillations of a circuit is determined from 
the Thomson formula 

	

(0 = 	1 

ircc 
(a) If the coil contains the copper core, the periodic changes of the mag-

netic field of the coil will produce in the core eddy currents whose magnetic 
field will weaken the magnetic field of the coil. This will reduce the inductance 
of the coil and, consequently, increase the frequency (D. 

(b) If the ferrite core is moved into the coil, the magnetic field of the 
latter will increase. Accordingly, the inductance L of the coil will grow and 
the frequency w will decrease. 

644. Undamped oscillations will appear in the system (if the small losses 
of energy for the radiation of electromagnetic waves are neglected.) When 
the charge is distributed equally between the capacitors, the energy of the 
electrostatic field is minimum, but the current intensity and the energy of the 
magnetic field are maximum. The total energy does not change, but one kind 
of energy is converted into another. 

645. The displacement of the electron beam by the voltage supplied along 
the vertical can be written as 

x= —
IL 

V 0  cos cot = a cos wt 
2dV 1  

(see Problem 543). The displacement of the beam along the horizontal (axis 
y) is 

—
IL 

2dV Vol 
cos (cot —q))=6 cos (tot— (p) 
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Fig. 482 

To find the trajectory, the time should be excluded from the data of the 
equations. After simple transformations we have 

x2  y2  2xy 
+ — –Ta  cos q) sin2  

	

ar 	 x2  y2  

	

If fit= 	, then 	p= I. This is the equation of an ellipse. 

	

If q),=--- a, then 	
a 	

e., the beam oscillates along the straight 

line forming with the x-axis an angle a determined by the equation 

tan ce---=—
a 

(see Fig. 482). 

646. The relation between the voltage and time is shown in Fig. 483. The 
voltage across the capacitor (curve Oa) increases until it reaches V,. At this 
moment the tube ignites and the capacitor is discharged through the tube 

Fig. 483 
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(curve ab) until the voltage drops to Ve. The process is then repeated and 
relaxation oscillations with a period t appear. 

The charging and discharging current of the capacitor is not constant, 
because it depends on the voltage across the capacitor, and decreases with a 
growth of the voltage. For this reason Oa, ab, bc, etc., are not sections of 
straight lines. 

647. When the capacitance grows, the time needed to charge the capacitor 
to V s  and discharge it to Ve  increases. The period will therefore be longer. 

An increase in R will reduce the charging current of the capacitor and 
will increase the period. 

648. When the charge across the plates of the capacitor reaches its maxi-
mum, the plates should be moved apart. Here work must be performed to 
overcome the forces of attraction between the plates. This work is spent to 
increase the energy of the circuit. When the charge is zero, the plates should 
be moved together to their original position. The energy in the circuit will 
not change. 

4-3. Waves 

649. The tension of the string should be increased four times. 
650. v =von, where n=1, 2, 3, 4, ..., and 

f T _2 1 
v
°= 

1  
Ti 1/ 	— second 

651. The pipe should accommodate a whole number of half-waves: 

2 
k=1 (k= 1, 2, 3, • • .) 

The frequencies of the natural oscillations are 

vk 
c kc 

= 	
1 

k x 50 	
 

second 

(c=340 m/s is the velocity of sound in air). 
652. The sound of the tuning fork will be intensified when the frequency 

of the natural oscillations of the air column in the vessel coincides with the 
frequency of the tuning fork. The natural oscillation frequency of the air 

c 

	

column in a tube closed at one end is vk =
2k+
-

4
1 

  
	where 1 is the length 

of the tube and c=340 m/s is the velocity of sound. The quantity k takes 
values of 0, 1, 2, 3, ... Therefore, the possible water levels in the vessel 
determined by the distance from the surface of the water to the upper edge 
of the vessel are 

2k 1 C 
Ik= 	

+ 	
(k=0, 1, 2, ...) 

4 	v  

When 1=1 metre, two positions of the water level are possible: / 0 =25 cm 
and 11=75 cm. 

653. Let us consider a number of consecutive positions of the bullet flying 
along KA, namely, K, F, E, D, B, and A (Fig. 484). At each point the 
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Fig. 484 

bullet creates before its front a compression that spreads in all directions in 
the form of a spherical pulse. Since the velocity of the bullet v is greater 
than that of sound c, these pulses appear only behind the bullet. At the 
moment when the bullet is at point A, the separate pulses will be as shown 
in Fig. 484 by circles of various radii. The wave front has the form of a 
cone that moves forward with the velocity of the bullet. The apex angle of 
the cone can be determined from the ratio 

BH =ct c 
sin a= 

AB vt v 

654. The sound wave that reaches the man at point B (Fig. 485) is emit-
ted when the plane is at a certain point D (see the solution to Problem 653). 
The distance CB=6 km. 

The sought distance is 
BC 

sin a. 

where v is the velocity of the plane and c the velocity of sound. Hence, 
AB=9 km. 

655. Ordinarily, the velocity of the wind at a certain altitude above the 
ground is greater than at its surface. For this reason the wave surfaces 
which in immobile air have the form of spheres with their centre at the 
point of the sound source (dotted lines in Fig. 486) change their shape. The 
velocity of the waves is higher in the direction of the wind than against it 
The approximate shapes of the wave surfaces are shown in Fig. 486 by solid 
lines. 

The sound propagates in a direction perpendicular at each point to the 
wave surfaces. For this reason the sound propagating against the wind is 
deflected upwards (curve AB) and does not reach the man. If the sound pro-
pagates in the direction of the wind the sound is deflected towards the ground 
(curve AC) and the man hears it. 

656. TV stations operate on wavelengths smaller than 10 metres. For such 
waves the ionosphere is "transparent" and does not reflect the waves. Short 
waves are practically propagated along a straight line, since they undergo 
almost no diffraction from such obstacles as houses, etc. 

1 3-18 65 
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Fig. 485 

657. To estimate the distance to an object by the position of the reflected 
pulse on the screen of a cathode-ray tube, this pulse should arrive not ear- 

lier lier than in the time T and not later than in the time T= 	after sending 

the direct pulse. Hence, the minimum distance to the object is 

, CT 
izy m 

2 
and the maximum distance is 

cT 
L --= = 90 km 

658. The wave reflected from the roof will reach the aerial with a lag of 

T = 
AB 
 =10-5  s. The velocity of the cathode beam along the screen is 

v = 
At , 

where At=
25 x 625 

s is the time during which the beam produ-

ces one line (neglect the time of reverse travel of the beam). 
The shift of the images is A/=v-r = 7.8 cm. 
659. When the vibrator is immersed in kerosene its capacitance C increases 

er  times. The frequency of the natural oscillations of the circuit is propor-

tional to 	. Therefore, the oscillation frequency will decrease 	g,. 

times. The frequency of the natural oscillations of the vibrator in a vacuum 

is v0 =-
21 
 ,  and in a dielectric v= 

2/ 
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Wind 

Fig. 486 

The wavelength that corresponds to this frequency in a vacuum is 

2■, = =21 Vs, 1.4 m 

In short, this result can be obtained as follows. The wavelength in kero-
sene is X=21 and increases 	Er  times in a vacuum. Therefore, 

X 0 =2/ 17-  

660. The horizontal position of the aerial means that the electric vector 
of the wave oscillates mainly in horizontal planes. Therefore, the magnetic 
vector oscillates along a vertical. 



CHAPTER 5 

GEOMETRICAL 

OPTICS 

5-1. Photometry 

661. The minimum illumination of a wall (Fig. 487) is 
I cos a 

r2  

The minimum illumination of the floor is 
/ cos  13  

E2  
r2  

According to the condition, 
cos a D 

 
E2 cos 	2h

-2  

Hence, 

h=—
D

=7.5 m 

662. The illumination of the middle of the table is 

E==-L-2  

where H2 Is the height of the second lamp above the table. 

E1= 

Fig. 487 
	

Fig. 488 
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In both cases, the illumination of the edge of the table is 

	

11H1 	 12H2  
El= 	H? 4  D2)./  , and E2=  

Therefore, 

	

( 	

d- /i 	 2 )32 
/2 4  =_-.- 3 

E2 	(in+  D42 )3/2 

The illumination of the edge of the table will be decreased three times. 
663. If a normal to the plate forms an angle a with the direction AST, 

the illumination of the plate will be 

E= I
2  

-- [cos a -F cos (90°— a)] = —
I 

x 2 cos 45° cos (a-45°) 
a 	 a2  

For this reason the illumination of the plate will be maximum if it is pa-
rallel to side S1S2  of the triangle. The illumination is 

E max= -11T 4- 

664. When the auxiliary and standard sources are used together the illu-
minations will be equal if 

/ 0  d 
11 

where 10  is the luminous intensity of the standard source and /1  that of the 
auxiliary source. 

In the second case the illuminations are equal when 

I, 
I  

where I is the sought luminous intensity. 

Hence x=  1.1  =400 10. 
ri • ri 

665. The illumination will be 25 times smaller. 
666. The total luminous flux from the lamp is cD0 = 4a/. If the lamp is 

fastened to the ceiling, the walls and the floor receive half of this flux. The-
refore, the sought flux is el= 23-E/ -= 628 1m. 

667. The Earth receives 2.25x 109 of the total energy of the Sun. 

668. The quantity of light energy absorbed by the internal walls of the 
cylinder in a unit of time (luminous flux) is the same in both cases. The 
area of the internal surface of the cylinder will change, however, R1/R2  times. 

1  For this reason the illumination will increase R1/R2  times, i. e., —
E  = R2  

E2 
	R1 

(1-11+ D2  )3/2  
4 / 
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669. The illumination on the edge of the table is 

/ cos cp 	I 
E 	= 	coscpsin2 cp 12 	Rz 

where I is the luminous intensity of the lamp, R the radius of the table, 
and cp the angle of incidence of the rays (Fig. 488). 

The maximum value of E is attained if the angle cp satisfies the equation 

1 
1— si n2  cp.= —

2 
sin2  cp 

r 2 
i. e., when cp= arc sin -1/ 3 (see Problem 407). 

The lamp should be hung above the table at a height of h= 	 R . 
2 

670. Tissue paper diffuses the incident light rays in all directions. 
If the paper is at some distance from the page, the diverging beams of 

light reflected from the white portion of the page (between the letters) overlap 
on the side of the paper facing the text (Fig. 489). 

As a result the paper will be illuminated more or less uniformly, and the 
diffusion of the light will make it impossible to read the text. 

If the paper is placed on the text, the illumination of the paper side adjoi-
ning the text will not be uniform. Accordingly the intensity of the diffused 
light will be different at various portions of the paper, and the text can be read. 

5-2. Fundamental Laws of Optics 

671. The shadow will be equally distinct everywhere only if a point source 
of light is used. The separate sections of an extended source throw shadows 
that are superimposed on one another. The boundary of the shadow will be 
the sharper, the smaller is the distance from the object to the surface on 
which the shadow is formed, since the distances between the boundaries of 
the shadows produced by the various sections of the source will be minimum. 
It is for this reason that a man's legs give a sharper shadow than his head. 

672. The pencil should be held parallel to the lamp and as close to the 
table as possible. As a result the shadows sent by separate portions of the 
lamp will be almost accurately superimposed. 

If the pencil is perpendicular to the lamp, the shadows from it will be so 
mutually shifted that practically no shadow will appear. 

673. This phenomenon can be observed only if the angular distance between 
the branches is less than the angular diameter of the Sun. Let us assume, to 
introduce definite conditions, that the lower branch is thicker than the upper one. 
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(a) 	 (c) 	(a') (e) 	Fig. 490 

To understand why the illumination inside the shadow changes as stated 
in the problem, assume that we look at the Sun alternately from different 
sections of the shadow. 

The Sun's disk can be seen entirely outside of the shadow. In section A 
of the shadow (Fig. 235) the eye is in the half shadow cast by the lower 
branch, and only this branch is visible in front of the Sun's disk (Fig. 490a). 
Since the branch covers a part of the Sun's disk, the illumination of this 
point will be weaker. Moving the eye farther to position B (Fig. 235), we 
shall see that the other branch also partly covers the Sun's disk (Fig. 4906), 
and for this reason the illumination will be still less. Moving farther, the eye 
will occupy position C (Fig. 235) in which both branches will be superim-
posed (Fig. 490c). Now, the part of the Sun's disk covered by the branches 
is smaller and the illumination greater. The disk as viewed from D and E is 
shown in Fig. 490d and e. This explains why the central stripe of the shadow 
is brighter than the adjacent parts. 

674. As can be seen from Fig. 491, we have H=L sin cc, while sin a=—
a

, 

since DE=--b is the cross-sectional diameter of the light cone on the ground. 

With the angular dimensions of the Sun's disk [3, we obtain L=P-. 

 2  b 
Therefore, H 	=9 metres. 

675. If the rays are turned in the periscope as shown in Fig. 492, the 
sought ratio of the widths of the prisms alb can be found from the similarity 

of the triangles: 

a _L-E1 
b 

676. The height of the mirror 
should be equal to half the height 
of the man. The distance from the 
lower edge of the mirror to the floor 
should be equal to half the distan-
ce from the man's eyes to his feet 
(Fig. 493). 

677. Let h be the height of the 
object and a the angle of incidence 
of the rays on the mirror (Fig. 494). 

If the screen is at a distance of 
tan a from the object, a di- 

rect and an inverted shadows with 
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B 	A 

    

    

    

   

Fig. 492 

   

Fig. 493 

their bases fitted against each other will be seen on the screen. The total 
length of the shadow is 2h. The shadow is illuminated by the Sun and 
contrasts with the other portions of the screen illuminated by both direct 
and reflected rays. 

If the screen is nearer, the length of the shadow is smaller than 2h and 
will have portions that are illuminated neither by direct nor reflected rays. 

678. A point source of light always produces a reflection that depends on 
the shape of the mirror. The dimensions of the Sun are finite. Each small 
section of the luminescent surface produces a bright spot that gives the shape 
of the mirror. These spots from various portions of the Sun are superimposed 
and produce a more or less diffused pattern. 

If the surface on which the reflection is observed is far from the mirror, 
the shape of the bright spot will not depend on the shape of the mirror. It 
is only at a small distance from the mirror that the spot will reproduce the 
shape of the mirror, since the angles at which the rays from the various 
portions of the Sun fall onto the mirror differ very slightly from one another. 

Fig. 494 
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Fig. 495 

679. The reflected landscape is seen as if it were viewed from a point 
below the water surface at a distance equal to that from the camera lens to 
the water. 

680. The whole of the image of straight line AB can be seen only if the 
eye is inside the hatched area in Fig. 495. 

681. When mirror MN moves toward the wall, the position of light spot AB 
on the wall will be invariable as can be seen in Fig. 496 (Sr  and S2  are the 
images of source S with the mirror in two positions: MN and M'N'). 

The dimensions of the light spot will not change either, constantly remai-
ning equal to the double dimensions of the mirror. 

682. If the losses in reflection are neglected, the illumination of the light 
spot will always be one-fourth of the illumination of the mirror. At the same 
time the illumination of the mirror changes in view of the change in the 
distance from the lamp to the mirror and the change in the angle of inci-

dence of the rays. With a 
small mirror the maximum 
illumination will be observed 
when the distance from the 
mirror 	to 	the 	wall 	is 

i =--- ' d where d is the dis- 

tance from the source of light 
to the point on the wall which 
the mirror is brought up to. 

683. When the mirror turns 
through an angle ex, the reflec-
ted ray will turn through 2tx 
since the angles of incidence 
and reflection increase by cc 
Hence, the angular velocity 
of rotation of the reflected ray 
is (b.=--2nn x 2. The linear ve-
locity with which the light 
spot moves along the screen is 
v=41ctiR 62.8 m/s. 
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684. (a) The beam reflected from the first mirror forms an angle 2a with 
the incident beam (a is the angle of incidence). During the time t the mirror 
will turn through an angle cot and the new angle of incidence will become 
equal to a+ wt, as will the angle of reflection. Therefore, the angle between 
the incident and reflected beams will increase by 2cot, i.e., the reflected beam 
will turn through an angle 2cot. 

In view of this, the angle of incidence on the second mirror, provided it 
does not rotate, would be 13 +2cot, where 13 is the angle of incidence with 
immobile disks. But the mirror also revolves through the angle cot during the 
time t, and therefore the angle of incidence becomes f3±3cot. The angle of 
reflection will be the same. Thus, after two reflections the beam will turn 
through the angle 3cot from its direction with immobile mirrors. After three 
reflections the beam will turn through 5cot and after t 1 reflections through 
(2n—I) ad. In this way its angular velocity will be Q=(2n-1) 

(b) When the mirror moves from the source with a velocity v, the image 
will move away from the source with a velocity 2v and from the second 
mirror with a velocity 3v. Therefore, the second image moves with a velocity 
3v with respect to the second mirror and with a velocity 4v with respect to 
the source. The velocity of the third image with respect to the source will 
be 6v and the velocity of the n-th image 2,w. 

685. (a) When the first mirror turns through an angle cot the reflected beam 
will turn through an angle 2cot (see the solution to Problem 684). Hence, the 
angle of incidence on the second mirror will also increase by 2cot, and, if the 
mirror did not revolve, the angle of reflection would also increase by aot. 
After two reflections the beam would turn through 2c.ot as compared with the 
case of immobile mirrors. 

Since the second mirror does rotate, however, the angle of the beam inci-
dent on it decreases by cot during the time t. The angle of reflection decreases 
by the same amount and for this reason the reflected beam will travel in the 
same direction as with immobile disks. 

Since this line of reasoning may be adopted for any two consecutive reflec-
tions, the angular velocity of rotation of the beam subjected to n reflections 
will be 52=-0 if n is even, and 52=2co if n is odd. 

(b) The first image moves away from the source with a velocity 2v and 
from the second mirror with a velocity v. Therefore, the second image moves 
with respect to the second mirror with a velocity — v, i.e., it is immobile 
with respect to the source. 

Fig. 497 
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Fig. 498 	 Fig. 499 

Reasoning similarly, we find that the sought linear velocity of the n-th 
image is zero if n is even, and 2v if n is odd. 

686. The beam reflected from mirror ON forms with the incident beam an 
angle cp (see Fig. 240) that does not depend on the angle of incidence i. 
Indeed, as can be seen from triangle ABC, we have cp=180°-2 (i+r). On 
the other hand, in triangle OAB, we have cc-F(90°— 0+ (90°--r)=180°. 
Hence, (p--.180°-2a.=60°. When the mirror rotates, the direction of the 
reflected beam does not change. 

Thus, if the beam that fell on mirror OM is reflected from mirror ON, it 
will always get into the receiver. As can easily be seen in Fig. 497 showing 
two extreme positions of the mirrors at which the beam gets into the receiver 
(OM, ON and OM', ON'), this occurs during one-sixth of a revolution. 
For this reason one-sixth of all the energy of the beam will get into the 
receiver during one revolution, which is a sufficiently large interval of time. 

687. No, it cannot, since rays will reach the eye that produce the image 
of only small portions of the frame (see Fig. 498 showing the path of the 
rays from the extreme portions of the frame A and B). 

688. 4 m2. 
689. It follows from the similarity of triangles SOA, SOB, S'OA and S;OB 

(Fig. 499) that the source of light S, its image S; in mirror OB and the 
image S1  in mirror OA lie on a circle with its centre at point 0. We have 

SOS;=---cp. The virtual source S; is reflected from mirror AO and 
produces image S; lying on the same circle at a distance of 2q arc degrees 
from source S. Image S' of virtual source S' is formed in mirror OB in the 
same way. 

Continuing our construction, we obtain the third images .3'3 and S3 removed 
from the source by Sip degrees and the fourth S4 and S4 (removed by 4p 
degrees), etc. 

If n is even (n=-2k), then image S fe'  coincides with Sk and will be on one 
diameter with the source. Altogether there will be 2k-1=--n —1 images. 
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If n is odd (n=2/ +1) it can 
easily be seen that the i-th ima-
ges lie on the continuations of 
the mirrors and thus coincide 
with the (i + 1) th and all the sub-
sequent images. For this reason 
there will be 2i images, i.e., 
n-1 as before. 

690. Using the solution of 
Problem 689, let us plot conse-
cutively the first, second, third, 
etc., images of source S in the 
mirrors (Fig. 500). All of them 
will lie on a circle with a radius 
OS and the centre at point 0. 
If a is an integer, the last i-th 
images will either get onto points 
C and D at which the circle in-
tersects the continuations of the 
mirrors, or will coincide with 

Fig. 500 point F diametrally opposite to 
the source. In both cases the 
number of images will be a— 1. 

If a is not an integer, for example where < 1, and i is an 
integer, the last i-th images will lie on arc CFD that is behind both the 
first and the second mirrors and there will be no more reflections. Thus, the 
total number of images will be 2i. 

691. Let us plot the image of point B in mirror bd (Fig. 501). Let us 
then construct image B1  in mirror cd. Also, B3 is the image of B2 in mirror 
ac and B4 is the image of B3 in mirror ab. 

Let us connect points A and B4. Point C is the point of intersection of ab 
with line AB4. Let us now draw line B3C from B3, and connect point D at 
which this line intersects ac with B2, E with B1, and F with B. 

It can be stated that broken line ACDEFB is the sought path of the 
beam. Indeed, since B3CB4  is an isosceles triangle, CD is the reflection of 
beam AC. 

r. 

  

  

  

  

 

Fig. 501 



GEOMETRICAL OPTICS 
	

389 

Fig. 502 

Similarly, it is easy to show 
that DE is the reflection of CD, 
etc. 

This solution of the problem 
is not unique, since the beam 
should not necessarily be sent 
initially to mirror ab. 

692. The coefficient of reflec-
tion of light from the surface of 
water diminishes with a reduc-
tion in the angle of incidence. 

If the observer looks down, 
rays reflected at small angles 
reach his eyes. The rays reflec- • 

• ted from the sea water at the 
horizon reach the eyes at greater 
angles. 

N. 	693. According to the law of 
sin i 

refraction 	=n (Fig. 502). 
sin r 

Upon exit from the plate 
sin 
sin r 

= 
1 

—
n 

. Upon multiplying these expressions, we 

get sin 	i.e., beam CD leaving the plate is parallel to incident beam 
AB. A glance at the drawing shows that a=i—r. The sought displacement 
of the beam is x=EC=BC sin (i—r). 

Since BC =— then 
cos r ' 

d  sin  (i—r)
=d sin i (1 	

cos  i 
cos r 	 -11 n2  — sin2  i) 

x= 
	 

And a maximum displacement of d can be obtained when i 
694. The angle of incidence of the ray onto AC and BC is 45°. For total 

internal reflection it is necessary that sin i > 1 —
n 

. 

Hence, a > 	1.4. 
695. The angle of incidence of the ray on face BC is equal to the sought 

angle a. For the ray to be completely reflected from face BC, the angle a 
should exceed the limiting one. 

Therefore, sin a > ?, where n, is the refraction index of water. 

Hence, a > 62°30'. 1  
696. This phenomenon is nothing but a mirage frequently observed in de-

serts. 
The hot layer of air in direct contact with the asphalt has a smaller re-

fraction index than the layers above. Total internal reflection occurs and the 
asphalt seems to reflect the light just as well as the surface of water. 

697. Let us divide the plate into many plates so thin that their refraction 
index can be assumed constant within the limits of each plate (Fig. 503). 

Assume that the beam enters the plate from a medium with a refraction 
index of no  and leaves it for a medium with a refraction index of no. 
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no  

Is 

Fig. 503 

Then, according to the law of refraction, 

sin a _n, 
sin 13 	 no  
sin _ n' 
sin y n1  

sin v _n" 
sin S n' 

sin cpn, 
sin =77rn 

sin 	,2, 
sin x n, 

Upon multiplying these equations we get 
sin a _n, 
sin x — no  

Hence, the angle at which the beam leaves the plate 

x= arc sin ("is sin (;‘) 

depends only on the angle of incidence of the beam on the plate and on the 
refraction indices of the media on both sides of the plate. In particular, if 
n3= no, then x= a. 

n3  
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Fig. 504 Fig. 505 

Generally speaking, the angle 0 at which the beam is inclined to the ver-
tical is related to the refraction index n at any point on the plate by the 
ratio n sin 0 = const =no  sin a. If the refraction index reaches a value of 
n=nosin cc anywhere inside the plate, full internal reflection will take place. 
In this case the beam will leave the plate for the medium at the same angle 
a at which it entered the plate (Fig. 504). 

698. The minimum amount of water determined by the level x (Fig. 505) 
can be found from the triangle MNF. We have NF=x—b=--xtanr. From 
the law of refraction 

sin r= 
sin i 

Therefore, 

blin2 —sin2  i 
x—    27 cm 1—tan r -If n2 — sin2  i —sin i 

since i =45° and n= 4 . 

The amount of water required is V =xa2  == 43.2 litres. 
699. The man's eyes are reached by rays coming in a narrow beam from 

an arbitrary point C on the bottom. They seem to the eye as issuing from 
point C' (Fig. 506). Since Ai and Ar are very small, we can write: 

A  
AD= AC • 	H Or 

cos r 

AD' = AC' • Ai=—  h  Dl 
cos i 

By equating the values of AB from triangles ABD and ABD', we have 

H A 	h A  , 
- L 3, & 

cos2r
LI 	

cos2l 
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Fig. 506 C 

Using the law of refraction, we can find the ratio Li 
. Indeed, 

Ar 

sin i 
sin r 

=n and 
sin (1+ Ai) 

 
sin (r Ar)

=n 

Remembering that Ai and Ar are small, we have 

sin Ai = Ai, sin Ar = Ar, and cos Ai === cos Ar =2--= I 

Therefore, the last equation can be rewritten as 

sin i +cos i • Ai =n sin r n cos r • Ar 

Al 	cos r 
Hence

' 
—
Ar

=n 
 cos i • Upon inserting this expression into the formula relating 

, H 	...._ i-''.  
. 

	

,-.7///,/ ////)//////// /7 // // 	// 	// . Fig. 507 
J.A  



GEOMETRICAL OPTICS 
	

393 

H and h, we find 

H cos3  i H 
n cos3 r 	n 

cos3  t 
(1 	sin 2  i 3 / 2  

n2  ) 

When i=0, we have h=-_--
H

, i.e., the 

depth seems reduced by n times. As 
i increases, h diminishes. The approxi-
mate dependence of the seeming depth 
on the angle i is shown in Fig. 507. 
The man's eye is above point A of the 
lake bottom. 

700. (p= 120°. 
701. The path of the ray in the 

prism is shown in Fig. 508. There is 
an obvious relationship between the 
angles a and 13, namely, 2a +13-180°, 
and a=2[3. 

Hence, a.= 72°, 13=36°. 
Fig. 508 	 702. The path of the ray in the prism 

is shown in Fig. 509. To avoid 
1 

it is necessary that sin p...‹ 7  . As can 

be seen from the drawing, 13=a—r. Hence, the greater the value of r, the 
higher is the permissible value of a. The maximum value of r is determined 

1 
from the condition: sin r-= —

n 
(angle of incidence 90°). 

Therefore, Amax  =2 arc sin 23- = 83°40'. 

full internal reflection on face BN, 

Fig. 509 Fig. 510 
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Fig. 511 

703. When considering triangles ABC, AMC and ADC (Fig. 510), it is 
easy to see that r cp and y = a +13 — c. According to the law of re-
fraction, 

sin a
=n, and 

sin r, 
— 

1 
sin 13 	n sin r 

Upon solving this system of equations, we find that 

(1)=Gc+13— y 
and 

n=sin p 
} sin a 	 1 	2 

sin p sin (a+ p--y) + tan (a+ (3—y) ±  

704. According to the initial condition, the incident beam and the beam 
that has passed through the prism are mutually perpendicular. Therefore, 
L cp=L a and also L Y=L p (Fig. 511). The sum of the angles of the 
quadrangle AKMN is 360°. Therefore, L KMN= 90° and beam 
KM is incident onto face BC at an angle of 45°. If we know the angles of 
triangle KBM it is easy to find that 13=30°. In conformity with the law of 

sin a 
refraction 	Hence, 

sin 13 
sin a= 0.5n and a= arc sin 0.5n 

Since the full internal reflection at an angle of 45° is observed only 
when n the angle a is within 45° < a 90°. 

705. Paper partially lets through light. But owing to its fibrous structure 
and the great number of pores, the dissipation of light is very high in all 
directions. For this reason it is impossible to read the text. 

When they fill the pores, glue or water reduce the dissipation of light, 
since their refraction index is close to that of the paper. The light begins 
to pass through the paper without any appreciable deviation, and the text 
can easily be read. 
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5-3. Lenses and Spherical Mirrors 

706. n=1.5. 
707. f =2R. 
708. The convex surface has a radius of curvature of R1=6 cm and the 

concave one R2=12 cm. 
709. In the first case the focal length is determined from the formula 

1.=  ( 	

) 
,\ ( 1 	1 

V?T+-T2) 
Since in a vacuum the focal length of the lens is f, then 

1 	1 	 ( nn  1) f 
 90 cm h.  

R1  +R2 (n 1 
	 . Hence, 

—1)! 	 —1 
nl  

In the second case the sought focal length is 
(n-1)1

= 102 cm 2— n , 
n2 

The lens will be divergent. 
710. As shown in the solution of Problem 709 

n2  (ni  —1) 
= D (n,—,12) 

Therefore, 

n2= 	
,  

1.67 
fD-F

fD
1
n
—n1  

711. The image will be m+ 1 times smaller than the object. 
712. The lamp should be moved two metres away from the lens. 
713. Obviously, one of the image will be virtual. Therefore, denoting the 

distances from the sources of light to the lens by al  and a2  and from the 
lens to the images by b1  and b2, we obtain: 

1 	1 	1, 	1 	, 	1 	1 
al —bl 

=  , and 	-t- — f 	a, 	b, 	f 
According to the initial condition, al  -I-- a2=1 and b1=b2. Upon solving 

this system of equations, we get 

F 
/ (1 ± 	T) 

2 	 

The lens should be placed at a distance of 6 cm from one source and 18 cm 
from the other. 

714. Applying the formula of a lens to both cases, we obtain 

11 	1 	
and 

1 , 1 	1 , 
— = — , anu — 
al bi 	f 	a2 62 
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Fig. 512 

According to the initial condition, 

a2=a1  +1 and 
bl

=k1=3 
al  

(magnification in the first case); 

2- = k2= 2 
a2  

(magnification in the second case). 

Hence, f = L
kik2, 

	1=9 cm 

715. (1) For this case the path of the rays is shown in Fig. 512a. From 
the standpoint of reversibility of the light beams, point B can be regarded 
as a source of light and point A as its image. 

Then, according to the formula of a lens, 

1 	1 	1 
al 	b 	f 

Hence, f= 
al

ai!)
b= 

20 cm. 

(2) The path- of the rays is illustrated in Fig. 5126. In this case, both the 
image (point A) and the source (point B) are virtual. According to the for-
mula of a lens 

1 	I 	1 
-72 b 

=-
f  

2b 
Hence, f..=aa+b=  12 cm. 

716. On the basis of the formula of a lens, 
11 1 =- 
a d—a f 

where a is the distance between the lens and the lamp. Therefore, 

a2—ad-Fdf 
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Fig. 513 

Upon solving this equation, we obtain 

d 	d2  
a= -y 	----df 

distance of a1 =70 cm 

the screen, whatever 
necessary that d > 4f. 

the distances from the 

object and the image to the lens. In the second case 
h2 = 6 2 . 

b1=a2. 

H=lrhih, 

718. On the basis of the formula of a mirror 

	

1 	11 
a T—T 

The linear magnification of the mirror is 

H b 
h a 

According to the initial condition, the angular dimensions of the image on 
the concave mirror are 1.5 times greater than those on the flat mirror: 13=1.5a 
(Fig. 513). 

It is obvious that 

tan a= 11  and tan 13= 

	

2a 	 a+b  

Two positions of the lens are therefore possible: at a 
and at a distance of a2 =30 cm from the lamp. 

When f'=26 cm, there will be no sharp image on 
the position of the lens, since to obtain the image it is 

 
717. In the first case 	=– 

b 1-
' 
 where a1  and b1  are 

H a2  
It follows from the solution of Problem 716 that a1=b2  and 

Therefore, 



Fig. 515 

Fig. 516 

Fig. 517 
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N 

 

 

Ai Fig. 514 
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When h< 2a, a and 13 are small. For small angles 

1 
a±b 	

.5 
 

H 
Upon excluding the unknown quantities 	and b from the equations, we find 

that f= 
3

a. 
2 

Hence, R =2f =3a= 6 metres. 
719. The path of the ray is shown in Fig. 514. Let us continue AB up to 

its intersection with the focal plane of lens NN. The beam of parallel 
rays after refraction in the lens so travels that the continuations of the rays 
should intersect at F'. Ray F'0 is not refracted. Thus, ray CA passing to 
point A is parallel to F'0 up to the lens. 

720. If A is the source and B is the image, then the lens will be conver-
gent. The position of the optical centre of the lens 0 and its foci F can be 
found by construction as shown in Fig. 515. 

If B is the source and A is the image, the lens is divergent. The respective 
construction is illustrated in Fig. 516. 

721. The centre of the lens 0 is the point of intersection of straight lines 
SS' and N1N2. The foci can easily be found by constructing the rays parallel 
to the major optical axis (Fig. 517). 

722. Point 0, which is the optical centre of the lens, can be found by 
dropping perpendicular BO onto straight line N1N2  (Fig. 518). Let us draw 
an auxiliary optical axis DO parallel to ray AB and extend straight line BC 
until it intersects DO at point E lying in the focal plane. Let us drop a per-
pendicular from E onto N1N 2  to find point F, one of the main foci of the 
lens. By using the property of reversibility of the ray, we can find the other 
main focus 

723. The image S' may be real or virtual. In both cases let us draw an 
arbitrary ray ADS' and auxiliary optical axis BOC parallel to it to find the 
position of the source (Fig. 519). By connecting the points of intersection B 
and C (of the auxiliary axis with the focal planes) to point D by straight 
lines, we can find the position of the source S1  (if the image S' is real) and 
S2  (if the image is virtual). 

724. Since the ray incident on the mirror at its pole is reflected symmetri-
cally with respect to the major optical axis, let us plot point S1  symmetrical 

to S' and draw ray SS1  until it in-
tersects the axis at point P (Fig. 520). 
This point will be the pole of the mir-
ror. 

The optical centre C of the mirror 
can obviously be found as the point of 
intersection of ray SS' with axis NN'. 

The focus can be found by the usual 
construction of ray SM parallel to 

14-  0 Ye the axis. The reflected ray must pass 
through focus F (lying on the optical 
axis of the mirror) and through S'. 

725. (a) Let us construct, as in the 
solution of Problem 724, the ray BAC 

Fig. 518 	 and find point C (optical centre of the 



Al 

Fig. 520 

Fig. 521 

Abi, 

Fig. 519 
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mirror) (Fig. 521a). Pole P can be found by constructing the path of the ray 
APA' reflected in the pole with the aid of symmetrical point A'. The posi-
tion of the mirror focus F is determined by means of the usual construction 
of ray AMF parallel to the axis. 

(b) This construction can also be used to find centre C of the mirror and 
pole P (Fig. 521b). The reflected ray BM will pass parallel to the optical 
axis of the mirror. For this reason, to find the focus, let us first determine 
point M at which straight line AM, parallel to the optical axis, intersects 
the mirror, and then extend BM to the point of intersection with the axis at 
the focus F. 

726. (a) The rays reflected from the flat mirror increase the illumination at 
the centre of the screen. The presence of the mirror is equivalent to the ap-
pearance of a new source (with the same luminous intensity) arranged at a 
distance from the screen three times greater than that of the first source. For 
this reason the illumination should increase by one-ninth of the previous illu-
mination, i.e., 

Ea .= 2.5 lx 

(b) The concave mirror is so arranged that the source is in its focus. The 
rays reflected from the mirror travel in a parallel beam. The illumination 
along the axis of the beam of parallel rays is everywhere the same and equal 
to the illumination created by the point source at the point of the mirror 
closest to it. The total illumination at the centre of the screen is equal to the 
sum of the illuminations produced by the source at the centre of the screen 
and reflected by the rays: 

Eb=2X2.25 lx=4.51x 

(c) The virtual image of the point source in the convex mirror is at a 
distance of 2.5r from the screen (r is the distance from the screen to the 
source). The luminous flux cD emitted by the virtual source is equal to that 
of the real source incident on the mirror: 

11(01-= 1202 

Since the solid angle of  of the flux incident on the mirror from source S 
(Fig. 522) is one-fourth of the solid angle (o2  inside which the rays from vir-
tual source Si  propagate, the luminous intensity 12  of the virtual source is 
one-fourth of the intensity of source S. For this reason the virtual source 
creates at the centre of the screen an illumination of 4X(2.5)2 =25 times smaller 
that the real source. Hence, Ec =2.34 lx. 

  

F 

Fig. 522 
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Fig. 523 

727. Each section of the lens produces a full image irrespective of the other 
sections. Therefore, there will be no strips on the photograph, and the image 
will simply be less bright. 

728. Any section of the lens gives an image identical in shape to that 
produced by the entire lens. The layered lens can be therefore regarded as two 
lenses with different focal lengths, but with a common optical centre. Accord-
ingly, this lens will produce two images: at point S1  and at point S2  (Fig. 523). 
The image of the source will be surrounded by a bright halo with a diameter 
of ab or, respectively, cd on a screen arranged perpendicular to the optical 
axis at point S1  or S2. 

729. To prove that the visible dimensions of the Sun's disk near the hori-
zon and high above it are the same, let us project the disk in both cases onto 
a sheet of paper with the aid of a long-focus lens. Both the lens and the 
sheet should be perpendicular to the sunrays. A long-focus lens is required 
because the dimensions of the image are proportional to the focal length. 

If we measure the dimensions of the images, we see that they are equal. 

5-4. Optical Systems and Devices 

730. The mirror should be placed between the focus and a point lying on 
the double focal length. The path of the rays is shown in Fig. 524. 

731. The divergent lens should be placed at a distance of 25 cm from the 
convergent one and the foci of both lenses will coincide. The path of the rays 
is shown in Fig. 525. 

Fig. 524 
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25cm --)-v  

--- 40cm 
A Fig. 525 

732. Image A'B' of the object in the spherical mirror will be at a distan-
ce b1  (Fig. 526) from the mirror determined by the formula of the mirror 

1 	1 	2 
a1  

Hence, b1=8 cm. Distance AA' is 48 cm. Therefore, the plate should be pla-
ced at a distance of 24 cm from object AB. 

733. Two cases are possible: 
(a) The mirror is at a distance of d=f+R from the lens. The path of the 

beam parallel to the optical axis of the system and the image of object AB 
are illustrated in Fig. 527. Image A'B' (direct and real) is obtained to full 
scale with the object in any position. 

(b) The mirror is at a distance of d=f=R from the lens (Fig. 528). 
The image of object A'B', also full-scale, will be inversed and virtual 

with the object in any position. 
734. The path of the rays in this optical system is shown in Fig. 529. 

When the second lens is absent, the first one produces image A'B' that is at 
a distance of b1=60 cm from the lens. This distance can be found from the 
formula of the lens 

1 	11 
7+ 7 =— „1 	fl 

Image A'B' is virtual with respect to 
the second lens. Therefore, 

1 	1 	1 
a2 	b 2 	f2 

where a2=b1 —d= 30 cm. 
Hence, b2 =7.5 cm. 
735. It follows from the solution of the 

previous problem that in the case of two 
convergent lenses at a distance d from each 
other the following equation is true 

1 	11 	1 	(al —  f1) (f2 — b2) 
7 —f 	d 

.1 	'2 	/1 	f2 	 a1b2f1f2 Fig. 526 
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Fig. 527 

In our case the divergent lens is tightly fitted against the convergent one 
(d=0) and therefore 

1 	1 	1 	1 	1 
al 	b2 	f1 	[2 	f 

fl-f 2 • 

736. The light beam issuing from a point at a distance of a2 =5 cm from 
the second lens impinges on it. As follows from the formula of a lens, the 
continuations of the rays refracted by this lens intersect at a distance of 
b2=4 cm from it (Fig. 530). This point coincides with the focus of the third 
lens. For this reason the rays leaving the system will travel in a parallel 
beam. The given system is telescopic. 

737. Figure 531 illustrates the path 

since —
r 	

n. 

where f is the sought focal length of the system. 

Hence, f = [IA  

of the ray through the plate from 
point S of the object. As a result 
of refraction of light by the plate 
ray BE seems to be issuing from 
point S' that is the virtual image 
of S in the plate. Thus, the distance 
between the image of the object in 
the plate and the lens is a' -=a—SS'. 

The displacement SS'= AD= 
DC. 

Assuming the angles of incidence 
on the plate to be small, we have 

DC
BC dr d 

-==--==— t 	r 	n 
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d'  
7 

V 

4 
Fig. 529 

1 
Therefore, SS' =d (1  — 17 )=4 cm. Before the plate was inserted, the 

screen had been at a distance of b=  of 
 	

120 cm, and after it was in- 
a— f 

' 
serted at a distance of b'= 	

aa' 
f 
 f 

—180 cm. The screen should therefore be 
—  

shifted by 60 cm. 
738. In the absence of the mirror the image A'B' of object AB (Fig. 532) 

will be obtained at a distance of b= 	
af

, 	180 cm from the lens. After 
a—f 

 reflected from the mirror, the image will occupy position A"B" and 
will be at a distance of H'=b-1=80 cm from the optical axis. 

The layer of water with a thickness of d will shift the image over a distance 

of H — H' =d (1 —
1 

, where n is the refraction index of water. This fol-

lows directly from the solution of Problem 737. 

Hence, H = H' +d (1-- 
1 
n 

=--85 cm. 

739. Two cases are possible: 
(1) The optical axis of the lens is perpendicular to the front face of the 

wedge. The rays reflected from the front face pass through the lens and pro-
duce an image of the point source that Coincides,with the source itself. The 

  

V 

  

    

  

1-4-b 
2 

  

    

    

    

     

A 	 Fig. 530 
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Fig. 531 
	

Fig. 532 

rays reflected from the rear face will be deflected by an angle p  (Fig. 533) 
sin (p 

determined by the equality sin 2a =-n. Since the angles are small IT = Zan. 

The second image of the source will be obtained at a distance d from the 
first image, namely d=fy=f2an. 

Hence, n=-2af 
. 

(2) The optical axis of the lens is perpendicular' to the rear face of the 
wedge. The rays reflected from the front face will be deflected by an angle 
2a (Fig. 534) and produce an image at a distance of d1=2af from the 
source. 

The rays reflected from the rear face will be deflected by an angle 0 deter-
mined from the equations: 

sin a 	 sin (a+ 0)  
sin 13 =n, and sin (2a—(3) = it 

When the angles are small, 0=-2a (n-1). For this reason the second image 
will be at a distance ci2 =2a (n-1) f from the source. The total distance 
between the images is d=d1+d2=2anf. 

Hence, n=
f 

as in the first 

case. 
740. Since the image that coin-

cides with the source is formed 
owing to reflection from the part 
of the mirror not covered by the 
liquid, the source is obviously arran-
ged at centre 0 of the hemisphere. 
Let us find the position of the oth-
er image (point A in Fig. 535). 
According to the law of refraction 

sin a =__ n —a 
 and 

sin cp 
sin (3 	 sin 0 Fig. 533 
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Fig. 534 

As can be seen from the drawing, 0 =f3 212, where y= 	13 is the angle 
of incidence of the refracted ray on the mirror and (R-1—h) tan w = (R—h) tan a. 

Neglecting h as compared with R, we can find from this system of equa-
tions that 

2R—/ 
n=

2 (R-1)
=1.6 

741. The image A'"B"' obtained in the system is shown in Fig. 536. 
F1  and F2 are the foci of the lens and the mirror, and A'B' is the image 
produced by the lens if its surface is not coated with silver. 

The image A"B" produced by a concave mirror can be plotted, taking into 
account that ray BO, after passing through the lens and being reflected from 
the mirror surface, will travel along OB"; here L, BOA= B"OA. Ray BC 
emerges from the lens parallel to the optical axis of the system and after 
reflection passes through F2. 

The rays reflected from the mirror are refracted in the lens once more and 
produce image AmB"'. Point B"' lies at the intersection of rays OB" and 

O 

 

Fig. 535 
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Fig. 536 

CD. Ray On" passes through the optical centre of the lens after reflection 
and is thus not refracted. Ray CD can be plotted as follows. After the first 
refraction in the lens and reflection, ray BC will travel in the direction of F, 
and will be refracted in the lens once more. Its direction after the second 
refraction can be found by the method described in Problem 723: ray OD pa-
rallel to CF 2  is drawn through optical centre 0 until it intersects the focal 
plane of the lens. The sought ray is obtained by connecting C and D. 

Since the rays are refracted in the lens twice, focal length f of the system 
can be found from the following ratio (see Problem 735): 

1 	1 	, 
T7:1-7;1-  

where f 2=-1  is the focal length of the mirror 

f1 t2 f= 
 11+212 

=2.5 cm 

Therefore, the distance b to image A"'B"' can be found from the formula 

	

1, 	1 	1 
TI- T=7 

Hence, b= 
of 
 =3 cm. 

a--1 

742. The focal length of the thin 	lens is f
n— 1 	

where r is the radius 

of the spherical surface. 
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Fig. 537 

Let the rays parallel to the optical axis of the spherical surface fall on 
it from the air (Fig. 537). After being refracted on the surface, ray Ni( is 
deflected by an angle a-13 from the optical axis. 

As can be seen in Fig. 537a, we have OP tan a=F 2P tan (a-13). 

According to the law of refraction, sin a 
sin 13 

Since these angles are small, roc==----  fi  (a— fi) and a= 13n. 
Therefore, 

11—  n-1 r=nl  

If the parallel rays are incident from the glass (Fig. 537b), then similar 
reasoning will give the equations: 

sin a 1 
sin p

= 
 n 

, and r tan a=f, tan (p—co 

Since the angles are small, I3=na, and ra=f 2  (p—a). 
Hence, f 2=—=_j. 

n-1 
743. Two cases are possible: the focus is outside the sphere, and inside it. 

Let us consider the first case. The path of the ray incident on the sphere at 
an angle i is shown in Fig. 538. 

Bearing in mind that the angles i and r are small, we have, in accordance 
with the condition of the problem, 

BC = R sin a= R sin (2r —i) = R (2r — i) Ri—n (2—n) 

The focus obviously lies outside the sphere when n < 2 and on the surface 
of the sphere if n=2. 

14-1865 
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Fig. 538 

The distance 

CF = BC cot f3- 	
' 

and fi = 2 (i—r) 21 (n-1)  

as can easily be found from Fig. 538. 
The sought distance is 

f=--R-F 	
Rn  

2 (n-1) 

When n > 2, the path of the ray is as shown in Fig. 539. The sought distance is 
r =OF CF—R 

As can be seen from Fig. 539, 

CF= AC cot 	
AC = RI 

 

Hence, 

744. Let us extend ray BF until it intersects the continuation of the ray 
incident on the sphere parallel to the optical axis (Fig. 538). It can easily 
be seen that section DO that connects the point of intersection with the 
centre of the sphere forms a right angle with the direction of the incident 
ray. Triangle ODF is a right one, since 

OF [3 
R 

n— 1 
n 2i (n-1) 

 = Rt (see Problem 743) 2  

For this reason the main planes of sphere MN coincide and pass through its 
centre. 

1-r 	1-f 
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Fig. 539 

745. The focal length of the sphere is 

R n f=
2 n-1 15 cm 

(see Problems 743 and 744). By using the formula of a lens, and this may 
be done because the main planes coincide, let us find the distance from the 
centre of the lens to the image 

of b.= —=— 15 cm 
a — f 

The image is virtual and is in front of the sphere. 
746. The thin wall of the spherical flask can be regarded as a divergent 

lens with a focal length of 
R2 

f 1- 	  , 	1 	1 ) 	(n-1) AR 
(n-1) (ri — IT; 

After passing through two such lenses at a distance of 2R from each other 
(Fig. 540), the rays parallel to the major optical axis (the flask diameter) 
will be so refracted that their continuations will intersect at the focus F of 

Fig. 540 

14* 
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the system at a distance b from the second lens. According to the formula 
of a lens, 

1 	1 	1 
f i +2R b 	Ti• 

b— (f1+ 2R) 
2  (f + R) 

Point D of the intersection of AB (continuation of the incident ray) and CF 
(continuation of the refracted ray) lies on the main plane of the system at a 
distance x from the second lens. 

It follows from the similarity of triangles ACB and F1CO, and also of 
triangles DCB and FCO that 

x 	2R  
b — 2R+ f1  

The main plane lies at the following distance from the second lens 

2Rb 	f1R 
2R +f1 f1+R 

Therefore, the focal length of the system is 

f b x= 	
R 2 

 
2 (f1  +R) 	2 	2 (n— 1) AR 

In view of symmetry of this optical system, the positions of the second 
focus and of the other main plane are obvious. 

747. A glance at Fig. 541 shows that the angle of refraction is 

r—L OAB=L ABO=L OBC=L OCB 
and L BAD=L BCD= i— r 

At point A the beam turns through an angle i—r, at point B through an 
angle at-2r, and at point C through i—r. Therefore, the total angle through 

Fig. 541 

Hence, 



sin i 

GEOMETRICAL OPTICS 
	

413 

E7 

A949°  
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120°  

90°  

EV°  

.300  

  

15 500  45 60'I  75 500  

55°  Fig. 542 

which the beam is deflected from the initial direction is 

0=i —r+n-2r+i—r=n+2i-4r 

The angle r can be found from the ratio 	=n. 
sin r 

748. When a parallel beam of rays is incident on the drop, the ray passing 
along the diameter has an angle of incidence of 1=0°, while the angles of 
incidence of the rays above and below it may range from 0 to 90°. 

(1) Using the results of the previous problem and the law of refraction, 
we can find the values of 0 for various values of i: 

Table 3 

0 	 0 

0° 180° 550 138°20' 
20° 160°24' 60° 137°56' 
40° 144°43' 65° 138°40' 
50° 139°40' 70° 140°44' 

(2) A diagram of 0 versus i is shown in Fig. 542. 
(3) The minimum value of the angle of deflection is approximately equal 

to 0,„,.„=138°. The rays leaving the drop are nearly parallel when 0r----0„,1„, 
since in this case, as can be seen from Table 3 and the diagram, 0 changes 
the slowest when i changes. An approximate path of the rays in the drop 
Is illustrated in Fig. 543. 
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Fig. 543 

749. In accordance with 

The magnification is 

the formula of a lens 
11 	1 ,  

k=-6 =6-- f =24 times a 	f 
750. The condenser should produce a real image of the source on the lens 

having the size of the lens. Therefore, using the formula of a lens and the 
expression that determines its magnification, we can write two equations: 

1 	1 	1 	d 	x 

	

—+ —=— and D0  y f 	Do  y 

Here x is the distance from the source of light to the condenser and y is 
the distance from the condenser to the lens. According to the initial condi-
tion, x+ y =1. 

By cancelling x and y from the expressions obtained, we can find the focal 
length: 

dD0  
f - (d+

1 
 Do)2 —7.1 cm 

 

The diameter of the condenser will be minimum if the slide is behind it. 
The minimum permissible diameter is D= 11 cm. 

751. Ground glass is needed to fix the plane in which the image is obtai-
ned, and to increase the angle of vision. 

Transparent glass is used to examine the image produced by a lens in a 
microscope. For this purpose a line is drawn on a transparent glass to fix 
the focussing plane, and this line and the adjacent portion of the image pro-
duced by the lens are fccussed in the microscope. In this case ground glass 
cannot be used, since the microscope will show all the distortions due to the 
structure of the ground surface. 

752. (1) The lanterns will appear equally bright, since thz illumination of 

the retina of the eye E=—LA 
is the same for both lanterns. (Here L is the 62 
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luminance of a lantern, A the area of the pupil, and b the distance from the 
crystalline lens to the retina.) 

(2) The image of a far object is closer to the lens than that of a near 
object. For this reason a remote lantern produces a higher illumination of the 
film and its image will be brighter on the photograph. 

753. The illumination of the photographic film is 

	

A 	(a — fr 
E 

	

b2 	a2  

2  
where Si = -r--2 is the lens speed, f is the focal length and a is the distance 

from the lens to the object being photographed (see Problem 752). It is ob-
vious therefore that the exposure in a camera with a short focal length should 
be smaller. 

754. The distances between the Sun and the Earth and between the Sun 
and the Moon are practically the same. For this reason if the Moon and the 
wall had equal coefficients of reflection, their luminance would seem identical. 
It can be assumed, therefore, that the surface of the Moon consists of dark 
rock. 

755. In air, the external convex cornea of the eye collects the rays and 
produces an image on the retina. The crystalline lens only helps In this. 

The refraction index of the liquid inside the eye is very close to that of 
water. For this reason the cornea refracts almost no light and the eye becomes 
very far-sighted. 

The refractive properties of the cornea are completely retained when the 
swimmer is wearing a mask. 

756. When the man looks at remote objects through his spectacles, he sees 
them as he would see objects at a distance of a2 =60 cm without any spec-
tacles. 

Therefore, when the man is wearing spectacles (see the solution to problem 735) 

1 	1 	1 	1 _L 

	

a ' b 	f 
where a= co . 

When the man is without spectacles 

	

1, 	I 	I 
az 	 =7-  

1 
Here b is the depth of the eye, T  the minimum optical power of the eye 

and 
f 

—
1
o 
 the optical power of the spectacles. It is assumed that the spectac-

les are fitted tightly against the eye. 
Hence, f 0=— c/o. 
Let us now determine the position of the nearest point of accommodation 

of the eye with spectacles 

1 	, 	1 	1 	1 	, 	I -
-=- 1 
	, 	1 

al 
— = —„ and —   

oi 	Il 	a3 	bl 	/I 	/0 
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Therefore, 
1 	1 	, 	1 	1 	1 -t- 	— 
a3 	ai 	f0 	al 	a, 

and a, =15 cm 
757. The long-sighted man when wearing his friend's spectacles can see 

only very far objects. Therefore, the distance a2  of best vision of the eye of 
the long-sighted man can be determined from the equation 

1 	1 
--- =DI  al 	a2  

where al  is a very great distance (a1 	co) and D1  is the optical power of 
the spectacles of the short-sighted man. 

The optical power D2  of the spectacles that correct the defect of vision of 
the long-sighted man can be found from the formula 

1 	1 =D 2 ao 	a2  

where a0 =0.25 metre is the distance of best vision of the normal eye. 
The distance a3  of best vision of a short-sighted eye can be found from the 

equation 
1 	1 
a0  a3  

If the short-sighted man wears the spectacles of his long-sighted friend, 
the distance of best vision, i.e., the minimum distance a at which the short-
sighted man can easily read a small type, can be determined from the formula 

1 	1 
- - D 

a 	a3 	
2 

 

Upon solving these four equations, we get a = 12.5 cm. 
758. When an object with a height of I is examined from a distance of D, 

the angle of vision (pi  is determined by the formula 

(1)1=-5 

If the same object is viewed through a magnifying glass, 

I' 	I' 
W2=b+r L 

where I' is the height of the image (Fig. 544). 
The angular magnification is 

N _(:p2=PD___ k  D 
--(pi  IL—  L 

where k= L
' 	b 	f 1b 

is the linear magnification determined from the 
/ = = 

formula of a lens (f is the focal length). 
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Fig. 544 

Hence, 
D b±f D L—r+f  

N= ff. 	f 	L 

(1) When L= oo , we have N-T . 

(2) When L=D, we have N=T+ 1- T • 

759. The magnification of a telescope is N= 
fl

, where fl  is the focal 

length of the objective and f 2  that of the eyepiece. 
Since in a telescope adjusted to infinity the distance between the objective 

and the eyepiece is fi  -1- /2, 
D 	fl l is 
d 	b 

Here b is the distance from the eyepiece to the image of the diaphragm. 
According to the formula of a lens, 

1 	I 

	

f1 + f 2 b 	12 

Upon cancelling b from these equations, we find that 

D _ N  
d 	12 

760. Sharp images of remote objects will be obtained with the convergent 
lens in three different positions. The lens can be placed in front of the d i-
vergent lens or behind it. 
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Fig. 545 

For the first position the distance d between the lenses can be found con-
sidering point K as the virtual image of point A in the divergent lens (Fig. 545). 

1 	1 = 	1 
f2  —d 1 	f, 

Ray MN is parallel to the optical axis of the system. 
Hence, 

d=f—-=3.5 cm . 11+1  

For the second position (the convergent lens is behind the divergent one) 
the path of the rays is shown in Fig. 546. Regarding point A as the image 
of K in the convergent lens, let us use the formula of a lens 

1 	1 	1 
-Fd 1—d f, 

Hence, 

d=1— 11  ± f1  V 1 4f2  
2 	2 	

1+ 11 

The distance between the lenses may be d5 =35 cm or d3 =5 cm. 
761. Let the rays coming from one end of the diameter of the visible disk 

of the Moon be directed along the optical axis of the system. The rays will 
produce an image on the optical axis at point A (Fig. 547) removed by a 
distance of 1=45 cm from the divergent lens. 

A 	V 

       

N 

 

        

 

O 

 

O 
zzr  

   

    

A 

  

        

Fig. 546 
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Fig. 547 

The rays coming from the other end of the diameter form, according to the 
condition, an angle p  with the first rays. After passing through the system, 
these rays will produce an image (point B) lying in a plane perpendicular 
to the optical axis and removed by the same distance 1 from the divergent 
lens. 

To find the diameter of the image Di= AB, let us consider the path of 
the ray passing through the optical centre of the first lens. 

In the first arrangement, the convergent lens is placed in front of the 
divergent one at a distance of d1=3.5 cm. If we consider point E as the 
virtual image of point 0 we can write 

1 1 _ 1 
d1 x1 	f1 

Using the similarity of triangles ABE and 01PE and remembering that 
01 p=d1  tan cp, we obtain 

D1 	di  tan  q) 	dig) 
/4-xi 	x, 

Upon cancelling x1  from these equations, we find that D1=0.72 cm. 
In the second arrangement of the lenses (d2 =35 cm), the path of the rays 

is shown in Fig. 548. The diameter of the Moon's image D2 can be found 

V 

Fig. 548 



B 
from the equations: 

Fig. 549 
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D2 	d 2  tan (13, 	d2 ) 

	

(x2 + d2)-1 	x2 	x2  

(considering triangles EOP, EAB and °POD and 

	

1 	1 	1 
d2  x2  f2  

(considering E as the image of 01). Hence D2 0.011 cm. 
In the third arrangement (d3=5 cm) the path of the rays will be some-

what different (Fig. 549) than that shown in Fig. 548. 
The equations for D3 can be written similar to the preceding cases as 

follows: 
D3 	d3 tan q:1=-' d3T

, and 
1 	1 	1 

(1—d3)+Xa 	 X3 	-73 x3 f2 

Hence, D3=0.18 cm. 
762. It follows from the formula of a lens 

	

1 	1I 
a+  = 

that the magnification of the objective is 
Fob 

a a — Fob 
where b is the distance from the image to the objective. 

The real inverse magnification of the object produced by the objective can 
be viewed through the eyepiece as through a magnifying glass, the virtual 
image produced by this magnifying glass being arranged from the eye at the 
distance of best vision D=25 cm. 

According to the formula of a magnifying glass 

	

I 	1 	1 
a1  D Feye 

where al  is the distance from the image produced by the objective to the 
eyepiece. 

he magnification of the eyepiece is 

D D+Feye 
k2= — 

	

a1 	Feye  
The total magnification of the microscope is 

k=kik 2= 	  
F ob (D±Feye) 

(a—F-180 times 
ob) F eye 

 



'CHAPTER 6 

PHYSICAL 

OPTICS 

6-1. Interference of Light 

763. No, it does not. The presence of illumination minima on the inter. 
ference pattern means that no quantity of light enters the given section of 
sp ace. 

764. The maximum illumination will be observed at an arbitrary point of 
the screen C (Fig. 550) if the difference of the paths ci2-4=0.., where 
k =0, 1, 2, ... is an integer. 

According to the Pythagorean theorem, 

d2=D2+( 
hk +--2-1  )2  

= D2  + hk 	)2  

whence 

4-4 —(4+ di)d0=_-2hki 

In accordance with the initial condition d2+di  2D. Therefore, d2 —d1  = 

leX hkl . The distance to the k-th light band from the centre of the screen is 

hk 	

2D 

= lD  . The distance between the bands is Ah=hk 	r
, 

k = y • 

765. The distance between interference bands is 	(see Problem 764). 

In our case D= AB = a+b, and /=S1S2  is the distance between the images 
Si  and S2  of the source in the flat mirrors (Fig. 551). The value of 1 can 

Fig. 550 
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ll 

N 	Fig. 551 

 

be found from triangle S1SB: 
1 	a 

y -T=2b - or 1--,--2ba 

Hence, 

Ah 
21.(a  +  b)  

2ba 

766. The second coherent source is obtained in Lloyd's experiment by 
reflection of the rays from mirror AO. In reflection the phase changes by n 
(loss of a half-wave) and the oscillations will be damped at point 0 where 
a bright band should be observed (a minimum of illumination). As compared 
with Problem 764, the entire pattern will be shifted by the width of a light 
(or dark) band. 

767. The illumination on the screen will be intensified when c12 —(11=k1t. 
The locus of points on the screen reached by rays from both sources with 
this difference is a circle with its centre at point A (Fig. 552). For this reason 
the interference bands will have the form of concentric circles. 

When l=nX the illumination will be intensified at point A (an interference 
maximum of the n-th order). The nearest bright interference band (circle) of 

Fig. 552 
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Fig. 553 

the (n— 1)th order is at a distance from point A determined from the equation 

d2 —d1=17(nk+ D)2+ 	vw+11,,_,=(n-1)  

Bearing in mind the conditions of the problem that 2 < D and X <1, we get 

1
7 2D (Di-  nX)

=-: 172DX ( 12+1) 

768. The difference between the path of the rays for the k-th bright ring is 

cl 2 —c11=-17  (21220 2+4— V(nX)2 +4,-=lek 

Therefore, 

r =  
11(9n2_k2) (n2—k2) 

769. A semitransparent plate with an aperture can be used to create the 
second coherent source closer to the screen than the first one. On the basis 
of Huyghens' principle, the aperture can be regarded as the secondary source 
and an interference pattern will appear on the screen. 

If the distance between the sources is great, an interference pattern can be 
obtained with the aid of a source producing waves very close to monochro-
matic ones. 

770. To find the distance Ah it is first necessary to calculate the distance 
1 between the virtual sources S1  and S2 located at the point of intersection 
of the continuations of the rays refracted by the prism faces. 

For this purpose it will be the simplest to consider the path of the ray 
normally incident on the face of the prism (Fig. 553). 

No such ray actually exists, but it can be plotted by mentally extending 
the upper prism downward. All the beams from a point source refracted by 
a prism can be assumed to converge at a point, and this method is quite 
permissible. Since the refracting angle of the prism is small (the prism is 
thin), the virtual images S1  and S2  of the source can be regarded as lying at 
the same distance from the prism as source S. It can be seen from Fig. 553 
that i=--oc and SA=aa. According to the law of refraction, r Consi- 
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Fig. 554 

dering triangle AS1B, we can write 

2
±as= aan 

1=2aa (n— 1) 

By using the solution of Problem 764, we find: 

Oh— 
XD =_  X (a ± 6) 

2aa (n —1)=0.15 cm 

771. N=— ' where L is the width of the interference pattern. 
Oh 

It can be seen from Fig. 256 that L=P— 1, where 1 is the distance between Q 
the virtual images S1  and S2  of the source. 

Using the results of the previous problem, we get 

N — 
4aba2  (n —1)2  

(a +6) X 	
5 

772. A biprism made of a substance with a refraction index n2  deflects 
rays by an angle 

94= ( 90°— -,r) (n2 — n1) 

where 	is the refraction index of the medium from which the rays fall. For 
a biprism in air 

cp2  = (90° 
-2/  

) (n2 -1) 

If the biprisms are equivalent, WI = (P2. Hence, 

6— (3 
n2— nl

+ 180°  n1-1 
n 2 — I 

	
n2 — I 

For the values given in the initial conditions, 6 = 179'37'. 

Hence, 
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Fig. 555 

773. The path of the rays in the system is illustrated in Fig. 554. Hem 
Si  and S2  are the images of source S in the halves of the lens. Obviously, 

f b= a  
a- f 

The distance 1 between Si  and S2  can be found from the similarity of 
triangles S AB and SS1S2: 

ad 
a— f 

The distance between adjacent interference bands on the screen is 

X  (D—h)  
ad 

Ah= 	=(Da— Df — af)=-- IC-2  cm 
1 

(see Problem 764). 
The sought number of interference bands is 

N  L _d (D + a)  _25  
Ah 	aAh 

774. The distance between the virtual sources Si  and S2  can be found by 
the method described in the solution of Problem 773 (Fig. 555). 

The distance between interference bands is 

Ah 
(Df — +0) 

da 

i= 
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Fig.  556 

The number of bands on the screen is 

Ah 

DI 
where L=T- is the dimension of the portion of the screen on which interfe-

rence bands are observed. Therefore, 

Nabfk  
D= 

adl+abNX—bfNX.
-15 cm 

The maximum possible number of bands can be determined from the condition 
adi+Nabk—bfn=0 

(here D 	oo). 
Hence, 

adl 
Nmax—bfx 	— abX -5  

The number of bands is finite, since the distance between them increases as 
the screen is moved away, and the dimensions of the portion of the screen 
on which the interference pattern appears grow. 

775. The distance between the interference bands will not depend on the 
position of the screen only if the source is arranged in the focal plane of the 
lens. This directly follows from the expression 

Ah=- (Df —Dad-an 

obtained in solving Problem 774. When a= f, 

d
=10-2  cm 

at any value of D. 
For this case the path of the rays is shown in Fig. 556. A glance at this 

illustration will show that the number of interference bands will be maximum 
when the screen is in position AB. The distance from the screen to the lens 
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can be found from triangle OAB, remembering that the angle cc.—= —d 
and 

AB=R: 

di d
:=2 metres 

776. The length of a light wave diminishes n times in glass, since the 
frequency does not change and the velocity decreases n times. This produces. 
an  additional difference in the path between the coherent waves in the beams. 

At a distance of d1  the upper beam will accommodate k1=dXn wavelengths, 

and the lower beam k
2  7`
_

d
2
n
+

di —d, 
wavelengths at the same distance. 

At any point on the screen the light waves will additionally be shifted with 
respect to each other by tel —k, wavelengths. As a result, the entire interfe- 

rence pattern will be displaced by ki —k2=
(di

x c/2)
(n  1)-100 bands. 

The process of displacement can be observed at the moment when the plates 
are introduced. After this has been done, the interference pattern on the screen 
will be as before. 

777. The lens is too thick. Interference occurs only with thin films. The air 
layer between the lens and the glass is thin. 

778. No, it will not. The difference of the path between the waves meeting 
on the screen and emitted by the sources S and Sr  or S and S2  is great. 
In these conditions the spectra of various orders that correspond to the spect-
ral interval of the source are superposed in the same way as when the waves 
are reflected from the boundaries of a thick film. 

If the shield is removed, the only result will be superposition of monoto-
nously changing illumination on the interference pattern from sources Si  
and S2. 

cas• 

Fig. 557 
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779. When the rings are observed in reflected light, the intensity of the 
interference beams is about the same. 

In transmitted light the intensity of one beam that was not reflected is 
much higher than that of another beam that was reflected twice. As a result, 
the maxima and minima will appear against the background of uniform illu-
mination, the light will not be extinguished completely and the entire pattern 
will be less distinct than in reflected light. 

780. In the absence of contact, the radius of the fifth ring is determined 
r2  

by the equation 	2d=5X. If the dust is removed, the radius of this ring 

2-
R

, 1  can be found from the equation 	5k 	
2 

. Hence, d= 	 1.8X 10-4  cm. 

781. rk=-17
i 	1 	1 

R2 R1 ) 
782. To reduce the reflection factor it is necessary that rays I and 2 

(Fig. 557) reflected from the external and internal surfaces of the coat applied 
to the optical glass damp each other. 

This will occur if 

2hn = (2k +1)—
k 

(1 ) 2 

where k = 0, 1, 2, ... . Hence, the minimum thickness of the coat is 

hmi n=471  . 

Condition (1) cannot be satisfied for all wavelengths. For this reason, h is 
usually so selected as to damp the middle part of the spectrum. The thickness 
of the coat exceeds hmin  by an odd number of times, since it is easier to 
make thick coats than thin ones (a quarter of the wavelength thick). 

783. To observe an interference pattern, the maximum of the k-th order 
corresponding to the wavelength 7v should not overlap with the maximum pf 
the (k+ 1)th order corresponding to the wavelength 1+,+ AA., where AX= 100 A. 

This will occur if (X ± Ak) k 	(k + 1). 

Hence, k 	. 

The maximum permissible thickness of the layer hmax satisfies the equation 

2h,„= + 

where kmax Ax = — • If A, is the wavelength corresponding to the middle of the 

visible section of the spectrum (X. = 5,000 A), then 

hmax 1.3X 10-3  cm 

If a thin film with a refraction index n is used Instead of the air layer, 
the maximum thickness should be n times smaller than in the air layer. 

784. Upon the interference of rays I and 2 (Fig. 558) reflected from diffe-
rent faces of the wedge, the condition of the minimum can be written as 
follows: 2hn=--kk (k= 0, 1, 2). 

kmax 
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	 >1 	 Fig. 558 

Since the angle a is small, lz = xa. 
Therefcre, the distance between the interference bands on the wedge is 

Ax= 	 
`tan 

According to the formula for the magnification of a lens, 
Ax

=--
a 
b 	

where 
A/ 	' 

a is the distance from the screen to the lens and b from the lens to the wedge. 
1 	1 

Since b=d—a, then according to the formula of a lens, —a  +d--=- 
1  
. ._ a=7. Upon 

cancelling a and b from these expressions, we can find the sought value of 
the angle a 

a= 
2nAl d f  rd2_4fd 

The solution of this problem is not a single one, because a sharp image 
can be obtained on the screen with fixed d and f when the lens is in one of 
two positions. 

6-2. Diffraction of Light 

785. The radius of the first Fresnel zone can be found from triangles ADE 
and DEB (Fig. 559): 

ri=a2 — (a— x)2= (b +2-L.)2 
2 

— (b x)2  

Since the wavelength is small, x— 	
 

Therefore, 4= 2ax— x2. 
Neglecting the small value of x2, we finally obtain 

rd2 —ofd 

abX 
r

1
= 

11  a±b 
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Fig. 559 

The same method can be used to obtain the radii of the following Fresnel 
zones. For zone k 

abkk 
rk= 	a +b  

786. A distance from a point source to the wave front of a oo corres-
ponds to a plane wave. 

The sought radii of the zones are 

abkk 
lim 	 kbk „ r ad-b 

(see the solution to Problem 785). 
787. To solve the problem it is necessary to calculate the number k of 

Fresnel zones that can be accommodated in apertures with diameters of D 
and DI. 

Using the results of Problem 785, we have 

abXD 
FC a b  --_ 

Now it is easy to find that k = 3 (an odd number). When the aperture is 
5.2 mm in diameter, it can contain approximately four zones (an even num-
ber). Therefore, a greater aperture will reduce the illumination at point B. 

788. When the four Fresnel zones are open the dark spot on the axis of 
the beam is surrounded by bright and dark rings. When the aper-
ture is increased, the total illumination of the screen grows in magnitude, 
but the distribution of the luminous energy on the screen so changes that 
the minimum will be in the centre. 

789. The sought illumination will be maximum when one Fresnel zone is 
accommodated in the diaphragm. With a view to the solution of Problem 786, 
we have 

D=2 VbX=0.2 cm 
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Fig. 560 

790. The diffraction will be noticeable if the aperture accommodates a 
small number of Fresnel zones, i.e., the radius of the aperture will be of 
the same order as (or smaller than) the radius of the first Fresnel zone: 

V
, 	ab , 

where R is the radius of the aperture. 
When a=b, we have aX. > 2R2. 
791. The Fresnel zones plotted in Fig. 560 make it possible to determine 

the luminous intensity at point B. The illumination at this point is created 
by the first and subsequent Fresnel zones. If the dimensions of the screen do 
not exceed considerably the radius of the first central zone, found from the 
formula in Problem 785, a bright spot is sure to appear at point B with an 
illumination only slightly differing from that which would have appeared in 
the absence of the screen. 

792. Approximately three metres. 
793. Here it is more convenient to select the Fresnel zones in the form of 

bands parallel to the edges of the slit. The minimum will be observed in the 
direction q  if an even number of zones can be accommodated in slit AB 
(Fig. 561). This figure shows four Fresnel zones. We have b=2kx, where x 
is the width of the Fresnel zone, k=1, 2, 3, ... . Here AK is the difference 
in the path between the extreme rays sent by one zone: 

AK =x sin lzp 
2 

Hence, 

x= 	 
2 sin lip 

Therefore, the minimum will be observed in the direction q  if b sin cp= 

794. The rays incident on the pinhole of the camera from a remote point 
source are nearly parallel. If there were no diffraction the dimensions of the 
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Fig. 561 

bright spot would be equal to AB --=2r (Fig. 562). In view of diffraction, 
the dimensions of the spot will increase to DC. The distance OC is determi-
ned by the angle p  that gives the direction to the first minimum (dark ring). 
According to the note, 2rsinp 4. Therefore, the radius of the spot is 

dX 
OC=r+AC=--r-Pdsin(P

'slr+-27 

This value reaches the minimum (see the solution to Problem 504) when 
Xd 

r= —
2r

. The optimum dimensions of the hole r= v Xd  

795. The angles that determine the directions to the maxima of the second 
and the third orders satisfy the equations: 

d sin cp2 =2X and d sin cp3=- 3X 
Hence, 

1+.,=d (sin (1)3—sin TO =___.2d  cos (T2 + TO  sin (9)3— 
2 
 (1)2)  

2  

d (q)3 —T2)=da 1.7 X 10-5  CM 

796. Sin T=I corresponds to the maximum value of k. Hence, 

k= =4 

797. For a spectrum of the first order to appear, d should be greater than 
or equal to X. Therefore, the sought period of the grating must not be less 
than 0.02 cm. 

798. The direction to the first maximum is determined by the expression 
d sin p=?. The screen is arranged in the focal plane of the lens. Assuming 

the angle IT to be small, we have 1=fq). Hence, X 
dl 	x 10-5  cm.  

799. The length of all waves diminishes in water n times (n is the refraction 
index of water). Hence, the angles cp that determine the directions to the maxima, 
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Fig. 562 

and the distances from the centre of the di ffraction pattern to the maxima cor-
responding to various wavelengths, also decrease n times, since according to 
the initial condition the angles IT are small and sin ITp. 

800. The spectra of different orders will be in contact if 0.2-=(k ± 1) Xi. 
Therefore, 

1 	1 	5 

For this reason only the spectra of the sixth and seventh orders can be 
partially superposed. But this grating (see Problem 796) can give only the 
spectrum of the fourth order for this range of wavelengths. Therefore the 
spectra will not be superposed in our case. 

801. When the rays are incident on the grating at an angle 0 (Fig. 563), 
the difference in the path between the waves issuing from the edges of adja- 

  

 

Fig. 563 
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cent slits is 
(5=BD—AC=d sin T—dsin 0 

These waves add up and intensify each other when 

d (sin (p—sin 0)-=kA 

where k 1, 2, 3, ... for the maxima lying at the right of the central one 
(k = 0) and k= —1, —2, —3, ... for those lying at its left. 

The maximum order of the spectrum will be observed when (1)=-90°. 
1 

Thus d (-1-- 	
2 

)=kX. Hence, k= —6. The spectrum of the sixth order 

may be observed. The minus sign shows that the spectrum lies to the left 
of the central one. 

802. As follows from the formula d (sin if—sin 0)=0, (see the solution 
to Problem 801), the period of the grating will be minimum with tangential 

it, 

	

incidence of the rays: 0=90°. In this case 	— 
2 

. Therefore, the period of 

the grating should satisfy the inequality 
2 

803. In the general case, as shown in the solutio3 of Problem 801, the 
sought condition will be 

d (sin (p—sin 0)=0. 
It may be rewritten as 

2d cos (P+   sin W-
2 

°  kX 
2 

	

If d> k? then cp 0. Here cos (P+  ° 	cos 0, and sin (P-
2

° 	(1)-- 2 ° 

	

2 	 • 
Therefore, the condition that determines the directions to the principal maxima 
will take the form 

d cos 0 (p— 0) kA 

The grating constant diminishes, as it were, and becomes equal to d cos 0 
instead of d. The angles if-0  are counted off from the direction of the inci-
dent light. 

6-3. Dispersion of Light and Colours of Bodies 

804. As shown in Problem 703, the angle of incidence a, the refraction 
angle of the prism cp and the refraction index n are related to the angle 13 
at which the beam emerges from the prism by the expression 

	

sin a 	 2 

n=  sin 
	

(sin 0 sin 
cp +cot cp) +1 

herefore, we obtain the following equation for sin p 

sin a 	sin2  
sine (1 +cot2 0+2 sin 13 

sin of tan of 
+ 

sin2  cp 
n2=0 
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Fig. 564 

Or 
1 

2 sin2 13+ IfYsin f3+ 7  -n2=0 

Upon solving this equation, we find that 

—1 ± 4n2-1 
sin [3. 

2 Y2-  

The solution with the plus sign has a physical meaning. For red rays 
sin pi,. 	0.26. Therefore, p,. 	111°6'. For violet rays sin 	0.31 and 13„ 

18°6'. The sought angle is 0= ft —VI,. === 3°. 

Fig. 565 
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Fig. 566 

805. For the red rays the focal ,length of the lens is 

tr — 2 
 nR 

 _1) = 27 cm 

and for the violet rays fv ---=25 cm. 
According to the formula of a lens, the image produced by the red rays 

will be at a distance of br=
a 

 r
,
t 
	 —58.7 cm and that from the violet rays 
a— r  

at b,„---50 cm. 
The image of the source on the screen (Fig. 564) will have the form of 

a spot whose edges are coloured red. 
The diameter of the spot d can be found from the similarity of triangles 

ABE and CDE: 

d=D  ' 
 b, 	

0.15 cm 

806. The sunrays falling on rain drops may be assumed to be parallel. 
As they emerge from a drop after being reflected once on its internal surface, 
the rays diverge in all directions. Only the rays subjected to minimum defle-
ction are about parallel. When these rays get into the eye, they produce 
the maximum visual impression. These rays travel, as can be said, with the 
maximum density. The other rays are diffused in all directions. As shown 
in Problem 748, the angle of deflection for parallel rays is 138°. Therefore, 
the angle between the sunrays and the direction to the rainbow is 42° (for 
red light) (Fig. 565). 

The eye will receive light from the drops that are in the direction for-
ming an angle of 42° with the line passing through the eye and the Sun. 
For violet rays this angle is about 40°. 

807. The first (primary) rainbow is observed owing to the rays that were 
reflected once inside the water drops. Upon refraction, the violet rays undergo 
the greatest deflection from the initial direction (see Problem 747) (Z 0 grows 
with n, since r decreases). For this reason the external arc will be red and 
the internal one violet. 

The reflection rainbow is caused by rays that were reflected twice inside 
the drops. The approximate path of the ray is shown in Fig. 566. As can 
be shown, the direction to the rainbow is 51° with the line that connects 
the eye and the Sun. With two refractions and two reflections the colours 
alternate in the reverse order: the external arc will be violet and the inter-
nal one red. 
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Fig. 567 

The luminous intensity is much weaker after two reflections, for which 
reason a reflection rainbow is much less intensive than the primary one. 

808. The geographical latitude of Moscow, i.e., the angle between the 
plane of the equator and a normal to the surface of the Earth, is cp.=56°. 
At this moment the Sun is in the zenith above the northern tropic (latitude 
a=23.5°). Hence, the angle between the direction to the Sun and the hori-
zon (Fig. 567) is 

13=900— (p+a=57°30' 

A rainbow can be observed only when the altitude of the Sun above the 
horizon does not exceed 42° (see Fig. 565). Therefore, no rainbow can be 
observed. 

809. Our eye perceives a colour when its sensitive elements are irritated 
by a light wave of a definite frequency. The frequency of light waves, howe-
ver, does not change during transition from one medium into another. 

810. The green glass should be used. In this case the word will appear 
black against the green background of the paper, since the red colour of the 
word "excellent" does not pass through green glass. 

If the red glass is used, the word written by the red pencil will not be 
seen against the red background of the paper. 

811. Camera lenses predominantly reflect the extreme parts of the visible 
spectrum: red and violet (see Problem 782). A mixture of these colours pro-
duces a lilac tint. 

812. The colours of a rainbow are pure spectral colours (see Problem 806) 
since only a ray of a definite wavelength is seen in a given direction. Con-
versely, the colours of thin films are produced by extinguishing (totally or 
partially) of the rays of a certain spectral interval due to interference. The 
colour of the film will supplement the colour of this spectral interval. 

813. Under the force of gravity, the soapy water drains down onto the 
lower portion of the film, which is always thicker than the upper one. Hence, 
the bands that show the locus of points of equal thickness should be arran-
ged horizontally. The light-blue (blue-green) tint is obtained when the long-
wave (red-orange) part is excluded from the full spectrum (see Problem 812). 
When the middle (green) part of the spectrum is extinguished, the remaining 
rays impart to the film a purple (crimscn) hue, and when the short-wave 
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(blue-violet) part is excluded from the solid spectrum, the film will appear 
as yellow. If the difference in the path of the mutually extinguishing rays 
forms the same number of half-waves in all three cases, the yellow band 
should be on top, followed by the purple band and by the light-blue band 
at the bottom. 

814. In the daytime the light-blue light diffused by the sky is added to 
the yellowish light of the Moon itself. This mixture of colours is perceived 
by the eye as a white colour. After sunset the light-blue colour of the sky 
is attenuated and the Moon acquires a yellowish hue. 

815. The smoke is seen against a dark background because it diffuses the 
sunrays incident from above. The particles of the smoke diffuse blue light 
much more intensively than red or yellow light. Therefore, the smoke seems 
blue in colour. 

The smoke is seen in transmitted light against the background of a bright 
sky. The smoke seems yellowish since the blue light is diffused in all direc-
tions and only the long-wave part of spectrum of white light reaches the eye. 

816. A thin film of water covering a moist object reflects the incident 
white light in cne definite direction. The surface of the object no longer diffu-
ses white light in all directions, and its own colour becomes predominant. 
The diffused light is not superposed on the light reflected from the object, 
and for this reason the colour seems richer. 
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