

$$
\begin{aligned}
& \text { T.T Th }
\end{aligned}
$$

ثاليش
T. دو نـدو
ترجهئ باقرامامهى

ازانتشارات
وزارت علوم و آموزش عالى
Δ
تهران، זMr

This is an authorized Persian translation of LES BASES DE L'ANALYSE MATHÉMATIQUE MODERNE by Alfred Doneddu.
Copyright 1963, by Editions Dunod, Paris.

Tehran, 1974

> جاب اول : جror

نوز..!ع كننلده در سراسر كشور : شركت سهامى كتا بهاى جييبى خيا بان وصال شيرازى، شمار: شه، تهران با همكارى مؤسسء انتشارات فرانكلين

اين كتاب در دو هزار سسخه در شر كت انست (سهامى خام)، جابخانَ بيست و بنجم نهريور جاب وصحافى شده ا-تا

$$
\begin{aligned}
& \text { همأ حقوق محفوظ است. }
\end{aligned}
$$

4010

رياضيات ملرن از اين جس جاى خود را در آموزش كشور ما بازيافتهاند. آنها حتى در مطبوعات روزانهٔ ما نيز منعكس شدهاند. ما دراينباره شاهد مسباحثات قــلمى بين نو آوران و ريدران خانوادهها يی هستيم كه از نفهميدن آنجه كه تا حال به دانستن آن ايمان داشتند بـه طـه طود رنججآورى متعجب كستهانده جه اتفاق افتاده است؟
هيِج هيز. آموزش رياضيات دبيرستانى ما در همه جاى دنيـا از قشرهــا متما يزى تشكيلمىيافت كه حقيقتاً هرگز در آتش عقل كداخته نشده بود. يكـ قشر وسيـعهندسى

 اساسى آنها از يكك قرن بيش فراهم آمده است ولى به يارى آنها است كه رياضيات كوشيده
 از خودش توفيق يا بد. اتفاق افتاده است كه ريـاضيات به طــورد بيش از بيش عميقترى روى

 امكان دهد كه به طور كامل در زمينههاى مختلف زندكى عـعل شركت جويند و در وراى ايـن

 ما سرشار باشند.

 روزكار ما داه.

آندره ليخنروويج
از آكادمى علوم

بـ*

نظرئه مجموعهال داراى ريشهماى بسيار كهنى است. اجداد ارد باستا نى ما منهوم مجموعهرا

 بيراسته و آنها را به جوهر وجودى خالص تبديل يلمي مى نمايند.

 (ملهم از مكاشفه يا تجر به) انجام كيرد كه دقيقاً از خو اص موسوم به اصول كه از از ابتدا بذيرفته شدهاند. نتيجه نشده باشند.

معلوم است كه بــائه تمامى تئورى بـا بررسى مجموعه N اعــداد طبيعى تشكيل شله
است.
اينها ما نلد سهبلهاى خا لص از روى اصول (پهَآنو) معين شدهاند. ايـن سيستم مفـهوم مجموعءء بينها يت را شامل است كه از طبيعى ترين راه وارد و معمول كرديـده است و خــو اص عملها بطود منطقى ازآن نتيجه شدهاند و اين اصول اوليه كه شبيه بعضى موجودات فوق طبيعى به نظر هى آ يند بدينتر تيب ازْ هرگو نه استعارهاى بير استه شدهاند.
 هاى افر اطى خود را از دست داده است، خصصوصيتى كه در خيلىها به وجود آورنـدهُ اين توهم
 قديمىها خو اص زيادى از حساب را كشف مىنمودند و اين نمــا يش عــد مىدا نيم كه دستگاه مبناى Y را به علت تكنيكى مغزهاى الكترونى بكار مى برند. خــود تئورى نيز از دستگاه به مبناى Y كه بسيار مناسبتر است استفاده مىنمـايد و ما اين مطلب را در مـو مـورد اندازه́ زوايا و در تئورى لگاريتمها خو اهيم ديد.
كسر يكـ سمبل جديد است كه از يكـ زوج منتظم دو عدد طبيعى تشكيل شده است وعدد منطق ما نند يك طبقه كسرهاى هم ارز تعريف شله است و بنيانى كه در N به وجــود آمــلـه است به مجمو عئ + ${ }^{+}$اعداد منطق مشبت به سهو لت امتداد نمى يا بد. اعداد b-ئى عبارت از تعمـيم اعــداد اعشارى در يکـ مبناى غيــر مشخص مى بـــاشند و
 از ساير اعداد منطق امكان بذير مىسازد. روشهاى كو ناگو تى برای ساخت اعداد حقيقى وجود دارد كـهـ از جـــمله از رشتههــاى ركشى)" و از مفطعهاى ((ددكيند) مى تو ان نام برد. آنها كليت اعداد منطق را مودد استفاده قرار مىدهند.
روش طرح شده در اين كتاب در مرحلهُ اول، اعداد منطق را بريايه ${ }^{+}$هع معين مسـىكند. اين تعر يف جديل به مفهوم صورتبندى بىنـها يت متــناوب يك عدد منـططى وابسته است. در مرحلهُ دوم تعريف را به ((سمبلهاى جلديد) اعداد اصم امتداد دادهايم به طوريكه خلــل موجود

1- روث ملهم از >له بسگهه. كتاب : 》دربارة اكدازة كميتها《 (ناشر كوتيه ويلار)

اعمال معلوم در +Q به طور كامالٍ طبيعى در + R امتداد مى يابند. و اين ديد امكان ميلهد تــا تئورى انـدازه كميتها بدون اصر اصرار روى كميتهاى (اسنجش-
 تعريف مىشود، مضر بهاى يكـ جز ه را به راحتى مى توان تعريف نمود، ولى بهمان نسبت هر جزء را نميتوان بر عدد درستى تقسيم نمود. در حقيقت وقتى عمل در يك مبناى b انجام مى يذيرد، عدد منطق غير متعلق به به اندازء كميتها همان نقش را بازى مىكند كه عـلـد اصم. جز اينكه مى وخو استيم خارج قسمت دو مضرب از يك كمبت را تعريف كنيم، امتيازى وجود نداشت و اين به عقيدةٔ ما مسئلةٔ اندازه را

يیش نمى برد.
بررسى بعضى كميتها به سبب آنكه جمـع همو اره معين نيست، بغرنجتـــر مى شود و اين
 كميتها ما صورت آنرا تغيير دارها يم تا قا بل به كار بـر آ در آنجا تعداد مضر بهاى يكـ جزء محدرو انر است. اصل نيمسازى همو اره در مورد اندازه وارد كرديده است. وقتى با با يههاى هندسه سروكار داريم مشاهده مى شود كه مفهوم وسط يكـ باره خـط و و يا نيمساز يك
 در تئورى به ميان كشيده مى شود.

 روش عمومى بسيار بغر نج كه مستمل بر همر اه كردن تمانم

\qquad
مفهوم ايدهآل كه در ابتدا ضمن كليات معلوم شده است، امكان مىدهد كه آنـرا در حلقةء Z

 حقيقى امتداد داده شده است. برای امكان عمل در دستگاه پائه دو كافى است مسجل كنيم كـهـ
$x \in Q_{Y}$ هر عدد حقيقى مبُت داراى يكـ جـذر است. بدينتـرتيب تابـع معين مىكردد. عددهاى منطق غير دويى و عددهاى اصم هردو يكـ نقش را را ايفا مى منما يند وتا تأبع نمايى در هردو رسته بهطود همز مان معين ميسو ند.

 يكـ عدد رفتار نمودند. پس امروز حقاً مىتوانيم خود را مصون از از اين ترس تصور نماييم. يس از تعيين شر ايط لازم ضرب وجمـع، احساس مى شُود كه مجموعئ C عددهاى مختلط يكـ هيئت است و بررسى جبرى را تا مدول يكـ علد مختلط و تــا زير گـــروه U عددهــاى مختلط به ملول واحد امتداد مىدهيم.
 اجزاء آناليز مىتوان وارد نمود. اين روشها از امتياز يارى نجستن از هندسه برخوردارند و ور در

 كمك كُرفتن از شكلهاى هندسه ضرورى است. در اين صورت لازم است قبلا" يك آكسيوماتيك از از هندسهٔ مسطحه را وضـع كنيم. بسط
 نورمةٔ دو بعديرا و زاويههاى جهت دوار را نتيجه كرفت به تنهائى مستلزم يكـ كتاب كاب كامل است.

 امتداد يافته است و يكك شكلى اساسى بين كروه جمعى طبـه ماى اعداد حقيقى مدولـــو زير گروه ضر بى U عددهاى مختلط مدول واحد از آنجا است. آقاى بروفسور ليخنروويجّ با ابراز لطف و علاقه به اين كتاب، با معلمهاى آنـرا هزين فرمودهاند؛ من در اينجا سياس عميق خويش را به حضورشان تقديم مىدارم. و همحنين از مؤسسهُ ((دونو)ه به سبب دقتى كـه در چاب اين كــتاب به عمل آمده است

آ. دوندو

MATH75.IR
! Lbo

قسمت .بـكم : كليات

r
ro
ri
μ
r
r Δ
rv
rı
Fo
40
pr

قسمت دوم : عددهاى طبيعى

فصـل اول : ساخت مجموعه عددهاى طبيعى جمع، تفريق، نسبت ترتيب 1- ساخت مجموعه عددهاى طبيبى
r- جمع كردن اعداد طبيعى
rـ- تغريق، نسبت ترتيب
ب- فاصلaها

فصـل دوم : شمارش
ا- روش شمارش

Y-
r-

هـ فرابند. فروبند
فصـل سوم : ضرب، مضر بهاى يك علدى، بخش بذيرى، تقسيم اقليدسى
Y ا- ضرب
r- r- مضر بهاى يكـ عدد. بخش بذيرى
r- r- تقسبم اقليدسى

فصل جهارم：قؤ صحيح يك علد طبيعى شمار
1- تعريف

Y خ خواص
世ـ شـ شمار
b
ه－نسبت ترتيب در صورت بنلى
فصـل ینجم ：مضر بهاى مشترك، مقسوم عليههاى مشترلك، اعلاد اول 1－مضر بهاى مشترك
r－مضر بهاى مشتركـ جند عد
r－r－متسوم عليههاى مشتركـك دو عدد
ب－هقسوم عليههاى مشتركـ حند عدد
ه－اعداد اول．خـو اص
\＆－تجزية يك عدد به عو امل اول
فصـل ششم ：هم نهشتى
ا－تعريف و خواص

قسمت سوم ：اعداد منطق مثبت

فصـل اول ：ساخت مجموعه اعداد منطق مثبت، نسبت ترتيب ا－ساخت مجموعه اعداد منطق مُثت
Y بـ نسبت ترتيب در Q+
فصـل دوم : عملها در+Q
1- جمـ
ץ- تفريق
سـ ضرب
ץ- تعسيم

ه－تراكم اعداد منطق

$$
\begin{aligned}
& \text { r- طبقات ماندهاى مدولو } \\
& \text { بـ عمليات روى همنهشتها } \\
& \text { بـ جـ جبر طبقات مدولو }
\end{aligned}
$$

100
lar
1 $\Delta \gamma$
$1 \Delta g$
109
181
1qp
194
IqV
ivo
lve قسمت ححهارم : اعلاد حقيقى مثبت

1N9
191
19Y
19Y
rol
roy
ron
rlo
rip
rip
ris
Ylq
YYI

צ- قسمت صحيح يكـ عدد منطق
فصـل سوم : اعلاد bـئى
1- اعداد b-ئى
r- r- نما يش رقمى يــ علد b-ئى
rـ را بطهُ تر تيب در صورتبندى b-ئى
Q_{b}^{+}در
فصل جهارم: تقريبات b-ئى در اعداد منطق
1- مeدار b-نى تقر يبى در اعداد منطق
r
b
Q_{b}^{+}

فصسل اول : ساخت مجموعه اعداد حقيقى مثبت رابطه تر تيب 1 - جذر كامل يكـ عدد طبيعى
$x \rightleftarrows \sqrt{x}$ r
بــ اعلـاد حقيقى مُبت
R+
فصـل دوم : عملها در+

- ا- جمـع
r- تفريق
r-
با- جذر يكـ عدد حقيقى
هـ سوراخها وخلل
فصـل سوم : ازدازء كميتها
1- مثا لهاى كميتها
E r-r اصول در نيم كروه مرتب
r-
ب- حل مسئلة اندازه در يحـ نيم تروه ارشميدسى
rry
ryq

قسمت پپنجم ：اعلاد نسبى

rar
Y ΔV
YDA
rap
Y\＆人
ryo
YVI
pyp
YYF
YVG
r人。
rar
rАя
r＾q
rqp
roy
rov
rir
Mis

هـ اصل نيمسازى（B）
4ـ اصل فقدان خلل Y－تغيير واحد

فصل خهارم：حالتى كه در آن، جمع همواره هعين نيّيت، اندازءٔ زاو يهها ا－
Y Y اصل ارشميدس

شـ اصل نيمسازى و اندازه́ اجزای

فصـل اول ：ساخت مجموعه اعلداد نسبى عملها، رابططٌ ترتيب － 1
r－
R
R
ه－تقسيم اقليدسى در
צ－ايدهاTلهاى
فصـل دوم ：نمائىها و لتَاريتمها
ا－قو ای صحيح يكـ عدد حقيقى
Y
بـ قواى دو－ئى يكـ عدد حقيقى مُبت
ץ－قواى حقيقى يكـ علد حقيقى مُبت
فصـل سوم ：كاربرد هندسى اعداد حقيقى
ا－هندسهُ يكك بعدى
Y－هندسٔ زاو يههاى جهتدار
فصل جهارم：هندسهُ اقليلسى مسطحه
1－فضاى \＆بردارهاى صفحه
r－r
r－مختصات كارتز ين（دكارتى）
ri人
rro
Fr｜ rrr

ب－راديان
ه－توابع مثلثاتى
4－عبارت مُلثاتى حاصلضرب علدىى
Y－دستورهاى مثلثاتى جمـع

قسمت ششم：اعداد مختلط

rry
MYY
سץ
Hش
هr
HR
Heo
F｜
res
FYD
res
HYV
r४人
rao
F $\Delta 1$
HAr
अダ

فصـل اول ：ساخت مجموعه اعداد مختلط عملها 1

Y－Y اعداد مختلطط
K－
ץ
ه－غو غهورى R در C
4－اعداد هـختلط هزدوج
Y－مدول يكـ عدد مختلط
فصـل دوم ：كاربرد هنلسى، آو نل يك علد مختلط 1 －صفحهٔ مختلط
Y Y آوند يكـ عدد مختلط
ب－
ب－صورت مشلثاتى يکی علد مختاط غير مشخص

צ－توان صحيح اعداد موهومى
وازهنامه
فهرست راهنما

$$
\begin{aligned}
& \text { عدمها (از: شوالى) } \\
& \text { •جموعهها (اذ: بوسل) } \\
& \text { توابع (اذ: دنجوى) } \\
& \text { توابع رياضى (از: ز. ها هادامار) }
\end{aligned}
$$

 بورباكى " (هرمان باريس)

-
 - -

- -
-

ـ كتاب III فصل ب. علدرماى حقيقى

- -
- -

1- Encyclopédie française 2- Brisac Robert, Exposé élémentaire des principes de la géométrie euclidienne. 3-Bourbaki
4- Pisot, C. et Zamansky, M., Mathématiques générales.
5- Dubreil, P. et M. Leçons d'Algèbre moderne.
6- Doneddu, A., Arithmétique général.

1- Zamansky, M., Introduction à l'algèbre et à l'analyse moderne.
2- Cartan, H., Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. 3- Kogbetlianz, E., Voies naturelles et bases des Mathématiques. 4- Lentin et Rivaud, Leçons d'Algèbre moderne. 5-Lebesgue, H., Sur la mesure des grandeurs.

> $x \in N$ تالى x^{+} واحد (در N)
$\begin{array}{cc}\text { جمت تفريق } & + \\ \text { ضرب } & \text { - }\end{array}$
|
T * O تركبب توابع
ٍ
~ n مجموعه طبقههاى ماندهای مدور $\quad C_{m}$ $A \& \quad \sin A$ A بز A بزكترين جز $\quad \max A$

كسر $\frac{a}{b} a / b$
$\left[\frac{a}{b}\right]$
〔 a, b 〔 $\alpha \in C$ مد α يا مدول مطلق $\alpha \in R \mid$

$$
\alpha \in R^{+} \text {جذر } \quad \sqrt{\alpha}
$$

بیاره خحط

باره خحط جهت دار ab b
بر
(D_{\circ}, Δ_{0})
($D_{\circ}, \Delta_{\circ}$)
ط
$a \in R$ سينوس $\sin a$
$\begin{array}{cc}a \in R \quad \text { كسينوس } & \cos a \\ \alpha \in C^{*} & \arg \alpha\end{array}$

$$
\begin{aligned}
& \text { b } N \\
& \text { : } N^{*} \\
& \text { : } Q^{+} \\
& \text {: } Q \\
& \text { : } Q_{b}^{+} \\
& \text {: } Q_{b} \\
& \text { : } R^{+} \\
& \text {: } \\
& \text { : } R^{*} \\
& \text { صحيح (نسبى): } Z \\
& \text { : } C \\
& \text { : }{ }^{\text {: }} \text { : }{ }^{*} \\
& \text { U : } U
\end{aligned}
$$

كليات

مفاهيم كلى كه در ايني كتاب مورد استفاده قرار خواهند گرفت در اين قسهت طرح شُدهاند.
 آشنُ شُود اين نامكذارى در حال حاضر ييشي از ييشّى در رياضيات مدرن
 كه اجزاء اهلى آنرا بداند.
 منطقى و ویّى با تريفهاى بنيانها كه بعدآ خواهد آمد و بالاخره بـا بـا

 متعدد خوانثده را در فهم ايئ مفاهيم مجرد كهك ايك خواهد نهود.

פض

مجمو عهها و رابططهاها

1- مجمو عهها :
اشياء به كو نههاى مختلف در رياضيات مورد بررسى قرار ميگيرند. محض مسـال ميتو ان از نقطهها، عدوها و بردارها نام برد. اين اشياء يا اجزاء بخاطر بعضنى خــاصيتهـا مجموعــهـا را تشكيل ميدهند. .تئوريهائى كه ارائه ميشو ند هركدلم شامل بررسى يكـ مجموعه موسوم به (مجموعه پا يه تئورى) ميباشند.
محض مثال : در هندسه، جز ه هايه عبارت از نقطه، و مجموعه پايه مجموعه جميـنتطهها
 مججوعه را در قسمت دوم تشكيل خواهيم داد.
يكـ جزء را معمولا" با حرف كوحّك (جزء a) و يكـ مجموعه را با حرف بسزرى (مجموعه A) نمايش ميدهند.
 از اين علامتها نمايش داده ميشود (مثلا" عدد طبيعى I I 1 در نمايش ارقام دهلهى).
r
اجز اء يكـ مجموعه ممكن است رابطه هائى بين خودشان و يا با اجزاه مجموعه هـــاى
ديگگر داشته باشند. به مثالهاى زير توجه شُود :

را بطهلتعلق
رابطهتعلق بدين ترتيب بيان ميشُود كه :
((جزء a به مجموعه A تعلق دارد)"• و با $A \in A$ نما يش داده ميشود. نفى اين ارتبــاط خود يك؟ را بطهاى ديگر است كه با :

را بِطه تساوى
اكر در جريان بررسى يكُ مجموعه A اتناق بيفتد كه يكك جـز
معرفى شود ميگَويند :
: $a=b$ (مساوى b است) و مينويسند $a=$
(a (منطبت بر b است
نفى اين ارتباط عبارت از :
(\# مخالف b است) بطور كلى تعر يف زير را داريم :

تعويف - بامر بوط كردن يک جز بوسيله R يك را بطه تشكيل ميشود. مينويسم : $x \cap y$
را بطه را دوتائى مينامند زيرا دو جزء را بهم ديگر مر بوط ميسازد. رابطهاى ممكن است درمورد بعضى x و y صادق باشد و در مورد بعضى ديگگرنباشد. محض مثال مجموعـه A افراد بشر را در نظر ميگيريم. رابطه : (x)

براى بعضى زوجهاى (y
(
تعويف - مجموعه A را داخل در مجموعه B مينامند اكر هـر جزء\& A به B تعــلت واشته باشد. مينويسند : A CB و ميخوا A ند : (A داخل در B است). يا (A كنجيلده در B است)
اين دابطه بين دو مجموعه A و B متـرادن بــا را بطهاى است كــه بصورت A نوشته ميشود و (\# شامل A است)" خو انده ميشود • مثال - صفحه P شامل خط D است.

$$
P \supset D
$$

تبصره _ اكر تعريف قبل را منحصرأ در مورد يكـ مجموعه بكار ببريم با توجهباينكه :
(هر جزء A متعلق به A است) داريم :
$A \subset A$

تساوى دو مجموعه :
اكر داشته باشيم : ميگوينـد : (A مساوى B است) يــ (\#A منطبق
بر B است) و مينويسند :

$$
A=B
$$

اين رابطه بدان معنى است كه هر جزء A متعلق به B و هر جزء B متعلق به A A. است نفى اين رابطه بترتيب زير بيان ميشود :
("در يكى از اين مجموعهما جز يُى وجود دارد كه متعلق به ديغرى نيست")

$$
A \neq B
$$

مينويسيم :
"مـخـالف B A است A
ميخوانيم :
"متمايز از B است A" يا ميخوانيم :

بخشى از يك مجموعه . مجموعه تهى •
مجموعه E را در نظر ميگيريم. بخشى از E (يا زير مجموعه E E) عبارت ازمجموعهاى ما A است $A \subset E$ است رد ميكند.
خود مجموعه E بخشى اذ E است. بخشى از E كه جزء يكـ جـزء a را دارا نبــاشد

$$
\text { با : :a\} نما يش داده ميشود . }
$$

بخشى از E كه شامل هيج جز ئى نباشد مجموعه تهى ناميده ميشود و بـا ه نمايش داده

مثلا" - بخش P از مجموعه E را در نظر بگيريم كه با خاصيت زير تعريف ميشود : ((هر جزء\& $a \neq a$ از $a \neq a$ صدق ميكند)ه. a

$$
P=\varnothing
$$ استدلال منطقى است. اجزائى كه بوسيلهُ اين را بطه با هم مر بوطاند عبارت از كزارمها ميباشند .

استلز ام را با
مـلا" در مثال قبل مينو يسيم :

$$
(a=b \quad, \quad b=c) \Rightarrow a=c
$$

همانطور كه قبلا" نيز گْته شد اين استتا ج به معنى سرايت چذيرى تساوى است. تساوى

$$
\begin{aligned}
& \text { استلز ام خودش نيز سرايت بذير است. اكر داشته باشيم : } \\
& \text { : نتيجه ميشود } \mathcal{B} \Rightarrow C \text {, } A \Rightarrow \mathscr{B} \\
& A \Rightarrow C
\end{aligned}
$$

سرايت پذيرى استلزام موجب استحكام استنتا ج است. و استدلال بطور سرايت خذير با تسلسل استلزامها انجام ميذيرد.

$$
A \Rightarrow \mathscr{A} \Rightarrow C \Rightarrow
$$

حندى نماها :

مثال : A $A \subset B$ را در .نظر بگيريم. اين مثال حاكى است كه : (اهر جز\& A بـهه B تعلق دارد) اين خاصيت را بترتيب زير مينو يسيم :
$(\forall a) \quad a \in A \Rightarrow a \in B$
علامت \forall يك چندى نما است و خو انده ميشود : (هرچه باشد)
مثال ديگر : ميدانيم كزارة :
(يكـ جزء a متعلق به A وجود دارد")
موجب ميشود : (A مخالف مجموعه تهى است) خاصيت فوق را مينو يسيم :
$(\exists a ; a \in A) \quad \Rightarrow A \neq \varnothing$

علامت \exists نيز يكـ چندى نما است و خوانده ميشود (وجود دارد).
هـ ـ خود خِّ.يرى - تقارن - سر ایت پپذيرى:

يكـ را بطه دوتائى R در مجموعه E را در نظر ميگیير يم، اين رابطه ممكن است داراى
اوصاف زير باشد :

خود خذيرى
 هر جزء E با خودش مربوط باشد.
هثال اــ تساوى خوديذير است:

$$
\forall a, a=a
$$

مثال " "y در همان سال متو لد شده كه x x ()

خودبذير است زيرا x در همان سال متو لد شده كه خودش.

 هر جزء A از P (E) $A \in P(E) \quad \Longleftrightarrow \quad A \subset E$
رابطه كنجيدگى. A $A \subset B$ بين دو جزء $P(E)$ يكك رابطه خــودبذير است زيــرا داريــم : (هرجه باشد جزء $A \subset A \subset A$ هثال با مثال هـ استلز ام خودبذير است زير ا هرجه باشد گز اره A ع دازيم : $A \Rightarrow c A$

تقارن
تقارن مركزى در هندسه را در نظر ميخيريم و نتطةُ 'a قرينه a را نسبت به مركـز o ميدا م ميكنيم مينو يسبم : a S a^{\prime} علامت تقارن S حاكى از اين است كه ' ${ }^{\prime}$ از a با تقارن مورد نــظر

بدست ميآ يد
بدينتر تيب يكك را بطه دوتائى در مجموعه جميـع نقاط بدست ميآ يد. اكر همان تقارن S را در مورد نقطه ${ }^{\prime}$ بكار ببريم نقطه a را باز خو اهيم يافت و داريم : $a^{\prime} \mathcal{S} a$

بطور خلاصه استلز ام زير را داريم :

$$
a \mathcal{S} a^{\prime} \Rightarrow a^{\prime} \mathcal{S} a
$$

با آنالوزى تعريف كلى زير را در مورد يك را بطه دو تائى در مجموعه E بيان ميكنيم.

تعريف - را بطه دوتائى R را متقارن ميناميم اكر:

$$
x R y \Rightarrow y 尺 x
$$

مثال \- تساوى يك را بطه متقارن است :

$$
a=b \quad \Rightarrow \quad b=a
$$

 هثال

$$
D \perp D^{\prime} \quad \Rightarrow \quad D^{\prime} \perp D
$$

مثال
 $(A \subset B, B \subset A) \quad \Longleftrightarrow A=B$

سر ا.يت نِّ.يوى
 استلزام سرايتيذير است. تعريف سرايتيذيرى در مــورد يكـ را بطه دوتائى R در مجموعه E

تعريف - رابطه دوتائى R سرايتخذير است اكر :

$$
(x R y, y R z) \quad \Rightarrow \quad x R z
$$

ارتباط R بتوسط y از x به z منتقل ميگردد. مثال \- را بطه كنجيدكى سرايتيذير است :
$(A \subset B, B \subset C) \Rightarrow A \subset C$
مثال Y- را بطه (x در همان سال متو لد شده است كه y)".
 شدهاند نتيجه ميشود كه x و z در يكـ سال متو لد شدهاند. مثال و "
:
در مجموعه E (ساكنين كره زمين) را بطه (x در همان سال متو لـد شده است كــه y") را در نظر بگیيريم •
ديديم كه اين رابطه در عين حال خودجذير، متقارن و سرايت چذير است. در اين صورت ميگّويند كه اين يكـ را بطه همارزى در مجموعه E است. با استفاره از اين را بطــه موجودات انسانى را بطرز زير ميتوان طبعهبندى كرد.
a b) دو انسان x و y كه در يكـ سال متو لد نشدهاند در طبعههاى جداگانه قرار ميگیرند. بدين تر تيب جميـع موجودات انسانى طبقهبندى شدهاند. هر طبقه را يكـ ((سن)" ميناميم. هر موجود انسانى متعلى بيك طبقه، نماينده آن طبعه ميتواند باشد.

تعريف - يكـ را بطـه دو تائى در مجموعه E را بــطه هـمارزى ناميده ميسود اگـر در عين حال خوديذير، متقارن و سرايت يذير باشل. هثال ديگگ :
در مجموعه E خطوط فضائى رابطه زير را در نظر ميگِيريم :

بنو يسيم :

اين را بطه :
D D//D
خودجذير است :
$D / / D^{\prime} \quad \Rightarrow \quad D^{\prime} / / D$
متقارن است :
($D / / D^{\prime} \quad$ سرايتذذير است: $\left.D^{\prime} / / D^{\prime \prime}\right) \quad \Rightarrow \quad D / / D^{\prime \prime}$

بنا برا ين را بطه توازى يكـ را بطه همارزى است.
مانند مثال قبل از روى اين را بطه خطوط فضا را ميتوان بطريت زير طبتهبندى كرد : a b) دو خط D و 'D كه داراى ارتباط فوق نباشند در طبقههاى جداكانه قرار ميگير ند.

ناميله ميشود.
هر خطط يكـ طبقه نماينده آن امتداد ميتواند باشد.

طبقههاى همارزى
بطور كلى را بطه همارزى R در مجموعه E را در نظر ميگيريم : اين رابطه تقسيم بندى مجموعه E را به طبتههاى همارز بتر تيب زير تعيين مينما يد.
مجموعه اجزاء x همارز با a را با C(a) نما يش داده و آنرا ((طبته a) ميخو انيم :

$$
x \in C(a) \quad \Longleftrightarrow \quad x R a
$$

اين مجموعه $C(a)$ بخشى از E است كه ((طبته همارزى a) ناميده ميشود. ا- اكُ b هم ارز a باشد هر x هم هم ارز a همارز b است.
$(b \Re a):$

$$
x \mathscr{R} a \quad \Longleftrightarrow \quad x \mathscr{R} b
$$

بطوريكه :

$$
b \Re A \Rightarrow C(a)=C(b)
$$

 اگر جزع مشتركى مانند x داشتند نتيجه ميشد :

$$
(x \Re a, x R b) \Rightarrow a R b
$$

كه برخلاف فرض است.
در اين صورت $C(a)$ و $C(b)$ را متغا ير مينا مند. جميع اجز 1 اء بدينتر تيب طبعه بندى ميشُو ند و مجموعه E به طبعههاى متغاير تقسيم ميشود. ميگُو يند رابطه همارزى R مجموعه E را به طبقههاى همارز تفكيك كرده است.

مثال - اكر a و b دو نتطه از يكك صفخه و D عمود منصف ab باشد دوگزاره زير را
بيان ميكنيم :

$$
\begin{aligned}
& m \in D \\
& \text { كزاره } \\
& m a=m b \\
& \text { در عين حال داريم : } \\
& m \in D \quad \Rightarrow \quad m a=m b \\
& m a=m b \quad \Rightarrow \quad m \in D \\
& \text { دو كزاره A و B را منطقاً همارز ميناميم و مينو يسيم : } \\
& m \in D \quad \Longleftrightarrow \quad m a=m b
\end{aligned}
$$

 پذير است:
$\mathcal{A} \Rightarrow A$
$[(A \Rightarrow B) \quad, \quad(B \Rightarrow C)] \quad(A)$ بطور كلى استلزام متقارن نيست. اكر داشته باشيم : $A \Rightarrow B$

در حالت كلى
 عين حال (() و (Y) برقرار بانشد مىنويسند: $A \Longleftrightarrow \mathscr{B}$.

و ميخوانند: (\# Aنطقاً همارز B است) • دو كز اره A و B منطقأهمارز يكديگ, ند اكِ استلزام مستقيم (() و و معكوس (Y) برقرار

شده باشد .

- V

مجموعه E نقاط جغرافيائى را كه با رودخانه F و يا شعب آن مشروب ميشو ند در نظر ميگير يم• (شكل 1)
را بطه دوتائى زير را در مجموعه E بيان ميتكنيم :
........
است زيرا از :

زير را خواميم داشت :
 را بطه مورد بحث به رابطه ترتيب در E موسوم است. بطوركلى تعريف زير را بيان ميكنبم.

شكل
تعريف ـ هر رابطءٔ دوتائى R در E كه داراى خواص ز ير باشد رابطه ترتيب ناميله ميشود.

$$
\begin{align*}
& (x R y \quad, \quad y R z) \Rightarrow x R z \tag{1}\\
& (x R y \quad, \quad y R x) \Rightarrow x=y \tag{r}
\end{align*}
$$

 رابطه دوم دو خاصيت را بيان ميكند.
اولا :

$$
x=y \Rightarrow(x \& y \quad, \quad y R x) \Rightarrow x R x
$$

يينى رابطه خودبذير است. ثانياً :

$$
(x \notin y \quad, \quad y \Re x) \Rightarrow x=y
$$

رابطه جز بازاء دو جــزء متساوى متقارن نيست . ميگويند كـه مجموعه E با رابطه R مـسرتب

مال ديگر ذكر ميكنيم :
را بطه كنجيدگى A $A \subset B$ را در نظر ميگيريم. داريم :

توتيب جز fنى و ترتيب كلى
ثثال - رودخانه و شعب آنرا در نظر ميخيريم :
دو نتطه غير مشخص E با هم در ارتباط نيستند (ماند نقاط b و d d) زيـرا آب نه از بطرف d و نه از d بطرف b جارى است.
نقاط b و d با رابطه ترتيب در E قابل مقايسه نيستن. بدين جهت ميگويند كه ترتيبدر
E جز تُى است.
بعكس اكر قسمت F از E را در نظر بگیي يم (نقاطى كه فقط با رودخانه اصلىمشروب
ميشوند) دو نعطه غير مشخص كلى در F خو اهد بود.

> تعريف - را بطه ترتيب R رابطه ترتيب كلى در E ناميده ميشود اگر : $\forall x, y \in E$

داشته باشیم :

$$
x R y \quad \text { ي } \quad y R x
$$

رابطه كنجيدكى در P(E) رابطه ترتيب جزثى است زيرا دو جزء P(E) الزاماً شامل يكديگر

رابطه ترتيب اكيد

در رابطه رودخانه و شعب آن قرارداد زير را بعمل آورده بوديم : (هر نتطه a از a بالاتـر از خودش قـرار دارده) بيكـ زبان محدودتـرى، اين قــرارداد داراى ارزش نيست. از آن صرف نظر ميكنيم. گزارهماى : ((a) بالاتر از b قرار دارده) و (b بالاتر از a قرار دارد).

شعل

ديگر بطور همزمان هركز صادق نيستند. را بطه جديد را را بطه ترتيب اكيد درمجموعه E ميناميم.

تعريغى - رابطه R® در مجموعه E يكـ را بطه تر تيب اكبد است
: اكر
(1) سرايتذِير باشد.
$(x R y \quad, \quad y R z) \Rightarrow x R z$

$$
\begin{equation*}
x \mathscr{R} y \Rightarrow x \neq y \tag{r}
\end{equation*}
$$

در أين صبورت مجموعه E را اكيداً مرتب شده بوسيله R مينامند. بر اساسن اين تعريف معـلوم ميشود كه :

به تناقض برخواهيم خورد زيرا : بنا به خاصيت سرايتبذيرى (1 $(x R y \quad y \quad y R x) \Rightarrow x R y$

و بنا به شرط (Y) داريم :

$$
x \nsim x \quad \Rightarrow \quad x \neq x
$$

 ميشود كه رابطه R \AA خوديذير هم نِست.
اكر رابطهُ R در شرط زير نيز صدت كند :
$x R y \quad$ ي $\quad y R x \quad(\forall x, y \in E)$
ترتيب اكيد در اين صورت كلى ميگَرذد ميگَوئيم :

فصص دوم

قانون تر كيب

 و فقط يكى از E را همر اه كنيم بدين ترتيب در مجموعئ E E يكـ قانون تركيب درونى بوجود خو اهد آمد.

 تركيب يا نتيجه a و b مينامند. علامتها: بطور كلى مينويسيم:

$$
\begin{aligned}
& a * b=c
\end{aligned}
$$

$$
\begin{aligned}
& a+b=c \\
& \text { در علامت جمع مينويسبم: } \\
& \text { ميخوانيم: (a علاوه b مساوى c c)، در علامت ضرب مينو يسيم: } \\
& a \cdot b=c l a \times b=c(a b=c \text { ي }) \\
& \text { ميخوانيم: (a ضر بلر b مساوى c c) يا (\#ab مساوى c c)، } \\
& \text { مثال ا- جمـع كردن طو لها }
\end{aligned}
$$

 طول b را بـا باره خططى مانند b كا كـه در امتداد AB و و متصل بآن قرار كيرد نمايس ميدهيم

بطوريكه (پB بين A و C باشده) باره خطط AC طول c مجموع a و b را نمـايش خواهد داد:

$$
a+b=c
$$

بدين تر تيب درمجموعه طولها يكـقانون تركيب درونى موسوم به:((جمـع كردن طولها)، معين
ميگردد.
هثال ץـ اكّر E مجموعه غيرمشخصى باشد بهر زوج اجزاء مرتب (a و b) از E جزء $a * b=a$

اول را همراه كنيم:
$\leftarrow \rightarrow$ ـ بدينترتيب يكـقا نون تركيب درونى در E معينميشود.

شكل $E=\{a, b, c, d\}$: مثال از تنها اجـز ای a و b و c و d قـانون تركيب درونى

T
تركيب x T در فصل مشتـركـ سطر رديف
x با ستون رديف y قرار دارد. بدين ترتيب: $c \mathrm{~T} d=b, b$ Т $c=d$
r- فصل مشتركك و اجتماع دو مجموعه: مجموعه غير مشخص E را در نظر ميگيريم. مجموعه بخشهاى E ور E را بـا با ميدهیم در P(E) دو قانون تركيب درونى دا معين ميكنيم:

فصل مشتركتـ بهر زوج مرتب A و B از دو قسمت E يكـ قسمت از E را كه مجموعه اجز اه

 $(a \in A, a \in B) \quad \Longleftrightarrow \quad a \in(A \cap B)$

در حالتيكه A B B هيجّ جزء مستركى نداشته باشند فصل مشترك A و B يكـ ممجموعـه تهى است:

$$
A \cap B=\varnothing
$$

در اين حـالت A و B را متغاير مينامند. بدين تــرتيب
 همـهجــا معين است زيــرا هرجه بـاشد A و B B تركيب $A \bigcap B$ شكل r فصل مثترك وجود دارد. $A \cap B$

اجتماع－بهز زوج مـرتـب A B B از دو قسمت E قسمتى از E را همـراه ميكنيم كه مجموعه همخیى اجز اء متعلق به A و A ر را معين سازد．اين مجموعه را با A وا A نمايش ميدهيم و

$A \cup B$ شكل A اجتماع
 $(a \in A \quad$ ᄂ $\quad a \in B) \quad \Longleftrightarrow \quad a \in(A \cup B)$ تبصره－اجتماع $A \cup B$ نميتو اند تهى باشد مگر اينكه A دومى در P（E）بوجود ميآ يد كه همهجا معين است．

متمم－فرض كنيم A يكـ مجموعه و B قسمتى از A باشد： $B \subset A$
مجهوعةٔ اجزاء A كه به B تعلق نداشته باشند متمم B مر بوط
 نمايش ميدهيم． بنا به تعريف داريم：
$(B \subset A ; a \in A ; a \notin B) \quad \Longleftrightarrow a \in C_{A} B$ در اينصورت رابطههاى بديهى زير را خواهيم داشت： $B \cup C_{A} B=A$ $B \cap \mathbf{C}_{A} B=\varnothing$

بطور مختصر به خواص اساسى كـــه ممكن است در مـورد يكـ قانون تركيب درونــى هِش آيد اشاره ميكنيم．

فرض كنيم قانون ⿻丷 در مجموعه E باشد．

$$
a \text { 米 } b=u
$$

ابتدا. :
$u * c=d$
و سیّ
را انجام ميدهيم．در اين صورت مينويسيم：

واسطه u در داخل برانتز قرار گر فته است.

$a *(b * c)=f$ را انجام ميدهيم• در اينصورت مينويسيم واسطه v باز هم در يرانتز قرار كرفته است.
 قانون شر شركتذير است.

تعريفـ يكـ قانون تركيب در E (با علاهت *) شركت پָير ناميله ميشود اگــر هرجهه بــاشد اجزاء a و b و c از l از داشته باشيم:
$(a * b) * c=a *(b * c)$
مثال \- عمل جمـع كردن طولها شركت چذير است.
$(a+b)+c=a+(b+c)$

$(a * b) * c=a * c=a$
$a *(b * c)=a * b=a$
$E=\{a, b, c, d\}$ مثال
تعريف مىشود شركت بذير است.

$$
\begin{aligned}
& (b \mathrm{~T} d) \mathrm{T} c=c \mathrm{~T} c=a \\
& b \mathrm{~T}(d \mathrm{~T} c)=b \mathrm{~T} b=a \\
& \text { هثال \&- فصل مشترك } P(E) \text { شركتذير است: } \\
& A \cap(B \cap C)=(A \cap B) \cap C
\end{aligned}
$$

زيرا هردو طرف رابطه با مجموعهٔ اجز اء مشترك سه مجموعه A و B A و A و A منطبق است. مثال هـ اجتماع در P(E) شركتِذير است. $(A \cup B) \cup C=A \cup(B \cup C)$
زيرا هردو طرف را بطه با مجموعهٔ اجز اء متعلق به هرسه مجموعه A A و و و C منطبق است.

بنيان نيم تروه

تعريفـ اگر يكـ قانون تركيب درونى در يكـ مجموعه E شركت پذير باشد ميگوئيم اين قانون
 نيمگروه ‘اميده ميشود. در جميع منا لهاى § را در مجموعه نظيرش معين ميكند.

قانون جا بجإِذيرى
 $a * b=b * a$, \quad, مثال ا- عمل جمـ كردن طولما جابجايذير است:

$$
a+b=b+a
$$

b مرجه باشد a و b
مثال $a * b \neq b * a$

جس بطور كلى:
مثال بجدول شكل (() مراجعه كنيم تقارن نتايج حول قطرى از جدول را را كه از گوشه بالائى سمت جب تا كوشه بائينى سمت راست ممتد است مشاهده خواهيم كرد. (اين قطر بقطر اصلى موسوم

است).

تنير نميكند:

$$
(\forall x, y \in E) \quad x \text { T } y=y \mathrm{~T} x
$$

شثال

$$
A \cap B=B \cap A ; \quad A \cup B=B \cup A
$$

بنيان نيمکروه جا بجابذير

اجزاء اختصارهذير برای يك قانون تعريفـ اكر هرحه باشد b و c روابط:

$$
\begin{aligned}
& (a * b=a * c) \quad \Rightarrow \quad b=c \\
& (b * a=c * a) \quad \Rightarrow \quad b=c
\end{aligned}
$$

قانون
تبصره - براى يكـ قانون جابجایذير اگر يكى از دو خاصيت سازگار باشد ديگرى نيز
سازكار خواهد بود.
هثال \- در جمـع كردن طو لها يكك طول a براى عمل جمـع جزء اختصار یذير است
زيرا هرچه باشد b و c داريم:

$$
a+b=a+c \Rightarrow b=c
$$

$$
a * b=a * c
$$

بطور دقيق ميتوان كفت و هر جزs a واقع در سمت راست اختصاريذير است زيرا بنا بتعريف $b * a=c * a \quad \Rightarrow \quad b=c \quad$ *
هثّال

$A \cap B=A \cap C$ - شكل اگر جزه غيرمشخص $A \neq E$ را انتخاب كنيم و دوقسمت B و C از C را بسازيــم بطوريكه (شكل ه): $A \cap B=A \cap C$
مشاهده ميشود كه از ايـن رابطه نتيجه $B=C$ را نميتو ان بدست آورد (هرچه باشد B و C) در حالت مخصوص C ($A=E$ داريم:

$$
E \cap B=B, \quad E \cap C=C
$$

(هرجه باشد B و C) و از آنجا:

$$
E \cap B=E \cap C \Rightarrow B=C
$$

E
هثال مشخص $A \neq \varnothing$ را اختبار كنيم، و دو جزء B و C را طورى بسازيم كه:

$$
A \cup B=A \cup C
$$

باشل (شكل \&) (كافى است كه A شامل B و C باشد) در اين صورت داريم:
$A \cup B=A \quad, \quad A \cup C=A$
ملاحظه ميشود كه: $A \cup B=A \cup C=C$ نتيجه B را (هرجه بــاشد B و C) بـــست

AUB = AUC = A تعريفـد جزء e براى قـانون (\%) خنتى نـاميده ميشود اكر هرجه شكل 9 $\varnothing \cup C=C, \varnothing \cup B=B$
(هرجه باشد B و C) از آنجا:
$\varnothing \cup B=\varnothing \cup C \Rightarrow B=C$
ø براى اجتماع اختصار بذير است.

جزء خنثى

باشد a داشته باشيم:

نخو اهد داد. در حالت مخصوص $A=\varnothing$ داريم:
$a * e=e * a=a$
تبمره- برای يكـ قانون جابجابذير تساوى اولى ممواره سازكار است.

يكتائى جزء خنثى:
قضيه 1ـ اكر قانونى داراى جزء خنتى باشد اين جزء يكتا است
 e^{\prime} 光 $e=e * e^{\prime}=e^{\prime}$

و با فرض $a=e$
$e * e^{\prime}=e^{\prime} * e=e$
از مقايسه اين روا بط نتيجه ميشود: يس جزء خنتى يكتا است.
مثال ا- جمـع كردن طو لها داراى يكـ جزء خنتى است كـه عبارت از طول صفر بــا
علامت ه است:

$$
a+o=o+a=a
$$

(هرجه باشد a)
مثال ץ- قانون $a * b=a *$ داراى جزء خننائى نيست (بطور دقيق تر ميتوان كفت كه
 يكتائى سازكار نيست). مثال بـ قـانون T $E=\{a, b, c, d\}$ يكـ جــزء خنتى دارد (جـزء a) روى جدول شكل (1) جملaهاى سطر a جملaهاى تعين كنتده ستونها هستند. جون فانون جا بجا يذير

است چس درمورد ستون a نيز همان نظر سازگار است.

$$
A \cup \varnothing=A
$$

دار يم:

$$
A \cap E=A
$$

اجزاءء متقارن
تعريف- فرض ميكنيم در مجموعه E قانون تركيب (\%) داراى جزء خنتاى e باشد ميگو يند كه براى اين قانون 'a قر ينه a است اگر داشُه باشيم: $a * a^{\prime}=a^{\prime} * a=e$
تبصره \- براى يكـ قانون جا بجا پذير تساوى اول همواره سازگار است. تبصره Yـ اگر
 طولى مانند a^{\prime} وجود ندارد بطوريكه: $a+a^{\prime}=0$ باشد.
 مطرح نیست.
مثال معين شده است هر جزء داراى يكك قر ينه است و اين از آنجا معلوم است كه جــزء a (خنتى) در هر سطر و در هر ستون يكـبار و فقط يكـبار داخل شده است و بدين ترتيب داريم: a Ta=bTb=cTc=dT $d=a$

سس قرينه هر جزء خود اين جزء است.
 قر ينهاى نيست. در اجتماع، اگر $A=\varnothing$ را در نظر بگیيريمَ جزئى مانتد B وجود ندارد كــهـ باشد و بر ای فصل مشتركك نيز با فرض $A \cup B=\varnothing$ كه $A \cap B=E$ باشد.

Pـ بــيان گروه
تعويفـ يكـ قانون تركيب در مجموعهٔ E يكـ بنيان كروه را معين ميكند اكر : ا- شركتِذير باشد.
r-

است: و اين عبارت از قانون T در مجموءه:
E=\{a,b,c,d\}

 را روى E معين مينمايد و يا اينكه E يكـ كروه جا با بجابذير است.

قضيو

$$
a \mathrm{~T} b=a \mathrm{~T} c \Rightarrow b=c
$$

را ثابت ميكنيم.
(1)

$$
a \mathrm{~T} b=a \mathrm{~T} c
$$

شروع ميكنيم و سومين خاصيت كروه را بكار ميريم: جزء a داراى يكـ قرينه a a a است.
(r)

$$
a^{\prime} \mathrm{T} a=e
$$

طرفين رابطه (1) را با ${ }^{\prime}$ از سمت جب تروك Truc كنيم: $a^{\prime} \mathrm{T}(a \mathrm{~T} b)=a^{\prime} \mathrm{T}(a \mathrm{~T} c)$

بنا به شركت خָذيرى
($\left.a^{\prime} \mathrm{T} a\right) \mathrm{T} b=\left(a^{\prime} \mathrm{T} a\right) \mathrm{T} c$
$e \mathrm{~T} b=e \mathrm{~T} c$
و بنا به رابطه (Y):

خاصيت (P) ثابت است. با همين روث ميتوان اثبات كرد كه:

$$
b \mathrm{~T} a=c \mathrm{~T} a \Rightarrow b=c
$$

سس قضئ (Y) ثا بت است.

قضيؤ فرض كنيم يك جزء a دارای دو قرينه ${ }^{\prime}$ و و "a باشد:

با يههاى آنا ليز رياضى جديد

$$
a^{\prime} \mathrm{T} a=e, a^{\prime \prime} \mathrm{T} a=e
$$

$$
a^{\prime} \mathrm{T} a=a^{\prime \prime} \mathrm{T} a \quad \text { از آنجا نتيجه ميشود: }
$$

 است.

يك گروه E (با قانون T) و يكـ بخش G از E را در نظر بییيريم كه با شرايط زير
سازكار باشد:

$$
\forall a, b \in G \quad \Rightarrow \quad(a \top b) \in G
$$

$$
\left(\forall a \in G \quad, \quad a T a^{\prime}=e\right) \Rightarrow a^{\prime} \in G
$$

G يك زيركروه E است.

قانون T است در نظر ميغيريم. فرض ميكنيم G بخشى اذ
 باشد كه نقط با حر نهاى a و b تشكيل شله است:

$$
G=\{a, b\}
$$

از جدول شكل (1) قسمت بعا بل را جدا ميكنمي اين جلول نشان ميلهد كه G داراراى خواص

زيركروه E است.
هـ توز.يعبنّيرى:
مجموعة E را كه مجهز به قوانين T و * باشد در نظر ميگگيريم.

تعريفـ ميگو يند كه قانون \% توزيعيذير از طــرف حب نسبت بـه قانون T است اكـر هرجه باشد a و و c منعلق به E داشته باشيم:

$$
a *(b \mathrm{~T} c)=(a * b) \mathrm{T}(a * c)
$$

و ونز قانون * توزيعيذير ازطرف راست نسبت به قانون T است اكر هرجه باشد a و b b و c متعلق به E داشته باشيم:

$$
(b \mathrm{~T} c) * a=(b * a) \mathrm{T}(c * a)
$$

اكر توزيع بذيرى از مردو طرف وجـود داشته بــاشد ميغـويند كـه قانون * نسبت به قانون T ميباشد.
تبصره - اكر قانون *

 (هرجه باشد x و y متحلق به E
ميخواهيم اثبات كنيم كـه قانون ** نسبت به قانون T از طرف راست توزيعيذير است ولى ازطرف حب نيست.
الف) هرجه باشد x و y و z متعلق به E بنا به تعريف قانون ** داريم:
(1)

$$
\begin{gathered}
(y \mathrm{~T} z) * x=y \mathrm{~T} z \\
y * x=y \\
z * x=z
\end{gathered}
$$

دو رابطه آخرى موجب:
(r)

$$
(y * z) \mathrm{T}(z * x)=y \mathrm{~T} z
$$

ميگردند و از مقايسه (() و (Y):

$$
(y \mathrm{~T} z) * x=(y * x) \mathrm{T}(z * x)
$$

يغنى قانون ** نسبت به قانون T از سمت راست توزيع بذير است. ب) بعكس، توزيع بذيرى در سمت جب وجود ندارد. زيرا:

$$
\begin{gather*}
x *(y T z)=x \tag{r}\\
x \text { 米 } y=x \\
x * z=x
\end{gather*}
$$

از دو رابطه آخرى تتيجه ميشود:
(f)

$$
(x * y) \top(x * z)=x \top x
$$

 جزء خنّاى $x=a$ صحیِح نيست و بنا براين در حالت كلى: $x *(y \mathrm{~T} z) \neq(x * y) \mathrm{T}(x * z)$

يعنى از سهت حی توزيـ خذيرى وجود ندارد. مثال Y- مجموعءٔ P(E) بخشهاى E را در نظر ميگير يم. ما، در اين مجموعه دوقانون

تركيب درونى معين كردهايم: فصل مشترك A $A \cup B$ و اجتماع A A هركدام از قانونها نسبت به ديگَى تـوزيـع یذير

است.
فصل مشتركـ نسبت به اجتماع توزيـع بذير است:
(Δ)

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

چون فصل مشترك جا بجا يذير است كـافى است توزيـع یذيرى در يكـ طرف را اثبات كـنيم: اجتماع نسبت به فصل مشترك توزيـع پذير است:
(8)

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

(در نظر بگيريم كه اجتماع نيز توزيـع بذير است).
براى اثبات (ه) جزء x متعلق به طرف اول را اختِيار ميكنيم و ثابت مت ميكنيم كـــه متعلق
به طرف دوم نيز هست و بعكس.
همارزكیهاى منطقى را كه از تعر يفها ناشى هستند بكار ميبريم:

$$
\begin{aligned}
& x \in(A \cap B) \quad \Longleftrightarrow \quad(x \in A g x \in B) \\
& x \in(A \cup B) \quad \Longleftrightarrow \quad(x \in A \leq x \in B)
\end{aligned}
$$

در استدلال زير گزارهاى كه در يكـ سطر نوشته شده است همارز منطقى كـــزاره نوشته شله در سطر بعدى (يا قبلى) است:

$$
\begin{aligned}
& x \in A \cap(B \cup C) \\
& x \in A \quad, \quad x \in(B \cup C) \\
& x \in A \quad \text {, } \quad(x \in B \quad \text { и } \quad x \in C) \\
& (x \in A \quad, \quad x \in B) \quad \text { и } \quad(x \in A \quad, \quad x \in C) \\
& x \in(A \cap B) \quad \text { ᄂ } \quad x \in(A \cap C) \\
& x \in(A \cap B) \cup(A \cap C)
\end{aligned}
$$

تساوى (؟) با طرز مشابهى اثبات ميگرددر (اثبات كنيد)

9ـ بنيان حلقه. بنيان هيئت:
تعريفـ دو قانون تركيب در يكـ مجموعةٔ E يكـ بنيان حلقه را در اين مجموعـه معين ميكند
اكر:

ا- قانون اول يك بنيان كروه جابجابِّير در E معين كند. rr در اين صورت ميگويند كه E يك حلقَ است است.

$$
(\forall a, b \in G) \quad a * b=e
$$

1- واضح است كه اين قانون شركتبذير است:

$$
(\forall a, b, c \in G) \quad(a * b) * c=a *(b * c)
$$

زيرا هر دو طــرف برابر e ميباشند (بنا به تعريف قانون \%) بس G بـرای قانـون نيمكروه است.
r- اين قانون نسبت به قانون T $\mathbf{~}$

$$
\begin{aligned}
& (\forall a, b, c \in G) \quad a *(b T c)=(a * b) \mathrm{T}(a * c) \\
& a *(b T c)=e \\
& \text { زيرا براى طرف اول: } \\
& a * c=e, a * b=e \quad \text { براى طرف دوم داريم: } \\
& \text { (} a \text { 类 } b) \mathrm{T}(a * c)=e \mathrm{~T} e=e \quad: \quad \text { آنجا }
\end{aligned}
$$

جونكه e جزء خنناى قانون T است.

 حلته (براى تشخيص آن از جزء خنثاى قانون T-ى كروه) و در ايـن صورت حلقه را را حلثه با جزه واحد (حلقه يكه) نامند.
 به قانون ديگر منتظم باشد حوزئ تماميت نامند.

خواص يك حلقه:
 كروه جابجإذير و * نمايش قانون دوم باشد.

$(\forall a \in A) \quad a * e=e * a=e$

$$
(\forall b \in A) \quad b T e=b
$$

اكر از سمت جب با a ستاره دار كنيم:

$$
a *(b T e)=a * b
$$

$$
(a * b) \mathrm{T}(a * e)=a * b
$$

اكر نسبت به قانون T- كى كروه بر a* a اختصار كنيم: a * $e=e$ بهمين ترتيب ثابت مىشود كه:

$$
e * a=e
$$

$$
(\forall a, b \in A) \quad a *(-b)=-(a * b)
$$

$$
(-b) \top b=e
$$

شروع و از سمت حبب با a ستارددار ميكنيم:

$$
a *[(-b) \mathrm{T} b]=a * e
$$

اكر در طرف اول توزيعيذيرى و در طرف دوم خاصيت

$$
[a *(-b)] \mathrm{T}(a * b)=e
$$

$a *(-b)=-(a * b)$

بنيان هيئت
تعريفـ هيئت عبارت از حلقه با جزء واحداست كه در آنجا هر جزء ه (سواى جزء خخنتاى كروه جابجابذير) داراى يك ترينه بازاء قانون دون دوم باش باشد
بنابر اين دو قانون T و و \% يكـ بنيان هيئت را در مجموعه 1- فانون T بك بنيان كروه جابجابذير را در E تعيين نمايد.
(فرض ميكنيم e جزء خنثاى Tا است)

r-

معين ميشوند در نظر ميگيريم:

Tانون T

	a	b	c
a	a	a	a
b	a	b	c
c	a	c	b

*

شكل
بسادكى معلوم ميشود كه:

قر ينهاى a و b و c عبار تند از a و c و b).

"مى
r- قانون ** نسبت به قانون T توزيع
 E هركاه، ممانطور كه در اين مثال است، قانون دوم نيز جابجابذير باشد يك هيئت جابجابذير است.
 فرض ميكنيم A يكـ حلةه جا بجا بذير باشد.

تعريفـ ايدهآل حلقَٔ A عبارت از بخشُ غير تهى I اذ A است كه داراى خواص زير باشد:

$$
\begin{equation*}
(\forall a \in I, \forall b \in I) \Rightarrow a T(-b) \in I \tag{1}
\end{equation*}
$$

$$
\text { (r) } \quad(\forall a \in I, \forall x \in A) \Rightarrow a * x \in I
$$

مثالــ بخش يكـ ايدهآل A است.
هر ايدهآل A يكـ زير حلقَٔ A است.ـ ابتدا ثابت ميكنبم كـه هر ايدهآل

人) $e \in I$
$\beta) \forall b \in I \Rightarrow(-b) \in I$
(در تعريف (1) $a=b$ (1)
(در تر تريف (1) (1) $a=e$
$\gamma)(\forall a, c \in I) \Rightarrow A T C \in I \quad \Rightarrow \quad . \quad$ قرار دهيد) $b=-c(1$ (در تعريف) (1) يس ايدهآل I يكـ زير كروه A است بالاخره قانون ** يكـ قانون درونى در I است (تعريف Y ب).

$$
\forall a, b \in I \Rightarrow a * b \in I
$$

بنا براين I يكـ زير حلقه A است.
فصل مشترك رو ايدهآل A يكى ايدهآل A است.

$$
(a \in I \cap J \quad, \quad b \in I \cap J) \Leftarrow a T(-b) \in I \cap J
$$

ثانياً اگر a در عين حال متعلق به I و J باشلد در اين صورت هرجه با با a * x

$$
(a \in I \cap J \quad, \quad \forall x \in A) \Leftarrow a * x \in I \cap J
$$

ايدهآل اصلى:

a * x
(مرجه باشد
را در نظر بگيريم

قانون T بخاطر توزيعيذيرى قانون درونى در M ${ }^{\text {T }}$ است: $(\forall x, y \in A) \quad(a * x) \mathrm{T}(a * y)=a *(x \top y)$

جزء خنثاى
a * $e=e$
(

$-(a * x)=a *(-x)$
(خاصيت (
بس M_{a} يك زيرگروه A است. از طرف ديگر بخاطر شركتذ $(a * x) * y=a *(x * y)$
در نتيه M_{a} يكى ايدهآل A است. آنرا ايدهآل اصلى مينامند.

تعريفـ ايدهآل اصلى حلقه Aعبارت است از مجموعئ تركيبهاى x x * A حاصل از يك جزء

 بايستى كه در A يكك جزء x وجود داشته باشد بطوريكه:
$a * x=a$
اين اتفاق مخصوصاً در حالت حلقه با جزء واحد u بيش ميايد:
$a * u=a$
^ـ قوانين تركيبهاى برو نى:
 مجموعئ F را با: $\alpha \in F$ نمايش ميدهيم.
 را همراه كنيم و بنويسيم:

$$
c=\alpha a
$$

يكى از جملهما متحلق به E و ديخرى به
 جداكانه تعلق دارند بدين ترتيب يك قانون تركيب برونى معين ميگر وردو. مثال- E مجموعه طو لها و F مجموعه اعداد طبيعى است.
(احاصل ضرب يك طول a در يكـ عدو طبيعى ג)" را با بشت سرهم كــذاشتن م قطعه مساوى كه هركدام با a نما يُ داده ميشو ند معين ميكنيم.

$$
a \cdot b=\alpha
$$

 زيرا كه آنها بيك مجموعه تعلق دار ند.
بدين ترتيب يك قانون تركيب برونى نوع دومى معين ميگردد.
 (سكالر) دو بردار a a, يكـ عدد حقيقى α است.
در بخشهاى بعلى اين دو مثال را دقيقتر مورد بررسى قرار خواهيم داد.

بنيان فضاى بزدارى روى يك هيئت K.
تعريف: يك مجموعهٔ E مجهز بيك بنيان كروه جا بجا يذير (كه قانون آنرا بــا علامت جمـع نما يش ميدهيم: +) و يــك هيشت K را (كه قانون اول آن بــا T و قانون دوم آن با نمايش داره ميشُود) در نظر بگیريم.
E $a \in E ; \alpha \in K ; \alpha a \in E$

بعلاوه اين قانون داراى خواص زير باشد:

$$
\begin{aligned}
\alpha(a+b) & =\alpha a+\alpha b \\
(\alpha T \beta) a & =\alpha a+\beta a \\
(\alpha * \beta) a & =\alpha(\beta a) \\
\varepsilon & a=a
\end{aligned}
$$

كه در آنجا ع علامت واحد قانون هئت K J در اين صورت ميگويند قانون تركيب برونى يكـ بنيان فضاى بردارى را روى هيئت در كروه جا بجا پذير E معين ميكند. مثّالـ خود كلمةُ فضاى بردارى لز آنجا ناشى است كه ايـن بنيان ور هندسه در مــورد بردارها يیش ميآ يد. در اين كتاب كروه جا بجا يذير \& بردارهاى خحط و صفحه را مورد بررسى قراو. خو اهيمداد.

اكر R نمايش هيئت اعداد حقيقى بــاشد يكـ عمل برونى بــا: (اضرب يـك بردار \& يك عدد حقيقى
اين عمل داراى خواصى كه قبلا" بيان شده ميباشد بطوريكه ع يكـ فضاى بردارى روى
هيئت اعداد حقيقى است.

زير فضاى بردارى
يك فضاى بردارى E و يكـ بخش $E^{\prime} \subset E$

كه با شرايط زير سازكار باشد:
(1)
(r)

$$
\left(\forall a \in E^{\prime}, \forall \alpha \in k\right) \Rightarrow \alpha a \in E^{\prime}
$$

k بسهولت معلوم ميشود كه بخش .

فهـ

تابعها

וـ تعر.يفها:
فرض كنيم E و F دو مجموعه باشند.
 F يك تناظر يكـ سوئى (يا يكـ ارزشى) بوجــود ميايد كه تابع يــا نگاشت ناميده ميشود. علامت تابع:

$$
\text { ي } y=f(x) \text { ي } x \rightarrow y
$$

ميخويند كه تابع در E معين است و مقاديرش را در F اختيار مينمايد؛ x را متغير و و را مeدار تابع يا تصوير x مينامند.
هر $x \in E$ داراى يكـ تصوير در F F است؛ E ميدان مين بودن تابع است. مجموعــئ تصويرهاى اجزاءء E بخشى از E است كــه به ((تصوير E E) موسوم است و با

$$
\begin{aligned}
& f(E) \subset F \\
& \text { داده ميشود. داريم } \\
& \text { روى شكل (1) تصوير (} f(E) \text { هاشور خورده است. }
\end{aligned}
$$

شكل است داراى يكـ تصوير y باشند. شثال- نتطه فضائى o را در هندسه اختيار

F مجموعه نقاط فضا سواى o را o مناميم مجموعه خطوط فضــا را F F بناميم. بهر نتطه $x \in E$ يسك خطط $x \in F$ كـه با x با

معين ميگَردد همراه كنيم بدين ترتيب يك تــابـع f معين در E را كه معدارهايش در F است
خو اهمر داشت.
 تصو يرهاى نقاط x از E بخشى از F است كه با خطوط كذرنده بر 0 تشكيل شده است. ليكن هرخط F F بطور الزامى يكـ تصوير از يكـ نقطه x متعلق به E نيست.
 است كه x و x $x^{\prime} 0$ بر يكت استقامت باشند.
r- خو اص عمومى
بوون گسترى
فرض كنيم تابع f معين در E بـا مقادير در F طورى باشد كه تصوير E عبارت از F

$$
f(E)=F
$$

در اينصورت ميگَويند كـه (f مجموعه E را در F مينگارد يا كه f يكـ برون كسترى E روى F است) (شكل r
مثالـ فرض كنيم E مجموعهء نقاط فضا و F مجموعهٔ نقاط يكـ صفحه بـاشل بهر نقطه

برون تسترى f (شكل r)
 ترتيب تابع f در E بـا تصاوير در F معين ميشود. در اينجا خاصيت زير را داريم:

نقطه x از فضاى E است).

كسترى E روى F است.

درون تسترى
فرض كنيم تابع f معين. در E با مقادير در F طورى باششد كه: (ردو جزء متمايز x و از E همواره داراى دو تصوير متمايز y و 'y باشنده)." در اينصورت ميگويند كه f يكـ درون كسترى E روى F است. $\left(\forall x, x^{\prime} \in E\right) \quad x \neq x^{\prime} \Rightarrow f(x) \neq f\left(x^{\prime}\right)$ مثال ا- ابتدا دو مثال قبل را از نظر ميگذرانيم.

شكل
 خحط عمود بر F را هشخص سازند. تصوير قائم E روى F F نيز درون

مثال- فرض كنيم E مجموعسه نطــوط كـــنـرنده بر o و و
 را همراه كنيم كه در o به x ع عمود باشد (شكل
 متمايز x و x از از E همواره داراى دو تصوير متمايز y و 'y ميباشند.

تناظر دوسو ئى يا دوسو كسترى فرض كنبم تابع f معين در E بـا مقادير در F در عين حال يكـ بــرون كـسترى و يكـ
a)

$$
f(E)=F
$$

درون كسترى باشد:
b)

$$
\left(\forall x, x^{\prime} \in E\right) \quad x \neq x^{\prime} \Rightarrow f(x) \neq f\left(x^{\prime}\right)
$$

 اين خاصيت منطةًأ همارز خاصيت زير است:

$$
f(x)=f\left(x^{\prime}\right) \Rightarrow x=x^{\prime}
$$

بس در نتيجه داريم:

$$
\begin{aligned}
& \forall x \in E \text { : داريبم: }: x=f(x) \text { داريم }: x=f^{-1}(y) ب x \in E \\
& \forall y \in F
\end{aligned}
$$

تناظر دوسو ئى (شكل F)

بهر خـط $x \in F \in F$ يكـ $x \in$ يمود بر x را همــراه كنيم (شكل روى F را داريم كه:
I- برون كستر است: هرصفحه y كذرنده بر 0
عمود بر يكـ خط x كذرنله بر o است.

F ميباشند.
پس تناظر بين E و F دو سوئى است.

رابطه دو تائى $a<b$ يكت رابطه ترتيب اكيد است اكر :
(Y)

$$
\begin{equation*}
(a<b, b<c \Rightarrow a<c) \tag{1}
\end{equation*}
$$

$$
a<b \quad \Rightarrow \quad a \neq b
$$

يكـ رابطه ترتيب اكيد خوديذير نيست .
تبصرْ - دو علامت
فرض كيم دو مجموعهٔ E و F را . واشته باشيم كه هردو با روا بط (با علامت >>) اكيداً
مرتب شله باشند.

تعريفات - يكك نگًاشت f از E روى F اكيداً صعودى ناميده ميشود اكر :

$$
\left(\forall x, x^{\prime} \in E\right) \quad x<x^{\prime} \Rightarrow f(x)<f\left(x^{\prime}\right)
$$

و اكيداً نزولى است اگر :

$$
\left(\forall x, x^{\prime} \in E\right) \quad x<x^{\prime} \Rightarrow f(x)>f\left(x^{\prime}\right)
$$

يكع تا بـع اكيداً صعودى يا اكيداً نزولى را اكيداً يكـ نو اختى ميناميم•
حال دو مجموعه E و E را در نظر ميگيريم كه داراى ترتيب كلى باشند. تــر تيب كلى بدان معنى است هرحه باشل a و b اجز اء b ($a \neq b$) داريم $b<a \quad$ l $\quad a<b \quad$ ᄂ

در اين صورب قضيه زير را داريم :
 در F يكـ درون كسترى است .

(در حالت نزولى بودن f نيز استدلال همان است).
ميخو اهيم اثُبات كنيم :

$$
\left(\forall x, x^{\prime} \in E\right) \quad x \neq x^{\prime} \Rightarrow f(x) \neq f\left(x^{\prime}\right)
$$

(در هر دو حالت استدلال يكسان است) x^{\prime} (
حالت اول را اختيار مينمائيم. جون f f اكيداً صعودى است داريم :

$$
x<x^{\prime} \Rightarrow f(x)<f\left(x^{\prime}\right)
$$

و جون F اكيداً مرتب است و رابطه ترتيب F خودبذير نيست؛ و در نتيجه داريم :

$$
f(x)<f\left(x^{\prime}\right) \Rightarrow f(x) \neq f\left(x^{\prime}\right)
$$

يس قضيه (() ثابت است.
از آنجا بلافاصله قضيه بعد نتيجه ميگردد :
 روى F (برون كسترى يكـ نو اخت) يكك دوسو گسترى است.
 مثا لهاى زيادى را در اين كتاب خو اهيم ديد.

Pــ قانون تركيب توابع
فرض كنيم مجموعهمایى E و F و G را داشته باشيم (شكل ه) و و فرض كنـيبر f

نتيجه تركيب دو تابع
هك ه نگاشت E در F و g يكك نگاشت F بهر X از به وسيله f بوجود ميآيد:

$$
y=f(x)
$$

و به اين y از F يسـكـ نظير z و فقط يكى از بوسيله g بوجود ميآيد :
$z=g(y)$

در نتيجه بهر x از x بتوسط y يكى نظير z و فقط يكى از y و وجود دارد. بديـنترتيب يك تابع جديد (احاصل تركيب f و f (ر) معين ميگردد.

$$
z=g[f(x)]
$$

تركيب f و g را با علامت :
$g \circ f$
نما يش ميدهيم. جمله اول f در سمت راست قراردارد.
 ترتيب F ○ يكك مسئله اساسى است، تر تيب عكس آن معمولا" داراى مفهومى نيست. مثنال - فرض كنيم E مجموعه نقاط فضا، سواى o مجموعه خطوط فضا كذرنده بر مر م G مجموعه صفحات فضا كذرنده بر 0 باشند.
 F

 مينما يد .

شركت پֻذيرى تركيب توابع هرحه باشد f و g و h داريم : $h \circ(g \circ f)=(h \circ g) \circ f$

شر كت بذيرى تركيب ثوابع شكل 9
(شكل צ) و سه تابع زير را داشته باشيم :
$\forall x \in E \quad y=f(x) \in F$
$\forall y \in F \quad z=g(y) \in G$
$\forall z \in G \quad u=h(z) \in H$

$$
z=(g \circ f)(x) \quad: \quad \text { داريم }
$$

بنابراين u

$$
u=(h \circ g)(y)
$$

و بنابرا ين h (hog) of باز هم وسيله كذر از x به u (به توسط y) است.
 از E ميدهند همان از از ميباشند. بنا براين قانون تركيب توابع شركت هذير است. تُصر0 - مجموعه جميع توا بـع : فضاى تا بعى ناميده ميسُود• پس مستوان كنت كه فضاى

تابعى يكك نيم كروه است.

هـ تركيبي دو نناظر دوسو ئى•
هركاه E و F و G مجموعههــاى غير مشخص و f يكـ نـعَاشت E در F و g يكـ ;غاشت F در G باشل دو خاصيت اثبات ميكنيم : اولى در حالتى كه f و g برون كسترهستند، دومى در حالتى كه f و g درون كّستر هستند. و $f(E)=F$ F

$$
\text { : } g(F)=G
$$

$$
g[f(E)]=G
$$

تركيب fo f دو برون كسترى f و g خودش نيز يكـ برون كسترى E روى G است. تركيب دو درون گسترى يك درون كسترى است.

فرض كنيم كه f درون كستر باشل :

$$
x \neq x^{\prime} \Rightarrow f(x) \neq f\left(x^{\prime}\right)
$$

و كه

$$
y \neq y^{\prime} \Rightarrow g(y) \neq g\left(y^{\prime}\right)
$$

از آنجا بالافاصله نتيجه هيشود :

$$
x \neq x^{\prime} \Rightarrow g[f(x)] \neq g\left[f\left(x^{\prime}\right)\right]
$$

تركيب f of دو درونگسترى f و g خودش نيزيك درون كسترى E روى G است. تيّيهه ا اگر f f و هر دو با هم برون گستر يا درون كستر باشند. تركيب

قضيه

$$
\text { צ- حالت F E } E \text { مـاداهd. تعاكس }
$$

اكر ميدان معين بودن E يكـ تابـع f با مجموعه F كه در آنجا f مـسقادير خودشى را

اختيار ميكند، منطبق باشد، در اين صورت f f بكى نگاشت E روى خودش ميباشد. نگار E بوسيله f در اين صورت بخشّى از E است :

$$
f(E) \subset E
$$

بخصوص :
ا- اگر
:

$$
x \neq x^{\prime} \Rightarrow f(x) \neq f\left(x^{\prime}\right)
$$

f يكت درون كسترى E در خودش ميباشد .
 يكـ دوسو كسترى E روى خودش است و در اين صورت آنرا جايگُشت E مينا مند.

تعريف - جايگگت E عبارت از يكـ دوسو كسترى E روى خْودش ميباشد.
 در E است كه بطور عملى بتر تيب زير تعيين ميشود. (شكل
 اكر يكـ باره خط جهت دار $a b$ داشته بار باشيم نظير هر نقـطه x از E نتــطه y از E را قرار ميدهيم بطوريكه بــاره

 شكل

بديهى است كه $b=f(a)$ ابست بتسمى كه انتقال با معلوم بودن يكـ زوج مــرتب (ه) (a, $)$ يكـ نتطه a و تصوير آن b b معين است. انتقال برونگستر است (هرنتطه y تصو ير يك نتطه x است) است).
 بنا براين انتقال دوسو كستر است و اين يكـ جايگشت اي است است انتقال بكس
 را ميكند :

$$
(\forall x \in E): \quad e(x)=x
$$

آنرا انطباق نيز مينامند .
واين، عبارت از جزء خنتاى قانون تركيب نگًاشت E در خود E است. در حقيقت هــم
هرچه باشد تابع f از

$$
f \circ e=e \circ f=f
$$

تركيب هاى e o f g f o e

F Fروه جا يتشتههاى
فرض كنيم G مجموعه جميـع جا يخشتهاى E باشد. اولا" ــ قانون تركيب تو ابـع در \mathcal{C} درو تى است. زيرا بموجب قضيه سـ تركيب دو دوسو كسترى از E يسكك دوسو كسترى از E است.

$$
(\forall f, g \in \mathcal{G}) \quad g \circ f \in \mathscr{G}
$$

ثانياً - قانون تركيب شركت بذير است.
ثا لثاً - داراى يكـ جز ه خنّى است :

$$
e \in \mathscr{G}
$$

را بعاً - هر جز

$$
f \circ f^{-1}=f^{-1} \circ f=e
$$

جو نکك f يكـ دوسو كسترى است.
مجموعه \& جايگشتهاى E، يكـ كروه است.

دو تركبب
($f \circ f^{-1}$
(f^{-1} of
مثال - مجموعه انتقا لها يكـ زير كروه، كروه مبادلهما در فضاى اقليدسى E است.

كركيب انتقالها
شكل

هركاه f انتقــال (f) باشد (شكل 1) داريم :

$$
b=f(a), c=g(b) \Rightarrow c=g[f(a)]
$$

تــركيب g of f عارت از انتةــال هعين شده با زوج مر تب (a, c) است . قانون تركيب، نسبت به مجموعه

 بنا براين انتقالها يكـ زير كروه كروه تبديلهاى فضاى اقليدسى E E را تشكيل ميدهند اين زير كروه جابجابذير است .
بسادگى محقق ميشود كه معين و متساوى هستند.

تعاكس ـ يكـ تبديل f از f ر را كه با عكس خود (f

$$
\text {) } \quad \Longleftrightarrow \quad(f \circ f=e)
$$

مثال - تقارن f (مثُلا" تقارن نسبت بيكـ نــططه ه) در فضاى اقليـدس E E را در نـظر

اكر b قرينه a باشد :

$$
b=f(a)
$$

ميلانيم كه a نيز قرينه b است :

$$
a=f(b)
$$

بعلاوه بديهى است كه تقارن f يكى جايگَشت E است. خاصيت قبلى معلوم ميكند كه أ f با

$$
y=f(x) \quad \Longleftrightarrow \quad x=f^{-1}(y)
$$

بعلاوه براى تقارن داريم :

$$
y=f(x) \quad \Longleftrightarrow \quad x=f(y)
$$

بس :
$(\forall y \in E) \quad f(y)=f^{-1}(y)$

$$
f=f^{-1}
$$

از آنجا

تقارن يكـ تعاكس E است.
. V- حالتنى كه E و F به قانو نهاى تر كيب درو نى مجهز ميباشنلـ فرض ميكنيم مجموعه E مجهز به قانون T و مجموعه F مجهز به قانون

تعريف - فرض كنيم f يك نگاشت E در F باشد كه داراى خاصيت زير است : (اتصوير تركيب دو جزء E همواره تركيب تصويرهاى نظير در F است :

يعنى
$(\forall a, b \in E) \quad f(a T b)=f(a) * f(b)$
دراين صورت ميگويند كه :
" برای قانو نهاى T و C (
مثال - فرض كنيم E مجموعه جميـع نقاط فضا مجهز به قانون T T ز زير باشد (شكلهو):
 بهر زوج (a,b) دو نتطه a و b نتطن c وسط باره خحط -
 (ملاحظه ميشود كه قانون T جا بجـا بذير است) فرض
 قانون T باشد.
تصو يرقائمE را روى F با f معين ميكنيم داريم:

$$
f(a \mathrm{~T} b)=f(a) \mathrm{T} f(b)
$$

$$
\begin{gathered}
f(a \top b)=f(c) \\
f(a)=a^{\prime} \quad, \quad f(b)=b^{\prime} \Longleftrightarrow f(a) \top f(b)=a^{\prime} \top b^{\prime}
\end{gathered}
$$

بنو يسيم كه $c^{\prime}=a^{\prime} T b^{\prime}$:

$$
f(a \mathrm{~T} b)=f(a) \mathrm{T} f(b)
$$

تصوير قائم E روى F يكك همشكلى براى قانون T است.

يك شكلى
هرگاه f يكـ نگاشت دوسوئى E روى F باشد كه در :
$(\forall a, b \in E) \quad f(a \top b)=f(a) * f(b)$
صدق كند.
درا ينصورت ميخويند كه :

تعريف ــ يـــ شكلى بين E و. F عــبارت از يك همشكــلى دوسوگّتر بــراى قانو نهـاى
E و F است.
مثال- - فرض كنيم E و F دو صفخه و D خططى ثابت باشد كه هردو صفحه E و F

قطع كند. (شكل 10) تناظر f كــه بهـر نتطه a از a از نتطهُ $a a^{\prime}$ را ${ }^{\text {a }}$ از a^{\prime} مــوازی D بــاشد، (اتــصو يــر E E روى بمو ازات D) ناميله ميشود. بفــوريت محقـق ميشود كه f يك دوسو كّستـرى E روى F است. از طــرف

 دو مجهز بهقانون T مثال قبلى باشند داريم: $f(a \top b)=f(a) \top f(b)$
تناظر دوسوئى f بين E و F يكـ يكشكلى براى قانون T انت.

حالتى Sه E با F و
 اگر f يك همشكلى براى قانون T باشد دراين صورت آنرا اگر f يكـ يكـ شكلى براى قانون T باشد در اين صورت آنرا خـو مثّال - فرض كنيم فضاى اقليدسى E مجهز به قانون T دو مثال قبلى باشد :

$$
\begin{aligned}
& (\forall a, b \in E) \quad a T b=c \quad \Longleftrightarrow \quad(a b \text { g c } c) \\
& \text { هر انتقال f از } E \text { در : } \\
& f(a \mathrm{~T} b)=f(a) \mathrm{T} f(b)
\end{aligned}
$$

("تبديل شده وسط يك چاره خطط با انتقال، وسط باره خط تبديل شده استه، : انتقال يكـ خود شكلى E براى قانون T است.

$P 95 \underbrace{\infty}$

عددهاى طبيعى

همه علمهاي رياضهى بـا شروع از اعداد طبيعى كــه خــــــا

مجموعه N العـداد طبيعى بـر مبناى اهول هـوضوع קهآنو
Peano
 شدهاند.

تُورى شمار مستلزم شناخت بنيانهاى قبل است و بعد از آن
 استت. نمايشئ اعشارى اعــداد طبيعى حالت مخصـوهـى از آن است. نمايشههاي مناسبتر يـا در عمل (مـاشينهاى الكترونيكى) و يـا در تُورى
 پيسُى مىى آيد.
و سیسى قسمتهــاى اساسى تُوريهــاى مضربــهــاى مشُركى،
 برسسى (ابطه هم نهشتى در N ميرسيم و اين برנمى ساخت مجموعههاى جديد (مجموعه كلاسهاى مدول n) وا بر مبناى N امكانيذير مىسازد كه بنيانهاى جبرى غير موجود در N در آنها تعريف شدهاند.

فضمل اوول

ساخت م:جمو عه علدهاى طبيعى

جمع - تقريق ـ نسبت ترتيب

ا- ساخت مجموعه عددهاى طبيعى

 (آدههاى فيله، درختهاى جنغل) شمردن آنها بوده است.
 بلوى وجود دارند كه در شمار انسان و درخت كلمهماى جداكانه بكار ميبرند و از عـدـدر مجرد

عدرهاى معين شده براى شمار اشياى يكـ كلكسيون عبارت از سمبلها ميباشند. اينسمبلها را جچگونه بايد نمايش داد؟
روش طبيعى بايد اين باشد كه هر شيئى از كلكسيون را قطع نظر از جنس آن بــا بـــ
نتطه ■ نمايش بدهيم. بدينتر تيب صورت بندى كلكسيون هاى مختلف بدست ميآيد : ■, ■■, ■■■, ■■■■,...

اين نوع نمايش در بازى دومنو و بازى ورق معمول است.
 احساس ميشود.

 مجموعه عدرهاى طبيعى را با N نمايش ميدهيم.

مجموعه N را با يك روش منطقى بنا ميكنيم : در ابتدا جند خاصيت را بعنــوان اصول
موضوع قبول ميكنيم.
دستگاه اصول منتخب به مـابه نوعى قاعده بازى أست كه بر اساس آنها بقــه تيورى را ميسازيم. اين قاعله بايد با مكاشفهاى كه ما از علدهاى طبيعى داريم متناسب بـودوه و نظــير آن باشد. مُلا" علامت صفر را كه با ه نما يُ داده ميشود بايد رخالت داد زيرا در شمار (بمنظور خالى كردن) اشياء موجود در يكـ قوطى سر بسته اين احتمال نيز بايد بيُّ بينى شود كه هنگًام

باز كردن قوطى هيج شيى ـى در داخل آن مشاهده نشود.

ايتا لائى وضـع كرده است.

اصلهاى پٍآنو
: صفر يك عد
AY
است و با + ${ }^{+}$نما يش داده ميشود وجود دارد.
(A_{μ}
: اعدار طبيعى متمايز تالِهاى متما يز دار
A باشد و اكر A شامل x باشد او شامل x + نيز هست و در اين صورت A A با مجموعه N جميـع

اعداد طبيعى منطبق ميگردد •

توضيح :
اصل \} \ بلان معنى است كه مجموعه N مورد بحث تهى نيست. او شامــل عدد صفــر است كه با ه نمايش داده ميشود و با شروع از اين علد بقيه ساخته ميشو ند. اصل

$$
x \rightarrow x^{+}
$$

كه از هر علد x به تالى آن X x سوت ميكند. بدين ترتيب :
(\#تالى صفر عبارت از يكـ است) .

$$
\circ^{+}=
$$

اكر فتط به اصلهای

دو اصل اوليه با مجموعه $\}$ اصل A_{Γ} راه بركشت به صفر را سد ميكند و مجموعـه نمىنمايد. سلسله فوق بايد كسترشُ يابد :

$$
\circ \rightarrow \square \rightarrow \square \square \rightarrow \cdots
$$

اكتفا به سه اصل اول اين توهم را بوجود ميآورد كه تناظر فوق منتج رشته :

$$
\circ \rightarrow \square \rightarrow \square \square \rightarrow
$$

كردد و مجموعه حال ميتوان يكـ خاصيت تناظر $x \rightarrow x^{+}$را بيان نمود و اكر *N مجموعه N بــلون صفر باشد :

$$
N^{\star}=N-\{0\}
$$

از سه اصل قبلى نتيجه زير كرفته ميشود :
 در نظر ميگيريم. اين اصل را بطريق زير نمايش ميدهيم :

$$
x \neq x^{\prime} \quad \Rightarrow \quad x^{+} \neq\left(x^{\prime}\right)^{+}
$$

و اين بدان معنى است كه :
تناظر از آنجا نتيجه ميشود كه تناظر x را سابق +x مى نامند.

وتضيه و تعريف - هر علد طبيعى x سواى صفر تالى يكـ عدد طبيعى يكتـائى است و سا بق x ناميله شود.

سلسلة :

ديگر نميتواند به عددى كه يكـ بار بدست آمده است برسد زيرا اكر مجلدأ به علد x بــرسد
 تناظر فوق را در مرحله بخصوصى از ساخت شمار براى آخرين عدد بكار بريم عدد جليدى

بدست ميآيد كه از جميـع عدرهاى قبلى متما يز است. و اكر اين عمل در مورد عدر جديد تكرار شود اين آكاهى بدست خو اهد آمل كه سلسله ها يان نايذير است. ميگو يند كه N يكك مجموعه

نامتناهى است.
چس حالا N را در شكل مختوم آن چگگو نه ميتو ان تصور كرد ؟ اصل هA با طرح اصل بازكشتى با ين سؤال جواب ميدهد.
فرض ميكنيم كه دو گز اره زير را داشته باشيم : اگر A بخشى
كزاره اول : صفر متعلق به A است.
كزاره دوم : هرحه باشد جزء x از
اصل بازكشتى A و N را بهمديگر منطبت ميسازد.

$$
\left(\begin{array}{l}
\circ \in A \\
\left.x \in A \stackrel{x^{+} \in A}{\Rightarrow}\right) \Rightarrow A=N
\end{array}\right.
$$

كزاره :
$x \in A$
را فرض بازكستى مينامند.
بطور خلاصه حهار اصل اولى ساخت N را معين ميكند و هنجمى يكـ ابــزار استدلال
در اين مجموعه را بدست ميدهد.
ابزارى كه در آينده بطور فراوان مورد استفاده قرار خواهد كرفت. واريم :

$$
N=\{0, \square, \square \square, \square \square \square, \cdots, x, \cdots\}
$$

تّصره - بنا به بررسى قبل سيستم اصول پهآنو را بطرز بازهم فشردهتر ميتوان بيان كرد:

اصل اول : N شامل حد اقل يكـ جزه a است بطوريكه يـكـ دو سو كسترى f مجموعه N

$$
\text { روى } N-\{a-\text { وجود دارد. }
$$

اصل دوم : (بازكشتى) فرض كنيم :
$A \subset N$

$$
\left(\begin{array}{ccc}
& a \in A \\
x \in A & \Rightarrow & f(x) \in A
\end{array}\right) \Rightarrow A=N
$$

r- جمع كردن اعداد طبيعى
جمـع اولين قانون تركيب درونى در N است كه، با اصل بازگشتى معين ميگردد.

تعـريف - بهر زوج مرتب x و x از اعداد طبيعى يكـ عدو طبيعى موسوم به مجمو ع x x و كه با $x+y$ نمايش داده ميشود نظير قرار میدهيم كه با بازكشتى زير تعريف شده باشد :

$$
\begin{gather*}
x+\circ=x \tag{الف}\\
: x+y^{+} x+y \\
x+y^{+}=(x+y)^{+}
\end{gather*}
$$

تعيين ميكنيم.
تبصرهها - در اين تعريف x و x نقشهاى عين هم بازى نميكند : x بطـور غير مشخص

جمـع بازاء $y=0$ معين است (الف) يس :

- $\in A$
 ميكند سس:

$$
y \in A \Rightarrow y^{+} \in A
$$

مثلا" اكر در (ب) بجاى y معدار ه قرار دهيم داريم :

$$
x+\circ^{+}=(x+\circ)^{+}
$$

يعنى :

$$
x+\square=x^{+}
$$

بس $x+\square$ تالى x است.
شركت پذيرى
هرجه باشند اعداد طبيعى x

$$
(x+y)+z=x+(y+z)
$$

x و
1

$$
\begin{aligned}
(x+y)+0= & x+y \\
x+(y+0)= & x+y \\
& . \quad \text { سس خاصيت بازاء } z=0 \text { سازكار است }
\end{aligned}
$$

r- فرض كنيم خاصيت بازاء z برقرار است وآنرا بازاء

بنا براين هرجه باشد اعداد

جزء خنثى

بنا به تعر يف صفر (در سمتراست) يكـ جزء خنتى است.

$$
x+\circ=x
$$

ثابت ميكنيم كه صفر (در سمت جب) يكـ جزء خنتى است.
(1)

$$
\circ+x=x
$$

را بطه (1) بازاء $x=0$ درست است زيرا ه درسمت راست يكـ جز ه خنتى است. را بطه (1) را بازاء x صحيح فرض كرده وآنرا بازاء +
جزء خنتاى جمع عددهاى طبيعى، صفر است.

جا بجا يذديرى
هرچه باشند اعداد x و x داريم :
$x+y=y+x$
x را تثبيت كنيم.
a) خاصيت را بازاء a $y=0$ اثبات ميكنيم.

$$
\begin{aligned}
& 0+x^{+}=(0+x)^{+} \quad(\text { تعر يف) } \\
& (0+x)^{+}=x^{+} \quad(\text { فرض بازكستى) } \\
& \text { جس((1)، هرحه ميخواهد باشد x، درست است. }
\end{aligned}
$$

$$
\begin{aligned}
& (x+y)+z^{+}=[(x+y)+z]^{+} \\
& {[(x+y)+z]^{+}=[x+(y+z)]^{+} \quad(\text { فرض بازكشتى) }} \\
& {[x+(y+z)]^{+}=x+(y+z)^{+}=x+\left(y+z^{+}\right) \quad(\text { تعريف) }}
\end{aligned}
$$

حون صفر جزء خنتى است داريم :

$$
\begin{aligned}
& \text { 。 }+x=x+\circ \\
& \text { b } \\
& x+\square=\square+x
\end{aligned}
$$

رابطه (r) بازاء $x=0$ درست است جون ه جز ج را بطه (Y) را بازاء x اثبات شده فرض ميكنيم و آنرا بازاء

$$
x^{+}+\square=(x+\square)+\square=(\square+x)+\square
$$

(فرض بازكشتى)
$(\square+x)+\square=\square+(x+\square)=\square+x^{+}$
(شركت بذيرى)
سس رابطه (Y) (هرچه باشل x) دزست است.
c) خاصيت

$$
\begin{aligned}
& x+y^{+}=x+(y+\square)=(x+y)+■(ش) \\
& (x+y)+\square=(y+x)+\square \quad(ف ر ض) \\
& (y+x)+\square=y+(x+\square) \quad(\text { شركت بذيرى) } \\
& y+(x+\square)=y+(\square+x) \\
& \text { (رابطه Y) } \\
& y+(\square+x)=(y+\square)+x=y^{+}+x \text { (شركت بذيرى) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { يس N يكـ نيم كروه جابجايذير نسبت به جمـع است. }
\end{aligned}
$$

هيج علد طبيعى جز صفر واراى قرينه نيست

$$
(x+y=0) \quad \Rightarrow \quad(x=y=0)
$$

ثابت ميكنيم كه فرض $x \neq 0$ با $x+y=0$ به
اكر $y \neq 0$ باشد عددى مانند ${ }^{\prime}$ (سابق y) وجود دارد بطوريكه :

$$
y^{\prime}+\square=y
$$

در اين صورت خوامهي داشت :
$x+y=0 \Rightarrow x+y^{\prime}+\square=0$
و ا ين نافض اصل $x+y^{\prime}$ است (تالى

$$
x=0 \text { x= }
$$

هو علدى بر اى جمع منتظم است
x هرچه باشد عدد طبيعى P_{N}

$$
(a+x=b+x) \quad \Rightarrow \quad(a=b)
$$

خاصيت بازاء 0 x $x=$

$$
\begin{gathered}
\left(a+x^{+}=b+x^{+}\right) \Rightarrow(a=b) \\
: \quad \Rightarrow \quad \text { نتّجه ميسود } a+x^{+}=b+x^{+} \text {(تعريف عمل جمع) }(a+x)^{+}=(b+x)
\end{gathered}
$$

بنا به اصل

$$
a+x=b+x
$$

و فرض بازكشتى مستلز :

$$
a=b
$$

است
خّس ${ }_{\text {P }}^{\text {هر }}$
r- نقو..تّ - نسبت تر تيب •

تعسريف - اكر دو عدد طبيعى a و b داشته باشيم. (ي

در اينصورت ميگو يند :
: (

$$
a \leqslant b
$$

همحنين مىگو يند : (b حداقل مساوى a است)" و مى نو يسند :

$$
b \geqslant a
$$

$x=b-a$ علد x x تفاضل اعداد b و ناميده ميشود و مينويسيم اين تعريف يكت نسبت دوتائى در N وارد ميكند : از $a \leqslant b$ داريم : $a \leqslant$ و

$$
(a \leqslant b) \quad \Longleftrightarrow \quad(\exists x ; a+x=b)
$$

سؤال زير يكـ معادله ناميده ميشود : (آيا عددى مانند x وجود دارد بطوريكه a+x=b باشلد؟ حل معادله عبارت از بيدا كردن همه جوا بها است.

ثابت ميكنيم كه اكر عدد x وجود داشته باشد فتط يكى است. اكـر عدد ديگــرى مانند
'x وجود داشته باشد بطوريكه :

$$
a+x=a+x^{\prime}
$$

جون عدد a منظظم است، نتيجه ميشود :

$$
x=x^{\prime}
$$

خند مثال - در چند حالت مخصوص معادله را حل ميكنيم :
: $a=b$

$$
\begin{gather*}
a+x=a \\
a+x=a+\circ \\
x=\circ
\end{gather*}
$$

كه مينو يسبم :
از آنجا :
بنا براين هرچه باشل $a \in N$ داريم :

$$
a \leqslant a
$$

نسبت دوتائى خودجذير است.
: : $a=0$
$\circ+x=b$
$x=b$
از T آنجا :
بنا برا ين هرجه باشد b b داريم :

$$
\boldsymbol{b} \geqslant \circ
$$

جواب همواره وجود ندارد و مثلا" براى معادله :

$$
+x=0
$$

 حال خحاصيتهائى را انبات ميكنيم كه نشان بدهند $a \leqslant b$ يكـ نسبت تــر تيب كـلـلى در $a \leqslant$ ور

N است

نسبت توتيب
($a \leqslant b, b \leqslant a$) 1 با $a=b$ Pa
ميد|نِم كه نسبت a $a \leqslant b$ خوديذير است یس : a :

$$
(a=b) \quad \Rightarrow \quad(a \leqslant b, b \leqslant a)
$$

$$
a+d+e=c
$$

$$
\text { يعنى } a \leqslant \text { بنابراين نسبت سرايت يذير است. }
$$

خـاصيتهــاى

$$
a \leqslant b \quad L \quad b \leqslant a
$$

b را تبيت ميكنيم مجموعه عدرهاى طبيعى a را كه در :

$$
\text { - } b \leqslant a \leqslant a \leqslant b
$$)) ثابت ميكنيم :

- $\in A$

ميدانيم كه هرجه باشد b b b Y

$$
a \in A \Rightarrow a^{+} \in A
$$

فرض بازكشتى a a بدان معنى است كه داريم :

$$
\begin{aligned}
& (a \leqslant b) \quad \Rightarrow \quad(\exists c \quad a+c=b) \\
& (b \leqslant a) \quad \Rightarrow \quad(\exists d \quad b+d=a) \\
& \text { مقدار b را كه از رابطه دوم بدست ميآيد در رابطه اول قرار دهيم : } \\
& a+c+d=a \\
& c+d=\circ \\
& c=d=0 \quad: \quad \text { در نتيجه } \\
& \text { ָس خاصيت ثابت است } \\
& a \leqslant b, b \leqslant c \text { و موجب ميشود } a \leqslant c \\
& (a \leqslant b) \quad \Rightarrow \quad(\exists d \quad a+d=b) \\
& (b \leqslant c) \Rightarrow(\exists e \quad b+e=c)
\end{aligned}
$$

$$
b \leqslant a \text { a } a \leqslant b \text { يا }
$$

هركدام از دو حالت احتمالى را جداكانه برد
اگر $a \geqslant b$ باشد علد c وجود دارد بطوريكه :

$$
a=b+c
$$

در نتيجه :

$$
a+\square=b+c+
$$

از آنجا :

$$
a^{+} \in A, a+\square \geqslant b
$$

كرديم. عدرى مانند $c \neq 0$ وجود دارد بطور يكه :

$$
a+c=b
$$

ولى $c \neq 0$ موجب ميشود وجود سابق آن c c^{\prime} :

$$
c^{\prime}+\square=c
$$

بنا براين :

$$
a+c^{\prime}+\square=b
$$

از آنجا :

$$
a^{+} \in A \quad, \quad a+\square \leqslant b
$$

خاصيت نسبت $a \leqslant b$ يكـ نسبت ترتيب كلى در N است.

هايدارى بازاء عمل جمع
c, b هرجه باشد a و

$$
a \leqslant b \quad \Longleftrightarrow \quad a+c \leqslant b+c
$$

زيرا سلسله هم ارزیهاى منطقى زير را داريم :

$$
\begin{gathered}
a \leqslant b \quad \Longleftrightarrow \quad(\exists d \quad a+d=b) \\
\Longleftrightarrow \quad(\exists d a+d+c=b+c) \\
\Longleftrightarrow \quad(a+c \leqslant b+c)
\end{gathered}
$$

يس خاصيت ائبات شده است.
نتيجه - نامساوى ها را ميتوان عضو به عضو به يكديگر افزود :

$$
\begin{aligned}
& (a \leqslant b, c \leqslant d) \Rightarrow a+c \leqslant b+d \\
& a \leqslant b \Rightarrow a+c \leqslant b+c \\
& c \leqslant d \Rightarrow b+c \leqslant b+d
\end{aligned}
$$

و بنا به سرايت پذيرى :

$$
a+c \leqslant b+d
$$

نسبت ترتيب اكيل :
 كوچچكتر از b است) و مينو يسند :

$$
b>a
$$

دراين صورت تفاضل a - و وجود دارد و برابر صفر نيست. بسادكى ثابت ميسود كه : $a<b$

1) اين نسبت سرايتيذير است :

$$
\begin{gather*}
(a<b, b<c) \Rightarrow a<c \\
a<b \Rightarrow a \neq b
\end{gather*}
$$

و نسبت ترتيب كلى است r) هرخه باشد a و $a \neq b$ باريم: $a \neq b$ دا $b<a$ ي , $a<b$

و اين نسبت بازاء جمـع چايدار است.

$$
a<b \Rightarrow a+c<b+c
$$

Pـ فـاصلهها.
 تشكيل مييابد فاصله بسته به مبدأ a ز به منتهاى b مينامند. اين فاصله را با علامت (a, $)$ نما يش ميدهيم. اكر $a=b$ باشد فاصله شامل جزء منحصر بفرد a است. (

ميكند فاصله نيمهباز از سمت راست مينامند و با علامت: 〔a,b 〕) نمايش ميلهند. بهمين ترتيب $a<x \leqslant b$ فاصله نيمهباز از سمت جب تعريف ميشود كه از مجموعه اعـواد

 اكر

$$
\text { تناظر- } y=x+b
$$

فرض كنيم a عدد طبيعى ثابنى باشد. بر هرعدر طبيعى x يكى عدد طبيعى y را نظيرقرار
دهيم بطوريكه:

$$
y=x+a
$$

 a هستد مىنگارد:

$$
y \geqslant a
$$

هر عدد $y \in N_{a}$ تصوير نقط يكـ عدد $x \in N$ ميباشد:

$$
(y \geqslant a) \quad x=y-a
$$

$(b, c),(a+b, a+c)$
است.
تبصره - قانون تركيب موسوم به تفريق، به زوج مــرتب دو عــلد طبيعى a و b تفاضل

$$
a \geqslant b \text { را همراه نميكند مغر در حالت } a-b
$$

و اين يكى مثال از فانون تركيب در يكـ مجموعه است كه در اين مجموعـه دز همهجا

شمارش

ا- روش شمارش
شمردن اشياء يك كلكسيون A، عبارت از مقابلمم قرار دادن اشياء كلكسيون A با اعدار

ميدهيم ادامه ميلهيم.
بدين ترتبب عدد n با تمام شلن اشياء كلكسيون A معين ميگردد.
بعكس در مقا بل هر عدو طبيعى
A قرار دارد.

$$
\begin{aligned}
& A \rightleftarrows(\varpi, n) \\
& (\varpi, n) \rightleftarrows A
\end{aligned}
$$

نمايش ميدهند.
جون تناظر فـوق در يكـ جهت يــا جهت ديعىر روى ميدهـد: نسبت عـ متقارن است.
 ترتيب انتخاب اشياء A براى شمارش است؟
فرض كنيم با ترتبب ديگرى براى اشياء A اين شمارش را انجام بدميم و عدد ديگر ' بدست آيد فرض كنيم:

$$
\begin{gathered}
A \rightleftarrows\left[\square, n^{\prime}\right\rfloor \\
\lfloor\square, n\rceil \nLeftarrow A \rightleftarrows\left[\square, n^{\prime}\right\rfloor
\end{gathered}
$$

〔■ , n'] \ddagger مى نگارد (I؛ فصل

$$
(\square, n) \rightleftarrows\left(\square, n^{\prime}\right)
$$

و ملاحظه ميشود كه نسبت چ سرايتیذير است.
 يكى از آنها كنجيده در ديگرى است. اين تناظر دوسو ئى يكـ انطباق است. داريم:

$$
(\square, n)=\left(\square, n^{\prime}\right)
$$

از آنجا '

بدين تر تيب اطمينان حاصل ميسُود كـه شمارش مستقل از ترتيب منتخب بــراى شمارش

در استدلال قبل، ما يكى نسبت معين بين دو مجموعه را با تناظر دوسوئى بكار برديــم. اين نسبت دو تائى به همتوانى موسوم است.

تعريفـ دو مجموعه را همتوان مينامند اكر آنها در تناظر دوسوئى باشند. مينويسيم: $A \rightleftarrows B$

و ميخوانيم: (A همتوان B است)،
همتوانى يكـ نسبت همارزى است: اولا" خودجذير است:

$$
A \rightleftarrows A
$$

براى اثبات آن كافى است تبديل دوسوئى بخصوص كه انطباق است در نظر كرفته شود. ثانِاًا م متقارن است:

$$
(A \rightleftarrows B) \quad \Rightarrow \quad(B \rightleftarrows A)
$$

ثا لثاً ـ سرا يتبذير است：

$$
(A \rightleftarrows B, B \rightleftarrows C) \quad \Rightarrow \quad(A \rightleftarrows C)
$$

زيرا تركيب دو تناظر دوسوئى يكـ تناظر دوسوئى است．

「－－مجموعههاى متناهى
 $\Longleftrightarrow A \rightleftarrows 【 \llbracket, n\rceil$
عدد n اصلى مجموعه A ناميله ميشود كه عبارت از تعلاد اجزاء A الم A است． در مثالى كه در اول فصل اختار كرديم A متنامى است زيـرا بازاء يكـعـــد ط A اشياء A تمام ميشوند． تناظر قبل بهر جزء A A يكـ عدد طبيعى i را واميبند بطوريكه هر جـزء A را مى تــوان

نوشت：

$$
a_{i} \quad i \in(\square, n)
$$

و همان حرف انديسدار وقتيكه i فاصله（■，

$$
A=\left\{a_{n}, a_{\operatorname{man}}, \cdots, a_{n}\right\}
$$

تبصر0－علد صفر مختص مجموعه تهى ه است．

ترتيب كلى N القاء شله در مجموعه متناهى A．
هر جزء
 ميگوئيم（》 a_{i} جزء نظير ai ميباشد．ميخوئيم．
an
пи
\qquad
an
و A（ايكـ رشته متنامى از اجز اه مرتبه）است． ترتيب A بدين قراد روى مجموعه A القاء شده است．

مجمو عهاهاى متناهى هممتوان.
قضيئ 1- براى اينكه دو مجموعه متناهى همتوان باشند لازم و كافى است كه آنها داراى يــ
اصلى باشند.
a) هركاه دو مجموعه متناهى همتوان داشنه باشيم:

$$
A \rightleftarrows B
$$

و n اصلى A باشد

$$
A \rightleftarrows(\square, n)
$$

تقارن و سرايتبِيرى همتوانى امكان ميدهد كه نتيجه بگيريم:

$$
B \rightleftarrows(\square, n)
$$

سس n اصلى B نيز هست.
b

$$
A \rightleftarrows(\square, n) \quad, \quad B \rightleftarrows(\square, n)
$$

تقارن و سرايتبذيرى همتوانى امكان ميدهد كه نتيجه بغيريم:

$$
A \rightleftarrows B
$$

و A و Bمتوان ميباشند. و قضيه ثابت است. اصلى مشترك n مجموعههاى A و B قوت مشترك آنها را بر آورد مينما يد.

اجتماع مجموعههاى متناهى.

$A \cup B$ تعيين اصلى اجتماع
مسئله بر حسب اينكه A و B داراى اجزاء مشترك باشند يـا نه، يعنى بـر حسب اينكه
تهى باشد يا نه فرق ميكند. $A \cap B$
ابتدا حالتى را كه $A \cap B$ تهى است طرح ميكنيم.

$$
\text { حالت اول: } A \cap B=\varnothing
$$

a اصلى A است:
(1)

$$
A \rightleftarrows(\square, a)
$$

b اصلى B است:

$$
\begin{equation*}
B \rightleftarrows(\square, b) \tag{r}
\end{equation*}
$$

با يههاى آنا ليز رياضى جديد

شكل
 †؛

$$
\begin{equation*}
(■, b) \rightleftarrows(a+■, a+b) \tag{r}
\end{equation*}
$$

از (r) و (r) نتجهه ميشود:
(φ)

$$
B \rightleftarrows\lfloor a+\square, a+b\rceil
$$

حال يكـ جــزء غير مشخص x از اجتماع $A \cup B$ (شكل ا) را در نظر بغيريــم. دو حالت اتفاق ميافتد:
 $i \in 〔 ■, a]$ است همراه مىكتيم و آنرا با $a+b$) $x \in B(\beta$

$$
j \in(a+\square, a+b) ب
$$

 مشترك بنا به فرض تهى است. ملاحظه كنيم كه:

$$
(\square, a) \cup[a+\square, a+b]=(\square, a+b]
$$

 بس داريم:

$$
A \cup B \rightleftharpoons(\square, a+b)
$$

قضيها ץ- اصلى اجتماع دو مجموعه متتامى جلدا ازمم برابر است بـا مجموع اصلىماى ايـن مجموعهما.
 است. زيرا ا مجموعه A را ميتوان مانند اجتماع P و متمّم ${ }^{\prime}$ ا ${ }^{\prime}$ مجموعه P نسبت بـه A در نظر كرفت:

$$
P^{\prime}=C_{A} P
$$

بديهى است كه:

$$
\begin{aligned}
& A=P \cup P^{\prime} \\
& \varnothing=P \cap P^{\prime}
\end{aligned}
$$

بس قضيه قبل را در مورد P و P ميتوان مورد استفاده قرار داد.
اصلى a-ى مجموعـه A برا بر مجموع اصليهاى p و بس داريم:

$$
a=p+p^{\prime} \Rightarrow a \geqslant p
$$

(متما يـز از A) داراى يكـ اصلى اكيداً
كوجكتر از اصلى A است.
در استدلال قبلى فرض تكميلى P\#A P را اضافه ميكنيم. بس داريم:

$$
P^{\prime} \neq \varnothing \Rightarrow\left(p^{\prime} \neq 0\right) \Rightarrow a>p
$$

حالت دوم: A و B دازاى اجراء مشترك ميباشند:

$$
\begin{aligned}
& P=A \cap B \\
& \text { اصلى: } \\
& \text { را } p \neq 0 \text { م }
\end{aligned}
$$

$$
\begin{aligned}
& A \cup B=P_{A} \cup B \\
& P_{A} \cap B=\varnothing
\end{aligned}
$$

((نتيجه

است. $A \cup B$
rــ مجموعغهاى نامتناهى
قبلا" ديديم كه N يكـ مجموعه نامتناهى است.
بطور كلى مجموعه نامتنامى عبارت از مجموعهاى است كه متنامى نيست.
 ، $A \neq E$
فرض كنيم E متنامى باشد و ثابت ميكنيم كه استدلال به تنا فض بر ميخورد:
$(A \rightleftarrows E) \quad \Rightarrow \quad(E$ (اصلى $)(1)(1)$
$(A \subset E, A \neq E) \quad \Rightarrow \quad(A$ اصل $1<E$ اصلى $) \quad\left(C_{\curlyvee}\right)$
سس تناقض وجود دارد و E نميتو اند متناهى باشد.
ثثال ا- قبلا" ديديم كـه يكـ تناظر دوسوئـى بين N و N و
داشت سس در عين حال داريم:

$$
N \rightleftarrows N^{*} \quad N^{*} \subset N \quad N^{*} \neq N
$$

مجموعه N نامتناهى است. هثال ب- مجموعه نقاط يكـ نيم خط نامتناهى است.

شكل r

شكل

 را همراه مينما يد.

اين تبديل f با دوسوئى (ox) را روى (ax) مى (ax) آغارد يس در عين حال داريم:

$$
(a x) \rightleftarrows(o x) \quad(a x) \subset(o x) \quad(a x) \neq(o x)
$$

نيم خــط (ox) همتوان يكى از بخشهاى خــود، متمايز از (ox) ميباشد. نيمخط (ox) (ox) يـــــ مجموعه نامتاهى از نقاط است.

مجموءه نامتناهى قابل شمارش (شمارا) تعريف- ميگو يند كه E يكك مجموعه نامتناهى قا بل شمارش است وقتيكه ممتـوان مجموع اعداد طبيعى است.
$(E) \quad \Longleftrightarrow \quad(E \rightleftarrows N)$
در اين تناظر دوسوئى هر عدد طبيعى $n \in N$ نظير يكـ جزء a_{n} نمايش $a \in E$ كه داده ميشود ميباشد. تر تيب كلى N بدين قـرار در E E القاء ميسُود كــه يكـ (ارشته نامتناهى قابل

شمارش از اجزاء مرتب)، ميگردد.

$$
E=\left\{a_{0}, a_{n}, a_{n E}, \cdots, a_{n}, \cdots \rightarrow\right\}
$$

Pـ كو چحكتر.بن جزء. بز رگتن..ين جزء.
در مجمموعه N داريم:

$$
\forall x \in N \quad x \geqslant \circ
$$

o موسوم به كوجكترين جزء N است. حال بخش A از N را در نظر بغيريم.

زتعريفـ (ا>كر يكـ جزء $a \in A$ وجود داشته باشد بقسمى كه: .
a
 وجود داشته باشد كه داراى اين خاصيت بار باشد
 چون

از آنجا:

$$
a=a^{\prime}
$$

$\min A$
(اختصار كلمه (minimum نما يش ميدهند.
(ااگر جزء «x $x \leqslant b$ واشته باشيم $\forall x \in A$
b را بزركّترين جرء بخش A ميناميم.
مانند قبلى ثابت ميشود كه اكر اين جزء وجود داشته باشد يكتا است. بزرگتر ين جزء بخش A را با علامت: $\max A$
(اخحتصار كلم4) نما يش ميدهند.
تّصره N N داراى كوجكترين جزء ه است. ولى N داراى بزركترين جزء نيست زيرا

 جز : است.
 است كلمه (بز ركتر ين)" را به ((كو جكتر ين)" تبديل نمود.
با روش بازگشتى روى اعداد n اجز اء A A (بازكشت متنامى) استدلال ميكنيم.
بازاء $n=\square$ قضبه معمو لى است.
بازاء $n=\square$ مجموعه A دارای دو جـزء a و b است و مينو ان آنها را بــاهم معا يسه نمود و كغت كه كدام يكـ بزرتّت است (ترتبب كلى در N حال فرض ميكنيم خاصيت زير اثبات شده است: (هر بخش A با اصلى (ميكنيم:
((هر بخش A با اصلى n دارای يكـ بزركترين جزء است)"
هر بخش A از n جـز ه را ميتوان مسـانند اجتماع بخش مجموعه با يك جزء a در نظر كرفت:

$$
A=A^{\prime} \cup\{a\}
$$

بنا بفرض بــازكشتى ميتوانيم بگَئيم كــه
 بزركترين جزء A است يس فضيه اثبات شده است.

قضيها عكس براى بزرتكترين جزء فقط.
 يكى بخش غير تهى اذ N داراى بزرگترين جزء a a باشد: $(a \in A) \quad x \in A \Rightarrow x \leqslant a$
كنجيده در فـاصله (A

قضيهُ \&- براى اينكه يكـ بخشَ غير تهى از N داراى بزركتر ين جزء باشد لازم و كافى است كه متامى باشد.

نتيجهـ هر بخش نامتناهى از N داراى بزركترين جزء نيست.

قضي4" هـ هر بخش نامتنامى P از N داراى يكـ كوجكترين جزء امـتـ. يك جزء آنها به فاصله (o,a) تعلق دارند و مجموعه زير را تشكيل ميدهند.

$$
J=P \cap(\circ, a)
$$

J J متناهى است زيرا كنجيده در (J رّس J داراى يكـ كو جكتر ين جزء است كه كوجكتر ين جزء P

هـ فرابند. فرو بند. بخش A از N را در نظر ميگيريم.

تعاريغـ (>اكر عدد a $a \in N$ وجود داشته باشد بقسمى كه: « $x \leqslant a$ ا داشته باشيم $\forall x \in A$
ميگويند كه a فرابند A است يا a مجموعه A را فرا مى بند.

تفاوت اين تعر يف را با تعريف بزركترين جز ء خاطر نشان كنيم در اين جا:

$$
« x \geqslant a \text { a } \forall x \in A
$$

ميگَو يند كه a يكى فرو بند A است يا a مجموعه A را فرو ميبند.
تبصره- اكر a فرا بند A باشد هر علد بيستر از a نيز فرابند A A است.
اكر a فرو بند مجموعه A باشد هر عدر كمتر از a نيز فرو بند A A خو اهد شـد
قضيه زير را داريم:

צـ هر بخش فرابسته از N متناهى است. زيرا هر بخشّ A از N از داراى فـرا بند a است و بنا براين S:نجيده در (o, a) است و در نتيجه متناهى است.

فn

تتسيم اقليلسى

تعريف. بهر زوج مرتب x و y از اعداد طبيعى يكك عدر طبيعى موسوم به (احاصل ضرب x x و y" را همراه كنيم كه بصور تهاى x x يا y با روش بازكشتى معين ميگردد:

$$
x \cdot \circ=\circ
$$

(الف)
(ب) اكر xy معين باشد، xy با شرط زير معين است:

$$
x y^{+}=x y+x
$$

در اين تعريف x و x يكـ نقش را ايفا نميكند. x بطرز غير مشخصى تثبيت شده است.
مجموعه A- A اعداد طبيعى y را بيدا كنيم كه بازاء آنها عمل ضرب مر معين است: (الف) حاصل ضربرا $y=0$ مازاء $y=0$ معين ميكند. داريم:

$$
\circ \in A
$$

اكر عمل ضرب بـازاء y معين است يعنى $y \in A$ در اين صورت (ب) بازاء 1 ع عمل

$$
y \in A \Rightarrow y^{+} \in A
$$

در نتيجه بنا به اصل $A=N$ ، $A=N$ و عمل ضرب بازاء جميع اعداد طبيعى معين است.
اكر در (ب)، y را با ه جايگزين كنيم داريم:

$$
x \cdot \circ^{+}=x \cdot \circ+x
$$

ينى:

$$
x \cdot \square=x
$$

$$
x \cdot(\square)^{+}=x \cdot \square+x
$$

يعنى:

$$
x \cdot(\square)=x+x
$$

بطور كلى بازاء y> اكر فرض كنيم كه:

$$
x \cdot y=x+x+\cdots+x
$$

$$
\text { ↔ } y \longrightarrow
$$

از (ب) نتيجه خو اهد شد:

$$
\begin{gathered}
x \cdot y^{+}=x+x+\cdots+x+x \\
\leftarrow y^{+} \longrightarrow
\end{gathered}
$$

يس ضرب x در y عبارت از جمـ مكرر (y تا) جمله مساوى x بازاء $y>$ است.

توزيعیذيرى عمل ضرب نسبت به عمل جمع

 ابتدا توزيـعيذيرى سمت حبِ را اثبات كنيم. هر جه باشد اعداد طبيعى x \quad و $\mathrm{P}_{1}$$$
x(y+z)=x y+x z
$$

x و

ָس رابطه () بازاء

 راست از جا بجايذيرى (Pr) نتيجه ميشود.

$$
\begin{aligned}
& x\left(y+z^{+}\right)=x(y+z)^{+} \\
& x(y+z)^{+}=x(y+z)+x \\
& \text { (تعريف جمع) } \\
& \text { (تعريف ضرب) (تعرب) } \\
& x(y+z)+x=x y+x z+x \\
& \text { (فرض بازكشتى) (ترْت) } \\
& x y+(x z+x)=x y+x z^{+} \\
& \text {(تعر يف ضرب) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الف) رابطه (1) را بازاء } z=0 \text { اثبات نمائيمه. داريم: } \\
& x(y+\circ)=x y \\
& x y+x \circ=x y
\end{aligned}
$$

اكر $y \geqslant z$ باشد راريم:

$$
x(y-z)=x y-x z
$$

در حقيقت هم عدد d وجود دارد بقسمى كه:

$$
y=z+d \quad\lfloor\quad d=y-z
$$

$$
x y=x(z+d)
$$

$$
x y=x z+x d
$$

$$
x d=x y-x z
$$

$$
x(y-z)=x y-x z
$$

شركتبذيرى

$$
(x y) z=x(y z)
$$

x و x را تثيت كنبي:
الف) رابطه (ץ) را بازاء $z=0$ اثبات ميكنيم. داريم:

$$
(x y) \circ=\circ
$$

$$
x(y \cdot \circ)=x \cdot \circ=\circ
$$

بس (() بازاء ه = z درست است.

ب) اكر (Y) بازاء

$$
(x y) \mathrm{z}^{+}=(x y) z+(x y)
$$

(تعر يف ضرب) (r)
$(x y) z+x y=x(y z)+x y$
(فرض بازكشتى)
$x(y z)+x y=x(y z+y)$
(توزيعيذيرى)
$x(y z+y)=x\left(y z^{+}\right)$
(تريف ضرب)
هرجه باشد x و y و z شركتبذيرى ثابت است. N يك نيم كروه ضر بیى است.

هرچه باشد اعداد طبيعى x و y داريم:

$$
y^{+} \cdot x=y x+x
$$

y را تثبيت ميكنيم.
الف) تساوى (ץ) بازاء $x=0$ درست است خونكه دو طرف برابر صفر ميشوند.
 $y^{+} x^{+}=y^{+} x+y^{+}$ (تعريف ضرب) $y^{+} x+y^{+}=(y x+x)+(y+\square) \quad(ف)$ بنا به جا بجا بذيرى و شركت بذيرى عمل جمع مينو يسيم: $(y x+x)+(y+\square)=(y x+y)+(x+\square)$

بنا به تعريف ضرب:

$$
(y x+y)+(x+\square)=y x^{+}+x^{+}
$$

چس را بطه (ץ) هرجه باشد x و y درست است.

$$
\text { هرجه باشد x و } y \text { داريم: }
$$

(f)

$$
x y=y x
$$

$$
\circ \cdot x=\circ
$$

بديهى است كه اين رابطه بازاء $x=0$ درست است، آنرا بازاء x درست فرض كرده و بازاء

$$
\circ \cdot x^{+}=\circ x+\circ
$$

(تعريف ضرب)

$$
\circ \cdot x^{+}=\circ
$$

ب) (ץ) را بازاء y درست فرض كرده و درستى آنرا بازاءٍ $x y^{+}=x y+x$
(تعريف)

$$
\begin{aligned}
& \text { الف) رابطه (ץ) را بازاء } y=0 \text { اثبات ميكنيم. يعنى: } \\
& x \cdot \circ=\circ \cdot x
\end{aligned}
$$

$$
\begin{aligned}
& x y+x=y x+x \\
& y x+x=y^{+} x
\end{aligned}
$$

(فرض بازگشتى)
(
هرچه باشد x و x جا بجا بذيرى اثبات شده است. چس N نيم كروه جا بجا بذير برای عمل ضرب است.

جزءٍ خنثى•
با بكار بستن تعريف ضرب تا حال ديديم كه: $x \cdot \square=x$

با جا بجا ذذيرى خو اهيم داشت:

- $\cdot x=x$
- جزء \quad ج هر جزء سواى صفر براى ضرب منتظم است. ا بتدا خاصيت زير را اثبات كنيم:
اكر حاصل ضرب دو عدد صفر باشد حداقل يكى از اين اعداد برا بر صفر است. فرض كنيم يكك سابق ${ }^{\prime}$ و a^{\prime} بترتيب بودند.

$$
a=a^{\prime}+\square \quad b=b^{\prime}+\square
$$

در تتيجه:
$\circ=\left(a^{\prime}+\square\right)\left(b^{\prime}+\square\right)=a^{\prime} b^{\prime}+a^{\prime}+b^{\prime}+\square$
 از اين خاصيت، خاصيت بعلى نتيجه ميشود: $: x \neq 0$ هرجه باشد

$$
a x=b x \Rightarrow a=b
$$

$$
\begin{aligned}
& a x=b x \Rightarrow a x-b x=\circ \\
& \text { بنا به توزيـيذيرى براى تفريق: } \\
& (a-b) x=\circ \\
& \text { و چون } x \neq 0 \text { یس بنا به خاصيت قبل: } \\
& a-b=\circ
\end{aligned}
$$

$a=b$
هيج عددى جزء واحد داراى قرينه نيست．

$$
(a b=■) \quad \Rightarrow \quad(a=b=\varpi)
$$

اكر
فبل داريم：

$$
\begin{align*}
& a=a^{\prime}+\square \quad b=b^{\prime}+ \\
& =a^{\prime} b^{\prime}+a^{\prime}+b^{\prime}+ \\
& \text { از } \\
& a^{\prime} b^{\prime}+a^{\prime}+b^{\prime}=。 \\
& \text { و اين رابطه موجب ميشود (II، فصل ؟؛ } \\
& a^{\prime}=b^{\prime}=\text { 。 } \\
& a=b=
\end{align*}
$$

تبهر0－مجموعه N كه حالا مجهز بدو قانون تركبب جمع و ضرب است است كه در همهجا
 بعلاوه ضرب توزيعيذير نسبت به جمـع است．

 بضضى اوقات ميگويند كه N يكـ نيم حلثه است．
$(\forall c) \quad a \leqslant b \Rightarrow a c \leqslant b c$
P_{Y}

$$
(\forall c \neq \circ) \quad a<c \Rightarrow a c<b c
$$

زيرا ：

$$
a \leqslant b \quad \Rightarrow \quad(\exists d ; \quad a+d=b)
$$

در عدد غير مشخص c ضرب ميكنيم．

$$
(a+d) c=b c \quad \Rightarrow \quad a c+d c=b c \quad \Rightarrow \quad a c \leqslant b c
$$

نتيجه ـ نامساويها را ميتوان عضو به عضو درهم ضرب كرد.

$$
(a<b, c<d) \Rightarrow(a c<b d)
$$

$$
\begin{align*}
& a<b \Rightarrow a c<b c \\
& c<d \Rightarrow b c<b d \tag{Y}
\end{align*}
$$

از آنجا بنابه سرايت پذيرى :

$$
a c<b d
$$

Fـ مضرببهاى .يك علـد. بخشين.يرى

تعريفـ اكر عدد طبيعى a مفروض باشد، بهر عدد طبيعى x عدد طبيعى y را همراه كنيم بقسمى كه داشته باشبم :

$$
y=a x
$$

y را (مضرب a) مينامند.
بدين ترتيب در مجموعه N اعلاد طبيعى يكـ تابع معين ميشود. تصوير N بوسيله اين تابع با

$$
x \in N \quad y=a x \quad y \in \mathscr{M}_{a}
$$

و \mathscr{M}_{a} حند مثال :

1) $a=\circ$
$\mathscr{M}_{0}=\{0\}$
r) $a=$
$\mathscr{M}_{\square}=N$
r) $a=\square \square$
$\mathscr{M}^{\prime}=$
مجموعه عدرهاى زوج
بطوركلى :

$$
\mathscr{X}_{a}=\{0, a,(\square) a, \cdots, x a, \cdots\}
$$

 $a \neq 0$

$$
\begin{equation*}
\left(\forall x, x^{\prime} \in N\right) x<x^{\prime} \Rightarrow a x<a x^{\prime} \tag{Y}
\end{equation*}
$$

 تابـع معكوس را با :

$$
x=\frac{y}{a}
$$

نما يش ميلههيم•
اين تابع در x را خارج قسمت تحقيقى (دزست) y بر a مينامند و اين خـــار ج قسمت معيــن نيست مڭر $y \in \mathscr{M}_{a}$

است) و يا (》 بر a بخش ذذير است)" مينو يسيم :

$$
y \in \mathscr{M}_{a} \Longleftrightarrow a \mid y
$$

$$
y \in \mathscr{M}_{a} \Longleftrightarrow a \mid y \Longleftrightarrow(\exists x ; \quad y=a x)
$$

نسبت بخشىئذيرى:
نسبت

$$
\begin{array}{ll}
a \mid b \quad \Longleftrightarrow \quad(\exists q \in N ; & b=a q) \\
a \mid c \quad \Longleftrightarrow \quad\left(\exists q^{\prime} \in N ;\right. & \left.c=a q^{\prime}\right)
\end{array}
$$

$$
b+c=a\left(q+q^{\prime}\right) \quad \Rightarrow \quad a \mid(b+c)
$$

تفريت :

$$
(b \geqslant c) b-c=a\left(q-q^{\prime}\right) \Rightarrow a \mid(b-c)
$$

ضرب :

$$
\begin{aligned}
& b c=a q a q^{\prime} \Rightarrow a \mid b c \\
& \quad a=0 \text { تبمر0 اکر } \quad \Rightarrow b \Rightarrow b=0
\end{aligned}
$$

زيرا عدد q در اين صورت وجود دارد و بقسمى كهس b خودش هيج عدد ديگر را نميشمارد.

$$
\begin{array}{lll}
a \mid b \Rightarrow & (\exists q ; & b=a q) \\
b \mid c \Rightarrow & \Rightarrow\left(\exists q^{\prime} ;\right. & \left.c=b q^{\prime}\right)
\end{array}
$$

از آنجا :

$$
c=(a q) q^{\prime}=a\left(q q^{\prime}\right)
$$

و در نتيجه :
$a \mid c$
نسبت بخشَيذيرى سرايتبذير است.
$a=b b$ با $b|a, a| b \quad \mathrm{P}_{1}$
$b|a, a| b$ ابتدا اكر $a=b$ باشد بديهى است $a=b$
، بعكس

$$
\begin{array}{lll}
a \mid b & \Rightarrow & (\exists q ; \\
b \mid a & \Rightarrow & b=a q) \\
\left(\exists q^{\prime} ;\right. & \left.a=b q^{\prime}\right)
\end{array}
$$

از آنجا :

$$
a=a\left(q q^{\prime}\right)
$$

$$
q q^{\prime}=■
$$

از آنجا :
($\mathrm{P}_{\boldsymbol{y}}$)

$$
\begin{gathered}
q=q^{\prime}=\square \\
a=b
\end{gathered}
$$

و در تتيجه :
اكر ه =

$$
\circ \mid b \Rightarrow b=\circ
$$

,

 تبهره - در *N، نسبت بخش بذيرى مري موجب نسبت ترتيب معمولى :

$$
a \mid b \Rightarrow a \leqslant b
$$

$$
\begin{gathered}
a \mid b \Rightarrow a \notin N^{*} \Rightarrow \quad(\exists q \neq 0 \text { بقسميكه } b=a q) \\
b \geqslant a
\end{gathered}
$$

r- نقسيم اقليلسى
فرض كنيم دو علد a و b را كه دومى مخالف صفر است داشته باشيم و :

$$
\mathscr{M}_{b}=\{0, b,(\square) b, \cdots, x b, \cdots\}
$$

را در نظر بگيريم :
قسمتى از \mathscr{M}_{b} را كه بوسيله a فرا بسته است P بناميم:

$$
P=\mathscr{X}_{b} \cap(0, a)
$$

$$
x \in P \quad \Longleftrightarrow \quad\left(x \in \mathscr{M}_{b}, x \leqslant a\right)
$$

P مجموعه مضر بهاى P حداكثر برا بر a است.
P تهى نسِت زيرا حلاقل شامل ه است.
P متناهى است زيرا a فرا بند آن است.

چون
بقسميكه :

$$
c=b q
$$

بديهى است :

$$
b q \leqslant a
$$

همحنين داريم :

$$
\begin{aligned}
& b(q+\square)>a \\
& b(q+\square) \leqslant a \\
& b(q+\square) \in P
\end{aligned}
$$

زيرا اگر ميداشتيم :

لازم ميآمد :

$$
b(q+■)>b q
$$

bq بزركترين جزء P نميشد. بس ميتوانبم بگوئيم:
 وجود دارد بَسسى كه :

$$
b q \leqslant a<b(q+■)
$$

تعريف ـ بيدا كردن اين عدد q، عبارت است از انجام عمـل تقسبم اقلـيدسى a بــر b؛ b

باقيما نله :

$$
b q \leqslant a \quad \Rightarrow \quad(\exists r \quad a=b q+r)
$$

r باقيمانده تقسيم اقلبسى ناميله ميشود. داريم :

$$
a<b(q+■) \Rightarrow a<b q+b \Rightarrow r<b
$$

بس خوامبم داشت:

$$
\left\{\begin{array}{l}
a=b q+r \\
r<b
\end{array}\right.
$$

بعكس، اتر يكـ زوج q و r وجود داشته باشند كه در دستگاه قبلى صدق كتد q خارج قسمت

$$
\begin{aligned}
& a=b q+r \Rightarrow a \geqslant b q \\
& r<b \Rightarrow r+b q<b+b q \Rightarrow a<b(q+\boldsymbol{m}) \\
& \text { بس در نتيجه داريم : } \\
& b q \leqslant a<b\left(q+\square \Leftrightarrow\left\{\begin{array}{c}
a=b q+r \\
r<b
\end{array}\right.\right.
\end{aligned}
$$

فnal

قوه صحيح يك علد طبيعى شمار

قوه صحيح .يكك عدد طبيعى

 علامت

$$
\begin{equation*}
a^{\circ}=1 \tag{1}
\end{equation*}
$$

(Y) (

$$
a^{x^{+}}=a^{x} \cdot a
$$

معين ميشود.
بدين ترتيب دد N يكـ تابع $x \rightarrow a^{x}$ معين ميشود. تصوير N بوسيله اين تابع را با

حالت $a=\square$ معمولى است زيرا بنا به تعريف داريم: $\left(\begin{array}{|c} \\)^{x}=(■)^{x}\end{array}\right.$

و جميع اعداد x داراى يكى تصوير ■ مياشند: $P_{\mathbf{a}}=\{\square\}$ در حالت a> بترتيب داريم:
$a^{\mathbf{n}}=a^{0} \cdot a=\square \cdot a=a$

$$
a^{\mathbf{n +}}=a^{\mathbf{L}} \cdot a=a \cdot a, \cdots
$$

بطور كلى اكر فرض كنيم كه بازاء ■

$$
\begin{gathered}
a^{x}=a \cdot a \cdots a \\
\leftarrow \operatorname{con}_{x \rightarrow}
\end{gathered}
$$

$$
\begin{aligned}
& a^{x+}=a \cdot a \cdots a \cdot a \\
& \rightarrow \\
& \text { بس هرچه باشد } \\
& \text { بازاه } a>\text { } \\
& \Phi_{a}=\left\{■, a, a^{\mathbf{n}}, \cdots, a^{x}, \cdots\right\} \\
& \text { كه تصاعد هندسى با قدر نسبت a و با جمله اول ■ ناميله ميشود. } \\
& a^{x} \cdot a^{y}=a^{x+y}
\end{aligned}
$$

$$
\begin{aligned}
& a^{x} \cdot a^{\circ}=a^{x} \cdot \square=a^{x} \\
& a^{x+0}=a^{x}
\end{aligned}
$$

بس
(Y بفرض اينكه P, بازاء y درست است آنرا بازاء با شروع از فرض بازكشتى :

$$
a^{x} \cdot a^{y}=a^{x+y}
$$

طرفين را در a ضرب ميكنيم :

$$
a^{x} \cdot a^{y^{\dot{+}}}=a^{x+y^{+}}
$$

هرجه باشد x و y خاصيت

$$
a^{x} b^{x}=(a b)^{x}
$$

() بازاء Y (Y) با فرض درستى PY بازاء X آنرا بازاء +

$$
\begin{align*}
a^{x+} b^{x+} & =\left(a^{x} \cdot a\right)\left(b^{x} \cdot b\right) \tag{تعريف}\\
\left(a^{x} \cdot a\right)\left(b^{x} \cdot b\right) & =\left(a^{x} b^{x}\right)(a b) \\
\left(a^{x} b^{x}\right)(a b) & =(a b)^{x}(a b) \\
(a b)^{x}(a b) & =(a b)^{x^{+}}
\end{align*}
$$

(جا بجا بِذيرى و شركتِذذيرى)
(فرض بازكشتى)
(تعريغ)
يس هرجه باشد x خاصيت Pr درست است.

$$
\begin{aligned}
& \left(a^{x}\right)^{y}=a^{x y} \\
& \text { x را تثبيت كنيم : } \\
& \text { 1) بازاء } y=0 \text { داريم } \\
& \left(a^{x}\right)^{\circ}=\quad, \quad a^{x \circ}=a^{\circ}=
\end{aligned}
$$

Y ب) بفرض درستى Pr بازاء

$$
\begin{align*}
\left(a^{x}\right)^{y+} & =\left(a^{x}\right)^{y} a^{x} \tag{تعريف}\\
\left(a^{x}\right)^{y} a^{x} & =a^{x y} a^{x} \\
a^{x y} a^{x} & =a^{x y+x} \\
a^{x y+x} & =a^{x y^{+}}
\end{align*}
$$

(فرض بازگشتى) (مرصن)
(P, (خاصيت)
(تعريف ضرب)

پِإيارى بازاءٍ نسبت ترتيب
$: x \neq 0$ هرحه باشد P_{f}

$$
a<b \quad \Longleftrightarrow \quad a^{x}<b^{x}
$$

ابتدا ثابت ميكنيم :

$$
a<b \Rightarrow a^{x}<b^{x}
$$

خاصيت بازاء $x=\square$ آشكار است. T آنرا بازء x x درست فرض كــرده و بــازاء
اثبات ميكنيم.
با فرض بازگُتّى در عين حال داريم :

$$
\begin{gathered}
a^{x}<b^{x} \\
a<b
\end{gathered}
$$

از ضرب عضو به عضو :

$$
a^{x^{+}}<b^{x+}
$$

$$
a^{x}<b^{x} \Rightarrow a<b
$$

اگر فرض كنيم $a=b$ نتيجه ميشود $a=b^{x}=b^{x}$ اين خلاف فرض است . اكر فــرض

يعنى :

$$
a^{x}>a^{y}
$$

بس تابع $x \rightarrow a^{x}$ بازء $a>$ صعودى است و از آنجا بنابه (I ، فـصل

قضيه\& 1
تعريف - تابع معكوس، (الگاريتم در مبناى a) ناميده ميشود وبصورت $a \rightarrow \log _{a} y$ نما يش داده ميشود.

$$
y=a^{x} \quad \Longleftrightarrow \quad x=\log _{a} y
$$

 اينكـ نمودار اين تناظر دو سوئى :

$$
\begin{aligned}
& (a>\square \quad, \quad x>y) \quad \Rightarrow \quad a^{x}>a^{y} \\
& \mathrm{P}_{\hat{\prime}} \\
& (a>\square \quad, \quad d \neq 0) \quad \Rightarrow \quad a^{d}>\square \quad\left(P_{f} \quad\right. \text { خاصيت) } \\
& \text { از ضرب طرفين در } a^{y} \text { (كه برابر صفر نيست) : } \\
& a^{y} \cdot a^{d}>a^{y} \\
& a^{y+d}>a^{y}
\end{aligned}
$$

$$
\begin{aligned}
& a<b
\end{aligned}
$$

خاصيت اساسى لتاريتم.
 $\log _{a} y^{\prime}+\log _{a} y^{\prime \prime}=\log _{a} y^{\prime} y^{\prime \prime}$

زيرا:

$$
\begin{aligned}
\log _{a} y^{\prime}=x^{\prime} & \Longleftrightarrow y^{\prime}=a^{x^{\prime}} \\
\log _{a} y^{\prime \prime}=x^{\prime \prime} & \Longleftrightarrow y^{\prime \prime}=a^{x^{\prime \prime}}
\end{aligned}
$$

: را بكار ميبنديم P

$$
y^{\prime} y^{\prime \prime}=a^{x^{\prime}+x^{\prime \prime}}
$$

اين رابطه هم ازر است با:

$$
x^{\prime}+x^{\prime \prime}=\log _{a} y^{\prime} y^{\prime \prime}
$$

يس تا بـع y $y \rightarrow \log _{a} y$ يك يك شكلى (I، فصل جمعى N است. در بخش مر بوط به عددهاى حقيقى اين يكـ شكـلى را مجلداً مــوردد بررسى قرار خواهيم داد.

شمار

-

 بررسى قرار دهيم. اين نمايشهاى اختصارى تئورى شمار را تشكيل ميدهند. مسئله اساسى شمار عبارت است از :
هركاه يكـ مجموعه مرتب و متناهى b سمبل متمايز : $\left\{R_{0}, R_{a}, R_{\mathrm{an}}, \cdots R_{b-n}\right\}$

داده شود كه بترتيب نماينله عددهاى :

$$
\circ, ■, \square \square, \cdots, b-\varpi
$$

باشند جميع عددهاى طبيعى را به كمكـ اين سمبلها نمايش ميدهيم. تا حــال اين مسئله

جزء R_{i} مجموعه دا (رقم") يا (صهورت) ميناميم. اصلى b كلكسيون را هايه دستگاه شمار مى نامند. شثال - اولا" در دستگاه اعشارى يا يه برابر است با :

و كلكسيون رقمها عبارتند از :

$$
\{0,1, r, r, \psi, \Delta, s, r, \wedge, q\}
$$

$\left(\begin{array}{llll}\square & \square & \square & \square \\ \square & \square & \square & \square\end{array}\right)$
و كلكسيون رقمها ميتواند :

$$
\{0,1, r, r, r, \Delta, s, r\}
$$

باشد
bاه رقم بندى يك علد در مبناى b
كلكسيون ارقام هستد. قبلا" هر عدد طبيعى $a<b$ را با رقم نظير a نمايش دادها يم. مثلا" در دسنگاه به بايه 1 ا تناظر زير دا داريم :

براى ساير اعداد طبيعى، نما يش عدد مبتى بر متناظر كردن هر عدد طبيعى بـا يكى رشته رقمها است: اين تناظر را رقمبندى علد در مبناى b مينامند.

مشخص ميكنيم.
از اين كلكسيون A ، بستههـائى استخر اج ميكنيم كه هركدام شامل b جزء بــاشند. يكـ چنين بستهاى را (واحد مرتبه دوم) ميناميم، از A A آنقدر واحد مر تبه دوم كه امكان دارد استخراج ميكنيم، بدين ترتيب در A فقط ${ }^{\text {a }}$ جزء كه از b كمتر است ميماند. رقمبندى

$$
c_{0} \rightarrow r_{0}
$$

بستههاى b تائى را كه استخراج كرديم شمارش ميكنيم :
اگر يك بسته b تائى وجود داشته باشد a را مينويسيم :

$$
a \rightarrow \overline{1 r_{0}}
$$

 نوشته ميشود (شكل re) :

$$
a \rightarrow \overline{r_{1} r_{\circ}}
$$

خطى كه بالاى علد قرارداده ميشود براى جلوكيرى از اشتباه كردن عــدد بــا حــاصلاضرب دو عامل است.

$$
\mathcal{A}=\left\{(b \cdots b) c_{o}\right\}
$$

$\downarrow \uparrow \quad \downarrow \uparrow$

$$
a \rightarrow \overline{r_{1} r_{0}}
$$

$$
r_{1} \quad r_{0}
$$

شكل
اكر در كلكسيون A حداقل b بسته b تائى وجـود داشته باشد در ايسن صورت از اين
 هاى مرتبه سوم)" ناميله ميشوند استخراج ميكنيم. آنقدر بسته
 بندى c| را ميدانيم :

$$
c_{1} \rightarrow r_{1}
$$

بستههاى

اكر تعداد بستهماى
a با سه رقم نمايش داده ميشود (شكل ب) :

$$
\begin{gathered}
a \rightarrow \overline{r_{Y} r_{1} r_{\circ}} \\
\mathcal{A}=\left\{\left(b^{r} \cdots b^{r}\right)(b \cdots b) c_{o}\right\}
\end{gathered}
$$

 بستهاى به (اواحدهاى مرتبه جهارم) را استخراي اس اس ميكنيم.
 مرتبه سوم $c_{Y}<b$

رقمبندى č را ميدانيم :

$$
c_{Y} \rightarrow r_{Y}
$$

بستههاى
اگر تعداد اين بستهها كمتر از b بود رقم آنها را r ميناميم و a در اين صورت باحهار
رقم مرتب ميگِردد: (شكل ه)

$$
\begin{gathered}
a \rightarrow \overline{r_{r} r_{Y} r_{1} r_{0}} \\
A=\left\{\left(b^{r} \cdots b^{r}\right)\left(b^{r} \cdots b^{r}\right)(b \cdots b) c_{o}\right\}
\end{gathered}
$$

$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$a \rightarrow \overline{r_{r} r_{Y} r_{1} r_{0}}$
r_{r}	r_{r}	r_{1}	r_{0}	

اكر حـــاقل b بسته ${ }^{\text {b }}$ تــائى وجــود داشت از اين بستههــا بستههاى جليـــد شامــل

$$
\text { جز } b \times b^{\mu}=b^{\varphi}
$$

استدلال با روشّ بازگشتى - فرض كنيم كه كلكسيون A بـه (رواحله)هاى با مقدارهـاى

$$
b^{n-1}, b^{n-r}, \cdots, b^{r}, b, c_{0}
$$

معلوم شده باشد و اكر در كلكسيون A حلاقل b بسته

$$
a \geqslant b \times b^{n-1}
$$

$$
a \geqslant b^{n}
$$

در اينصورت از اين واحدهاى b^{n-1} تائى بستههاى جديد شامل :

$$
b \times b^{n-1}=b^{n}
$$

جزء بسته

$$
c_{n-1}<b
$$

رقمبندى c_{n-1} را ميدانيم :

$$
c_{n-1} \rightarrow r_{n-1}
$$

بستههاى b تانى دا شمارش ميكنيم. فرض كنيم تعلاد آنها كمتر از b باشل يعنى :

$$
\begin{gathered}
a<b \times b^{n} \\
a<b^{n+1}
\end{gathered}
$$

$$
\begin{array}{r}
a \rightarrow r_{n} r_{n-1} \cdots r_{1} r_{0} \\
\mathcal{A}=\left\{\left(b^{n} \cdots b^{n}\right)\left(b^{n-1} \cdots b^{n-1}\right) \cdots(b \cdots b) c_{0}\right\}
\end{array}
$$

$\downarrow \dagger$	$\downarrow \uparrow$		$\downarrow \dagger$	$\downarrow \dagger$
r_{n}	r_{n-1}		r_{1}	r_{0}

بطور خلاصه، بازاء هر عدد a بطوريكه :

$$
b^{n} \leqslant a<b^{n+1} \quad(n \neq 0)
$$

 $b^{n}, b^{n-1}, \cdots, b, c_{0}$

bسط مبناى b
بدين ترتيب براى A توزيـع زير را خواهيم داشت : - $r_{n} b^{n}$ بسته

- $r_{n-1} b^{n-1}$ جسته r_{n-1}
\square
.
- \quad - $\quad r_{1}$
-

جون اصلى A عبارت از a است، نتيجه ميشود :

$$
a=r_{n} b^{n}+r_{n-1} b^{n-1}+\cdots+r_{1} b+r_{0} \quad\left(r_{n} \neq 0\right)
$$

عبارت فوق به ((بسط عدد a به مبناى b) موسوم است. اين توزيـع كلكسيون A
اكر اصلى a

$$
b^{n} \leqslant a<b^{n+1}
$$

صلت كند.
دو خاصيت را اثبات ميكنيم:

1) بازاه هر علد طبيعى a يكـ چنين عدد صحیِح n وجود دارد و يكتا است. Y

قضيضا

$$
b^{n} \leqslant a<b^{n+1}
$$

اكر

$$
\Phi_{b}=\left\{1, b, b^{r}, \cdots, b^{n}, \cdots\right\}
$$

$$
Q=\Phi_{b} \cap(1, a)
$$

$$
x \in Q \quad \Longleftrightarrow \quad\left(x \in \mathscr{P}_{b} \quad \cdots, \quad x \leqslant a\right)
$$

Q تهى نيست زيرا حداقل شامل 1 است.
Q
Q q
خون $q \in$ ® $_{b}$

$$
q=b^{n}
$$

باشد. بديهى است كه :

$$
b^{n} \leqslant a
$$

و چحون $q \in Q$ است همحنين داريم:

$$
b^{n+1}>a
$$

زيرا اگر

$$
b^{n+1} \in Q
$$

با

قضيؤ
يكتائى بسط به مبناى b نتيجه مستقيم روشى است كه براى رقم بندى a بكار رفته است روشى كه متكى به تقسيمهاى اقليدسى متو الى با يكـ متسوم عليه b است.
بنا به قضئُ قبل نظير عدد a a يك عدد n يكتا وجود دارد: تعداد n ارقام صورتبنـــى
در استخراج بستهمای با مقدارهاى مرتب بر b را انجام دادهايم :
(1)

$$
a=b q_{1}+r_{0} \quad r_{0}<b
$$

roبنا براين اولين رقم سمت راست صورتبندى يكتا است و اين عبارت از بــاقيمانده

(r)

$$
q_{1}=b q_{r}+r_{1} \quad r_{1}<b
$$

رقم دوم سمت راست صورتبندى يكتا است : اين عبارت از باقيمانده r_ است. خار ج قسمت اگر

$$
q_{Y}=b q_{r}+r_{Y} \quad r_{Y}<b
$$

رقم سوم سمت راست صورت بندى يكتا است (بـاقيمانده
 آخر ين تقسيم ميرسيم كه رديف آن بموجب قضئُ ا كاملا" مشخص شده ار است :

$$
(n) \quad q_{n-1}=b r_{n}+r_{n-1} \quad r_{n-1}<b \quad, \quad r_{n}<b
$$

كه در آنجا باقيمانده r_{n-1} يكتا است و نما ينده رقم ماقبل آخـر از سمت حبـ صور r r_{n}

بسط رقمى يك صورت بندى - بسط رقمى يكـ صورت بندى مبناى b :

$$
\overline{r_{n} \cdots r_{1} r_{0}}
$$

عبارت از متناظر قراردادن آن با عدد طبيتى a است :

$$
a=r_{n} b^{n}+r_{n-1} b^{n-1}+\cdots+r_{1} b+r_{0}
$$

ضرايب اين بسط دقيقاً ارقام صورتبندى ميباشند .

باشيم بسط رقمى اين صورتبندى عدد :

$$
a=v b^{\psi}+\varphi b^{r}+\circ \cdot b^{r}+\Delta b+r
$$

را متناظر آن قرار خو اهد داد .
 بتوسط بسط مبناى b با هم مر بوطاند. اعداد طبيعى و صورت تناظر دو سوئى قرار دارند.
عدد a و صورتبــندى نظير آن

$$
\begin{gathered}
a \rightleftarrows \overline{r_{n} \cdots r_{\circ}} \\
a=\overline{r_{n} \cdots r_{0}}
\end{gathered}
$$

مينو يسند :

نسبت ترتيب در صورتبندى:
دو عدد صورتبندى شده در مبناى b دا در نظر ميگيريم :

$$
a=\overline{r_{n} \cdots r_{0}} \quad, \quad a^{\prime}=\overline{r_{m}^{\prime} \cdots r_{0}^{\prime}}
$$

حالت اول : m ع
از آنجا :

$$
a^{\prime}<a
$$

و بطور خلاصه :

$$
m<n \quad \Rightarrow \quad a^{\prime}<a
$$

مثـــال

$$
r>r \Rightarrow a>a^{\prime}
$$

حالت دوم : $n=m$ (a) $n=m$ داراى تعداد رقمهاى متساويند)

$$
a=\overline{r_{n} \cdots r_{0}}
$$

$$
a^{\prime}=\overline{r_{n}^{\prime} \cdots r_{0}^{\prime}}
$$

$$
r_{n}>r_{n}^{\prime} \text {) فرض ميكنيم }
$$

بديهى است كه :

$$
a \geqslant r_{n} b^{n}
$$

(فقط جمله اول بسط a دا نگاه داشتيم) از طرف ديگر داريم :
$a^{\prime}=r_{n}^{\prime} b^{n}+c^{\prime}$ با c^{\prime} حداكثر دارای n c^{\prime} حو $a^{\prime}<\left(r_{n}^{\prime}+1\right) b^{n}$

$$
\begin{aligned}
& r_{n}>r_{n}^{\prime} \Rightarrow r_{n} \geqslant r_{n}^{\prime}+1 \Rightarrow r_{n} b^{n} \geqslant\left(r_{n}^{\prime}+1\right) b^{n} \\
& \text { از مقايسه (1) و (r) داريم : } \\
& a \geqslant r_{n} b^{n} \geqslant\left(r_{n}^{\prime}+1\right) b^{n}>a^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& m<n \Rightarrow b^{m}<b^{n} \Rightarrow b^{m+1} \leqslant b^{n} \\
& \text { از طرف ديغر چون } n+1 \text { تعداد رقمهاى a است : } \\
& b^{n} \leqslant a<b^{n+1} \\
& \text { و بهمين ترتيب } m+1 \text { تعداد رقمهاى }{ }^{\prime} \text { است } a^{\prime} \text { اس } \\
& b^{m} \leqslant a^{\prime}<b^{m+1} \\
& \text { در نتيجه داريم : } \\
& a^{\prime}<b^{m+1}<b^{n} \leqslant a
\end{aligned}
$$

$$
\begin{aligned}
& r_{n}>r_{n}^{\prime} \Rightarrow a>a^{\prime} \\
& a^{\prime}=\Delta Q Y A \quad, \quad a=\text { 人V०Y }: J \text { مثال }
\end{aligned}
$$

ه است .

$$
\wedge>\Delta \Rightarrow a>a^{\prime}
$$

 داراى رقمهاى هم مرتبه برا بر باشند :

$$
r_{n}=r_{n}^{\prime}, r_{n-1}=r_{n-1}^{\prime}, \cdots, r_{p+1}=r_{p+1}^{\prime}, r_{p}>r_{p}^{\prime}
$$

فرض كنيم

$$
d=r_{n} b^{n}+r_{n-1} b^{n-1}+\cdots+r_{p+1} b^{p+1}
$$

در اين صورت داريم :

$$
\begin{aligned}
& a-d=\overline{r_{p} \cdots r_{0}} \\
& a^{\prime}-d=\overline{r_{p}^{\prime} \cdots r_{0}^{\prime}}
\end{aligned}
$$

بنا به حالت قبل:

$$
\begin{aligned}
r_{p}>r_{p}^{\prime} \Rightarrow a-d>a^{\prime}-d \Rightarrow a>a^{\prime} \\
a^{\prime}=\text { YАץ१४ } \quad \Rightarrow \quad a=\text { YА\&०D: }
\end{aligned}
$$

a

قاعله - اولا" اكر دو صورتبندى داراى اصلى ارقــام بـــرابر نباشند در همـان ترتيب اصليها قرار دارند. ثانياً اكر دو صورتبندى داراى اصليهاى ارقام متساوى باشند در ترتيبى قــرار دارند كه اولين دقمهاى هم مرتبه متمايز آنها قرار دارد. تبصر0 \- قاعدهاى كه بـراى دو صورتبنلى داراى تعداد ارقــام متساوى بيــان كرديم ("ترتيب لغتى) ناميله ميشود. زيرا در يكك كتاب لغت دو كلمه طبق ترتيب עئانيأه مسـرتب شلمانده ارتــام با حرون (\$كلكسيون مرتبه كه (ا لفباه ناميله ميسود جا يگز ين شدهاند.

فصـ

مضربهاى مشتر

مقسوم عليه هاى مشتر كـ
 اعلاد اول

در تمام اين نصل مجموعه *N اعداد طبيعى سواى صفر را در نظر ميگيريم.

مضر بهاى مشترك

 $\mathscr{X}(a)=\{a,\ulcorner a, \longleftarrow a, \cdots, n a, \cdots\}$

نمايش ميدهيم

تعريف - اكر دو عدد طبيعى a و b دا داشته باشيم، هر عدد x كه در عين حال هم به و هم به $(x \in \mathscr{X}(a) \quad, \quad x \in \mathscr{X}(b)) \quad \Longleftrightarrow \quad x \in \mathscr{X}(a) \cap \mathscr{M}(b)$ مجموعه مضر بهاى مشترك a a و b را بصودت زير مينويسيم $\mathscr{X}(a, b)=\mathscr{X}(a) \cap \mathscr{M}(b)$

$$
\begin{aligned}
& \mathscr{A}(1 r)=\{1 r, r y, r q, r \lambda, 40, v r, \cdots\} \\
& \mathscr{R}(\mid \lambda)=\left\{1 \wedge, r_{\varphi}, \Delta \varphi, \nu r, 9 \circ, 1 \circ \wedge, \cdots\right\} \\
& \mathscr{M}(|r,| \lambda)=\{r я, r r, \cdots\} \\
& \text { تبصره ا- فصل مشتركُ جابجابذير است. جس: } \\
& \mathscr{M}(a, b)=\mathscr{X}(b, a)
\end{aligned}
$$

تبصره

$$
\mathscr{M}(a b)=\mathscr{M}(a, b)
$$

كو چكترين مضرب مشترلك

 - مينو يسيم $\mu(a, b)$

ترتيب داريم :

$$
\mu(a, b)=\min \mathscr{M}(a, b)
$$

قا نون تشكيل ك. م. م.

$$
\begin{gathered}
\text { تعريف - بهر زوج مر تب } a \text { و } a \text { دو عدد از } N^{*} \text { را باد } \mu(a, b)=\min \mathscr{A}(a, b)
\end{gathered}
$$

همراه ميكنيم. بدين ترتيب يكك قانون تركيب در همه جاى *N معين ميشود كه قانــون تشكيل (پك. م. م.)" ناميده ميشود.

جا بجا هذيرى
ميدانيم :
$\mathscr{M}(a, b)=\mathscr{M}(b, a)$
از آنجا :
$\mu(a, b)=\mu(b, a)$
قانون جا بجا ָذير است.

جزء خخنثى

ملاحظه كنيم كه

$$
\mathscr{M}(1, a)=N^{*} \cap \mathscr{M}(a)=\mathscr{M}(a)
$$

تمامى مجموعه *N جزء خنناى فصل مشتركـ است. پس :

$$
\mu(1, a)=\min \mathscr{M}(a)=a
$$

: اصلى
هركاه a و b دوعلد و

$$
\mathscr{M}(a, b)=\mathscr{M}(\mu)
$$

() حون 1 مضرب a و b است هر مضرب μ مضرب a و b نيز هست. یس:
(1)

$$
\mathscr{M}(\mu) \subset \mathscr{M}(a, b)
$$

ץ (

تقسيم اقليلسى x بر μ را انجام ميدهيم، خارج قسمت اقليدسى q مخالف صفر است:

$$
x=\mu q+r \quad r<\mu
$$

كافى است ثابت كيّم كه $r=0$ است.
ثا بت ميكنيم كه فرض r r به تناقض بر ميخورد. زيرا :

$$
\mu \in \mathscr{M}(a, b) \quad \Rightarrow \quad \mu q \in \mathscr{M}(a, b)
$$

: بنا برا ين $(q \neq 0)$

$$
(x \in \mathscr{M}(a, b) \quad, \quad \mu q \in \mathscr{M}(a, b)) \quad \Rightarrow \quad(x-\mu q) \in \mathscr{M}(a, b)
$$

$$
\text { (فرض كرديم كه } x \text {) } x \text { : }
$$

$$
r \in \mathscr{M}(a, b)
$$

$$
\mu=\min \mathscr{M}(a, b)
$$

وجود دارد و اين يك تناقض است.

(r)

قضي8ا 1 - مجموعه مضر بهاى مشترك دو علد با مجموعه مضر بهاى ك. م. م. آنها منطبىاست.

$$
\begin{aligned}
& \mathscr{M}(\mu) \supset \mathscr{M}(a, b) \\
& \text { با مقا يسه (1) و (Y) بالاخره تتيجه ميشود : } \\
& \mathscr{M}(a, b)=\mathscr{M}(\mu)
\end{aligned}
$$

$$
\begin{aligned}
& x \in \mathscr{M}(a, b) \quad \Rightarrow \quad x \in \mathscr{M}(\mu) \\
& \text { بديهى است كه } x \geqslant \mu \text { زيرا : } \\
& \mu=\min \mathscr{M}(a, b)
\end{aligned}
$$

توزيع هذيرى ضرب بازاء كشكيل ك. م. م. مسئله زير را حل كنيم : با معلوم بودن كـ. م. م. اعداد a و b b، $\mu(a, b)$
، مطلو بست تعيين ك. م. م. اعداد $\mu(k a, k b)$
k عدد معلومى در *N است.
هركاه داشته باشيم :

$$
\mathscr{M}(a)=\{a, r a, r a, \cdots, n a, \cdots\}
$$

مجموعه حاصلضر بهاى اعداد

$$
k \mathscr{M}(a)=\{k a, r k a, ヶ k a, \cdots, n k a, \cdots\}
$$

بديهى است كه :

بهمين ترتيب :

$$
k \mathscr{M}(b)=\mathscr{M}(k b)
$$

سس اكر جميع اجزاء : $\mathscr{M}(a\} \cap \mathscr{M}(b)$

را در k ضرب كنيم، اجزاء :
$\mathscr{M}(k a) \cap \mathscr{M}(k b)$

$$
k \mathscr{M}(a, b)=\mathscr{M}(k a, k b)
$$

بدست ميآ يد يعنى :

بخصوص :

$$
k \cdot \min \mathscr{M}(a, b)=\min \mathscr{A}(k a, k b)
$$

از آنجا :

$$
k \mu(a, b)=\mu(k a, k b)
$$

ضرب، بازاه تشكيل ك. م. م. توزيـع بذير است.
r- مضر بهاى مشترك جنلد عدد كافى است كه به حالت سه عدد طبيى c, b, a اكتفا كنيم.

حالت يكـ اصلى به تعداد بيشتر با استدلال بازكشتى روى اين اصل نتيجه ميشود.
 و (b) و(

$$
(x \in \mathscr{M}(a) \quad, \quad x \in \mathscr{M}(b) \quad, \quad x \in \mathscr{M}(c))
$$

$$
\Leftrightarrow x \in[\mathscr{M}(a) \cap \mathscr{M}(b) \cap \mathscr{M}(c)] .
$$

يادآور شويم كه فصل مشترك در عين
 مجموعه مضر بهاى مشترك c, a, a است.

كو جكترين مضرب مشترك
 نامتاهى است. جون اين يكـ بخش غير تهى از كه (اكوجكتر ين مضرب مشترك $\mu(a, b, c)=\min \mathscr{M}(a, b, c)$

شركتيذيرى قانون تشكيل ك. م. م.

$$
\mu_{1}=\mu(a, b) \quad, \quad \mu_{Y}=\mu(b, c)
$$

ثابت ميكنـم

$$
\mu\left(\mu_{1}, c\right)=\mu\left(a, \mu_{\Upsilon}\right)
$$

بنا به قضبئ ا :

$$
\mathscr{M}(a) \cap \mathscr{M}(b)=\mathscr{M}\left(\mu_{1}\right)
$$

بنا براين :

$$
\mathscr{M}(a, b, c)=\mathscr{M}\left(\mu_{1}, c\right)
$$

باز هم بنا به قضئ 1 :

$$
\mathscr{M}(b) \cap \mathscr{M}(c)=\mathscr{M}\left(\mu_{\curlyvee}\right)
$$

$$
\mathscr{M}(a, b, c)=\mathscr{M}\left(a, \mu_{\mathrm{Y}}\right)
$$

يس داريم :
(Γ)

$$
\mathscr{M}(a, b, c)=\mathscr{M}\left(\mu_{1}, c\right)=\mathscr{M}\left(a, \mu_{Y}\right)
$$

همانى اين مجموعهها تساوى كوجكترين جزء آنها را ايجاب ميكند.

$$
\mu(a, b, c)=\mu\left(\mu_{1}, c\right)=\mu\left(a, \mu_{r}\right)
$$

ت تشكيل ك. م. م. شركت یذير است.
تبصر ا- از (

$$
\mathscr{M}(a, b, c)=\mathscr{M}\left(\mu_{\imath}, c\right)=\mathscr{M}(\mu)
$$

ك μ

تبصره r- بنا به خاصيتهاى قبل ميتوان كفت :

قضي\&
معين ميكند. هيجَ عدد متمايز از ا در اين قانون داراى قرينه نِست زيرا :

$$
\mu(a, b)=1 \Rightarrow a=b=1
$$

مقسوم عليههاى مشتر ك
r- مقسوم عليههاى مشترك دو عده.
هرگاه $a \in N^{*}$ باشد مجموعه مقسوم عليههاى a دا با a (a) نما يش ميلهمي :

$$
\begin{aligned}
x \mid a & \Longleftrightarrow x \in \mathscr{D}(a) \\
x \mid a & \Rightarrow \quad N^{\star} \text { ميدانيم كه دی }
\end{aligned}
$$

يس، (a) (a) داراى بزركترين جزء a است و بنا براين متناهى است.

$$
(x \in \mathscr{D}(a) \quad, \quad x \in \mathscr{D}(b)) \quad \Longleftrightarrow \quad x \in \mathscr{D}(a) \cap \mathscr{D}(b)
$$

مجموعه مقسوم عليهماى مشتركـ b, a نوشته ميشود :

$$
\mathscr{D}(a, b)=\mathscr{D}(a) \cap \mathscr{D}(b)
$$

קند شثال -

$$
\begin{align*}
& \mathcal{D}(1 r)=\{1, r, r, \psi, \varepsilon, \mid r\} \tag{1}\\
& \mathcal{D}(\mid \Delta)=\{1, r, \Delta, \mid \Delta\}
\end{align*}
$$

بس :

$$
\begin{gather*}
\mathscr{D}(1 r, 1 \Delta)=\{1, r\} \\
\mathscr{D}(r \circ)=\{1, r, r, \Delta, 10, r \circ\} \tag{r}\\
\mathscr{D}(r r)=\{1, r, \mid 1, r r\}
\end{gather*}
$$

بس
$\mathcal{D}(r \circ, r r)=\{1\}$

اعداد نسبت بهم اول
تعريفـ دو عدد a a نسبت بهم اولند اكر :
$\mathscr{D}(a, b)=\{1\}$

تبصره ا- فصل مشترك جابجا بذير است، داريم:

$$
\mathscr{D}(a, b)=\mathscr{D}(b, a)
$$

تبصره
است.

بزرتكترين مقسومعليه مشترك
($\mathcal{D}(a, b)$ جس ناميده ميشود و آنرا با:

$$
\delta(a, b)
$$

نما يش ميلهيم.
تبصره- بزركترين جزه هريك بخش A از N بصودت: max A نوشته ميشود و بدين

$$
\delta(a, b)=\max \mathscr{D}(a, b)
$$

قانون تشكيل ب. م. ع. م.

همراه ميكنيه.

ناميله ميسود.

جا بجا بذيرى ميدانيم كه:

$$
\mathscr{D}(a, b)=\mathscr{D}(b, a)
$$

קس:

$$
\delta(a, b)=\delta(b, a)
$$

قانون جا بجاپذير است.

قانون تشكيل ب. م. ع. م. داراى جزء خنثى در *N نيست.

 ثابت كنيم كه در *N عددى مانند e وجود ندارد بقسميكه:$$
\delta(a, e)=a
$$

$$
\text { باشد (هرحه باشد * } a \in N^{*}
$$

در حقیقت مم هرجه باشد $a \in N^{*}$ ميبايستى داشته باشيم:

$$
\mathscr{D}(a) \cap \mathscr{D}(e)=\mathscr{D}(a)
$$

ولى جزه خنتاى فصل مشترك مجموعه P (P بخشهاى e $e N^{*}$ وجود نلارد بقسميكه: $\mathscr{D}(e)=N^{*}$
جونكه (e) (e متنامى است.

تبصره- ميدانيم كه در N (با بودن صفر) هر عدد x صفر را ميسمارد يس در N:

$$
\begin{aligned}
& \delta(a, b)=\max \mathscr{D}(a, b)
\end{aligned}
$$

D (o) $=N$
و (o) (o يك جزء خنّى برای فصل مشتركـ در P(N) است.

هركاه a و b دو عدد و ס ب. م• ع. م. آنها باشد. ثابت ميكنيم:

$$
\mathscr{D}(a, b)=\mathscr{D}(\delta)
$$

 و b را ميشمارد. يس داريم:
(a)
$\mathscr{D}(\delta) \in \mathscr{D}(a, b)$

كنيم

$$
\mathscr{D}(a, b)=\left\{d_{\imath}, d_{\curlyvee}, \cdots d_{n}\right\}
$$

كوچكترين مضرب مشترك n عدد

$$
\mu=\mu\left(d_{1}, d_{Y}, \cdots, d_{n}\right)
$$

$$
a \in \mathscr{M}(\mu) \quad, \quad b \in \mathscr{M}(\mu)
$$

و اين بدان معنى است كه:

$$
\mu \in \mathscr{D}(a) \quad, \quad \mu \in \mathscr{D}(b)
$$

بنا براين:

$$
\mu \in \mathscr{D}(a, b)
$$

 تعلق دارد و بنا براين بزركترين آنها است:

$$
\begin{aligned}
& \mu=\max \mathscr{D}(a, b) \\
& \mu=\delta
\end{aligned}
$$

يعنى:
هون:

$$
d \in \mathscr{D}(a, b) \Rightarrow d \mid \mu
$$

(جون μ مضرب جميع dها است). خواهيم داشت:

$$
d \in \mathscr{D}(a, b) \Rightarrow d \mid \delta
$$

يعنى:
(я)
$\mathscr{D}(a, b) \subset \mathscr{D}(\delta)$
با معايسه (ه) و (ء) نتبجه ميشُود:
$\mathscr{D}(a, b)=\mathscr{D}(\delta)$

قضياء ץ- مجموعه مقسومعليهماى مشتركـ دو عدد بــا مجموعه مقسومعليهماى ب. م• ع. م آنها
منطبت است.

توزيعيذيرى ضرب نسبت قانون تشكيل ب. م• ع. م.
مسئله زير را بردسى ميكنيم:
با معلوم بودن ب. م. ع. م. اعداد a و b:
$\delta(a, b)$
مطلوب است بيدا كردن ب. م. ع. م. اعداد ka و ka

$$
\delta(k a, k b)
$$

k عدد معلومى در * ${ }^{*}$ است.

$$
\begin{aligned}
& \text { فرض كنيم } \\
& \delta|a \Rightarrow k \delta| k a \\
& \delta|b \Rightarrow k \delta| k b
\end{aligned}
$$

بس k k مقسومعليه مشترك ka و kb است، بنا بـه قضبئ r، k k مقسومعليهى از ب. م. ع. م. اعداد ka و kb است:
$k \delta \mid \delta^{\prime}$
بس يك عدد q ع
(v)

$$
\delta^{\prime}=k \delta q
$$

در اين صورت داريم:

$$
\delta^{\prime}|k a \Rightarrow k \delta q| k a \Rightarrow \delta q \mid a
$$

با جايگزين كردن a با b:

$$
\delta q \mid b
$$

بس סq يكـ مفسومعليه مشترك a و b است. جون δ بزركترين مفسومعليه مشترك a و

بِ يِههاى آن اليز رياضى جديد

$$
\begin{aligned}
& \text { b است زس الزاماً } \\
& \delta^{\prime}=k \delta \\
& \delta(k a, k b)=k \delta(a, b) \\
& \text { ضرب بازاه قانون تشكيل ب. }
\end{aligned}
$$

f.

در اينجا نيز به حالت سه علد طبيعى a و b و c اكتفا ميكنـم:

 $(x \in \mathscr{D}(a) \quad, \quad x \in \mathscr{D}(b) \quad, \quad x \in \mathscr{D}(c))$

$$
\Leftrightarrow \quad x \in[\mathscr{D}(a) \cap \mathscr{D}(b) \cap \mathscr{D}(c)]
$$

چون فصل مشترك در عين حال جا بجا چذير و شركتضذيـر است، فصل مشترك قبلى را
 علبهماى مشترك a و b و c است.
c بزرتمترين مقسومعليه مشتركى a و b
 و بعلاوه
 $\boldsymbol{\delta}(a, b, c)=\max \mathscr{D}(a, b, c)$

شركتخِيرى تشعيل ب. م• ع• م. مينو يسيم:

$$
\delta_{1}=\delta(a, b) \quad, \quad \delta_{Y}=\delta(b, c)
$$

بنا به قضيهُ

$$
\mathscr{D}(a) \cap \mathscr{D}(b)=\mathscr{D}\left(\delta_{\backslash}\right)
$$

در نتيجه:

$$
\mathscr{D}(a, b, c)=\mathscr{D}\left(\delta_{1}, c\right)
$$

باز هم بنا به قضيهُ س:
$\mathscr{D}(b) \cap \mathscr{D}(c)=\mathscr{D}\left(\delta_{\Upsilon}\right)$

$$
\mathscr{D}(a, b, c)=\mathscr{D}\left(a, \delta_{\curlyvee}\right)
$$

جس داريم:
(1)
(9)

همانى اين مجموعهما تساوى بزركترين جز\& آنها را ايجاب مىكند:
$\mathscr{D}(a, b, c)=\mathscr{D}\left(\delta_{\curlyvee}, c\right)=\mathscr{D}\left(a, \delta_{\Upsilon}\right)$

$$
\delta(a, b, c)=\delta\left(\delta_{\backslash}, c\right)=\delta\left(a, \delta_{Y}\right)
$$

Po

$\mathscr{D}(a, b, c)=\mathscr{D}\left(\delta_{1}, c\right)=\mathscr{D}(\delta)$
ס بزركترين مقسومعليه مشترك a و b و c است.
مجموعه بزركتر ين مقسومعليههاى مشترك جند عــد بر مجموعه مقسومعليههاى ب. م.
ع. م. آنها منطبق است.
تبصره Y- بنا به خاصيتهاى قبلى ميتوان كفت:

قضيهُ مـ قانون تشكيل ب. م• ع. م يكـ بنيان نيم كروه جا بجا بذير را در *N معين مينمايد. اين نيمكروه داراى جزء خنتى نيست. و بالاخره قضيهُ بخش بذيرى را اثبات ميكنيم.

فضيا بخششيذيرى
اكر عددى حاصل ضرب دوعامل دا بشمارد و با يكى ازآنها اول باشد دبگگى را ميشمارد. اگر a و b دو عدد نسبت بهم اول باشند:

$$
\begin{gathered}
\delta(a, b)=1 \\
a \mid b c
\end{gathered}
$$

بنا به توزيـيذيرى حاصل ضرب:

$$
\delta(c a, c b)=c
$$

(قضئُ
$a \mid \delta(a c, b c)$
و در نتيجه:
$a \mid c$
و قضيه ثابت است.

اعداد اول
هـ اعلاد اول. خواص.
اعـدادى در *N وجود دارند كــه جز خو دشان و واحد داراى مقسومعليه ديگرى نيستند r, يكى علد a -

$$
\mathscr{D}(a)=\{1, a\}
$$

جون عدد يك جميـع عددها را ميسمارد بدين جهت يك را از تئورى كنار مىگذارند و مجموعه اعداد طبيعى سو ای صفر و يكـ را با ${ }^{\prime}$ نما يش ميلهند.

تعريفـ عدد اول عبارت از عدد طبيعى a در 'N است بقسمى كه:

$$
\mathscr{D}(a)=\{a\}
$$

Pr هركاه a علد غير اول باشد (a) (Q حد اقل شامـل يكـ جزء متمايز از a است: فـرض

$$
d=\min \mathscr{D}(a)
$$

ميگّوئيم كـه d اول است، زيرا اگـــر اول نبود حداقل يكـع عــدو 'd وجــود ميداشت
بطوريكه:
$d^{\prime} \mid d$
با
$d^{\prime} \in \mathscr{D}(a)$
با
PA اكر يك عد اول حاصل ضرب دو عامل اول را بشمارد مساوى يكى از آنها است.

a=c
$\mathscr{D}(a)=\{1, a\} \quad, \quad \mathscr{D}(b)=\{1, b\}$
از T آنجا:
$\mathscr{D}(a, b)=\{1\}$
(》دو عدد اول نسبت بهم اولاندهِ
از آنجا بنا به قضئ بخشىذيرى نتيجه ميشود كه:
$a \mid c$
و جون c اول است اين رابطه جز بازاء $a=c$ صادق نيست.
خاصيت ثابت است.
(${ }^{\text {Pa }}$
p

$$
P=\left\{p_{\imath}, p_{r}, \cdots, p_{n}\right\}
$$

عدد:

$$
a=p_{\backslash} p_{r} \cdots p_{n}+1
$$

را در نظر ميگيريم
بديهى است كه a بزركتر از بزركترين همئ pها است: $a>\max p$

دو حالت ممكن است اتفاق بيفتد:
 (\quad (
در اين صورت داريم جونكه مساوى يكى از اين عوامل است.
$\left(d|a \quad, \quad d| p_{\backslash} p_{Y} \cdots p_{n}\right) \Rightarrow d \mid 1 \quad$ (تناقض)
هركدام از اين دو حالت به تناقض منجر ميگردد.

¢ـ تجزيه يك علد به عوامل اول.
ميخواهيم استدلال كنيم كـه هر عــد غير اول a ميتواند بصورت يكـ حاصل ضرب از

$$
a=p_{\backslash} p_{Y} \cdots p_{n}
$$

در اين صورت ميگو يند كه (\# به حاصل ضرب عوامل اول تجزيه شله است)"

وجود تجزيه
عدد غير اول a حد اقل داراى يكـ مقسومعليه اول p, است.

$$
a=p_{\backslash} a_{1} \quad p_{\backslash} \in p \quad a_{\backslash}<a
$$

اگر $a_{1} \in P$ وجود تجز يه ثابت است.
اكر

$$
\begin{aligned}
& a_{1}=p_{Y} a_{Y} \quad p_{Y} \in p \quad a_{Y}<a_{1} \\
& a=p_{\backslash} p_{Y} a_{Y} \quad p_{\backslash}, p_{Y} \in P \quad a_{Y}<a_{\}<a \\
& \text { اكر } \\
& \text { اكر } \\
& \text { در مرحله برديف } k \text { ميرسيم به: } \\
& a=p_{\backslash} p_{Y} \cdots p_{k} a_{k} \quad p_{\backslash}, p_{Y}, \cdots, p_{k} \in P
\end{aligned}
$$

يعنى:
(10) $\quad a>a_{1}>a_{Y}>\ldots>P_{k}$

رشته (10) اكيداً نزولى است. اين بخشى از N است. و هون بتوسط a فرا بسته است
جس متنامى است.
عددى مانند $n \in N$ وجود دارد كه اصلى رشته a^{\prime} را نما يش ميلهد:

$$
a_{n}=p_{n} \in P
$$

زيرا اكر داريم:

$$
\begin{aligned}
& a=p_{\backslash} p_{Y} \cdots p_{n} \\
& \text { با }
\end{aligned}
$$

يكتأى- فرض كنيم كه بر اى يك علد a دو تجزيه وجود داشته باشد: در اين صورت داريم:
(11)

$$
p_{\backslash} p_{Y} \cdots p_{n}=p_{\backslash}^{\prime} p_{\curlyvee}^{\prime} \cdots p_{m}^{\prime}
$$

جون \p طرف اول را ميشمارد بايد طرف دوم را بشمارد. بنا به خاصيت (P يكى از '
فرض كنيم ,
(11) را بر

$$
p_{\curlyvee} \cdots p_{n}=p_{\curlyvee}^{\prime} \cdots p_{m}^{\prime}
$$

همين استدلال را از سر ميگيريم. بدين ترتيب به همان
n عامل اول طرف دوم ميرسيم (با فرض n n n).

با شروع از طرف دوم (11) و با از سر گرفتن تمامى استدلال به ممان كردن m عامل اول طرف دوم با m عامل طرف اول ميرسيم (با فرض m ا m (m) از آنجا نتيجه ميشود m=n m و يكتائى تجز يه ثابت است

قضيهو ه- هرعدد غير اول حاصلضرب عوامل اول است و تجزيه با با تر تيب تقريب يكتا است.
 و تكرار اين عمل با سايل عاملها بالاخره نتيجه:

$$
a=p^{\alpha} q^{\beta} \cdots r^{\lambda}
$$

حاصر ميشّود.
تعلاد عاملهاى $\lambda, \cdots, \beta, \alpha$

همزنششتى

1- تعر.يف و خواص

 بر n مىدهد و مينو يسند:
$a \equiv b \quad(\bmod n)$

$$
n=0 \quad \text { مثال }
$$

باقيمانده تقسبم r Y بر ه برابر r است
باقيمانده تقسبم Y بر بر ه برابر Y است

بس:
$M \equiv Y V \quad(\bmod \Delta)$

خواص:
زي زيرا بديهى است كه خودبذير است:
$a \equiv a \quad(\bmod n)$
و متقارن است:

$$
(a \equiv b \quad(\bmod n)) \quad \Rightarrow \quad(b \equiv a \quad(\bmod n))
$$

$$
(a \equiv b \quad, \quad b \equiv c) \quad \Rightarrow \quad a \equiv c \quad(\bmod n)
$$

 مضر بى از n باشد. 1) انبات كنيم:

$$
\begin{aligned}
(a \geqslant b) \quad(a \equiv b \quad(\bmod n)) \quad \Rightarrow & a-b \in \mathscr{M}_{n} \\
& : \text { تقسبم كنيم } n \text { بر } a, a
\end{aligned}
$$

$$
\begin{aligned}
& a=n q+r \\
& b=n q^{\prime}+r \quad . \quad r<n \\
& a-b=n\left(q-q^{\prime}\right) \quad, \quad a-b \in \mathscr{M}_{n} \\
& \text { r } \\
& (a-b) \in \mathscr{M}_{n} \quad \Rightarrow \quad(a \equiv b \quad(\bmod n)) \\
& \text { زيرا: } \\
& (a-b) \in \mathscr{V}_{n} \quad \Rightarrow \quad(\exists k ; \quad a-b=n k) \\
& \text { b را بر n تقسيم كنيم: } \\
& b=n q+r \quad, \quad r<n \\
& \text { از آنجا نتيجه ميشود: } \\
& a=b+n k=n(k+q)+r \quad, \quad r<n \\
& \text { بنا براين باقيمانلةٔ تقسيم a بر n نيز r است. بس: } \\
& a \equiv b \quad(\bmod n)
\end{aligned}
$$

rـ طبقات ماندهاى ملوولو n

نسبت هــم نهشتى يک نسبت هــمارزیى است و در N يكـ افراز به طبقات همارزى را انجام ميدهد (I، فصل (I، \&)
مجموعه اعداد هم نهشت بيك عدل a a يكـ طبفه همارزى بـه نما يندكى a تشكيل ميلهند كه با

$$
\bar{a}=\{r, r+n, r+r n, \cdots, r+k n, \cdots\}
$$

كهr باقيمانده تقسيم اقليدسى a بر n است.
ولى در تقسيم اقليدسى يكـ عدد a بر n n باقيما نده امكان وجود دارد. اين باقيماندهها مجموعه زير را تشكيل ميدهند.

$$
[0, n-1]=\{0,1, r, r, \cdots, n-1\}
$$

بدين ترتيب به تعداد متناهى n طبعه ماندهٔ مدو لو n وجود دارد:

$$
\begin{gathered}
\bar{\circ}=\{0, n, r n, \cdots, k n, \cdots\} \\
\overline{1}=\{1,1+n, 1+r n, \cdots, 1+k n, \cdots\}
\end{gathered}
$$

$$
(\overline{n-1}\}=\{n-1,(n-1)+n,(n-1)+r n, \cdots,(n-1)+k n, \cdots\}
$$

مثال
دو باقيمانده امكان دارد: ه و I • چس دوطبقه مدولو r وجود دارد.
$\bar{\circ}=\{0, r, r, \cdots, r k, \cdots\}=\quad$ طبعه عددهاى زو
$\bar{i}=\{1, r, \Delta, \cdots, r k+1, \cdots\}=$ طبعه عددهاى فرد

$$
N=\bar{\circ} \cup \overline{1}
$$

هثال

$$
\begin{aligned}
& \bar{\circ}=\{0, \Delta, \mid \circ, \cdots, \Delta k, \cdots\} \\
& \overline{1}=\{1, \varphi, \mid 1, \cdots, \Delta k+1, \cdots\} \\
& \bar{r}=\{r, v, \mid r, \cdots, \Delta k+r, \cdots\} \\
& \bar{\mu}=\{r, \wedge, \mid r, \cdots, \Delta k+r, \cdots\} \\
& \bar{r}=\{\varphi, q, \mid \psi, \cdots, \Delta k+r, \cdots\} \\
& N=\bar{\circ} \cup \overline{1} \cup \bar{r} \cup \bar{r} \cup \bar{\varphi}
\end{aligned}
$$

از اجتماع جميـع اين طبقات مجموعه N اعداد طبيعى بدست ميآ يد.

شـ عمليات ووى هم نـششتها

$$
\left(\begin{array}{l}
a \equiv a^{\prime} \\
b \equiv b^{\prime}
\end{array} \quad(\bmod n)\right) \Rightarrow\left(a+b \equiv a^{\prime}+b^{\prime} \quad(\bmod n)\right) \quad \mathrm{P}_{1}
$$

$$
\begin{aligned}
& \text { l) ابتدا حالت ' } \\
& \text { بنا به فرض داريم: } \\
& a-a^{\prime} \in \mathscr{M}_{n} \\
& a-a^{\prime}=(a+b)-\left(a^{\prime}+b\right) \in \mathscr{M}_{n} \\
& \text { از T آنجا: } \\
& \left(a \equiv a^{\prime} \quad(\bmod n)\right) \quad \Rightarrow \quad\left(a+b \equiv a^{\prime}+b \quad(\bmod n)\right) \\
& \left(b \equiv b^{\prime} \quad(\bmod n)\right) \quad \Rightarrow \quad\left(a^{\prime}+b \equiv a^{\prime}+b^{\prime} \quad(\bmod n)\right) \\
& \text { بنا به سرايتخِيرى نتيجه ميشود: } \\
& a+b \equiv a^{\prime}+b^{\prime} \quad(\bmod n) \\
& \left(\begin{array}{l}
a \equiv a^{\prime} \\
b \equiv b^{\prime}
\end{array} \quad(\bmod n)\right) \quad \Rightarrow \quad\left(a b \equiv a^{\prime} b^{\prime} \quad(\bmod n)\right) \quad \mathrm{P}_{Y} \\
& \text { 1) ابتدا حالت ' } \\
& \text { بنا بغرض داريم: } \\
& a-a^{\prime} \in \mathscr{M}_{n} \\
& b\left(a-a^{\prime}\right) \in \mathscr{M}_{n} \quad, \quad\left(b a-b a^{\prime}\right) \in \mathscr{M}_{n} \\
& \text { در نتيجه: }
\end{aligned}
$$

$x \in N$ هر x به باشد

$$
(a \equiv b \quad(\bmod n)) \quad \Rightarrow \quad\left(a^{x} \equiv b^{x} \quad(\bmod n)\right)
$$

خاصيت بازاء x=0 $x=1$ اششكار است. بفرض درست بودن آن بازاء x آنـرا

$$
\text { بازاء } x+1 \text { ائبات ميكنيم. }
$$

با فرض بازكشتى در عين حال داريم:

$$
a \equiv b \quad(\bmod n) \quad, \quad a^{x} \equiv b^{x} \quad(\bmod n)
$$

بنا به PY:

$$
a^{x+1} \equiv b^{x+1} \quad(\bmod n)
$$

يس خاصيت درست است (هرچه باشد x)
p

$$
\left.C_{n}=\{\overline{0}, \overline{1}, \bar{r}, \ldots, \overline{n-1})\right\}
$$

ميخو اهيم در اين مجموعه دو قانون تركيب موسوم به جمع و ضرب معين نمايُمْ:
$\bar{a}+\bar{b}$ جوس \bar{b}, \bar{a} جمع است بدو طبقه نما يش داده ميشود با:

$$
\bar{a}+\bar{b}=\overline{a+b}
$$

معين ميگگردد همر اه ميكنِمَ. ميخوانيم: ((طبقه +
اين تعر يف مستقل از نما يندههاى منتخب براى طبقات a و b است. زيرا:

$$
\left.\overline{(a}=\overline{a^{\prime}} \quad, \quad \bar{b}=\overline{b^{\prime}}\right) \quad \Rightarrow \quad\left(\overline{a+b}=\overline{a^{\prime}+b^{\prime}}\right)
$$

خو اصـ جمـع، جا بجا يذير و شركت بذير و داراى جز\& خنثاى مَ است. ثابت ميكنيم كه هرطبقه C_{n}
زيرا با معلوم بودن \bar{a} معلوم كنيم T آيا عددى مانند \bar{x} وجود دارد بقسميكه:

$$
\bar{a}+\bar{x}=\bar{o}
$$

 از طرف ديگر ميدانيم كه

$$
\begin{align*}
& \bar{a}+\bar{x}=\bar{n} \\
& \overline{a+x}=\bar{n} \tag{يا}
\end{align*}
$$

جون $a<n$ است

$$
x=n-a
$$

در حقيقت هم:

$$
\bar{a}+\overline{n-a}=\overline{a+(n-a)}=\bar{n}=\bar{\circ}
$$

بازاه جمـع است.
 نمايش داده ميشود و با:

$$
\bar{a} \cdot \bar{b}=\overline{a b}
$$

معين ميگردد همراه كنيم.

اين تعريف مستقل از نمايندههاى منتخب براى طبعات است زيرا:

$$
\left(\bar{a}=\overline{a^{\prime}} \quad, \quad \bar{b}=\overline{b^{\prime}}\right) \quad \Rightarrow \quad \overline{a b}=\overline{a^{\prime} b^{\prime}}
$$

خو اص- ضرب جا بجايذير و شركت بذير داراى جزه خنثاى َ است. بعلاوه نسبت بـه جمـع طبقات توزيعيذير است:

$$
\begin{array}{r}
\bar{a}(\bar{b}+\bar{c})=\bar{a} \cdot \overline{b+c} \\
\bar{a} \cdot \overline{b+c}=\overline{a(b+c)} \\
\overline{a(b+c)}=\overline{a b+a c}=\overline{a b}+\overline{a c} \tag{توزيـعـذيرىدرN}
\end{array}
$$

(تعر يف ضرب)

يس ميتوانيم بگوئيم:
جم
جستجوى ${ }^{\text {C }}$ داراى بنيان هيئت $C_{n} \bar{a} \neq 0$ برای اينكه يك C_{n} داراى بنيان هيئت باشل، لازم و كافى است كه طبقه

داراى يكـ ((معكوس) \bar{x} باشد (قرينه نسبت به ضرب):

$$
\bar{a} \cdot \bar{x}=\overline{1}
$$

زيرا:

$$
(\bar{a} \cdot \bar{x}=\overline{1}) \quad \Longleftrightarrow \quad(a x \equiv 1 \quad(\bmod n))
$$

$$
a x=1+n q
$$

اگر n اول نباشد حداقل داراى يكع مقسومعليه متمايـز از ا است. اين مقسومعليه را
ميناميم: n | n. خو اهيم داشت:

$$
\begin{equation*}
(a|a x \quad, \quad a| n q) \Rightarrow a \mid 1 \tag{تناقض}
\end{equation*}
$$

تساوى
نِست• يس:
اكَ n اول نباشد ${ }^{\text {او }}$ يك هيئت نيست.
ه هر طبعه o از ايـن فاصله را اختِيار نمائيم و جميـع حاصلضر بهاى ax را كــه در آنجا x همــان فاصله را ميتيما يد در نظر بگير يم:

$$
\{a, r a, r a, \cdots, x a, \cdots,(n-1) a\}
$$

تقسيم اقليدسى xa بر n را انجام دهيم:
ثا بت كنيم كه هيجِ باقيماندهاى برا بر صفر نيست زيرا اكر يك باقيمانده برابر صفر بود لازم ميآمد:

$$
x a \equiv \circ \quad(\bmod n)
$$

 بنا به قضيه بخش يذيرى x | n و اين متناقض با:

$$
x \in[1, n-1]
$$

حال ثابت ميكنيم كه جميع باقيماندههـا متما يز نـلـ. زيرا اكر ax و ax باقيماندههــاى متساوى بدهند لازم ميآ يد:

$$
x a \equiv x^{\prime} a \quad(\bmod n)
$$

از آنجا (اكر 'x x باشد):

$$
\left(x^{\prime}-x\right) a \equiv \circ \quad(\bmod n)
$$

x' = x و از اينجا بهمان تناقض بالائى ميرسيم. چس داريم
 يس يكـ عدد x يكتا وجود دارد بطوريكه ax باقيمانده ا داشته باشد:

$$
\forall \bar{a} \in C_{n}-\{\bar{\circ}\} ; \quad \exists x \in\{1, n-1\} ; \quad a x \equiv 1 \quad(\bmod n)
$$

$$
\bar{a} \cdot \bar{x}=\overline{1}
$$

C C_{n} يكـ هيئت باشد لازم وكافى است كه n هثال $n=0$ -

شكل 1

معكوسهاى

$$
\begin{aligned}
& \bar{i} g \bar{r} g \bar{r}^{\prime} \\
& \bar{i} g \bar{r}, \bar{r}
\end{aligned}
$$

بترتيب عبارتند از:

سس ${ }_{\text {W }}$ يكـ هيئت است.
 است. خاطرنشان شود كه بغضى طبقات غير صفر داراى يك حاصل ضرب صفر ميباشند.

$$
\bar{r} \cdot \bar{r}=\bar{\circ} \quad \bar{r} \cdot \bar{f}=\overline{0} .
$$

شك

部
مثلا":
از

0.0.0.00

اعداد منطق مثبت

جراى جهـّ، همانطور كه براى هــرب، هجموعـه N اعــداد
 (سواى هفر براى ضرب) منتظم ميباشد.
در اين قسهتا مجموعه وسيـتر + ${ }^{+}$ساخته مى شود كه شامل N است : مجموعـه اعـداد منطتّ مثبت. خـرب به + ${ }^{+}$بنـيان گــروه ميبخشد: هر عدد منطت (سواى صفر) داراى يك معكوس است. بررسى هسئله نمايتّ رقمى اعداد در يك مبناى b b بـه هبين كردن يك گونه مخصوصى \ز اعداد منطقى منجر مىشود: اعداد b ا (b-naire) : نمايشّى يك عدد b b أى در مبناى b يـكك هورتبندى منقسم بدو قسهت با يكـ مهيز است.
بررسى عمليات در مجموعه + ${ }^{+}$اعداد b - أى نشان ميـدهد كه

 ميتوانند، بقدر دلخواه به هر عدد منطت غير متعلق بـه + ${ }^{+}$ثزديك شوند. اين تقريبات عتوالى به تصور هورتبــندى نامتناهى يكت عـــدد منطيّ در

 بعدى، بدان وسيله، تريف اعداد اهم مطرح خواهد شُد.

5)

ساخت مجمو عه اعلاد منطق مثبت

ا- ساخت مجموعه اعداد منطق مثبت
شيئى را در نظر بغير يم كه بتواند به b قسمت متساوى تقسيم شود. اكر اين شىئ را با
علد ا نشان بدهيمهركدام از قسمتها با سمبل اكر a تا از اين قسمتها را با هم يكى كيم يكـ شى ج جديد تشكيل ميشود كه با سمبل:

$$
\begin{aligned}
& \frac{a}{b} \\
& \text { نمايش داده ميشود و آنرا نيز يك (اكسر مينامنده) }
\end{aligned}
$$

تَعريف - زوج مرتب a و b دو عدد طبيتى را كه دومى مخالف صفر است كسر مينامند. عدر اول a را صورت مينامند عدد دوم b را مخر ج مينامند

كسر را با علامت :

$$
\frac{a}{b}
$$

نمايش ميدهند.
دراين تعر يف a ميتواند صفر باشد و حداكثر برابر b است. شيئى را كـه بــا \ا نشان داديم مجلداً اختيار كنيم. اكر آنرا به b قسمت مساوى تقـيم و از اين قسمتها a تا را اختتار كنيم يكـ شىء نهايش داده شده بـا

 ma

$$
\frac{m a}{m b}
$$

نما يش داده ميشود. بليمى است كه اين شىء بآنكه بصورت $\frac{a}{b}$ است برا بر ميباشد. ميگويند كه كسرهاى :

$$
\frac{a}{b}, \frac{m a}{m b}
$$

(همارز)،اند.
ملاحظه شود كه حاصل ضر بهاى ma)b) و (mb) (صورت هركدام در مخرج ديگرى)

تعـريف - دو كسر $\frac{c}{d}$ مم ارزاند اكر :
$a d=b c$
مينو.يسيم :

$$
\frac{a}{b} \sim \frac{c}{d}
$$

اكر مجموعه جميع كسرها را F بناميم، بدين ترتيب در F يـك ميسود ثابت ميكنيم كه اين، يكك نسبت هم ارزى است زيرا اين نسبت : () خود چذير است:
$\forall \frac{a}{b} \in F \quad: \quad$: $\quad \frac{a}{b} \sim \frac{a}{b}$
$a b=a b$ حو $a b$
r) متقارن است :
$\frac{a}{b} \sim \frac{c}{b} \Rightarrow \frac{c}{d} \sim \frac{a}{b}$
خو نكه :
$a d=b c \quad \Rightarrow \quad c b=a d$
ب) سرايتبذير است :

$$
\begin{aligned}
&\left(\frac{a}{b} \sim \frac{c}{d} \quad, \quad \frac{c}{d} \sim \frac{e}{f}\right) \Rightarrow \frac{a}{b} \sim \frac{e}{f} \\
&: \text { زيرا بنا به فرض }
\end{aligned}
$$

(1)
$a d=b c$
(r)
$c f=d e$
از ضرب طرفين رابطه (1) در f و طرفين رابطه (r) در b :

$$
\begin{aligned}
a d f & =b c f \\
b c f & =b d e
\end{aligned}
$$

از آنجا :
$a d f=b d e$
: $d \neq \circ$ ج
$a f=b e$
يعنى :
$\frac{a}{b} \sim \frac{e}{f}$
نسبت بررسى شده يكـ نسبت هم ارزى است، و اينهم صفت هم ارز را كــه به دو كسر موجود در رابطه داده شده است توجيه ميكند.

طبته متمايز تعلن دارند.

- $\frac{a}{b}$ ساخت طبقه همارزى يك كسر مفروض هركاه

$$
\frac{x}{y} \sim \frac{a}{b} \Rightarrow b x=a y
$$

هرجه باشد y • طبَه هـم ارزى

$$
\left\{\frac{0}{T}, \frac{\circ}{r}, \frac{0}{r}, \cdots, \frac{\circ}{b}, \cdots,\right\}
$$

$$
a=\delta a^{\prime} \quad, \quad b=\delta b^{\prime}
$$

: ${ }^{\text {: }}{ }^{\prime}$ و a^{\prime}
(r) $\quad b x=a y \quad \Longleftrightarrow \quad b^{\prime} x=a^{\prime} y$

چون قضيه بخش يذيرى x دا ميشمارد.
:
$\exists k \in N^{*} \quad x=k a^{\prime}$
با قراردادن اين مقدار در (r):

$$
y=k b^{\prime}
$$

x x و (هم مضر بهای ' a^{\prime} و " ميباشند به فوريت قابل تحقيت است كه :

$$
\frac{a^{\prime}}{b^{\prime}} \sim \frac{k a^{\prime}}{k b^{\prime}} \sim \frac{a}{b} \quad(k=\delta \text { با } \quad \text { فرض })
$$

پس جميع كسرهاى همارز بصورت:

$$
\frac{k a^{\prime}}{k b^{\prime}} \text { ب } k \in N^{*}
$$

ميباشند.
طبقه همارزى $\frac{a}{b}$ كه بـا $\left.\frac{a}{b}\right]$ نما يش داده ميشود عبارت است از:

$$
\left[\frac{a}{b}\right]=\left\{\frac{a^{\prime}}{b^{\prime}}, \frac{r a^{\prime}}{r b^{\prime}}, \frac{r a^{\prime}}{r b^{\prime}}, \cdots, \frac{k a^{\prime}}{k b^{\prime}}, \cdots\right\}
$$

كسر مغروض

يك كسر را با تقسيم دو جمله آن بــريكـ مقسوم عليه مشتركـــ ساده ميكنــند و اگــر بزركترين مقسوم عليه مشتركك δ را ااختيار كنيم دو جمله 'a و ${ }^{\prime}$ و ${ }^{\prime}$ حاصل نسبت بهم اولند و كسر حاصل ديگر سادكى بذير نيست. بدين سبب است كه ميگويند : $\frac{a^{\prime}}{b^{\prime}}$据 $\frac{a^{\prime}}{b^{\prime}}$

تحويل دو كسر بيك مخرج
هرگاه دو كسر آنها بوده و داراى يكك مخرج باشند. براى بدست آوردن تمام جوا بهاى اين مسئله، كسرهاى مغروض را بتر تيب با كسرهـــاى تحويلنابذير همارز جايگز ين ميكنيم:

$$
\begin{array}{cr}
\frac{a}{b} \sim \frac{a^{\prime}}{b^{\prime}} & , \quad \frac{c}{d} \sim \frac{c^{\prime}}{d^{\prime}} \\
\delta\left(a^{\prime}, b^{\prime}\right)=1 & \delta\left(c^{\prime}, d^{\prime}\right)=1
\end{array}
$$

$$
\left.\begin{array}{ll}
\frac{x}{z} \sim \frac{a^{\prime}}{b^{\prime}} & \Rightarrow \\
\frac{y}{z} \sim \frac{c^{\prime}}{d^{\prime}} & \Rightarrow \\
z \in \mathscr{M}\left(b^{\prime}\right) \\
& z\left(d^{\prime}\right)
\end{array}\right\} \Rightarrow z \in \mathscr{M}\left(b^{\prime}, d^{\prime}\right)
$$

اكر μ كوجكترين مضرب مشترك

سادهترين مخرج مستركك خود μ است. داريم:

$$
\mu=b^{\prime} p=a^{\prime} q
$$

$$
p, q \in N^{*} ب
$$

چون :

$$
\frac{a^{\prime}}{b^{\prime}} \sim \frac{p a^{\prime}}{p b^{\prime}} \quad, \quad \frac{c^{\prime}}{d^{\prime}} \sim \frac{q c^{\prime}}{q d^{\prime}}
$$

$$
\frac{a}{b} \sim \frac{p a^{\prime}}{\mu} \quad, \quad \frac{c}{d} \sim \frac{q c^{\prime}}{\mu}
$$

و جميـع جوا بهاى مسئله با $k \in N^{*}$ عبار تند از :

$$
\frac{p a^{\prime} k}{\mu k} \quad, \quad \frac{q c^{\prime} k}{\mu k}
$$

تبصر0 - حل اين مسئلهرا بفوريت براى تحويل حند كسر بيك مخرج كسترش ميلهيم.

اعلاد منطق مثبت

تعـريف - طبته كسرهـاى همارز $\frac{a}{b}$ به (اعداد منطقمبت)") موسوم است.
كسر $\frac{a}{b}$ يك نما ينده عدد منطق مثبت است.
ما قبلا" عدد منطق مُبت را با
مجموعه اعداد منطق مبُت را با Q ${ }^{+}$نما يش ميدهيم (علامت + عـامت صفت ((مشُت)) است كه بطوز كامل در قسمت پنجم معين خو اهل شد و عجالتاً ميتوان از اعداد منطق بدون تكيه به صفت ((مُبْت) صحبت كرد بدون اينكه هر اسى از ابهامى داشته باشيم). اعلاد منطق را با يكـ حرف يو نانى نيز ميتوان نشان داد :

$$
\alpha=\left[\frac{a}{b}\right] \quad \alpha \in Q^{+}
$$

Q+
مجـددأ شى نمايش داده شلهه با ا را در نظر ميگیيريم: اگر آنــرا به b قسمت متساوى
 شی"ها را جـمـع آورى كنيم شى ${ }^{\text {ش }}$ از دومى خو اهد شد و مينو يسبم :

$$
\frac{a}{b}<\frac{a^{\prime}}{b}
$$

ولى شیء

$$
\begin{aligned}
& \frac{m a}{m b}<\frac{k a^{\prime}}{k b} \\
a<a^{\prime} & \Longleftrightarrow(m k b) a<(m k b) a^{\prime} \\
& \Longleftrightarrow N^{*} \text { د } \&(m a)(k b)<(m b)\left(k a^{\prime}\right)
\end{aligned}
$$

 ترتيب تعريف زير بدست ميآيد ：

$$
\begin{aligned}
& \text { تعـريف - هركاه دو عدد منطت(} \\
& \text { 《教 } \left.\left[\frac{a}{b}\right] \text { " }\right]
\end{aligned}
$$

$$
\left[\frac{a}{b}\right] \leqslant\left[\frac{c}{d}\right]
$$

$a d \leqslant b c$
اين تعريف مستقل از نمايندهماى متتخب اعداد منطق است．زيرا ثابت ميكنيم：
$\left(\frac{a}{b} \sim \frac{a^{\prime}}{b^{\prime}}\right.$
，$\quad \frac{c}{d} \sim \frac{c^{\prime}}{d^{\prime}}$
$, \quad a d \leqslant b c) \Rightarrow a^{\prime} d^{\prime} \leqslant b^{\prime} c^{\prime}$
دو عدد منطق:

$$
\left[\frac{\circ}{b}\right] \quad, \quad\left[\frac{\circ}{d}\right]
$$

$a d b^{\prime} c^{\prime}=b c a^{\prime} d^{\prime}$
$a d \leqslant b c \quad \Rightarrow \quad a d b^{\prime} c^{\prime} \leqslant b c b^{\prime} c^{\prime}$
$b c a^{\prime} d^{\prime} \leqslant b c b^{\prime} c^{\prime}$
با تقسيم بر
$a^{\prime} d^{\prime} \leqslant b^{\prime} c^{\prime}$
זس تعريف مستقل از نما يندههاى منتخب است.

ساده كردن تعريف
$b=d=m$ بخصوص ميتو ان نما يندهها را با يكـ مخر ج انتخاب كرد. اگر در تعر يف
قرار دهيم در اين صورت: $a d \leqslant b c \Leftrightarrow a m \leqslant c m \quad a \leqslant c$

و داريم:

$$
\left[\frac{a}{m}\right] \leqslant\left[\frac{c}{m}\right] \quad \Longleftrightarrow \quad a \leqslant c
$$

نسبت تر تيب كلى در +Q

ثابت ميكنيم كه نسبتى كه معين كرديم يكـ نسبت تر تيب كلى در

$$
(\alpha \leqslant \beta \quad, \quad \beta \leqslant \alpha) \quad \Longleftrightarrow \quad \alpha=\beta
$$

$$
(\alpha \leqslant \beta \quad, \quad \beta \leqslant \gamma) \quad \Rightarrow \quad \alpha \leqslant \gamma
$$

$$
\begin{aligned}
& \text { حالت دوم- } \\
& \frac{a}{b} \sim \frac{a^{\prime}}{b^{\prime}} \Rightarrow a b^{\prime}=b a^{\prime} \\
& \frac{c}{d} \sim \frac{c^{\prime}}{d^{\prime}} \Rightarrow d c^{\prime}=c d^{\prime}
\end{aligned}
$$

$$
\text { r) هرجه باشد } \alpha \text { و } \beta \text { در + }{ }^{+} \text {داريم } \beta \leqslant \alpha \leqslant \alpha \text { يا }
$$

1) براى α و β نما يندهماى هم مخر ج انتخاب ميكنيم:

$$
\alpha=\left[\frac{a}{m}\right] \quad, \quad \beta=\left[\frac{b}{m}\right]
$$

داريم:

$$
\begin{aligned}
& \alpha \leqslant \beta \quad \Longleftrightarrow \quad a \leqslant b \\
& \beta \leqslant \alpha \quad \Longleftrightarrow \quad b \leqslant a
\end{aligned}
$$

ولى، در N:

$$
\begin{array}{ll}
(a \leqslant b & , \quad b \leqslant a) \quad \Longleftrightarrow a=b \\
(\alpha \leqslant \beta & , \quad \beta \leqslant \alpha) \quad \Longleftrightarrow \quad \alpha=\beta
\end{array}
$$

سس در +

ץ) براى

$$
\alpha=\left[\frac{a}{m}\right] \quad \beta=\left[\frac{b}{m}\right] \quad \gamma=\left[\frac{c}{m}\right]
$$

$$
\begin{aligned}
& \alpha \leqslant \beta \quad \Longleftrightarrow \quad a \leqslant b \\
& \beta \leqslant \gamma \quad b \leqslant c
\end{aligned}
$$

ولى، در N:

$$
\begin{array}{ll}
(a \leqslant b & , \quad b \leqslant c) \Rightarrow a \leqslant c \\
(\alpha \leqslant \beta & , \quad \beta \leqslant \gamma) \Rightarrow \alpha \leqslant \gamma
\end{array}
$$

יس، در +Q:
r) براى

$$
\alpha=\left[\frac{a}{m}\right] \quad \beta=\left[\frac{b}{m}\right]
$$

ترتيب در N، كلى است. يعنى داريم:

$$
a \leqslant b \quad \text { ᄂ } \quad b \leqslant a
$$

از آنجا نتسجه ميشود كه در +Q نيز ترتبب كلى است:

$$
\alpha \leqslant \beta \quad ᄂ \quad \beta \leqslant \alpha
$$

تبصره - در + ${ }^{+}$نيز مــانتد N يكـ نسبت ترتيب اكيد و فاصلههـاى ((بسته، نيم باز، باز) معين
ميشود.

غوطهورى N در +

$$
a=b n \Longleftrightarrow\left[\frac{a}{b}\right]=\left\{\frac{n}{1}, \frac{r n}{r}, \frac{r n}{r}, \cdots, \frac{k n}{k}, \cdots\right\}
$$

اگر

$$
\mathcal{N} \subset Q^{+}
$$

نظير هرعدد طبيعى $n \in N\left[\frac{n}{1}\right] \in \mathscr{N}$ يكود دارد و بعكس. مجمهوعههاى $n=1$
N

$$
N \leftrightarrows \mathscr{N}
$$

اين تناظر يكـ يك شكلى براى نسبت ترتيب است: زيرا با فرض:

$$
n, n^{\prime} \in N \quad, \quad\left[\frac{n}{1}\right],\left[\frac{n^{\prime}}{1}\right] \in \mathscr{N}
$$

بطوريكه:

$$
n \leftrightarrows\left[\frac{n}{1}\right] \quad, \quad n^{\prime} \leftrightarrows\left[\frac{n^{\prime}}{1}\right]
$$

بنا به تعر يف ترتيب در +Q داريم:

$$
n \leqslant n^{\prime} \Longleftrightarrow\left[\frac{n}{1}\right] \leqslant\left[\frac{n^{\prime}}{1}\right]
$$

یس تناظر يكـيكك شكلى برای نسبت ترتيب است. و سیس اين يكـ شكلى را با يكـ همانى منطبت ميكنيم. به عوض:

$$
n \leftrightarrows\left[\frac{n}{1}\right]
$$

مينو يسيم:

$$
\begin{aligned}
& n=\left[\frac{n}{1}\right] \\
& \text { با همان كردن N و } N \text { ميگويند كه N در } N \text { ((غوطه خورده)) است: } \\
& N \subset Q^{+} \\
& \text {اين غوطهورى براى اعمالى كه در + }{ }^{+} \text {معين خواهند شد بايد توجيه شود. }
\end{aligned}
$$

عملها در +

شىء ا را كه به b فسمت متساوى تفسيم شـه بود در نظر ميگيريم: اگــر يكـ بار a و $\frac{a^{\prime}}{b}$ بار ديگر نمايش داره ميشوند و اجتماع ابن دو شىء يكـ شیء ديگر است كه طبيعتاً با:

$$
\frac{a}{b}+\frac{a^{\prime}}{b}
$$

نمايش داره ميشود.
باين ترتيب ((مجموع كسرها) تعريف ميشود كه با علامت + نشان داده ميشود ولى شىء آخرى
 كنيم بس داريم:

$$
\frac{a}{b}+\frac{a^{\prime}}{b} \sim \frac{a+a^{\prime}}{b}
$$

ولى بجاى

$$
\begin{gathered}
\frac{a^{\prime}}{b} \sim \frac{c}{d} \Longleftrightarrow a^{\prime} d=b c \\
\frac{a}{b}+\frac{c}{d} \sim \frac{a+a^{\prime}}{b} \sim \frac{a d+a^{\prime} d}{b d} \sim \frac{a d+b c}{b d}
\end{gathered}
$$

كسر ماقبل آخر از ضربكردن جملهماى كسر قبلى آن در d و كسر آخرى از قراردادن bc بجاى در كسر قبلىاش بدست آمدهاند و از آنجا تعر يف زير را داريم:
تعريف جمع در +Q

بهر زوج هـرتب
ناميده ميشود و بصورت: $\left[\frac{c}{d}\right],\left[\frac{a}{b}\right]$
$\left[\frac{a}{b}\right]+\left[\frac{c}{d}\right]$
نمايش داده ميشود و با رابطه زير معين ميگردد:

$$
\left[\frac{a}{b}\right]+\left[\frac{c}{d}\right]=\left[\frac{a d+b c}{b d}\right]
$$

اين تعريف مستقل از نمايندمهاى منتخب براى اعداد منطق است زيرا، ثابت ميكنيم كه:

$$
\left(\frac{a}{b} \sim \frac{a^{\prime}}{b^{\prime}} \quad, \quad \frac{c}{d} \sim \frac{c^{\prime}}{d^{\prime}}\right) \Rightarrow \frac{a d+b c}{b d} \sim \frac{a^{\prime} d^{\prime}+b^{\prime} c^{\prime}}{b^{\prime} d^{\prime}}
$$

داريم:

$$
\begin{equation*}
\frac{c}{d} \sim \frac{c^{\prime}}{d^{\prime}} \Rightarrow c d^{\prime}=d c^{\prime} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
a d b^{\prime} d^{\prime} & =b d a^{\prime} d^{\prime} \\
b c b^{\prime} d^{\prime} & =b d b^{\prime} c^{\prime}
\end{aligned}
$$

عضو به عضو جمع ميكنيم:
$(a d+b c) b^{\prime} d^{\prime}=b d\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right) \Rightarrow \frac{a d+b c}{b d} \sim \frac{a^{\prime} d^{\prime}+b^{\prime} c^{\prime}}{b^{\prime} d^{\prime}}$
تعر يف مستقل از نمايندهماى منتخب است.

ساده كردن تعريف.
جــون جمع دو عــدر منطق مستقل از نمايندههــاى آنها است بنا برايـن دو نماينده بــا

$$
\frac{a d+b c}{b d} \sim \frac{a m+c m}{m \cdot m} \sim \frac{m(a+c)}{m \cdot m} \sim \frac{a+c}{m}
$$

$$
\left[\frac{a}{m}\right]+\left[\frac{b}{m}\right]=\left[\frac{a+b}{m}\right]
$$

جا بجا يْنيرى:
Pr $\alpha+\beta=\beta+\alpha$
براى
$\alpha+\beta=\left[\frac{a}{m}\right]+\left[\frac{b}{m}\right]=\left[\frac{a+b}{m}\right]$
$\beta+\alpha=\left[\frac{b}{m}\right]+\left[\frac{a}{m}\right]=\left[\frac{b+a}{m}\right]$
جون جمع در N جابجابذير است:
$a+b=b+a$
بس در +Q داريم:

$$
\alpha+\beta=\beta+\alpha
$$

شركتهچذيرى
Pr

$$
(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)
$$

برای

$$
\frac{a}{m}, \frac{b}{m}, \frac{c}{m}
$$

$$
(\alpha+\beta)+\gamma=\left[\frac{a+b}{m}\right]+\left[\frac{c}{m}\right]=\left[\frac{(a+b)+c}{m}\right]
$$

$$
\begin{aligned}
& \alpha+(\beta+\gamma)=\left[\frac{a}{m}\right]+ {\left[\frac{b+c}{m}\right]=\left[\frac{a+(b+c)}{m}\right] } \\
&:(a+b)+c=a+(b+c) \\
&(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)
\end{aligned}
$$

از آنجا نتيجه ميشود كه: جمع به + ${ }^{+}$بكـ بنيان نيم گُروه جابجا بذ يرى را ميبخشُد.
يك شكلى N و N و بازاء جمع.
هركاه n و 'n دو عدد از N و و :

$$
\left[\frac{n}{1}\right],\left[\frac{n^{\prime}}{1}\right]
$$

نظيرهاى آنها در N با دوسو گّستى
$N \leftrightarrows \mathscr{N}$
باشند بنا به تعريف جمع در +Q داريم:

$$
\left[\frac{n}{1}\right]+\left[\frac{n^{\prime}}{1}\right]=\left[\frac{n+n^{\prime}}{1}\right]
$$

بس، تناظر بازاء جمع يكـ شكل است بدين ترتبب غوطهورى N در + ${ }^{\text {ب }}$ بازاء جمع تأييد ميشود. همانطور كه تا حال براى نسبت تر تيب شده بود.

هرجه باشد + $\alpha \in Q^{+}$داريم:

$$
\alpha+\circ=\alpha
$$

زيرا ميدانيم كه:

$$
\circ=\left[\frac{\circ}{b}\right]
$$

b
و اكر:

$$
\alpha=\left[\frac{a}{b}\right]
$$

:Q Q^{+}

$$
\alpha+\circ=\left[\frac{a}{b}\right]+\left[\frac{\circ}{b}\right]=\left[\frac{a+\circ}{b}\right]=\left[\frac{a}{b}\right]=\alpha
$$

Pr

هيج عدد+Q سواى صفر داراى قرينه نيست

$\alpha+\beta=0$
: $\frac{b}{m}, \frac{a}{m}$

$$
\alpha+\beta=\circ \Rightarrow\left[\frac{a+b}{m}\right]=\circ \Rightarrow a+b=\circ
$$

ولى در N :

$$
\begin{aligned}
& a+b=\circ \quad \Rightarrow \quad a=b=\circ \\
& \alpha+\beta=\circ \quad \Rightarrow \quad \alpha=\beta=\circ
\end{aligned}
$$

از آنجا در Q

براى جمع در +Q هرعلدىى منتظم است
$: \gamma \in Q^{+}$هرحه باشد P_{Δ}
$\alpha=\beta \quad \alpha+\gamma=\beta+\gamma$
زيرا، اتر براى

$$
\begin{aligned}
{\left[\frac{a}{m}\right]+\left[\frac{c}{m}\right]=\left[\frac{b}{m}\right]+\left[\frac{c}{m}\right] } & \Rightarrow\left[\frac{a+c}{m}\right]=\left[\frac{b+c}{m}\right] \\
& \Rightarrow a+c=b+c
\end{aligned}
$$

ولى در N :

$$
a+c=b+c \Rightarrow a=b
$$

از آنجا :

$$
\left[\frac{a}{m}\right]=\left[\frac{b}{m}\right]
$$

با معلوم بودن دو عدد منطق α و β T T يا عدد منطق X وجود دارد بقسمى كه : باشد؟ مسئله مستقل از انتخاب نمايندههاى $\alpha+\chi=\beta$ نما يندههاى هم مخرج اكر

$$
\alpha+\chi=\beta \quad \Longleftrightarrow \quad\left[\frac{a}{m}\right]+\left[\frac{x}{y}\right]=\left[\frac{b}{m}\right]
$$

$$
\frac{a y+m x}{m y} \sim \frac{b}{m} \quad \Longleftrightarrow \quad m(a y+m x)=b m y
$$

: $m \neq 0$ جون

$$
a y+m x=b y
$$

$$
\alpha \leqslant \beta
$$

$$
\begin{aligned}
& \text { فرض كنيم اين شرط بر آورده شود، در اينصورت } m \text {-a)y } \\
& m x=(b-a)
\end{aligned}
$$

: ᄂ

$$
\frac{x}{y} \sim \frac{b-a}{m}
$$

$$
\alpha+\left[\frac{b-a}{m}\right]=\left[\frac{a}{m}\right]+\left[\frac{b-\mid a}{m}\right]=\left[\frac{b}{m}\right]=\beta
$$

يس مسئله داراى جواب است اكر $\alpha \leqslant \beta \leqslant$ باشد. و اين جـواب يكتا است جو نكه هر عدد منطق α سادكى بذير است.

$$
\alpha+\chi=\alpha+\chi^{\prime} \Rightarrow \chi=\chi^{\prime}
$$

خلاصه - اكر $\alpha \leqslant \beta$ باشد يكـ عدد منطق χ يكتا وجود دادد بقسميكه :

$$
\alpha+\chi=\beta
$$

اين علد ((تغاضل β و α) ناميده ميشود و با $\alpha-\alpha$ نشان داده ميشود.
rـ ضرب

 سومى بدين ترتيب بدست ميآيد كه با :

$$
\frac{a}{b} \cdot \frac{c}{d}
$$

نمايش داده ميشود.
و بدين تر تيب (ضرب كسرها) تتر يف ميشود.
شى

$$
\frac{a}{b} \sim \frac{a d}{b d}
$$

را ميتوان مجموع d شىء :
$\frac{a}{b d}$
در نظر كرفت، جو نكه بنا به تعريف جمع:

$$
\underset{\longleftrightarrow}{\frac{a}{b d}+\frac{a}{b d}+\cdots+\frac{a}{b d}} \sim \frac{a+a+\cdots+a}{b d} \sim \frac{a d}{b d}
$$

از آنجا نتيجه ميشود كه اگـر شى

$$
\frac{a}{b d}
$$

نموده ميشوند.
از جمـع آورى c تا از ايـن اشياء شیء آخرى بدست ميآ يد:

$$
\frac{a}{b d}+\frac{a}{b d}+\cdots+\frac{a}{b d} \sim \frac{a+a+\cdots+a}{b d} \sim \frac{a c}{b d}
$$

$$
\longleftarrow \longrightarrow
$$

بس داريم :

$$
\frac{a}{b} \cdot \frac{c}{d} \sim \frac{a c}{b d}
$$

تعريف ضرب در Q+

بهر زوج مرتب

$$
\text { 这 }\left[\frac{a}{b}\right]
$$

$\left[\frac{a}{b}\right]\left[\frac{c}{d}\right] \quad$ ᄂ $\quad\left[\frac{a}{b}\right] \cdot\left[\frac{c}{d}\right] \quad$ ᄂ $\quad\left[\frac{a}{b}\right] \times\left[\frac{c}{d}\right]$
نموده ميشود.
و آنرا با :

$$
\left[\frac{a}{b}\right]\left[\frac{c}{d}\right]=\left[\frac{a c}{b d}\right]
$$

ثابت ميكنيم كه اين تعريف مستقل از نمايندهماى منتخب اعداد منطق است:

$$
\begin{aligned}
& \left(\frac{a}{b} \sim \frac{a^{\prime}}{b^{\prime}}, \frac{c}{d} \sim \frac{c^{\prime}}{d^{\prime}}\right) \Rightarrow \frac{a c}{b d} \sim \frac{a^{\prime} c^{\prime}}{b^{\prime} d^{\prime}} \\
& \text { بنا به فرض داديم : } \\
& a b^{\prime}=b a^{\prime} \\
& c d^{\prime}=d c^{\prime}
\end{aligned}
$$

از ضرب عضو به عضو :

$$
a c b^{\prime} d^{\prime}=b d a^{\prime} c^{\prime} \quad \Rightarrow \quad \frac{a c}{b d} \sim \frac{a^{\prime} c^{\prime}}{b^{\prime} d^{\prime}}
$$

بس تعر يف مستقل از نمايندهماى منتخب است.

جا بجا پذيرى

$$
\begin{aligned}
& \text { : هرجه باشد } P^{\text {ب }} \\
& \alpha \beta=\beta \alpha \\
& \text { زيرا اگر }
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \beta=\left[\frac{a c}{b d}\right] \quad, \quad \beta \alpha=\left[\frac{c a}{d b}\right] \\
& \text { ولى ضرب در N جابجابذير است : } \\
& a c=c a \quad, \quad b d=d b \\
& \text { بس در +Q داريم : } \\
& \alpha \beta=\beta \alpha \\
& (\alpha \beta) \gamma=\alpha(\beta \gamma) \\
& \text { با علامتهاى قبلى و اكر } \\
& (\alpha \beta) \gamma=\left[\frac{a c}{b d}\right]\left[\frac{e}{f}\right]=\left[\frac{(a c) e}{(b d) f}\right] \\
& \alpha(\beta \gamma)=\left[\frac{a}{b}\right]\left[\frac{c e}{d f}\right]=\left[\frac{a(c e)}{b(d f)}\right] \\
& \text { هون ضرب در N شركتخذير است : } \\
& (a c) e=a(c e) \quad, \quad(b d) f=b(d f) \\
& (\alpha \beta) \gamma=\alpha(\beta \gamma)
\end{aligned}
$$

$$
\begin{aligned}
& \text { توزيع هذيرى ضرب نسبت به جمع } \\
& \text { هر جه باشد } \\
& \alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma
\end{aligned}
$$

برای

$$
\alpha(\beta+\gamma)=\left[\frac{a}{d}\right]\left[\frac{b+c}{m}\right]=\left[\frac{a(b+c)}{d m}\right]
$$

$$
\begin{gathered}
\alpha \beta+\alpha \gamma=\left[\frac{a b}{d m}\right]+\left[\frac{a c}{d m}\right]=\left[\frac{a b+a c}{d m}\right] \\
a(b+c)=a b+a c \\
: N \text { بنا به توزيـعیذيرى در } \\
\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma
\end{gathered}
$$

مانند N، در Q ${ }^{+}$نيز توزيع پذيرى ضرب را نسبت به تفريق نتيجه ميگيريم•

يك شكلى N و N بازاءٍ ضرب

$$
\begin{aligned}
& \text { اگر } \\
& {\left[\frac{n}{1}\right]\left[\frac{n^{\prime}}{1}\right]=\left[\frac{n n^{\prime}}{1}\right]}
\end{aligned}
$$

تناظر $N \leftrightarrows \mathscr{N}$ يك يكـ شكلى بازاء ضرب است . و غوطهورى N در +Q براى عمل ضرب نيز تأئيد ميگردد.

جزءٍ خنثى
هرچه باشد

$$
\alpha \cdot 1=\alpha
$$

$$
1=\left[\frac{1}{1}\right]
$$

و اكر :

$$
\alpha=\left[\frac{a}{n}\right]
$$

باشد. داريم :

$$
\alpha \cdot 1=\left[\frac{a}{b}\right]\left[\frac{1}{1}\right]=\left[\frac{a}{b}\right]=\alpha
$$

بهرعدد منطق $\alpha \neq 0$ يك عدد منطق نظير β وجود دارد بقسميكه :

$$
\alpha \beta=1
$$

ק را »معكوس ג) مينامند و با :
$\frac{1}{\alpha}$
نمايش ميدهند.
اثبات :
هركاه :

$$
\alpha=\left[\begin{array}{l}
a \\
\frac{b}{b}
\end{array}\right]
$$

با باشد بديهى است كه $\alpha \neq 0$
علد :

$$
\beta=\left[\frac{x}{y}\right]
$$

$$
\text { را طورى بيدا ميكنيم كه } \alpha \beta=1 \text { باشد. }
$$

بايد داشته باشيم :

$$
\left[\frac{a x}{b y}\right]=1 \quad \Longleftrightarrow \quad a x=b y
$$

از آنجا :

$$
\frac{x}{y} \sim \frac{b}{a}
$$

امتحان:

$$
\begin{aligned}
& \alpha \beta=\left[\frac{a}{b}\right]\left[\frac{b}{a}\right]=\left[\frac{a b}{a b}\right]=1 \\
& \text { هر عدد } \alpha \neq 0 \text { دارای يكـ معكوس } \beta \text { است. }
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \beta=\circ
\end{aligned}
$$

$$
\left[\frac{\circ}{b}\right]\left[\frac{x}{y}\right]=\left[\frac{\circ \times x}{b y}\right]=\left[\frac{\circ}{b y}\right]=\circ
$$

عدر منطق $\alpha=0$ دارای معكوس نيست.

مسئله- هركاه α و β دو عدد منطق مغروض باشند مطلوب است تعيين عدد منطق X بقسميكه:

$$
\begin{aligned}
& \beta \chi=\alpha \\
& \text { حالت اول: } \\
& \text { معكوس } \beta \text { را } \\
& \beta \chi=\alpha \quad \Rightarrow \quad \beta^{\prime}(\beta \chi)=\alpha \beta^{\prime} \\
& \text { از آنجا: } \\
& \left(\beta \beta^{\prime}\right) \chi=\alpha \beta^{\prime} \\
& \chi=\alpha \beta^{\prime} \\
& \text { جونكه } 1 \text { ج } 1 \text { است. } \beta \beta^{\prime} \text { است }
\end{aligned}
$$

امتهان:

$$
\left(\alpha \beta^{\prime}\right) \beta=\alpha\left(\beta \beta^{\prime}\right)=\alpha \cdot 1=\alpha
$$

اكر:

$$
\beta=\left[\frac{a}{b}\right]
$$

$$
\begin{gather*}
\beta^{\prime}=\left[\frac{b}{a}\right] \\
\chi=\alpha \cdot\left[\frac{b}{a}\right]
\end{gather*}
$$

مستله جواب دارد و يكتا است. زيرا اكر عدد ديغر 'X وجود داشت لازم ميآمد:

$$
\begin{aligned}
& \beta \chi=\beta \chi^{\prime} \Rightarrow \chi=\chi^{\prime} \\
& \text { جونكه هرجزء } \beta \text { ها } \beta \text { سادكى هذير است. } \\
& \beta=\circ \\
& \text { حالت دوم: }
\end{aligned}
$$

مادله عبارت است از:

$$
{ }^{\circ} \chi=\alpha
$$

اكر $\alpha \neq 0$ باشد عدد α جواب مسثله وجود ندارد. اگر $\alpha=0$ جميـع اعداد منطق جواب مسئل|ند.
 جواب ' ${ }^{\prime}$ را خارج فسمت α بر β مينامند و اين خارج فسمت با:

$$
\frac{\alpha}{\beta}
$$

نموده ميشُود.
خـارج قسمت $\frac{\alpha}{\beta}$ مساوى حاصل ضرب $\alpha \beta^{\prime}$ عدد α در معكوس β است.
ما N را در +Q غوطه داديم:

نظير هر عدد طبيىى $b \in N^{*}$ يكـ معكوس β وجود دارد:

$$
\beta b=1
$$

مينويسيم:

$$
\beta=\frac{1}{b}
$$

 فقط در Q ${ }^{+}$است:

$$
x=\frac{a}{b}
$$

بعكس هركاه $\frac{a}{b}$ يكـ نما ينده از يكـ عدد منطق غير مشخص α باشد داريم:

$$
\alpha=\left[\frac{a}{b}\right]=\left[\frac{a}{1}\right]\left[\frac{1}{b}\right]=a \cdot \frac{1}{b}
$$

غوطهورى N در +Q نشان ميدهد كه α خارج قسمت a به b است.

فضي\& 1- هرعدر منطق خارج فسمت دو عدد طبيعى است. غوطهورى N در +Q بدين ترتبب علامت جارى يكـ عدر منطق:

$$
\begin{gathered}
\alpha=\frac{a}{b} \\
\alpha=\left[\frac{a}{b}\right]
\end{gathered}
$$

را تأيد مى نمايد.
 حنين خارج قسمتى وقتبكه b، a را ميشمارد بكار بردهايم. هايدارى رابطه ترتيب نسبت جمع و ضرب. جمع: $: \alpha, \beta, \gamma \in Q^{+}$هرجه باشد $P_{\text {II }}$

$$
\alpha \leqslant \beta \quad \Longleftrightarrow \quad \alpha+\gamma \leqslant \beta+\gamma
$$

كافى است براى γ, β, α نما يندهماى هم مخرج انتخاب كـرده و از خاصيت نظير در N استفاره كنبم.

ضرب:

$$
: \alpha, \beta, \gamma \in Q^{+} \text {هرجه باشد }
$$

$$
\begin{aligned}
\alpha \leqslant \beta & \Rightarrow \alpha \gamma \leqslant \beta \gamma \\
(\gamma \neq \circ \quad, \quad \alpha<\beta) & \Longleftrightarrow \alpha \gamma<\beta \gamma
\end{aligned}
$$

اسندلال ماند قبلى است.

هـ تراكم اعداد منطق.
قضي4\& ז- هر فاصله باز +Q تهى نيست.

$$
\begin{aligned}
& \alpha<\beta \Rightarrow \alpha+\alpha<\beta+\alpha \Rightarrow \quad \gamma \alpha<\alpha+\beta \Rightarrow \alpha<\frac{\alpha+\beta}{r} \\
& \text { بهمين ترتيب: } \\
& \alpha<\beta \Rightarrow \alpha+\beta<\beta+\beta \Rightarrow \alpha+\beta<r \beta \Rightarrow \frac{\alpha+\beta}{r}<\beta \\
& \text { بس فاصله 〔 } \\
& \frac{\alpha+\beta}{r}
\end{aligned}
$$

ميباشد．
ملاحظه شود كه اين قضيه در N درست نيست زيـرا فاصله باذ 〕 \a＋
تهى است．

Qمهجا متراكم است．

$$
\gamma=\min] \alpha, \beta \text { [}
$$

$$
\gamma^{\prime}<\gamma
$$

$$
\left.\gamma^{\prime} \in\right] \alpha, \beta[
$$

 ترتبب ثابت ميشود كه ］α, β［ داراى بزركترين جزء نيست．

9－قـمت صحيح يك عدد منطق．
هركاه b, a دو عدد طبيعى باشند（ b（ b ）تقسيم اقليدسى a را بر b انجام دمهيم：

$$
a=b q+r \quad r<b
$$

$$
\begin{array}{cl}
\frac{a}{b}=q+\frac{r}{b} \quad \frac{r}{b}<1 \\
\alpha=\frac{a}{b}
\end{array}
$$

فرض كنيم خاصيت زير نتيجه ميشود:
() نظير هرعدد $\alpha \in Q^{+}$ بدست ميآيد كه با $\alpha \rightarrow e(\alpha)$ نموده ميشود و آنرا (رقسمت صحيح α ه) ميناميم.

$$
q=e(\alpha)
$$

(

تبصرهـ در N همجنين داريم:

$$
b q \leqslant a(q+1)
$$

از آنجا در +Q:

$$
q \leqslant \frac{a}{b}<q+1
$$

بنا براين هرجه باشد

$$
e(\alpha) \leqslant \alpha<e(\alpha)+1
$$

اعلـاد b-ئى

1. هدف اين فصل عبارت از بررسى اعداد منطتى است كه براى آنها در مبناى اختّارى b ميتوان نمايشى شبيه صورت بندى رقمى يكـ عـى عدد طبيعى بيدا كرد. اين اعداد منطق α داراى خواص زي زير هستند ("يكـ نماينده α وجود دارد كه مخر ج
 وقتيكه b برابر ده است اين اعداد را را (اعداد اعشاد اعدارى)، مينامند. وقتيكه b برابر دو است اين اعداد را را: (اعداد دوئى) مينامند.

تعريف- عدد b-ئى بنا به تعريف عدد منطقى است كه داراى يكـ نمـاينده است و مخرج ايـن نماينده توان صحيح مبناى b دستگاه انتخابى استى استى

$$
\begin{aligned}
& \left(\exists \quad\left(\exists p \in N \quad \alpha=\left[\frac{n}{b^{p}}\right]\right)\right. \\
& \text { تبمره- هرجه باشد مبناى b داديم: } \\
& b^{\circ}=1
\end{aligned}
$$

بنا براين هر عدد طبيعى $n \in N$ يك عدد b-تى است هرجه باشد مبناى b جو نكه:

$$
n \in N \quad \Longleftrightarrow \quad\left(n=\left[\frac{n}{1}\right]=\left[\frac{n}{b^{0}}\right]\right)
$$

مسثلهاى كه طرح آن فوريت دارد عبارت است از شناختن اعـلاد b-ئى در +Q. قبل از حل اين مسئله، مسئلة مقدماتى زير را در مجموعه N اعداد طبيعى مورد بردسى قراد مىدهبم.

مسئلة مقدماتى :
 باشند تحقيت كنيد T آ يك عك عدد طبيعى مانند p وجود دارد كه

$$
b^{p} \in \mathscr{M}(a)
$$

شرايطط لازم- فرض كنيم حنين عدد p وجود دارد، در اين صورت:

$$
b^{p} \in \mathscr{M}(a) \quad \Longleftrightarrow \quad\left(\exists q \in N^{*} b^{p}=q a\right)
$$

تجز ئ ولى مجموعه مقسومعليههاى اول b با مجموعه مقسومعليهمای اول b منطبن است (بديهى

اول a است. بدين ترتيب، براى اينكه p وجود داشته باشد بقسميكه :

$$
b^{p} \in \mathscr{M}(a)
$$

لازمست كه هر مقسومعليه a مقسومعليهى از b باشد.
شرايطط كافى_- فرض كنيم كه هر مقسومعليه اول a مقسومعليهى از b باشد و ثــا بت كنيم كه يكـ علد طبيعى p وجود دارد بطوريكه داراى سه عامل اول است:

$$
a=c^{\alpha} \cdot d^{\beta} \cdot e^{\gamma}
$$

اعداد طبيعى غير صفر ميباشند. γ, α
بنا به فرض تجز يه عـوامل اول b شامل عو امل e, d, c است. البته ممكن است شامـل عو امل ديگر هم باشل. در تجز يه b عو امل c و d و e را مشخص كرده و ساير عوامل دا رويهم با يك عامل q نمايش ميلهيم:

$$
b=c^{\alpha^{\prime}} \cdot d^{\beta^{\prime}} \cdot e^{\gamma^{\prime}} \cdot q
$$

اعداد طبيعى غير صفر ميباشند. $\gamma^{\prime}, \beta^{\prime}, \alpha^{\prime}$
p را طورى انتخاب كنيم كه در عين حال داشته باشيم:

$$
p \alpha^{\prime} \geqslant \alpha ; \quad p \beta^{\prime} \geqslant \beta ; \quad p \gamma^{\prime} \geqslant \gamma
$$

در اين صورت خواهيم داشت:

$$
b^{p}=c^{p \alpha^{\prime}} \cdot d^{p \beta^{\prime}} \cdot e^{p \gamma^{\prime}} \cdot q^{p}
$$

بنا براين:

$$
b^{p} \in \mathscr{M}(a)
$$

يس ميتو انيم بگوئيم:

لم مقلمانى: هرگاه a و b دو عدد طبيعى اكيداً بزركتر از ا باشند، برای اينكه عدد طبيعى وجود داشته باشد بطوديكه b مضرب a باشد لازم و كافـى است هـر مقسومعلبه اول a

مقسومعليهى از b باشد.
تبصره́ 1- فرض كنيم p وجود داشته باشد بطوريكه:

$$
b^{p} \in \mathscr{M}(a)
$$

در اين صورت هر عدد طبيعى q دز: $b^{p+q} \in \mathscr{M}(a)$

صدق ميكند:

$$
b^{p+q}=b^{p} \cdot b^{q} \in \mathscr{M}\left(b^{p}\right) \subset \mathscr{M}(a)
$$

از آنجا نتيجه ميشود كه مجموعه اعداد p بطوريكه:

$$
b^{p} \in \mathscr{M}(a)
$$

باشد يك مجموعه نامتنامى و يا يكـ مجموعه تهى برحسب زوج (a و b) است. اين مجموعه تهى است اكر يكـ دقسوم عليه اول a عدد b را نشمارد و اين مجموعه نامتناهى است اكر يكـ متسومعلي اول a عدد b را بشمارد. $b^{p} \in \mathscr{M}(a)$ بقسميكه يكـ مجموعه نامتناهى تشكيل ميدهند. اين مجموعه داراى يكك كو جكترين جزء كوچكترين عدد صحيـح po وجود دارد بقسميكه: $b^{p_{0}} \in \mathscr{M}(a)$

شناختن يك علمد منطق b-ئى.
 α
اكر
的 حون

$$
\frac{n}{d} \sim \frac{n^{\prime}}{d^{\prime}} \Longleftrightarrow\left(\exists q \in N^{*} \quad n^{\prime}=n q \quad, \quad d^{\prime}=d q\right)
$$

ملاحظه ميشود كه مخرج
عدد 'd كه در:
$d^{\prime} \in \mathscr{M}(d)$
صدق كند مخرج يكـ نماينده α است.
بنا بتعريف:

$$
\left(\frac{n}{d}-\left(\exists p \in N \quad \frac{n}{d} \sim \frac{n^{\prime}}{b^{p}}\right)\right.
$$

از انجه كنشت نتيجه ميشود: بـراى اينكه b b-نى باشد لازم و كافى است كه:

$$
b^{p} \in \mathscr{A}(d)
$$

در اين صورت با استفاده از لم مقدماتى ميتوانيم بگويُمي:

قضيه- براى اينكه يك عدد منطق غير صحيح b-ئى باشد لازم و كافى است كه نماينده تحويلنابذير آن داراى مخرجى باشد كه جميع مقسومعليهماى اول اين مخرج مقسومعليهماى
b باشند.

 تحويلنابذر آن داراى مخرجى باشد كه مفسوم عليههاى اول به مجموعه

$$
\alpha=\frac{\Delta \Delta}{A \Lambda} \quad-1 \text { ـثال }
$$

نماينده تحويلنا يذير ه، ${ }^{\text {® }}$ است.
داريم: كوجكترين مقدار را براى:

$$
b^{p} \in \mathscr{X}(\wedge)
$$

تعين نمائيم. يعنى:

$$
r^{p} \times \Delta^{p} ب r^{r}
$$

ملاحظه ميشود كه

$$
\begin{aligned}
\alpha=\frac{\Delta \Delta}{\Lambda \Lambda}=\frac{\Delta}{\Lambda} & =\frac{\Delta \times \Delta^{r}}{r^{r} \times \Delta^{r}}=\frac{9 r \Delta}{10^{r}} \\
\alpha & =\frac{r 1}{140}
\end{aligned}
$$

دثال r-

اץ اول است و

$$
140=r^{r} \times \Delta \times V
$$

مخرج دارای مقسومعليه V است كه 1 ا را نميشمارد بنا براين α اعشارى نيست.
نما..ش وقمى ..رك عlد b-ئى

اكر α يكـ عـلد b-ئى غيسـر صحيح و اكـر $\frac{n}{d}$
نامتناهى اعداد طبيعى p وجود دارد بقسميكه:

$$
b^{p} \in \mathscr{M}(d)
$$

كوجكترين جزء p اين مجموعه يكتا است. يس در طبعه ג يكـ كسر يكتا وجود دارد:

$$
\frac{a}{b^{p}}
$$

كه نظير كوجكترين عدد p است.
اين كسر را سادهترين نما ينــده b-تُى علد b-ئى α ميــنامند و آنـــرا نبايد با ساده ترين نما ينده يا نما ينده تحويل نايذير α اشتباه كرد. در مُال قبل:

$$
\alpha=\frac{\Delta \Delta}{\wedge \Lambda}
$$

نما ينده تحويل نا يذير سادهترين نما ينده:

$$
\frac{G Y \Delta}{10^{r}}
$$

ساده ترين نما ينده b-تُى طبته $\alpha:$

$$
\frac{a}{b^{p}}
$$

را از Tنجا ميتوان شناخت كه b عدد a را نميسمارد. زيرا اكر علد b عدد a را بشمارد داريم:

$$
a=b a^{\prime}
$$

$$
\frac{a}{b^{p}} \sim \frac{b a^{\prime}}{b^{p}} \sim \frac{a^{\prime}}{b^{p-1}}
$$

و بنا براين:

$$
\frac{a}{b^{p}}
$$

سادهترين نما ينده b-ئى نميتو اند باشد.
اكر b عدد a را نشمارد. خو اهيم داشُت:

$$
\frac{a}{b^{p}} \sim \frac{a^{\prime}}{b q}
$$

با

$$
a b^{q}=a^{\prime} b^{p} \Rightarrow a=a^{\prime} b^{p-q}
$$

و b علد a را ميشمارد و اين خحلاف فرض است.
از اين به بعل، عدد b-ئى غير صحيح α را با سادهترين نما ينده b-ئى آن كـه يكتا است
نها يش ميدهيم:

$$
\alpha=\frac{a}{b^{p}}
$$

هركاه نمايش رقمى علد a در مبناى b بصورت :

$$
a=\overline{r_{n} \ldots r_{o}}
$$

باشد. براى اينكه b عدد a را بشمارد لازم و كافى است كه 0 ,

$$
\alpha=\frac{\overline{r_{n} \cdots r_{0}}}{b^{p}}
$$

با دو حالت در نظر بگيريم:
حالت اول: $p \leqslant n$ در اين صورت در بسط به مبناى b عدد α جمله رديف p وجــو2

$$
\begin{gathered}
a=r_{n} b^{n}+\cdots+r_{p} b^{p}+r_{p-1} b^{p-1}+\cdots+r_{0} \\
\alpha=\frac{a}{b^{p}}=r_{n} b^{n-p}+\cdots+r_{p}+r_{p-1} \frac{1}{b}+\cdots+r_{0} \frac{1}{b^{p}}
\end{gathered}
$$

از T Tنجا:

بدين ترتيب كسترش تعميم داده شده به مبناى b عدد b-ئـى α بــدست ميآيد و آنــرا
بدين جهت ((تعميم داده شده) ميناميم كه در آن قـو ای $\frac{1}{b}$ معكوس مبنا وارد شدهاند:

$$
\frac{1}{b}, \frac{1}{b^{r}}, \frac{1}{b^{r}}, \cdots
$$

و T Tنها را (پاحدهاى b-ئى)" مرتبه اول؛ مرتبه دوم، مر تبه سوم . . . مينامند. اين كسترش بدو قسمت تجز يه ميشود.

$$
r_{n} b^{n-p}+\cdots+r_{p} \quad l \quad r_{n} \neq 0
$$

و قسمت b-ئى:

$$
r_{p-1} \frac{1}{b}+\cdots+r_{0} \frac{1}{b^{p}} \quad r_{0} \neq 0
$$

براى تمييز اين دوقسمت از يكديگر آنها را با يكـ مميز ازهم جدا ميكنند و مينويسند:

$$
\alpha=\overline{r_{n} \ldots r_{p}} \quad, \quad \overline{r_{p-1} \ldots r_{0}}
$$

قسمت b-ثى يكـ صصرت بندى p رقمى است و رقم سمت راست آن $r_{0} \neq 0$ است.

$$
\text { حالت دوم: } p>n
$$

در اين صورت در بسط a جمله رديف p وجود ندارد:

$$
a=r_{n} b^{n}+\cdots+r_{0}
$$

در اين صورت مقدار مينيمب n باشيم:

$$
a=\circ \cdot b^{p}+\circ \cdot b^{p-1}+\cdots+\circ b^{n+1}+r_{n} b^{n}+\cdots+r_{\circ}
$$

و بنابراين:

$$
\alpha=\frac{a}{b^{p}}=\circ+\circ \cdot \frac{1}{b}+\cdots+\circ \cdot \frac{1}{b^{p-(n+1)}}+r_{n} \frac{1}{b^{p-n}}+\cdots+r \circ \frac{1}{b^{p}}
$$

و ג را بــا جدا كـردن قسمت صحيح ه آن بـا يــك ممــيز از قسمت b-ئى كـه عـبـارت از
: است مينويسند: $\bar{\circ}$

$$
\alpha=0, \overline{\circ \cdots \circ r_{n} \cdots r_{\circ}} \quad r_{n} \neq 0, r_{0} \neq 0
$$

قسمت b-يُى باز هم يـــ صورت بندى p رقمى است و رقــم آخـــر سمت راست آن
مخا لف صفر است.
در هردو حالت عدد b-ئى غيرصحيح α با يكـ طرزفقط درمبناى b نما يش داده ميشود.
مثال در دستگاه با يه 10 :

$$
\begin{aligned}
& \alpha=\frac{\wedge 9 \mu 4 \Delta}{1000}=\wedge 9 / 44 \Delta \\
& \beta=\frac{1 \mu}{1000}=0 / 01 \mu
\end{aligned}
$$

rـ رابطهٔ ترتنيب در صورت بندى b-ئى
 اين يكك قسمت از Q^{+}است و Q^{+}شامل N است:

$$
N \subset Q_{b}^{+} \subset Q^{+}
$$

را بطهُ رديف كلى
مسشلهاى كه طرح ميشود عبارت است از:
 مطلو بست مرتب كر دن اين عددها.
قسمتهاى صحيح

$$
\begin{aligned}
& e(\alpha) \leqslant \alpha<e(\alpha)+1 \\
& e(\beta) \leqslant \beta<e(\beta)+1
\end{aligned}
$$

حالت اول:

$$
e(\alpha)<e(\beta)
$$

در اين صورت داريم:

$$
e(\alpha)+1 \leqslant e(\beta)
$$

با توجه به نامساويهاى قبلى:

$$
\begin{aligned}
& \alpha<e(\alpha)+1 \leqslant e(\beta)<\beta \\
& e(\alpha)<e(\beta) \quad \Rightarrow \quad \alpha<\beta
\end{aligned}
$$

صس:

$$
\text { هالـت دوم: } e(\alpha)=e(\beta)=n
$$

داريم:

$$
\begin{aligned}
& \alpha=n, \overline{r_{1} \cdots r_{p}} \\
& \beta=n, \overline{u_{1} \cdots u_{q}}
\end{aligned}
$$

قسمت b-ئى عدد α داراى p رقم و مال β داراى q دقم است: انــديسهاى ارقــام نظير مر تبهاى (پاحدهاى b-ئى)" است. در اين صورت داريم:

$$
\begin{array}{ll}
\alpha=n+\overline{\frac{r_{1} \cdots r_{n}}{b^{p}}} & , \quad \beta=n+\frac{\overline{u_{1} \cdots u_{q}}}{b^{q}} \\
\alpha-n=\frac{\overline{r_{1} \cdots r_{n}}}{b^{p}} & , \quad \beta-n=\frac{\overline{u_{1} \cdots u_{q}}}{b^{q}}
\end{array}
$$

از آنجا:

دو قسمت b-ئى را بيك مخرج تحويل نمائيم. فرض ميكنيم q م

$$
\alpha-n=\frac{\overline{r_{1} \cdots r_{p} \circ \cdots \circ}}{b^{q}}
$$

(با اضافه كردن q - صفر بهصورت)

$$
\beta-n=\frac{\overline{u_{1} \cdots u_{q}}}{b^{q}}
$$

ג و β درهمان ترتيب قراد دارند كه n-n α و مساوى هستند در ترتيب صورتهاي
 حب در هر دو برابر باشند و $r_{K} \neq u^{\text {باشد در اين صورت: }}$

$$
r_{k}<u_{k} \Rightarrow \alpha-n<\beta-n \Rightarrow \alpha<\beta
$$

و اين عبارت از يك ترتيب لنتى براى قسمتهاى b-ئى است:

$$
\overline{r_{1} \cdots r_{p}}
$$

$$
\overline{u_{1} \cdots u_{q}}
$$

وقتيكه كلمهاى را در كتاب لغت جستجو ميكند كارى به تعداد حروف اين كلمه نيست بلـكـــه طبيعت حروف و تر تيب آنها مطرح است.

قاءاله - اولأ- دوصورت بندى b-ئى كه داراى قسمتهاى صحبح متفاوت ميبا شند در همانتر تيب قسمتهاى صحيح خود قرار دارند.
ثانياًا در صورت بندى b-ئى كه داراى قسمتهاى صحيح هتساوى ميباشند در تر تيب دو رقم اوليه متمايز هم مر تبه b-ئى قرار دار دارند.

هثال

$$
\alpha=Y / V \Delta \quad, \quad \beta=1 / 9 ヶ \mid \wedge
$$

داريم:

$$
\begin{gathered}
e(\alpha)=r \quad, \quad e(\beta)=1 \\
e(\alpha)>e(\beta) \Rightarrow \quad \alpha>\beta \\
\alpha=\text { o/^vя } \quad, \quad \beta=\text { o/^voq }
\end{gathered}
$$

هثال

قسمتهاى صحيح برابرند. رقمهاى هم مرتبه قسمتهاى دهدهى را مقايسه ميكنيم. در مر تبه سوم داريم 0 > 4 درنتيجه:

$$
\alpha>\beta
$$

$$
Q_{b}^{+}
$$

هركاه α و β دو عدد b-ئى باشند:

$$
\begin{aligned}
& \alpha=\frac{a}{b^{p} .} \quad \beta=\frac{a^{\prime}}{b^{q}} \\
& \alpha+\beta=\frac{a+a^{\prime} b^{p-q}}{b^{p}}
\end{aligned}
$$

نتيجه يكـ عدد b-ثى است. جمع، در + ${ }^{+}$درونى است.
$\alpha, \beta \in Q_{b}^{+} \quad \Rightarrow \alpha+\beta \in Q_{b}^{+}$
. Q_{b}^{+}يك كيمروه جابجابذير باذاء جمع است.
جزء خنتاى ه همتلق باو استو هر جزء هتظطم است.

$$
\begin{aligned}
& \text { تفريق. } \\
& \text { هركاه: } \\
& \alpha, \beta \in Q_{b}^{+} \quad, \quad \alpha>\beta \\
& \text { باشُند: } \\
& \alpha=\frac{a}{b^{p}} \quad, \quad \beta=\frac{a^{\prime}}{b^{q}} \\
& \text { اكر } \\
& \alpha-\beta=\frac{a-a^{\prime} b^{p-q}}{b^{p}} \\
& \text { بس داربم: } \\
& \alpha, \beta \in Q_{b}^{+} \quad \Rightarrow \quad \alpha-\beta \in Q_{b}^{+} \\
& \text {است ك } \alpha \geqslant \beta \text { باشد. }
\end{aligned}
$$

مركاه دو عدد b-ئى مفرض باشند:

$$
\alpha=\frac{a}{b^{p}} \quad, \quad \beta=\frac{a^{\prime}}{b^{q}}
$$

داريم:

$$
\alpha \beta=\frac{a a^{\prime}}{b^{p+q}}
$$

$$
\begin{aligned}
& \alpha, \beta \in Q_{b}^{+} \Rightarrow \alpha \beta \in Q_{b}^{+} \\
& \text {ضرب در }
\end{aligned}
$$

جابجا بذيرى و شركت بذيرى و توزيع بذيرى نسبت به جمع از آن نتجهميشود. جزء

ولى معكوس $\frac{1}{\alpha}$

$$
\begin{gathered}
\alpha=\frac{a}{b^{p}} \\
\frac{1}{\alpha}=\frac{b^{p}}{a}
\end{gathered}
$$

باشد داريم:

در حالت كلـى يكك عــدد b-ئى بــدست نميآيد (لازم است كه متسوم عليـهماى اول
 ضرب به

Pis

تقريبات b-ثى در اعلـاد منطق

1- مقدار b-ئى نقر.يبى در اعداد منطق هركاه مبناى شمار b انتخاب شود و يكى عدد منطــق α م و يكـ عدد طبيتى n مغـروض باشند:

$$
\frac{q}{b^{n}} \leqslant \frac{a}{d}<\frac{q+1}{b^{n}} \Leftrightarrow d q \leqslant a b^{n}<d(q+1)
$$

شرايط دوم از شرايط اول با ضرب در db بد
عدد مطلوب q عبارت از خارج قسدت اقليدسى $a b^{n}$ بر d و يكتا است. از آنجا نتيجه ميشود كه بازاء α و n مفروض عـدد q ي $\frac{q}{b^{n}}$ يكتا است.

تعريف-
b- b تى تعريبى α با
هالت مخصوصى - n=0 در اين صورت داريم:

$$
\begin{aligned}
& \alpha \in Q^{+} \quad n \in N \\
& \text { منظود بيدا كردن يكـ عدد q است بقسمى كه: } \\
& \frac{q}{b^{n}} \leqslant \alpha<\frac{q+1}{b^{n}} \\
& \text { نماينــده ه دا }{ }^{\text {داختيار كنمّ، بس داريم: }}
\end{aligned}
$$

$$
q \leqslant \alpha<q+1
$$

 نقصانى است.

$$
\frac{q}{10^{r}} \leqslant \frac{\mid r r}{r \| 1}<\frac{q+1}{10^{r}} \Longleftrightarrow r\|q \leqslant 1 r r 000<r\|(q+1)
$$

$$
q=q r \Delta
$$

مقدار اعشارى تقريبى α بـا $\frac{1}{10^{r}}$

$$
\frac{q}{10^{r}}=0 / 84 \Delta
$$

داريم:

$$
0 / g r \Delta<\frac{\mid r r}{r \mid I}<0 / q Y q
$$

مقايسه متادير تقريبى يكك عدد منطق.
مسئلهاى كه اكنون مطرح است عبارتاست از:
مقايسه مقادير تقريبى α تا
ديگر. فرض كنيم: $\quad \alpha=\frac{a}{d}$
(1) $\quad \frac{q}{b^{n}} \leqslant \frac{a}{d}<\frac{q+1}{b^{n}} \quad \Leftrightarrow \quad d q \leqslant a b^{n}<d(q+1)$
(ү) $\quad \frac{q^{\prime}}{b^{n+1}} \leqslant \frac{a}{d}<\frac{q^{\prime}+1}{b^{n+1}} \Longleftrightarrow d q^{\prime} \leqslant a b^{n+1}<d\left(q^{\prime}+1\right)$
طرفين (() را در b ضرب ميكنيم:
(r)

$$
d q b \leqslant a b^{n+1}<d(q+1) b
$$

((
عدد طبيتى است بقسميكه:

$$
\begin{aligned}
d q^{\prime} & \leqslant a b^{n+1} \\
q b & \leqslant q^{\prime}
\end{aligned}
$$

بس داريم:
از آنجا:
(φ)

$$
\frac{q}{b^{n}} \leqslant \frac{q^{\prime}}{b^{n+1}}
$$

بهمين ترتيب q خارج قسمت اقليدسى $a b^{n+1} d$ بر d كوكتر ين عــد طبـيسعى است
بقسميكه:

$$
\begin{aligned}
& a b^{n+1}<d\left(q^{\prime}+1\right) \\
& q^{\prime}+1 \leqslant(q+1) b
\end{aligned}
$$

بس داريم:

از Tنجا:
(a)

$$
\frac{q^{\prime}+1}{b^{n+1}} \leqslant \frac{q+1}{b^{n}}
$$

$$
\frac{q}{b^{n}} \leqslant \frac{q^{\prime}}{b^{n+1}} \leqslant \alpha<\frac{q^{\prime}+1}{b^{n}} \leqslant \frac{q+1}{b^{n}}
$$

از (ץ) و (ه) نتيجه ميشود:

$$
n=0,1, r, r
$$

90A1
YIY
rrl
rl/opr
900
Dro
94
به محض اينكه

اعشارى در خارج قسمت بدست آيد ادامه ميدهيم:

مقادير تقر يبى نقصانى افزا ايش مييا بند و يا تغيير نميكنند. مقادير تقريبى اضافى كاهش ميخذيرند يا تغيير نميكنند.

F- Fشته مقاد.!و نقز.بـى
هرگّاه بجاى n بترتيب اعداد N را قرار دهيم:

$$
n \in\{0,1, r, \cdots, n, \cdots\}
$$

يكـ رشته مقادير تقريبى نقصانى بدست ميآ يد:
$\left(S_{,}\right)$

$$
q_{0} \leqslant \frac{q_{1}}{b} \leqslant \frac{q_{r}}{b^{r}} \leqslant \cdots \leqslant \frac{q_{n}}{b_{n}} \leqslant \cdots
$$

اين رشته صبودى است (بمعفهو وسيع كلمه: دوجمله متوالى ممكن است برا بر باشند).
 تقريبى اضافى بدست ميآيد:
(Sץ) $\quad q_{0}+1 \geqslant \frac{q_{1}+1}{b} \geqslant \frac{q_{r}+1}{b^{r}} \geqslant \ldots \geqslant \frac{q_{n}+1}{b_{n}} \geqslant \ldots$
اين رشته نزولى است (بمغهوم وسيع كلمه) و بتوسط α فرو بسته است. هردو رشته (

فاصلههاى فراتير.
هرجه باشد

$$
\frac{q_{n}}{b^{n}} \leqslant \alpha<\frac{q_{n}+1}{b^{n}}
$$

عدد α تعلق به فاصله نيمباز از راست دارد:

$$
\alpha \in\left\lceil\frac{q_{n}}{b^{n}} \quad, \quad \frac{q_{n}+1}{b^{n}}\right\rfloor
$$

 جس داريم:

يكـ رشته نامتناهى فواصل فراگِير است يعنى هر فاصلهاى همه فاصلaهـاى بعدى را فــرا ميگيرد.

درازاى يك فاصله:
تفاضل بين دو انتهاى يكـ فاصله را درازاى آن مينامند. درازاى فاصله رديف n از (

$$
l_{n}=\frac{q_{n}+1}{b^{n}}-\frac{q_{n}}{b^{n}}=\frac{1}{b^{n}}
$$

درازاهاى , و , او ميدهند.
 جو نكه هرجه باشد + $\alpha \in Q^{+}$فاصله باز] قضيًا 1- هرجه باشد عدد منطق ع، آنقدر كوحكك كه بخواهمه، يكـ عدد طبيىى p وجود دارد بقسميكه:

$$
n>p \Rightarrow \frac{1}{b^{n}}<\varepsilon
$$

اثبات:
عدد منطق غير مشخص

$$
e\left(\frac{1}{\varepsilon}\right)
$$

$$
e\left(\frac{1}{\varepsilon}\right) \leqslant \frac{1}{\varepsilon}<e\left(\frac{1}{\varepsilon}\right)+1
$$

اكر تعداد رقمهاى عدد طبيعى:

$$
e\left(\frac{1}{\varepsilon}\right)+1
$$

در مبناى b برابر p باشد (II، فصل ب، قضيهُ ب)
اين عدد p بايد در:

$$
b^{p-1} \leqslant e\left(\frac{1}{\varepsilon}\right)+1<b^{p}
$$

صدق نمايد: جس داريم:

$$
\frac{1}{\varepsilon}<e\left(\frac{1}{\varepsilon}\right)+1<b^{p}
$$

از T آنجا:

$$
\frac{1}{b^{p}}<\varepsilon
$$

جون تابع $x \rightarrow b^{x}$ در N صعودى است (چونكه 1 (b>، داريم:

$$
n>p \Rightarrow b^{n}>b^{p} \Rightarrow \frac{1}{b^{n}}<\frac{1}{b^{p}}<\epsilon
$$

جس قضيه ثابت است.

تعـريف - براى بيان اينكه بهر عدد ع ميتوان يكـ زديف p را همراه كرد بعسميكه:

$$
n>p \Rightarrow l_{n}<\varepsilon
$$

ميگويند: ((رشته ${ }_{\text {م }}$ بسمت صفر ميل ميكند)ه.
علامت: 》

$$
\left(\forall \varepsilon \in Q^{+} ; \quad(\varepsilon \neq 0) \quad \exists p \in N\right) \quad(n>p) \quad \Rightarrow \quad\left(\frac{1}{b^{n}}<\varepsilon\right)
$$

 ميل ميكنده) مينامند.

همانطور كه ميدانيم عدد α به جميـع اين فواصل تعلق دارد.
 ميداشت كه به همه فواصل (C (C) متلق بود (با فرض
 است از

b
هرگاه $\alpha \in Q^{+}$باشد رشته
$\left(S_{1}\right) \quad q_{\circ}=e(\alpha), \frac{q_{1}}{b}, \frac{q_{r}}{b^{r}}, \cdots, \frac{q^{n}}{b^{n}}, \cdots$
نمـاينـده α را $\frac{a}{d}$ ميناميم.
برای بدست آوردن جملaهاى متو الى (S) دز مبناى b تقسيم اقليدسى a را بر d انجام
ميدهيم. ابتدا تتيجه ميشود:

$$
q_{0}=e(\alpha)
$$

در خارج قسمت در سمت راست اين قسمت صحيح مميز قرار ميدهيم و تقسيم را ادامه ميدهيم: از قسمت b-يُى خارج قسمت اولين رقم ${ }^{\text {l }}$ ر را حساب ميكنيم:

$$
\frac{q_{1}}{b}=q_{0}, r_{1}
$$

بعد رقم دوم را

$$
\frac{q_{Y}}{b^{Y}}=q_{0}, \overline{r_{1} r_{Y}}
$$

و همين طور تا رديغ n‘ داريم:

$$
\frac{q_{n}}{b^{n}}=q_{0}, \overline{r_{\backslash} r_{Y} \ldots r_{n}}
$$

مينو ان همينطود ادامه داد: يك قسمت b-ئى نامتناهى بدست ميآ يد:

$$
q_{0}, \overrightarrow{r_{1} r_{Y} \cdots r_{n} \cdots}
$$

خط افقى یيكان را راست و نشان ميدهد كـهـ صورتبندى تــا بينهايت از سمت راست ادامه مييا بد

اكر $\alpha \in Q_{b}^{+}$
هركاه
صفر ميگردند.
اكر $\alpha \notin Q_{b}^{+}$باشد ثابت ميكنيم كه قسمت b-ئى ازيكـ رديف معين به Tنطرن متناوب

- ميشود

ابتدا مثا لهائى در دستگاه اعشارى اختِّار ميكنيم.

$$
\alpha=\frac{r q}{11}
$$

هثال
تقسيم اقليدسى צץ بر 1 ا را انجام ميدهيم.

$r q$	$\frac{11}{r-\varphi_{0}}$
v_{0}	
$\rightarrow \varphi_{0}$	

ملاحظه ميشود كه باقيمانده جزء ب پٍس از دو رديف تكرار ميشود، نتيجه ميشود كـــه در خار ج

$$
\frac{r q}{11}=\overrightarrow{\text { r/rgrq. }}
$$

زير دوره تناوب خط كشيدهايم.

$$
\alpha=\frac{\Delta q 1}{\mid \wedge \Delta}
$$

هثال

باقيمانده \& 0 اولين مــرتبه اعشارى، سه رديف بعد تكرار ميگردد. در خــارج قسمت

طبقه YY بی بطور تناوب تكرار خواهد شد داريم:

$$
\frac{\Delta \varphi 1}{1 \wedge \Delta}=\mu / \widehat{\circ \mu Y \psi r \psi o}=0
$$

دوره تناوب ץ ץr است ولى در اينجا بـلافــاصله بعد از مميز شرو ع نميشود يكـ قسمت غير متناوب كه از رقم صفر تشكيل شده است وجود دارد.

$$
\text { حالت كلى- } \alpha=\frac{a}{d} \text { فرض ميكنيم. }
$$

رشته مقادير b-ئى تقر يبى نقصانى از تقسيمهاى اقليدسى متو الى مقسومعليهماى متعلى به

$$
\left\{a, a b, a b^{\curlyvee}, \cdots, a b^{n}, \cdots\right\}
$$

بر مقسومعليه d بدست ميآ يند.
يكـ تعداد بينها يت تقسيمهاى اقليدسى وجود دارد ولى جحون مقسومعليه همه اين تقسيمها

$r<d$
اصلى اين باقيما ندهها حد اكثر برابر d است. بنابراين يكــ عدد طبيعى n وجـود دارد
بقسميكه ab باقيماندهاى بدست خو اهد داد كه قبال" نيز بدست آمسـده است. كو جكترين عددى را كه داراى اين خاصيت است n ميناميم:
 كه اين باقيمانده را داده است (k<n)

$$
a b^{n} \equiv a b^{k}
$$

با خرب متو الى در b، همو اره با ملـولو d داريم:

$$
a b^{n+1} \equiv a b^{k+1}
$$

يعنى باقيما ندهماى مرتبهمای $n+1$ n $k+1$ متساويند.

$$
a b^{n+r}=a b^{k+r}
$$

$$
\text {) } k+i=n-k+i=n
$$

صورتبندى α در مبناى b از مرتبه k به بعد يكـ دوره تناوب k - k رقمى را ارائه خواهد كرد. اين طبغه را با حرف p نمايش ميلهيم:

$$
p=r_{k} \cdots r_{n-1}
$$

قسمت b-ئى α يِكـ قسمت غير منتظم $k-1$ رقمى خواهد داشت و اءر $k=1$ باشد

اين قسمت وجود ندارد.
اگر k>1 باشد اين قسمت را با l بايش ميدهيم:

$$
q=\overline{r_{1} \cdots r_{k-1}}
$$

بدين تر تيب عدد منطق α يكـ صورت بندى نامتناهى متناوب بــا دوره تناوب p دارد و
اكر e قسمت صحيح α باشد:

$$
\alpha=e \overrightarrow{, q p p p} \cdots
$$

بعكس ثابت ميكنيم كه يكـ صورتبندى متناوب نامتناهى يكـ عدد منطق را ارائه ميلهد. مثالى از دستگاه اعشارى اختيار ميكنيم: مثال_ صورتبندى:

$$
x=r / \mu \Delta \psi \Delta \varphi \cdots
$$

را اختتار ميكنمي كه قسمت غير متناوب آن بندى x قواعد معلوم در دستگاه بايه ه 10 را بكار ميبنديم. داريم:

$$
\begin{gathered}
10 x=r \mu / \Delta \psi \Delta \psi \Delta \psi \ldots \\
10 x-r \mu=0 / \Delta \psi \Delta \psi \ldots
\end{gathered}
$$

اكر صورتبندى:

$$
y=0 / \Delta \psi \Delta \psi \ldots
$$

نما يش يكك عدد منطق باشد x نيز يكـ غدد منطق را نمايش خو اهل داد چو نکه:

$$
10 x-Y \mu=y
$$

ايجاب ميكند:

$$
x=\frac{r r+y}{10}
$$

ثا بت ميكنيم، y كـه داراى قسمت صحیـع صفر. است و قسمت غير متاوب نسـدارد يكك
عدد منطق را نما يش ميدهد. داريم:

$$
10^{r} y=\Delta \psi / \Delta \psi \Delta \psi \ldots
$$

$$
10^{r} y-\Delta \psi=\circ / \Delta \psi \Delta \psi \ldots
$$

معدار طرف راست برابر y است:

$$
10^{r} y-\Delta \psi=y
$$

بنا براين:

$$
9 q y=\Delta \psi
$$

از آنجا:

$$
\begin{gathered}
y=\frac{\Delta r}{99}=\frac{q}{11} \\
x=\frac{r r \times 11+q}{11}=\frac{r \Delta q}{110}
\end{gathered}
$$

در نتيجه:

حالت كلىــ هر صورتبندى نامتناهى متناوب يكـ علد منطق را نما يش ميلهد. هر كاه در مبناى b صورت بندى نامتناهى متناوب:

$$
x=e, q p p p \cdots
$$

باشد كه در Tنجا قسمت غير متناوب q يكـ طبـعه رقمى است.
با استفاده از قواعد محاسبه مبناى b:

$$
\begin{gathered}
b^{k} x=\overline{e q}, \overrightarrow{p p p \cdots} \\
b^{k} x-\overline{e q}=\circ / \overline{p p p \cdots}
\end{gathered}
$$

اكر صورتبندى:

$$
y=\circ, \overrightarrow{p p p \cdots}
$$

نما يش يك عدد منطق باشد n نيز نما يش يكـ عدد منطق خواهد بود:

$$
x=\frac{y+\overline{e q}}{b^{K}}
$$

يس صورت بندى y را با قسمت صحيح صفر و دوره تناوب p و بـــدون قسمت غيــر

$$
b^{n} y=p, \overline{p p p \cdots}
$$

$$
b^{n} y=p+\circ, \overrightarrow{p p p \ldots}
$$

عدد سمت راست طرفدوم y است:

$$
\begin{gathered}
b^{n} y=p+y \\
\left(b^{n}-1\right) y=p
\end{gathered}
$$

از آنجا:

$$
y=\frac{p}{b^{n}-1}
$$

بنا براين y يكى عدد منطق نمايش ميدهد و در نتيجه x نيز يكـ عدد منطق نمايش خو اهل

تبصره : اكر n=1 باشد دوره تناوب p داراى يكـ رقم است و :

$$
y=\frac{p}{b-1}
$$

$$
\text { با } p<b \text {. }
$$

و اگر $p=b-1$ باشد در اين صورت 1 و 1 عدد

$$
x=\frac{1+\overline{e q}}{b^{k}}
$$

يكـ عدد b-ئى است.
ولى يكك عدد b-ئى داراى يكك صورتبندى نامتنامى لا دوره تناوب ه امت. بنا براين براى يكـ عدد دو نمايش نامتا وري
 مثلا" در دستگاه دهدهى:

$$
x=Y / \text { F人OO... }
$$

با دوره تناوب صفر و:

$$
x=\text { v/rVq9 }
$$

با دوره تناوب q كه هر دو عدد b-ئى:

$$
\frac{r r \lambda}{10^{r}}
$$

را نما يش ميدهند. نمايش دوم را ناجور مينامند.

ت تعويف - صورت بندى نامتاهى متناوب تشكيل شده از رقم صورت بندى ناجود مينامند.
بعد از اين، صورت بندى ناجور را كنار خو اهيم كذاشت.
بدين ترتيب ميتو انيم بگوئيم:

تَضيها نامتناهى متناوب نما يُ يكـ عدد منطق يكتا است. بعبارت ديگر، بين +Q و مجموعه صورت بنديهاى نامتناهى متاوب دوسو گسترى وجود
Q_{b}^{+}
مجموعه ${ }^{+}$|عداد b-ئى داراى خو اص زير است:
ـ

چحونگه هرچهه باشد:

$$
\varepsilon \in Q_{b}^{+} \quad(\varepsilon \neq \circ)
$$

فاصله باز] [
ץـ اگر $\alpha<\beta$ باشد يك مغهوم دقيق از »فاصله بيـن α و β ") در دست است و ايــن
تغاضل
بدين تر تيب امكان تعريف مجاورت يكـ علد b-ئى وجود دارد: يكـ مجاورت α عبارت

 α قستى از رياضيات است كه مفاهيم مجاورت و حد را مورد بردسى قر ار ميدهد. تعويف عدوهاى منطق با شروع از يكـ عدد منطت α غير متعلق به ${ }^{+}$را در نظر ميگِير يم كه داراى صورت بندى نامتناهى

$$
\alpha=q_{0}, \overrightarrow{r_{1} r_{Y} \cdots r_{n} \cdots}
$$

بسمت صفر ميل ميكند.

$$
\left(S_{r}\right)\left(q_{0}, q_{0}+1<\supset\left(\frac{q_{1}}{b}, \frac{q_{1}+1}{b}\right\} \supset \cdots\right) \frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}<\supset \cdots
$$

 عدد α تنها عدد متعلق به اين فاصلوها است: بنا براين عدد α با رشته (${ }^{\alpha}$ به
اين طرز تعر يف در قسمت بعدى بيك (امتداد) مجموعـه اعــداد منطت مجموعه وسيعترى است منجر مىشود و اين مجموعه + ${ }^{+}$اعداد حقيقى مُبت است.

0

اعداد حقيقى مثبت

قبلا" ديديم كه در مبناى b هر هورتتبندى نامتنامى متناوب، يكت
 ميآيد كه هورت بندى ناستنامى غير متناوب پیه عددى را نمايثئى ميدهد.
 b-نى تقرييى اعداد طبيعى غـير مجذور كامل بدست ميـآيد. ايني هنين

 عدد حقيقى روى بنيان تويولوثيكت

 Q است اداهمه مييابند. ولى Q^{+} Q Q^{+}

 $x \in E$ ميشود. تابعى كه به x اندازه حقيقىالئى را همراه ميكند يكت همشكـلـى E در + بازاء جهـ است است

اهمل نيهسازى و اهل فقدان خلر
"سبى حـالت مجموءه A ـى كلا" مرتب كه در آنجا جمـ همواره
ميى نيست طرح ميشود: ايين، حالت زاويهها است.

نيهسازى اندازمهاي حقيقى يك جزء از A خا بر پايه

فصـ

ساخت مجحموعه اعلاد ححقيقى مثبت
را!

1- جذز كامل .يكك عدد طبيعى
 بردسى كنيم. نگار C اذ N با اين تابع عبارت از مجموعه مجذورهاى كامل است.

$$
\begin{aligned}
& \text { تابـع } \\
& \text { زيرا اذ: }
\end{aligned}
$$

$$
x<x^{\prime}
$$

شروع كنيم و دوباره بنويسيم:

$$
x<x^{\prime}
$$

عضو به عضو ضرب كنيم:

$$
x^{r}<x^{\prime r}
$$

بس:

$$
x<x^{\prime} \Rightarrow x^{\top}<x^{\prime \Upsilon}
$$

خاصيت ثابت است. از آنجا نتيجه ميشود (I، نصل ب، ب).

تعريفـ تابـع عكس در C معين است و معادير خود را در N اختيار ميكند: آنرا (پجذر كامله مينامند و مينويسند:

$$
\begin{aligned}
& (x \in N) \quad y=x^{\curlyvee} \rightleftarrows x=\sqrt{y} \quad(y \in C) \\
& \text { اينك نمودار اين تناظر دوسوئى (شكل l): }
\end{aligned}
$$

شكل 1
حال اكر علد a به C تعلق نداشته باشد:

$$
a \in N \quad, \quad a \notin C
$$

a
با اين وصف ميتوان براى a يك ((جذر كامل)، تقريبى تعر يف كرد. بخش P از C را كه با a فر ابسته شده است در نظر ميگیريم:

$$
P=C \cap(0, a)
$$

P مجموعه مجذورات كامل حد اكثر برابر a است. P P متناهى است زيرا با a فر ابسته است. P

$$
y=\max P
$$

جون $y \in C$ بنا به خاصيت $P_{\text {ي }}^{\text {يك علد طبيعى } r \text { يكتا وجود دارد بقسميكه: }}$

$$
r^{r}=y
$$

بديهى است كه

$$
(r+1)^{r}>a
$$

زيرا، اكر ميداشتّم:

$$
(r+1)^{r} \leqslant a
$$

لازم ميآمد:

$$
(r+1)^{r} \in P
$$

در اين صورت r ${ }^{r}$ بزركترين جزء P نميشد. يس ميتو انيم بگوئيم:

قضيه 1 - نظير هر عدد طبيعى ä يك علد طبيعى r يكتا وجود دارد بقسميكه:

$$
r^{r} \leqslant a<(r+1)^{r}
$$

تعويف - r را جذر كامل a يا جذر تقريبى a با يكـ واحد تقريب مينامند.
$x \rightleftarrows \sqrt{x}$ r
اكنون مسلئ زير را مطرح ميكنيم:
آيا ميتوان تناظر $y=\sqrt{x}$ را به اعداد طبيعسى x كه متعلق بـه C نيستند با تعـريض
 اختيار نگارها در مجموعه +Q اعداد منطق حل كرد؟
 وجود ندارد بقسميكه مجذور آن يك عدد طبيعى غير مجذور كامل باشد.

ابتدا لم مقلـانى زيردا اثبات ميكنيم:
 تجزيه آن به حاصل ضرب عرا عوامل اول اول فقط شامل نما

زيرا اكر عدد طبيعى a مجذور كامل باشد داريم:

$$
a=r \quad(r \in N)
$$

 a فقط شامل نماهاى زوج باشد (فرض كنيم كه دارای سه عامل است)

$$
a=m^{\ulcorner\alpha} \cdot n^{\curlyvee \beta} \cdot r^{\curlyvee \gamma}
$$

(

$$
a=\left(m^{\alpha} \cdot n^{\beta} \cdot p^{\gamma}\right)^{\gamma}
$$

و a مجذور كامل است.
از آنجا قضبه زير نتيجه مىشود:

قضيپ ז- هيَج علد منطق وجود ندارد كه مجذورش بـرابر يكـ عدد طبيعى غير مجـذور كامل باشد.
اثبات:
هركاه a عدر طبيعى غير مجذور كامل باشد، بنا به (L) تجزيه a به عوامل اول حداقل داراى يكـ نماى فرد است. فرض كنيم بكـ عدد منطق:

$$
\frac{u}{v} \quad\left(u \in N ; v \in N^{*}\right)
$$

وجود داشته باشد بقسميكه:

$$
\left(\frac{u}{v}\right)^{r}=a
$$

ثابت ميكنيم كه اين فرض به تناقض برميخورد. زيرا داريم:

$$
\left(\frac{u}{v}\right)^{r}=a \quad \Longleftrightarrow \quad u^{r}=a v^{r}
$$

u و v دا نيز به عو امل اول تجزيه كنيم. بنا به (L) تجزيه زو جاند در صودتيكه تجزيهُ a حداقل داراى يكـ نماى فرد است واين نما بعداز ضرب در
 مگر اينكه a مجذور كامل باشد.
از اين قضيه نتيجه ميشود كه اگر بخواهيم تناظر $x \rightarrow \sqrt{x}$ ایل $x \rightarrow$ را به اعــداد غير مجذور كامل ادامه دهيم بايد اعداد جديدى دا روى كار آورد.
ما بر ها يه اعداد b-ئى مبناى b شمار اين اعداد را تعريف ميكنيم.

جلن b-5ٔى تقويبى يكى عدى طبيعى
دو علد طبيعى a و n داده شده است: مطلو بست تعيين يكت عدد طبيعى q بقسميكه:

$$
\left(\frac{q}{b^{n}}\right)^{Y} \leqslant a<\left(\frac{q+1}{b^{n}}-\frac{1}{}\right)^{r}
$$

شرايط اين مسثله منطقاً همارزند با:

$$
q^{r} \leqslant a b^{\Gamma n}<(q+1)^{r}
$$

تعريف - $\frac{q}{b^{n}}$ را جذر b-نُ تقر يبى a با $\frac{1}{b^{n}}$ تقريب نقصانى و $\frac{q_{n}+1}{b^{n}}$ را جذر b-ئى تقريبى a

مقايس! جذرهاى تقويبى جذرهاى تقريبى با $\frac{1}{b^{n}}$
(1) $\quad\left(\frac{q}{b^{n}}\right)^{r} \leqslant a<\left(\frac{q+1}{b^{n}}\right)^{r} \quad \Longleftrightarrow \quad q^{r} \leqslant a b^{r n}<(q+1)^{r}$ جذرهاى تقريبى با $\frac{1}{b^{n+1}}$
(r) $\left(\frac{q^{\prime}}{b^{n}+1}\right)^{r} \leqslant a<\left(\frac{q^{\prime}+1}{b^{n+1}}\right)^{r} \Leftrightarrow \quad q^{\prime r} \leqslant a b^{r n+r}<\left(q^{\prime}+1\right)^{r}$ طرفين (1) را در
(r)

$$
(q b)^{r} \leqslant a b^{r n+r}<[(q+1) b]^{r}
$$

(Y) و (

$$
q^{\gamma} \leqslant a b^{r_{n+r}}
$$

جس داريم:

$$
q b \leqslant q^{\prime}
$$

از آنجا:

$$
\frac{q}{b^{n}} \leqslant \frac{q^{\prime}}{b^{n+1}}
$$

$$
\begin{gathered}
\left(q^{\prime}+1\right)^{r}>a b^{r_{n+r}} \\
q^{\prime}+1 \leqslant(q+1) b \\
\frac{q^{\prime}+1}{b^{n+1}} \leqslant \frac{q+1}{b^{n}} \\
\frac{q}{b^{n}} \leqslant \frac{q^{\prime}}{b^{n+1}} \\
\frac{q^{\prime}+1}{b^{n+1}} \leqslant \frac{q+1}{b^{n}}
\end{gathered}
$$

رشته نامتناهى جذرهاى تقريبى به n مقادير متوالى مجموعه زير را ميدهيم:

با يههاى آنا ليز رياضى جلديد

$$
N=\{0,1, r, r, \cdots, n, \cdots\}
$$

جذرهاى تقر يبى نقصانى a يكت رشته نامتاهى اعداد b-ئى را تشكيل ميدهند:
$\left(S_{1}\right)$

$$
q_{\circ} \leqslant \frac{q_{1}}{b} \leqslant \frac{q_{r}}{b^{r}} \leqslant \cdots \leqslant \frac{q_{n}}{b^{n}} \leqslant \cdots
$$

(رشته صعودى در مفهوم وسيـع است)
جنزهای تقريبى اضافى a يكـ رشته نامتاهى اعداد b-ئى را تشكيل ميدهند:
$\left(S_{Y}\right)$

$$
q_{0}+1 \geqslant \frac{q_{1}+1}{b} \geqslant \frac{q_{r}+1}{b^{r}} \geqslant \ldots \geqslant \frac{q_{n}+1}{b^{n}} \geqslant \ldots
$$

(رشته نزولى در مفهوم وسيع است)
اين دو رشته يكـ رشته فاصلههاى فراكير را تشكيل ميدهند:
$\left(\mathrm{S}_{r}\right) \quad q_{0}, q_{0}+1 \int \supset\left[\frac{q_{1}}{b}, \frac{q_{1}+1}{b}<\supset \cdots \supset\left(\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}<\supset \cdots\right.\right.$ كه در ازاى
ميدانِم بنا به قضئه ץ (اگُ a مجذور كامل نباشد) هيجَ عدد منطق وجود ندارد كه متعلى به جميع فواصل رشته (S (S) باشد.
در اين صورت يك علد يكتا متعلق به جميـع اين فو اصل را روى كار مى آوريم. ايــن
علد جليد را جندر a ميناميم و با
اين عدد به عدد اصم موسوم است.
 $x \rightleftarrows \sqrt{x}$ جميـع اين اعداد را با S نمايش ميلهيم. ما بدين ترتيب مسئلـــٔ امتـــداد دادن تناظر براى هر عدد طبيعى x دا حل كردها يم: اينك نموداد اين تناظر (شكل ج)

$$
\begin{aligned}
& N=\{0,1, r, r, \ldots, \quad x, \ldots\} \\
& S=\left\{\begin{array}{llll}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \\
0,1 & \sqrt{r}, \sqrt{\Gamma}, \ldots, & \uparrow \downarrow \\
x
\end{array}, \ldots\right\}
\end{aligned}
$$

شعل
r- اعـ اعلاد حقيقى
هر عدد b-ئى رشته (S, (S) داراى يكك صورت بندى در مبناى b است:

$$
\frac{q_{n}}{b^{n}}=e, \overline{r_{1} r_{r} \cdots r_{n}}
$$

ثابت ميكنيم كه نمايش عدد بعلى:

$$
\frac{q_{n+1}}{b^{n+1}}
$$

زيرا بنا به (Sr):

$$
\frac{q_{n+1}}{b^{n+1}} \in\left\{\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\right.
$$

از آنجا نتيجه ميشود كه تفاضل:

$$
\frac{q_{n+1}}{b^{n+1}}-\frac{q_{n}}{b^{n}}
$$

اكيداً كمتر از درازاى

$$
\frac{r_{n+1}}{b^{n+1}}
$$

$$
\text { با }<b \text { rn+1 است. }
$$

رشته (S) بنا براين در مبناى b با يكـ علامت فشردة يكـ صورت بندى نامتناهى:

$$
e, \stackrel{r_{1} r_{Y} \cdots r_{n} \cdots}{ }
$$

نما يش داده شده است.
اين صورت بندى
 قضيهُ (Y) است.
بطور كلىتر، هر صودت بندى نامتناهى در مبناى b نمايش يــــ علد مــوسوم به عدد حقيقى مُبت (عدد طبيعى، عدد منطق، علد اصمر) است.
 اشنباهى آنرا كنار ميگذاريم. يكى صورت بندى نامتاهى غير مشخص را در نظر ميگيريم:

$$
e, \overrightarrow{r_{1} r_{Y} \cdots r_{n} \cdots}
$$

 فاصلههاى فراگيررا كه دز ازاى
$\left(\mathrm{S}_{\mu}\right) \quad q_{0}, q_{0}+1: \supset\left[\frac{q_{1}}{b}, \frac{q_{1}+1}{b} \int \supset \cdots \supset\left(\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\right\} \supset \ldots\right.$ حال يكـ عدد يكتا را روى كار مى آوريم كه متعلق به همه فواصل است و در مبنـاى b با صورت بندى كه از آن شروع كردهايم نمايس داده ميشود. و اكر حنين عددى را با α نمايش دهيم:

$$
(\forall n \in N) \quad \alpha \in\left[\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b}\right]
$$

 فواصل
1)

$$
\begin{align*}
& \left\{x_{n}, y_{n} \llbracket \subset Q_{b}^{+}\right. \\
& \left\{x_{n}, y_{n}\left[x_{n+1}, y_{n+1}\right\}\right.
\end{align*}
$$

$y_{n}-x_{n}$ بسمت صفر ميل كند
ميگّوئيم كه چنين رشته داراى خاصيت P P است.
فرت اين رشته با (S (S) اين است كه درازاى $y_{n}-x_{n}$ دقيقاً برا بر $\frac{1}{b^{n}}$ نيست.
همانطور كه در فهل بعد خو اهيم ديد اگر بخخواهيم عملهاى روى ايـن رشتههــا را معين كنيم اين دقت با يد رها كردد. فرض كنيم كه داشته باشيم:

$$
(\forall n \in N) \quad \frac{q_{n}}{b^{n}} \frac{q_{n}+1}{b^{n}} \int\left(x_{n}, y_{n}\right.
$$

 دارد بقسميكه α ميتو اند با رشته دوم معين گردد. بعكس اكر عدد α با رشته داراى خاصيت P معين شود ميتــوان باين رشته يــك رشته (S
چو نكه شرط:

$$
\forall p \in N \quad \exists r \in N
$$

$$
n>r \Rightarrow y_{n}-x_{n}<\frac{1}{b^{p}}
$$

حال مقادير b-ئى تقريبى

$$
\begin{aligned}
& \frac{q_{p}}{b^{p}} \leqslant x_{n}<\frac{q_{p}+1}{b^{p}} \\
& \frac{q_{p}^{\prime}}{b^{p}} \leqslant y_{n}<\frac{q_{p}^{\prime}+1}{b^{p}} \\
& x_{n}<y_{n} \quad \Rightarrow \quad b^{p} x_{n}<b^{p} y_{n} \quad \Rightarrow \quad q_{p} \leqslant q_{p}^{\prime} \\
& q_{p}<q_{p}^{\prime} \quad \text { يا } \quad q_{p}=q_{p}^{\prime} \\
& \text { خود را در حالت دوم قرار ميدهيم. يعنى : } \\
& q_{p}+1 \leqslant q_{p}^{\prime} \\
& \text { با فرو بستن } y_{n} \text { و فرابستن } x_{n}-x_{n} \text { تفاضل فرو بسته ميشود: } \\
& y_{n}-x_{n}>\frac{q_{p}^{\prime}}{b^{p}}-\frac{q_{p}+1}{b^{p}} \\
& \text { از آنجا با قوى دلِل: } \\
& \frac{1}{b^{p}}>\frac{q_{p}^{\prime}}{b^{p}}-\frac{q_{p}+1}{b^{p}}
\end{aligned}
$$

ץ)

و بنا براين:

$$
q_{p}^{\prime}<q_{p}+r
$$

و جون (ץ) را نيز داريم. از آنجا نتيجه ميشود:

$$
q_{p}^{\prime}=q_{p}+1
$$

بطور خلاصه داريم:

$$
q_{p}=q_{p}^{\prime}
$$

$$
\frac{q_{p}}{\tilde{b}^{p}} \leqslant x_{n}<y_{n}<\frac{q_{n}+1}{b^{p}}
$$

از T آنجا.

$$
q_{p}+1=q_{p}^{\prime}
$$

از آنجا:

$$
\begin{gathered}
\frac{q_{p}}{\bar{b}^{p}} \leqslant x_{n}<\frac{q_{p}+1}{b^{p}} \leqslant y_{n}<\frac{q_{p}+r}{b^{p}} \\
\quad\left(x_{n}, y_{n} \longleftarrow \subset \int \frac{q_{p}}{b^{p}}, \frac{q_{p}+r}{b^{p}}\right.
\end{gathered}
$$

در هر دو حالت داريم:

بازاء هر عدد طبيعى p يكت مرتبه r وجود دارد كه با شروع از آن جميـع فو اصل معيـن
كننده عدد α در فاصله دوم كُنجيده شدهاند، يس دار يم:

$$
(\forall p \in N) \quad \alpha \in\left\{\frac{q_{p}}{b^{p}}, \frac{q_{p}+r}{b^{p}}\right.
$$

ميآوريم كه درازای

$$
(\forall p \in N) \quad\left\langle\frac{q_{p}}{b^{p}}, \frac{q_{p}+1}{b^{p}}<\subset\left\{\frac{q_{p}}{b^{p}}, \frac{q_{p}+r}{b^{p}}\right\}\right.
$$

 خاصيت P منطبق است. تعريف زير را ميتوان بيان كرد:
 بسمت صفر ميل ميكند عدد حقيقى مينامند.
يكـ عدد حفيقى را با يكـ حرف يو نانــى و اعــداد طبيعى را با حــروف لاتين نشان

مجمو عه اعداد حقيقى را با ${ }^{\text {با نشان ميدهيم: }}$

$$
\alpha \in R^{+}
$$

$$
N \subset Q_{b}^{+} \subset Q^{+} \subset R^{+}
$$

 قبل معين شده بودند. مجموعه ${ }^{+}$بدين ترتيب تا T $^{+}$ادامه يافته است.

صـ رابطه ترتيب عر

 (صورتبندىماى ناجور كنار كذاشته شدهاند)

تعريفـ مركاه دو عدد α و β كه در مبناى b با:

$$
\begin{aligned}
& \alpha=e, \overrightarrow{r_{1} r_{Y} \cdots r_{n} \cdots} \\
& \beta=e^{\prime}, \overline{u_{1} u_{r} \cdots u_{n} \cdots}
\end{aligned}
$$

نهايش داده شدهاند مفروض باشند.

$$
\begin{equation*}
e>e^{\prime} \Rightarrow \alpha>\beta \tag{1}
\end{equation*}
$$

$$
r_{p}>u_{p} \Rightarrow \alpha>\beta
$$

$$
\alpha=\beta
$$

بعبارت ديگر اكر قستهاى صحيح متمايز باشند دو عدد در ترتيب اكيد اين قسمتها قرار
دار ند.
اكر قسمتهاى صحيح متساوى باشند، دو عدد در ترتيب دوتا اولين رقـــم متمايز هممرتبه
b-ئى مى باشند.
اكرقستهاى صحيح متساوى باشند وهرجهباشد مر تبه b-ئى، ارقام هممر تبه b-ئى متساوى
باشند دو عدد متساويند.
اكر حالت تساوى را كنار بگذاريم ثــابت ميكنيم كـه يكـ را بطه تــرتيب اكيد كلى را
داريم:

$$
\alpha>\beta \Rightarrow \alpha \neq \beta
$$

اين، بلافاصله از تعريف نتيجه ميشود.

$$
(\alpha>\beta \quad, \quad \beta>\gamma) \quad \Rightarrow \quad \alpha>\gamma
$$

قسمت صححـح α را نشان دهد، در N داريم:

$$
\begin{aligned}
(e(\alpha) \geqslant e(\beta) \quad, \quad e(\beta)>e(\gamma)) & \Rightarrow \quad e(\alpha)>e(\gamma) \\
& \Rightarrow \quad, \quad \beta>\gamma) \Rightarrow R^{+} \quad \Rightarrow \quad \alpha>\gamma
\end{aligned}
$$

اكر سه قسمت صحيح برابر باشند:

$$
e(\alpha)=e(\beta)=e(\gamma)=e
$$

اولين مرتبه b-ئى را كه ارقام نظير در ג و β متفاوتند p در β و γ متنفاوتند q بناميم:

$$
\begin{aligned}
& \alpha=e, \overrightarrow{r_{1} \cdots r_{p-1} r_{p} \cdots} \\
& \beta=e, \stackrel{r_{1} \cdots r_{p-1} u_{p} \cdots}{ } \\
& \gamma=e, \overrightarrow{v_{1} \cdots v_{n} \cdots}
\end{aligned}
$$

(a
. $r_{p}>u_{p}$ بان ميشود $\alpha^{\prime}>\beta$
. $u_{p}>v_{p}$ بيان ميشود $\beta>\gamma$

$$
\beta=e, \overline{r_{1} \cdots r_{q} \cdots u_{p} \cdots}
$$

$$
\gamma=e, r_{1} \cdots v_{q} \cdots
$$

ارقام مرتبه q در ג و β برا برنــله يس اولين دو رقـــم متفاوت در α و γ عبار تند از:
 p<q(c

$$
\begin{aligned}
\beta & =e, \stackrel{r_{1} \cdots u_{p} \cdots u_{q} \cdots}{\gamma}=e, \xrightarrow[r_{1} \cdots u_{p} \cdots v_{q} \cdots]{ }
\end{aligned}
$$

و ارقام مرتبه p در β و γ برابرنــد: يس اولين دو رقم متفاوت در α و γ عبارتند از:

$$
u_{q} g r_{q}
$$

. $\alpha>\gamma$ جون $r_{p}>u_{p}$ بنا براين $\alpha>\beta$ است $\alpha>$ متيجه

سرايتذذيرى در جميع حالتها ائبات شده است.
ب) هرجه باشد اعداد حقيقى α و β ر داريم:

$$
\alpha>\beta \quad \text { ᄂ } \quad \beta>\alpha
$$

باشند داريم:

$$
e(\alpha)>e(\beta) \quad ᄂ \quad e(\beta)>e(\alpha)
$$

اكر اين قسمتها برا بر و اولين رقمهاى متناوت زو ج

$$
r_{p}>u_{p} \quad\left\llcorner\quad u_{p}>r_{p}\right.
$$

یس ترتيب در + ${ }^{+}$نيز كلى است.

 نميتو ان با اعدادى تشكيل داد كه از مر تبه p به بعد هم هم باهم مساوى باشند.

$$
\begin{gathered}
n \geqslant p \\
\frac{q_{n}+1}{b^{n}}=\frac{q_{p}+1}{b^{q}}
\end{gathered}
$$ فرض كنيم هرجه باشد

ثابت ميكنيم كه اين فرض به تناقض بر ميخورد. در ${ }^{+}$عمل كنيم. از رابطه قبل نتيّهه ميشود:

$$
\begin{array}{r}
\frac{q^{n}}{b^{p}}=\frac{q_{p}}{b^{p}}+\frac{b^{n-p}-1}{b^{p}}=\frac{q_{p}}{b^{p}}+(b-1)\left(\frac{1}{b^{p+1}}+\cdots+\frac{1}{b^{n}}\right) \\
\text { از مرتبه } p+1 \text { بعد } p+1 .
\end{array}
$$

$$
\frac{q_{n}}{b^{n}}
$$

يكك صورتبندى تشكيل شده منحصراً از رقم 1 - 1 را نمايش خو اهد داد و عدد ג-ى منعلق به جميع فو اصل فراكير:

$$
\left\{\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\right\}
$$

يكك صورتبندى زاجود خو اهل داشت كه كنار كذاشتهايم: بس هرجه باشد n

$$
\alpha<\frac{q_{n}+1}{b^{n}}
$$

届 مر تبه بهبعد فاصلaهاى فر اكير معين كنتده α با با فاصفهماى فر اكير معينكنتده β متغاير فرض كنيم:

$$
\begin{aligned}
& \alpha=e, \overrightarrow{r_{1} r_{Y} \cdots r_{n} \cdots} \\
& \beta=e^{\prime}, \overrightarrow{r_{Y} r_{Y}^{\prime} \cdots r_{n}^{\prime} \cdots}
\end{aligned}
$$

$$
\text { حالت اول: } e<e^{\prime} \text { داريم: }
$$

$$
e+1 \leqslant e^{\prime}
$$

از آنجا:

$$
\alpha<e+1 \leqslant e^{\prime} \leqslant \beta
$$

از مر تبه ه بـه بعد فواصل فــر اكيرى كه α را تعيين ميكند (؟

داريم:

$$
r_{p}<r_{p}^{\prime}
$$

$$
r_{p}+1 \leqslant r_{p}^{\prime}
$$

يعنى:

فواصل:

$$
\left\{\frac{q_{n}}{b^{n}}, \frac{q_{n+1}}{b^{n}}\right\}
$$

تعيين كنده α با فواصل تعيين كنده β منطبقاند (مادامبكه n n است).
بازاه n=p داريم:

$$
\begin{aligned}
q_{p} & =\overrightarrow{e r_{1} \cdots r_{p-1} r_{p}} \\
q_{p}^{\prime} & =\overline{e r_{1} \cdots r_{p-}-r_{p}^{\prime}}
\end{aligned}
$$

سس، در N:

$$
q_{p}^{\prime}-q_{p}=r_{p}^{\prime}-r_{p}
$$

جون

$$
\frac{q_{p}^{\prime}}{b^{p}} \geqslant \frac{q_{p}+1}{b^{p}}
$$

در نتيجه:

$$
\begin{aligned}
& \frac{q_{p}}{b^{p}}, \frac{q_{p}+1}{b^{p}} \\
& \left\lvert\, \frac{q_{p}^{\prime}}{b^{p}} \frac{b_{p}^{\prime}+1}{b^{p}}\right.
\end{aligned}
$$

متغاير است و خاصيت Pr ثابت است. نتيجهـ را بطه احتمالى:

$$
\frac{q_{n}^{\prime}}{b^{n}}=\frac{q_{n}+1}{b^{n}}
$$

نمينو اند بر قراد باشد (هرجه باشد $n \in N)$. زيرا:

$$
\frac{q_{n}+1}{b^{n}}
$$

جمله عمومى رشته (S_) نزولى به معناى وسيـع است و

$$
\frac{q_{n}^{\prime}}{b^{n}}
$$

جمله عمومى يكـ رشته از قبيل (S,) صعودى به معناى وسيع است. اكر يكـ جنين رابطهاى بر قرار بود (هرجه باشد

$$
\frac{q_{n}+1}{b^{n}}-\left(\underline{q_{n}^{\prime}}\right)
$$

معدار ثابتى ميشد. ولى بنا به تبصره قبلى:

$$
\frac{q_{n}+1}{b^{n}}
$$

نميتواند مقدار ثابتى باشد (صودت وندى اندهاى ناجور كنار كذاشته شدهاند) از آنجا نتبجه ميشود كه يكت مرتبهاى وجود دارد كه از آن به بعد نامساوى اكيد زير را دار داريم:

$$
\frac{q_{n}+1}{b^{n}}<\frac{q_{n}^{\prime}}{b^{n}}
$$

$$
\alpha<\frac{q_{n}+1}{b^{n}}<\frac{q_{n}^{\prime}}{b^{n}} \leqslant \beta
$$

و اين بدان معنى است كه فاصله باز

$$
\frac{q_{n}+1}{b^{n}}
$$

است. از آنجا:

قضياص r- هر فاصله باز R^{+}شامل يكك عدد Q^{+}است. تبمبره- در فصل بعد وجود يكـ مرتبه را كه از آن به بعد:

$$
\begin{aligned}
& \frac{q_{n}+1}{b^{n}}<\frac{q_{n}^{\prime}}{b^{n}} \\
& \frac{q_{n}+r}{b^{n}} \leqslant \frac{q_{n}^{\prime}}{b^{n}}
\end{aligned}
$$

بصورت:

باشد مورد استفاده قراد خو اهيم داد.

عملها در +

جمع در + ${ }^{+}$را با امتداد دادن جمع در +Q تعريف ميكنيم. ابتدا اكر α و β د دو عـدد منطق باشند كه بترتيب با رشتهماى فراگير به جملهماى عمومى زير معين شده باشند:

$$
\alpha \in\left\{\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\right\}
$$

$$
\beta \in\left[\frac{q_{n}^{\prime}}{b^{n}}, \frac{q_{n}^{\prime}+1}{b^{n}}-\right.
$$

داريم:

$$
\begin{aligned}
& \frac{q_{n}}{b^{n}} \leqslant \alpha<\frac{q_{n}+1}{b^{n}} \\
& \frac{q_{n}^{\prime}}{b^{n}} \leqslant \beta<\frac{q_{n}^{\prime}+1}{b^{n}}
\end{aligned}
$$

اكر عضو به عضو در +Q جمع كنيم:
$\frac{q_{n}+q_{n}^{\prime}}{b^{n}} \leqslant \alpha+\beta<\frac{q_{n}+q_{n}^{\prime}+r}{b^{n}}$
تفاضل:

$$
\frac{r}{b^{n}}
$$

بين دو انتهاى ايــن فاصله بسمت صفر ميل ميكند: كافى است قضيه ب از (III؛ فصل بَ، بَ) دا

بدست ميآوريــم كـه در ازاى آنها بسمت صفر ميل ميكند ومجموع $\alpha+\beta$ را در + معين
ميكند.
وقتيكه α و β اعداد حقيقىمبتاند مجموع $\alpha+\beta$ بهمان طرز معين ميگردد.
تعريف جمع در +
بههرزوج مر تب اعلاد حقيقى α و β يكـ عدد حقيقى همر اه ميكنيم كه به مجموع
موسوم است و با $\alpha+\beta$ نمايش داده ميشود و بترتيب زير تعريف ميشود: هركاه :

$$
\left\{\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\right\} \quad, \quad \frac{q_{n}^{\prime}}{b^{n}}, \frac{q_{n}^{\prime}+1}{b^{n}}
$$

جملههاى عمومى رشته فو اصل فراكير باشد كه بترتيب α و β را معين ميكنند مجموع متعلق به جميـع فواصل فراكير رشته بينهايت به جمله عمومى:

$$
\left\{\frac{q_{n}+q_{n}^{\prime}}{b^{n}}, \frac{q_{n}+1+q_{n}^{\prime}+1}{b^{n}}\right\}
$$

است كه درازاى Tن بسمت صفر ميل ميكند.

ه P_{1}

$$
\alpha+\beta=\beta+\alpha
$$

بنا به تعر يف داريم:

$$
\begin{aligned}
& (\alpha+\beta) \in\left\{\frac{q_{n}+q_{n}^{\prime}}{b^{n}}, \frac{\left(q_{n}+1\right)+\left(q_{n}^{\prime}+1\right)}{b^{n}}\right. \\
& (\beta+\alpha) \in\left\{\frac{q_{n}^{\prime}+q_{n}}{b^{n}}, \frac{\left(q_{n}^{\prime}+1\right)+\left(q_{n}+1\right)}{b^{n}}\right.
\end{aligned}
$$

$$
\alpha+\beta=\beta+\alpha
$$

$$
\begin{aligned}
& (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) \\
& \quad\left[\frac{q_{n}^{\prime \prime}}{b^{n}} \quad, \quad \frac{q_{n}^{\prime \prime}+1}{b^{n}}\right.
\end{aligned}
$$

جمله عمومى رشتهاى باشد كه γ را معين ميكند.
بنا بـ تعريف:

$$
\begin{aligned}
& ((\alpha+\beta)+\gamma) \in\left[\frac{\left(q_{n}+q_{n}^{\prime}\right)+q_{n}^{\prime \prime}}{b^{n}}, \frac{\left(q_{n}+1+q_{n}^{\prime}+1\right)+q_{n}^{\prime \prime}+1}{b^{n}}\lceil \right. \\
& \text { : } 9 \\
& (\alpha+(\beta+\gamma)) \in\left[\frac{q_{n}+\left(q_{n}^{\prime}+q_{n}^{\prime \prime}\right)}{b^{n}}, \frac{q_{n}+1+\left(q_{n}^{\prime}+1+q_{n}^{\prime \prime}+1\right)}{b^{n}}[\right. \\
& \text { بخاطر شركتبذيرى در }{ }^{+} \text {دو رشته همان هستند و داريم: } \\
& (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)
\end{aligned}
$$

جزء خنتى - هرجه باشد عدد حقيقى α داديم:

$$
\begin{array}{cc}
\alpha+\circ=\alpha & : \begin{array}{c}
\mathrm{P}_{r} \\
\left(\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\lceil \right. \\
\left(\circ, \frac{1}{b^{n}}\right.
\end{array}
\end{array}
$$

معين ميكنيم. بنا به تعريف داريم:

$$
(\alpha+\circ) \in\left[\frac{q_{n}}{b^{n}}, \frac{q_{n}+r}{b^{n}}\lceil\right.
$$

$$
\left[\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\left\lceil\subset\left\{\frac{q_{n}}{b^{n}}, \frac{q_{n}+r}{b^{n}}\right\}\right.\right.
$$

: ولى

جون α به فاصله اول تعلق دارد به فــاصله دوم نيز متعلق خواهد بود (هـرجه باشد n)
بس داديم:

$$
\alpha+\circ=\alpha
$$

جزء خنثاى جمـع o است و يكتا است. بإيلارى رابطه تر تيب بازاءٍ جمع

$$
\alpha<\beta \text { موجب ميشود } \quad \alpha+\gamma<\beta+\gamma
$$

بنا به تبصره آخر فصل قبل اكر داشته باشيم:

$$
\begin{aligned}
& (\forall n \in N), \quad \alpha \in\left\{\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\right\} \\
& \beta \in\left[\frac{q_{n}^{\prime}}{b^{n}}, \frac{q_{n}^{\prime}+1}{b^{n}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{q_{n}+r}{b^{n}} \leqslant \frac{q_{n}^{\prime}}{b^{n}} \\
& \text { حال اگر: } \\
& \left(q_{n}^{\prime \prime} \bar{b}^{n}, \frac{q_{n}^{\prime \prime}+1}{b^{n}}\right.
\end{aligned}
$$

رشته تعيين كتنده γ باشد.
نامساوى قبلى ايجاب ميكند در بـ

$$
\begin{gathered}
\frac{q_{n}+r}{b^{n}}+\frac{q_{n}^{\prime \prime}}{b^{n}} \leqslant \frac{q_{n}^{\prime}}{b^{n}}+\frac{q_{n}^{\prime \prime}}{b^{n}} \\
\alpha+\gamma<\frac{q_{n}+1}{b^{n}}+\frac{q_{n}^{\prime \prime}+1}{b^{n}}
\end{gathered}
$$

ولى:

$$
\frac{q_{n}^{\prime}}{b^{n}}+\frac{q_{n}^{\prime \prime}}{b^{n}} \leqslant \beta+\gamma
$$

با سرايتِّذرى از T نجا نتيجه ميشود:

$$
\alpha+\gamma<\beta+\gamma
$$

$$
\alpha+\beta=\alpha+\gamma \text { موجب ميشود } \beta=\gamma
$$

$$
\alpha+\beta>\alpha+\gamma
$$

$$
\text { كه مخا لف فرض است. بهمين ترتيب } \gamma \text { < } \beta \text { موجب ميشود: }
$$

$$
\alpha+\beta<\alpha+\gamma
$$

كه مخالف فرض است. پس داريم:

$$
\beta=\gamma
$$

 رابطه ترتيب بازاء جمع چايدار است.
Fـ تنو.يق

مسئله - هركاه دو عدد حقيقى α و β مـنــروض باشند آيـا يســ علد حقيقبى γ وجود دارد بقسميكه:

$$
\alpha+\gamma=\beta
$$

باشد؟
شرط $\alpha \leqslant \beta$ براى وجود يكـ جواب لازم است. زيرا اكر ميداشتيم:

$$
\alpha>\beta
$$

هرچه باشد γ نتيجه ميشد:

$$
\alpha+\gamma>\beta+\gamma \geqslant \beta
$$

$$
\text { و رابطه } \alpha+\gamma=\beta \text { تحقق نمييافت. }
$$

$$
\text { يس فرض ميكنيم } \alpha \leqslant \beta \text { و: }
$$

$$
\alpha \in\left\lceil\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\left\lceil; \quad \beta \in\left\{\frac{q_{n}^{\prime}}{b^{n}}, \frac{q_{n}^{\prime}+1}{b^{n}}\right\}\right.\right.
$$

1) جواب وجود دارد:

هرجه باشل $n \in N$ بنا به فرض داريم:

$$
\begin{aligned}
& \frac{q_{n}}{b^{n}} \leqslant \frac{q_{n}^{\prime}}{b^{n}} \\
& \frac{q_{n}^{\prime}-q}{b^{n}} \frac{q_{n}}{}
\end{aligned}
$$

بس تفاضل:

وجود دارد. يك عدد γ را با رشته نامتناهى فواصل فراكير با جمله عمومـى زير معين ميكنيم:

$$
\gamma \in\left[\frac{q_{n}^{\prime}-q_{n}}{b^{n}}, \frac{q_{n}^{\prime}-q_{n}+1}{b^{n}}(\right.
$$

بنا به تعريغ جمع:

$$
(\gamma+\alpha) \in\left\lceil\frac{q_{n}^{\prime}}{b^{n}}, \frac{q_{n}^{\prime}+Y}{b^{n}}\left\lceil\supset \left\lceil\frac{q_{n}^{\prime}}{b^{n}}, \frac{q_{n}^{\prime}+1}{b^{n}}\lceil\right.\right.\right.
$$

خون β متعلق به فاصله دوم است، هرجه باشد n بس به فاصله اول نيز تعلق دارد. از آنجا:

$$
\gamma+\alpha=\beta
$$

بس عدد γ كه بدين ترتيب معين كرديد جواب مسئله است.
r) جواب يكتا است.

زيرا اكر يك عدد ديگر ' ${ }^{\prime}$ وجود داشت بقسميكه:

$$
\gamma^{\prime}+\alpha=\beta
$$

لازم ميآمد:

$$
\gamma+\alpha=\gamma^{\prime}+\alpha
$$

از آنجا:
(خاصيت

$$
\gamma=\gamma^{\prime}
$$

قضيه" ا- هركاه دو عدد حقيقى α و β مفروض باشند بقسميكه $\alpha<\beta$ يكـ عــدد حقيقى γ و نقط يكى وجود دارد بطوديكه:

$$
\alpha+\gamma=\beta
$$

تعريف و علامت - γ تفاضل β و α ناميله ميشود و با α - β نهايش داده ميشود.

ابتدا دو عدد منطت α و β را در نظر ميگِيريم كه بترتيب با فواصل فراگـير با جملههاى
عمومى زير معين شده باشند.

$$
\alpha \in\left\lceil\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\left\lceil, \quad \beta \in\left\{\frac{q_{n}^{\prime}}{b^{n}}, \frac{q_{n}^{\prime}+1}{b^{n}}\right\}\right.\right.
$$

داريم:

$$
\begin{aligned}
& \frac{q_{n}}{b^{n}} \leqslant \alpha<\frac{q_{n}+1}{b^{n}} \\
& \frac{q_{n}^{\prime}}{b^{n}} \leqslant \beta<\frac{q_{n}^{\prime}+1}{b^{n}}
\end{aligned}
$$

از ضرب عضو به عضو در Q

$$
\frac{q_{n} q_{n}^{\prime}}{b^{r n}} \leqslant \alpha \beta<\frac{\left(q_{n}+1\right)\left(q_{n}^{\prime}+1\right)}{b^{r n}}
$$

اثبات كنبم كه در ازای

$$
\begin{gathered}
l_{n}=\frac{q_{n}+q_{n}^{\prime}+1}{b^{r n}}=\frac{1}{b^{n}}\left(\frac{q_{n}}{b^{n}}+\frac{q_{n}^{\prime}+1}{b^{n}}\right) \\
\quad \text { هرجه باشد } n \in N \\
\frac{q_{n}}{b^{n}}<e+1
\end{gathered}
$$

e قسمت صحيح α است.

$$
\frac{q_{n}^{\prime}+1}{b^{n}}<e^{\prime}+1
$$

قسمت صحيح e^{\prime} است. يس داريم:

$$
l_{n}<\frac{1}{b^{n}}\left(e+e^{\prime}+r\right)
$$

براى سازكارى ع <

$$
\frac{1}{b^{n}}<\frac{\varepsilon}{e+e^{\prime}+r}
$$

بر آورده شود.

 وقتيكه α و β اعداد حقيقى غير مشخص هستند حاصل ضرب $\alpha \beta$ بهمين طرز معين ميگردد.
 ضرب α در β موسوم است و با $\alpha \beta$ نما يش داده ميسُود و بتر تيب زير معين ميگردد. هركاه:

$$
\left[\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\right] \quad, \quad \frac{q_{n}^{\prime}}{b^{n}}, \frac{q_{n}^{\prime}+1}{b^{n}}
$$

به تر تيب جملaهاى عمومى رشتههاى فواصل فراگير ميباشند كـهـ حاصل ضرب $\alpha \beta$ متعلق به جميع فواصل فر اگير رشته نامتناهى به جمله عمومى

$$
\left(\frac{q_{n} q_{n}^{\prime}}{b^{\curlyvee n}}, \frac{\left(q_{n}+1\right)\left(q_{n}^{\prime}+1\right)}{b^{\curlyvee n}}\right.
$$

است كه درازاى آن بسمت صفر ميل ميكند.

$$
\beta \alpha=\alpha \beta
$$

بنا به تعريف:

$$
\begin{aligned}
& \alpha \beta \in\left[\frac{q_{n} q_{n}^{\prime}}{b^{r_{n}}}, \frac{\left(q_{n}+1\right)\left(q_{n}^{\prime}+1\right)}{b^{r_{n}}}\right] \\
& \beta \alpha \in\left\lceil\frac{q_{n}^{\prime} q_{n}}{b^{r n}}, \frac{\left(q_{n}^{\prime}+1\right)\left(q_{n}+1\right)}{b^{r_{n}}} \underline{x}^{2}\right.
\end{aligned}
$$

$$
\alpha \beta=\beta \alpha
$$

شركت پذيرى
هر $(\alpha \beta) \gamma=\alpha(\beta \gamma)$

اكر جمله عمومى رشته معين كتنده y :

$$
\left\{\frac{q_{n}^{\prime \prime}}{b^{n}}, \frac{q_{n}^{\prime \prime}+1}{b^{n}}\right.
$$

$$
\begin{aligned}
& (\alpha \beta) \gamma \in \frac{q_{n} q_{n}^{\prime}}{b^{r n}} \cdot \frac{q_{n}^{\prime \prime}}{b^{n}}, \frac{\left(q_{n}+1\right)\left(q_{n}^{\prime}+1\right)}{b^{r n}} \cdot \frac{\left(q_{n}^{\prime \prime}+1\right)}{b^{n}} \\
& (\alpha \beta) \gamma \in\left(\frac{q_{n}}{b^{n}} \cdot \frac{q_{n}^{\prime} q_{n}^{\prime \prime}}{b^{r n}}, \frac{q_{n}+1}{b^{n}} \cdot \frac{\left(q_{n}^{\prime}+1\right)\left(q_{n}^{\prime \prime}+1\right)}{b^{r n}}\right.
\end{aligned}
$$

بخاطر شركتخذيرى ضرب در Q ${ }^{+}$دو رشته همسان هستد:

$$
(\alpha \beta) \gamma=\alpha(\beta \gamma)
$$

توزيعيذِيرى ضرب نسبت به جمع:
هرجه باشد اعداد حقيقى α و

$$
\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma
$$

با حفظ علامتهاى قبلى:

$$
\begin{gathered}
\alpha(\beta+\gamma) \in\left[\frac{q_{n}}{b^{n}} \cdot \frac{q_{n}^{\prime}+q_{n}^{\prime \prime}}{b^{n}}, \frac{q_{n}+1}{b^{n}} \cdot \frac{q_{n}^{\prime}+1+q_{n}^{n}+1}{b^{n}}\right] \\
(\alpha \beta+\alpha \gamma) \in\left[\frac{q_{n} q_{n}^{\prime}}{b^{r n}}+\frac{q_{n} q_{n}^{\prime \prime}}{b^{r n}}, \frac{\left(q_{n}+1\right)\left(q_{n}^{\prime}+1\right)}{b^{\gamma n}}+\frac{\left(q_{n}+1\right)\left(q_{n}^{\prime \prime}+1\right)}{b^{r n}}\right)
\end{gathered}
$$

بخاطر توزيـعذيرى ضرب نسبت بجمـ در ${ }^{\text {بی }}$ دو رشته همسان هستند: و داريم:

$$
\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma
$$

توزيعيذيرى نسبت بتفريق.
اكر $\beta>\gamma$ باشد داريم:

$$
\alpha(\beta-\gamma)=\alpha \beta-\alpha \gamma
$$

اثبات همانطور است كه در N بود.

هرحه باشد عدد حقيقى α داريم:

$$
\mid \cdot \alpha=\alpha
$$

ג را با رشته به جمله عمومى:

$$
\left\{\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\right\}
$$

$$
\left\{1,1+\frac{1}{b^{n}}\right.
$$

معين ميكنيم:
بنا به تعريف ضرب داريم:

$$
(1 \cdot \alpha) \in\left[\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\left(1+\frac{1}{b^{n}}\right)\left[\supset\left[\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\right]\right.\right.
$$ جون α هتعلق به فاصله دوم است یس به اولى نيز تعلق دارد يس :

$$
\begin{aligned}
& 1 \cdot \alpha=\alpha \\
& \text { جزء خنناى ضرب در R }{ }^{+} \text {عبارت از ا است و يكتا است. }
\end{aligned}
$$

پا يدارى را بطغء ترتيب بازاء ضرب

$$
(\alpha \neq \circ \quad, \quad \beta<\gamma) \Rightarrow \alpha \beta<\alpha \gamma
$$

$$
\begin{aligned}
& \beta<\gamma \quad \Rightarrow \quad\left(\exists \delta \in R^{+} \quad ب \quad \beta+\delta=\gamma\right) \\
& \text { در } \alpha \text { ضرب ميكنيم نتيجه ميشود: } \\
& \alpha(\beta+\delta)=\alpha \gamma
\end{aligned}
$$

از آنجا:
$\alpha \beta+\alpha \delta=\alpha \gamma$
و بنا براين:

$$
\alpha \beta<\alpha \gamma
$$

مسئله- هركاه عدد حقيقى α مفروض باشد آيا عدد حقيقى β وجود دارد بقسميكه:

$$
\alpha \beta=1 ?
$$

بديهى است كه شرط $\alpha \neq 0$ براى وجود يكـ جواب لازم است چونكه هرجه بآشد

$$
\circ \cdot \beta=\circ
$$

$$
\left\{\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\right.
$$

باشد.
شرط $\alpha \neq 0$ حد اقل از يكـ مرتبه معينى به بعد با:

$$
\frac{q_{n}}{b^{n}} \neq \circ
$$

بيان ميشود.

1) جواب وجود دارد.

منظود بيدا كردن رشته:

$$
\left(\frac{p_{n}}{b^{n}}, \frac{p_{n}+1}{b^{n}}\right.
$$

در

$$
\begin{aligned}
& \frac{p_{n} q_{n}}{b^{\gamma n}} \leqslant 1<\frac{\left(p_{n}+1\right)\left(q_{n}+1\right)}{b^{\gamma n}} \\
& p_{n} q_{n} \leqslant b^{\gamma n}<\left(p_{n}+1\right)\left(q_{n}+1\right)
\end{aligned}
$$

يعنى در N:

جون ${ }^{2} \neq 0$ است

$$
p_{n}=e\left(\frac{b^{\curlyvee n}}{q^{n}}\right)
$$

(قسمت صحيح عدد منطق) اختبار ميكنيم. داريم:

$$
p_{n} \leqslant \frac{b^{\curlyvee n}}{q_{n}}<p_{n}+1
$$

(بنا به تعر يف قسهت صحيح). از آنجا:

$$
p_{n} q_{n} \leqslant b^{r n}<q_{n}\left(p_{n}+1\right)
$$

و باقوى دلِل:

$$
p_{n} q_{n} \leqslant b^{r n}<\left(p_{n}+1\right)\left(q_{n}+1\right)
$$

از آنجا نتبجه ميشود:

$$
\frac{p_{n} q_{n}}{b^{r^{n}}} \leqslant 1<\frac{\left(p_{n}+1\right)\left(q_{n}+1\right)}{b^{r_{n}}}
$$

بس يكـ جواب وجود دارد كه از اختيار:

$$
\begin{array}{r}
p_{n}=e\left(\frac{b^{\gamma^{\imath n}}}{q_{n}}\right) \\
\beta \in\left\lceil\frac{p_{n}}{b^{n}}, \frac{p_{n}+1}{b^{n}}\lceil\quad, \quad \alpha \beta=1\right.
\end{array}
$$

در اين صورت داريم:
r

ز β نتجه ميشد:

$$
\begin{aligned}
& \beta\left(\alpha \beta^{\prime}\right)=\beta \\
& (\beta \alpha) \beta^{\prime}=\beta
\end{aligned}
$$

بنا به شركتِذيرى:
, خون:

$$
\beta=\beta^{\prime}
$$

تضيوء 「- نظير هر عدد حقيقى غير صفر α يكـ عدد حقيقى وجود دارد بقسميكه:

$$
\alpha \beta=1
$$

تعريفـ β را معكوس عدد α مينامند و با: $\frac{1}{\alpha}$

نمايش ميدهند.
 ميبخشد. بنا براين هرعدد حقيقى غير صفر براى ضرب اختصاربذير است.
(

$$
\begin{equation*}
(\alpha \neq 0 \quad, \quad \alpha \beta=\alpha \gamma) \Rightarrow \beta=\gamma \tag{11}
\end{equation*}
$$

P- جندر يك عدد حقيقى
جذر تقريبى تا يكـ واحد تقريب يكـ عدد حقيقى را با ائبات لم زير تعريف ميكنب.

لم (L)- هركاه α يك عدد حقيقى غير مشخص و ((α) قسمت صحيح آن باشد نامساويهاى:

$$
r^{r} \leqslant e(\alpha)<(r+1)^{r}
$$

منطقًاً هم ارزند با:

$$
r^{r} \leqslant \alpha<(r+1)^{r}
$$

بنا به تعريف e(

$$
e(\alpha) \leqslant \alpha \leqslant e(\alpha)+1
$$

اكر r جذر كامل عدد طبيعى e e باشد:

$$
r^{r} \leqslant e(\alpha)<(r+1)^{r}
$$

داريم:

$$
e(\alpha)<(r+1)^{r} \Rightarrow e(\alpha)+1 \leqslant(r+1)^{r}
$$

و خون

$$
\alpha<(r+1)^{r}
$$

بدين ترتيب ثابت ميشود كه:

$$
\begin{aligned}
\left(r^{r} \leqslant e(\alpha)<(r+1)^{r}\right) \Rightarrow \quad\left(r^{r}\right. & \left.\leqslant \alpha<(r+1)^{r}\right) \\
: \quad, \quad \alpha<e(\alpha)+1) & \Rightarrow r^{r}<e(\alpha)+1 \\
\left(r^{r} \leqslant \alpha \quad\right. & \Rightarrow r^{r} \leqslant e(\alpha) \\
& \\
\left(e(\alpha) \leqslant \alpha \quad, \quad \alpha<(r+1)^{r}\right) & \Rightarrow e(\alpha)<(r+1)^{r}
\end{aligned}
$$

عكس آن مدلل و لم (L) ثابت است. حال تعريف زير را بيان ميكنيم:

تعريف- جذر تقريبى يكـ عدد حقيقى تا يكـ واحد تقريب عبارت از جـنر قسمت صحـيح آن
e (α است.
جذرهاى bــئى تقويبي يك عدد حقيقى بهر عدد طبيعى n و عــدد حقيقى تقريب اين عدد ${ }^{\text {ايn }}$ باشد:

$$
q_{n}^{r} \leqslant b^{\curlyvee n} \alpha<\left(q_{n}+1\right)^{r}
$$

از آنجا نتيجه ميشود:

$$
\left(\frac{q_{n}}{b^{n}}\right)^{r} \leqslant \alpha<\left(\frac{q_{n}+1}{b^{n}}\right)^{r}
$$

و اضافى مينامند. مانند (III، فصل ץ) بسادكى ثابت ميشود كه:

$$
q_{n+1}+1 \geqslant q_{n}+1 \quad, \quad q_{n} \leqslant q_{n+1}
$$

بنا براين رشته نامتناهى بجمله عمومى:

$$
\left(\frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}}\right)
$$

از فو اصل فراكيرى تشكيل شده است كه طول $\frac{1}{b^{n}}$ آنا بسمت صفر ميل ميكند.
جند α - عدد حقيقى متعلق به همه اين فواصل به (اجذر عدد α) موسوم است و با: $\sqrt{\alpha}$

نما يش داده ميشود.
بلافاصله محقق ميشود كه:

$$
\sqrt{\alpha} \cdot \sqrt{\alpha}=\alpha
$$

$$
\beta>\beta^{\prime} \quad \text { ب } \quad \beta^{\prime r}=\alpha \quad, \quad \beta^{r}=\alpha
$$

(مثلا") از ضرب عضو به عضو دو نامساوى:

$$
\beta>\beta^{\prime} \quad, \quad \beta>\beta^{\prime}
$$

در R ${ }^{+}$نتيجه ميشد.

$$
\beta^{r}>\beta^{\prime r}
$$

$$
\beta^{r}=\beta^{\prime r}=\alpha
$$

كه مخالف فرض است یس:

تبصره- اين قضيه در تئورى لگاريتمها مورد استفاره قرار خواهـد
هـ سوراخها و خلب
در مجموعه N اعداد طبيعى فاصلههاى باز تهى وجود دارد، هر فاصله بهدوانتهاى متوالى:

$$
] a, a+1[\subset N
$$

ميخويند كه اين فاصله يكى سوراخ در N است.

$$
\gamma=\alpha+\frac{\beta-\alpha}{b}
$$

خودش نيز b-ثى است و:

$$
\gamma \in] \alpha, \beta\{
$$

(حون ا بطود اولى در +Q و + Q $^{+}$نيز وجود ندادد.

خلل در
مثالى اختبار كنيم، در دستگاه به مبناى (b= Y) رشته فو اصلفر اكير راكه عدد منطق

$$
\text { } \frac{1}{r} \text { را معين ميكند بنويسبم: }
$$

(يادآور شويم كه تنا رقمهاى اين دستگاه ه , 1 ميباشند)

$$
\begin{aligned}
\lfloor\circ, 1 & \supset\left[\frac{\circ}{b}, \frac{1}{b}\left[\supset\left[\frac{1}{b^{r}}, \frac{1 \circ}{b^{r}}\right]\right.\right. \\
& \supset\left[\frac{1 \circ}{b^{r}}, \frac{11}{b^{r}}\left[\supset \left[\frac{101}{b^{r}}, \frac{11 \circ}{b^{r}}\left[\supset \left[\frac{101 \circ}{b^{\circ}}, \frac{1 \circ 11}{b^{\Delta}}[\supset \cdots\right.\right.\right.\right.\right.
\end{aligned}
$$

طول آن بسمت صفر ميل ميكند) تعلق دارد عدد مبناى ץ نيست.

$$
\frac{1}{r} \notin Q_{r}^{+}
$$

ميگو يند كه رشته بينهايت اين فواصل در +Q يك خلل ايجاد ميكند.
تعريفـ يكـ رشته نامتنامى فو اصل كنجيده در +Q كـه طـول آن بسمت صفر ميل ميكند يكـ
 در را در نظر بگیريم (بـلـيهى است كه اين فواصل گֹنجيده در +Q هستند) تنها عـدد متعلق به همه اين رشته فواصل نامتناهى اصم است، اين عدد متعلى به +Q نيست.

فقدان خلل در
قضيه مp- هر رشته نامتناهى فو اصل فر اكير كنجيله در R $^{+}$كــه طول آن بسمت صفر ميل ميكند هركز خلل معين نميكند. هركاه:
(S) $\quad\left[\alpha_{0}, \alpha_{0}^{\prime}\right\rangle \supset\left\{\alpha_{1}, \alpha^{\prime}\right\rangle \supset \cdots \supset\left\{\alpha_{n}, \alpha_{n}^{\prime}\right\} \supset \ldots$

يك رشته نامتاهى فو اصل فر اكير اععداد R^{+}بـاشد كــه درازاى
صفر ميل مىكند، اگر از مرتبه معينى به بعل همه

$$
n \geqslant p \quad \Rightarrow \quad \alpha_{n}=\alpha
$$

در اين صورت قضيه بديُى است: α متعلق به همه فواصل (S) است. بهمــين تـرتيب اكر از مر تبه معينى به بعد جميـع فرض كنيم كه نباشند. در اين صورت ميتو ان فرض كرد كه جهمـع باشند و فو اصلى از (S) را كه جوابله اين خو استها نيستنـد كنـار ميگَذاريم. (با ايــنـ وجود يك رشته نامتناهى فواصل فراگير كه درازاى Tنيا بسمت صفر ميل ميكند باقى ميماند). حون (فصل 1، قضيه ب) $\alpha_{n}<x_{n}<\alpha_{n+1}$
حون

$$
\alpha_{n+1}^{\prime}<x_{n}^{\prime}<\alpha_{n}^{\prime}
$$

چس داريم:

$$
\left\{\alpha_{n}, \alpha_{n}^{\prime}\right] \supset\left(x_{n}, x_{n}^{\prime}\right) \supset\left\{\alpha_{n+1}, \alpha_{n+1}^{\prime}\right)
$$

 ترتيب يكـ رشته فواصل فر اگير كنجيده در Q ${ }^{+}$بدست ميآ يد.

$$
\left(x_{0}, x_{0}^{\prime}\right) \supset\left(x_{1}, x_{1}^{\prime}\right) \supset \cdots \supset\left(x_{n}, x_{n}^{\prime}\right) \supset \cdots
$$

ولى
$\left(\left[\alpha_{n}, \alpha_{n}\right\rceil \supset\left\{x_{n}, x_{n}^{\prime}\right\} \quad, \quad \alpha_{n}^{\prime}-\alpha_{n}\right.$ بسمت صفر ميل ميكن $)$

$$
\Rightarrow \quad\left(x_{n}^{\prime}-x_{n}\right. \text { بسمت صفر ميل ميكند) }
$$

يس رشته ('S) بكـ عدد حقيقى α يكتا را معين ميكند.
جون:

$$
\left(\left[\alpha_{n}, \alpha_{n}^{\prime}\right\rceil \supset\left\{x_{n}, x_{n}^{\prime}\right\} \quad, \quad \alpha \in\left\{x_{n}, x_{n}^{\prime}\right]\right) \quad \Rightarrow \quad\left(\alpha \in\left[\alpha_{n}, \alpha_{n}^{\prime}\right\rfloor\right)
$$

عدد α متعلق به همه فواصل رشته مفروض (S) (S) است. قضيه ثابت است و آنـرا بدين صــورت بيان ميكنيم:
((مجموعه+ ${ }^{+}$اعداد حقيقى كامل است)"
تعبير ديگر استلدلال
فرض كنيم رشته (S) منحصرأ از فواصل اعداد متعلق به ه, ${ }^{+}$تشكيل شده باشد، 'b مبناى متمايز از b است. با شروع از اين مجموعه , با شروع از
 هم سلسله كنجيدكى هاى زير را ميتوان نوشت:

$$
\cdots \subset\left(\alpha_{n}, \alpha_{n}^{\prime}\right\} \subset\left(x_{n}, x_{n}^{\prime}\right\} \subset\left(\alpha_{n+1}, \alpha_{n+1}^{\prime}\right) \subset\left(x_{n+1}, x_{n+1}^{\prime}\right) \subset \cdots
$$

 ميآيد.

فn

اندازه كميتها

اـ مثالهاى كميتها:

1) در هندسه باره خطط را مانند زوج AB دو نتطه نعريف ميكنتد. ميگو يـيـند كه دوباره
 ديگرى منطبق كرد (شكل 1) تغيير مكانها مبناهاى هندسه فرض ميشوندن

شكل 1

ثـكل

را بترتبب زير نظر قراد ميلهد كه مجموع دو طول اولى ناميله مبشود (شكل r ب)

هركاه AB و CD بترتيب نما يندههاى دو طول h و l باشند اين چاره خطهـا را روى دو

 (كه با زوج نتاط منطبق بهم نما يش داده ميشود). بعلاوه، مجموعه طو لها بوسيله رابطهاى كه بصورت: ((طول l كوحكتر ازطول h است)، بيان ميشود كلا" مرتب است. هر كاه AB و CD بترتيب ياره خطهاى نماينــده طو لهاى l و باشند (شكلم).
O متعلق بيك نيم خـط بمبداء OD' $O D^{\prime}$ وا بترتيب روى باره خطهاى $C D$ و $A B$

شـكل
》 جابجابذير با جزه خنتى و كا كلا" مرتب است
r
 مجموعه اشياء طبه هم ارزى ايجاد ميكند و اين طبّه جرم ناميده ميشود.

 q باشند اجتماع اين دو جسم جرم q و $p+q$ را نهايشَ ميدهد. اين جمع شركتبذير جابجابذير و داداى يكل جزه خنثى است: جرم صضر
بعلاوه مجموعه جرمها بوسيله رابطهاى كه بصورت:
("جرم p كوجكتر از جـرم q است) بيان ميشود كلا" مرتب است. جسم نما ينـده جرم را در يك كفه ترازو و جسم نما يِده q טا در كغه ديگر ترازو قراد ميدهند اگر شاهين ترازو به طرف جسم q تمايلى ثيدا كند مينو يسنل:

$$
p<q
$$

يس مجموعه جرمها يكـ نِم كروه جا بجا يذير با جزء ختنى و كلا " مر تب است.

F Fـ اصول دو نيم تر وه مر تب
از مجموعه E كه اجزاء آن طبقات كميتهاى هم ارز هستند شروع ميكنيم:
اجزاء آن دا با حروف آخر الفبا نشان ميدهيم:

$$
u, v, x, y, z \in E
$$

ساير حروف اين الفبا را برای اعداد طبيعى نگاه ميداريم:

$$
a, b, n, p, q \in N
$$

اعداد حقيقى را با حروف يونانى نشان ميدهيم:

$$
\mu \in R^{+}
$$

اجزاء E با دو دستگاه اصول زير سازگارند:
$x+y$ در E قانون تركيب موسوم به جمـع وجود دارد كه همسـه جا معين است و بــا نشان داده ميشود و داراى خو اص زير است: ا- شركتیذير است:

$$
(x+y)+z=x+(y+z)
$$

r- جا بجاپذير است:

$$
x+y=y+x
$$

rـ دارای يكـ جز ه خنتى است:

$$
x+\circ=x
$$

($x \in E$ (هرحه باشد
بعبارت ويگر، E يك نيم كروه جا بجا يذير با جزء ختنى است.

$x \leqslant y \quad \Longleftrightarrow \quad(\exists z \in E ; \quad$ يكتا است $z, x+z=y)$

بعبارت ديعگر برای يكـ زوج x و x دو جزء كه بطور شا يستـهاى مرتب شُــده بــاشند همانطور كه در N بود تفريق امكانبذير است مينو يسيم:

$$
z=y-x
$$

اكر
$x<y$
و يكـ را بطه ترتيب اكيد بدست ميآ يد.
نتيجهها.

1) (زيرا هرجه باشد $x \in E$ داريم:

$$
\circ+x=x
$$

از Tنجا:

$$
\begin{gathered}
0 \leqslant x \\
x \leqslant y \Rightarrow \quad \Rightarrow \quad \text { را بطه ترتيب بازاء جمـع با يدار است، } x+z=y)
\end{gathered}
$$

$$
\begin{align*}
& \text { (} \forall u \in E) \quad x+u+z=y+u \quad \text { (شركتذیییی و جا بجایذيرى) } \\
& \text { بنا برا ين: } \\
& x+u \leqslant y+u \tag{Y}
\end{align*}
$$

r) از خاصيت قبل (ممانطور كه در N بود) بلافاصله تتيجه ميشود: $(x \leqslant y \quad, \quad z \leqslant u \quad \Rightarrow \quad x+z \leqslant y+u)$

نامساويها را در E ميتوان عضو به عضو جمع كرد.
ب) مانند N در E نيز فاصلههاى بسنه، نيم باز، باز را ميتوان تعريف كرد. ه) هر قسمت متناهى غير تهى E داراى يكك بزركترين جــزع است. ايــن خاصـ ماند N با روش بازكشتى روى اصلى قسمت غير تهى ائبات ميكند: استدلال عيناً همــان است جونكه در E نيز ترتيب كلى است.

مضر.بهاى يك جزع

كنيم كه بصورت nx نوشته ميشود و با روش بازكشتى زير معين ميغردد: - $\times x=0$
-1
r- با

$$
(n+1) x=n x+x
$$

با روش بازگُتى (همانطور كه در مورد N غالباً عمل شده است) و بـا يارى كرفتن از شركتِيذيرى توزيـعيذيرى و جا بجابذيرى خو اص زير ثابت ميشود: هرجه باشد اعداد طبيعى

$$
\begin{aligned}
(n+p) x & =n x+p x \\
n(x+y) & =n x+n y \\
n(p x) & =(n p) x
\end{aligned}
$$

$$
(n \neq 0) \quad x<y \quad \Longleftrightarrow \quad n x<x y
$$

خاصيت آخرى با روش بازكشتى و با اضـافــه كردن nx n أبات ميشود. عكس قضيه با نفى $n x<n y$ و x ايجاد تناقض با فرض روى وضيه مستقيم

هرجه باشد اعداد طبيعى n و p و جزء u از
$n u+q u=p u$

$$
\begin{aligned}
& \text { : } \\
& n x=x+x+\cdots+x
\end{aligned}
$$

$n u<p u$

> نتيجه ميشود كه:

تابع n n n مجموعه N در E اكيداً صعـودى است. اگــر نگار N يعنــى مجموعه مضرببماى u دا با u نشان بدهيم قضبه زير را داريم:
 اينك نمودار اين تناظر (شكل

$$
\begin{aligned}
& \text { شكل }
\end{aligned}
$$

اين تناظر يكـ يكـ شكلى بازاء رابطه ترتيب (جو نكه صعودى است) نسبت بـه جمع (جونكه u) است. $n u+p u=(n+p)$

rــ مسئله انلازه و اصل اوشميلد

تعريفـ اندازهكيرى اجزاء E عبارت از نظير قرار دادن يكـ عدد حقيقى مشبت يكتا به هرجزء
 هر جزء غير صفر $u \in E$ (منتخب يكـبار براى هميشه) كــه (اواحد انــدازه) ناميده

$$
\begin{array}{cc}
\mu(u)=1 & -1 \\
\mu(x+y)=\mu(x)+\mu(y) & -r
\end{array}
$$

بعبارت ديغر تابع نسبت به جمع باشد. (I، فصل س و
مسئلة اندازه مشتمل بر ساخت ايـن تابـع است $x \rightarrow \mu(x)$ • اين مسئله بــراى جميع
اجز
در تناظر دوسوئى بين N و N

$$
\mu(n u)=n
$$

اختبار ميكنيم بقسميكه $n \rightarrow n u$ باشد. ميدانيم كه اين تابع $x \rightarrow \mu(x)$ تابع معكوس تابع

بيتر از يكك همشكلى بــازء جمـع است، و اين يكـ يكـ شكلى است كــه مى زگارد. پِس مسئله بازاء قسمت

$$
\mu\left(\mathscr{M}_{u}\right)=N
$$

بايد مسئه را بازاء بخشى از E كه به E تعلت ندارد حل كنيم. بجا است كـه بدانيم
 قرار ميگِيرد؟ (شكل ץ) اصل ارشميدس پاسخگوى اين خو است است.

اصل ارشميلس (
هرجه بــاشد اجـز اء غير صفر x و y از E يكـ علد طبيعى n وجــود دارد بقسميكه: nx>y ميباشند و هر مجموعهاى كه اصلهاى ناميله ميشود. اصل ارشميدسى اين معنى را هيلهد كه: مجموعه صفر E فرا بسته نِست.

$$
\Phi=\mathscr{M}_{x} \cap(0, y)
$$

Q
Pه تهى نِست زيرا حد اقل شامل جزء صفر است.
بنا بــه اصل ارشميدس يكـ عــلد طبيعى n وجود دارد بقسميكه nx> n و بنا بـراين
 ָس ميتوان كفت كه Q متناهى است.
هرگاه P بخش متاهی و غير تهى E باشل داراى يكـ بزركتر ين جزء z است:

$$
z=\max \Phi
$$

جون $z \in \mathscr{M}_{x}$ است يك عدد طبيعى q- يكتا وجود دارد بقسميكه:

$$
q x=z
$$

(q اندازه z است وقتيكه x براى واحلد انتخاب شود). بديهى است كه داريم: $q x \leqslant y$

خون $z \in \Phi$ است همحخنين داريم:

$$
(q+1) x>y
$$

زيرا اكر ميداشتيم:

$$
(q+1) x \leqslant y
$$

در عين حال ميداشتيم:

$$
\begin{aligned}
& (q+1) x>q x \quad, \quad(q+1) x \in \Phi \\
& \text { و } z=q x \text { بزركترين جزء } q \text { نميشد. } \\
& \text { بنا براين قضئ زير را داريم: }
\end{aligned}
$$

 ی-q يكتا وجود دارد بقسميكه:

$$
q x \leqslant y<(q+1) x
$$

تعريفات- q را (خحارج قسمت اقليدسى) y بر x مينامند. ييدا كردن اين عـدد عبارت از انجام تقسيم اقليدسى y بر x است.

باقيما نده.

$$
\begin{aligned}
q x \leqslant y & \Leftrightarrow(\exists v \in E \quad q x+v=y) \\
y<(q+1) x & \Leftrightarrow q x+v<q x+x \quad \Longleftrightarrow \quad v<x
\end{aligned}
$$

بس داريم:

$$
q x \leqslant y<(q+1) x \quad \Longleftrightarrow \quad(y=q x+v \quad, \quad v<x)
$$

Pــ حل هسئله اندازه در .يك نيمگَروه اوشميلسى•

طبيعى q را نظير قرار داد كه خارج قسمت اقليدسى x بر u باشد:

$$
q u \leqslant x<(q+1) u
$$

بدين ترتيب x (ادر مقياس) x (${ }_{\text {(}}^{\text {(}}$ جا كرفته است.
(»اندازه تقريبى x با يكـ واحد تقريب) دا ((مدرج كردن)ه q مينامند.
مينوان مقادير تقريبى x را با هر تقريب دلخواهى معين كرد. اكر b مبناى دستگاه شمار باشد:

يُك عدد طبيعى n اختبار ميكنيم و جزء

(1)

$$
q_{n} u \leqslant b^{n} x<\left(q_{n}+1\right) u
$$

$\frac{q_{n}}{b^{n}}$ (إندازه b-تُى تقريبى x با $\frac{q_{n}+1}{b^{n}} \frac{1}{b^{n}}$

ميتوان اندازههاى تقريبى $\frac{1}{b^{n}}$ و تقريب را باهم مقايسه نمود.
هركاه:

$$
q_{n+1} u \leqslant b^{n+1} x<\left(q_{n+1}+1\right) u
$$

نامساويهاى تعيين كنده اندازههاى تقريبى با $\frac{1}{b^{n+1}}$
(1) را در b ضرب ميكنيم:

$$
b q_{n} u \leqslant b^{n+1} x<b\left(q_{n}+1\right) u
$$

و چون q_{n+1} بز رگترين عدد صحيـح است بعسميكه:

$$
q_{n+1} u \leqslant b^{n+1} x
$$

$$
b q_{n} \leqslant q_{n+1}
$$

و حون

$$
\left(q_{n+1}+1\right) u>b^{n+1} x
$$

داريم:

$$
q_{n+1}+1 \leqslant b\left(q_{n}+1\right)
$$

از بخش دو نامساوى حاصل بر bi+ ${ }^{\text {نتيجه ميشود: }}$

$$
\frac{q_{n}}{b^{n}} \leqslant \frac{q_{n+1}}{b^{n+1}} ; \quad \frac{q_{n+1}+1}{b^{n+1}}<\frac{q_{n}+1}{b^{n}}
$$

وقتكه n بتر تيب مقادير 0 b-تُى تقريبى نغصانى بدست ميآ يد.

$$
\begin{equation*}
q_{0} \leqslant \frac{q_{1}}{b} \leqslant \frac{q_{r}}{b^{r}} \leqslant \cdots \leqslant \frac{q_{n}}{b^{n}} \leqslant \cdots \tag{S}
\end{equation*}
$$

(رشته صعودى به معناى وسيع است) و يكك رشته اندازهماى b-ئى تقر يبى با تقريب اضافى.
(S') $\quad q_{0}+1 \geqslant \frac{q_{1}+1}{b} \geqslant \frac{b_{Y}+1}{b^{r}} \geqslant \ldots \geqslant \frac{q_{n}+1}{b^{n}} \geqslant \ldots$
(رشته نزولى به معناى وسـيع است)
اندازء حقيقى x.
اكر ارزيا بى شود كه اجزاء
هستند ميتو ان بــراى بـدست آوردن ارقــام قسمت b-ئى b با روشى كه تا حال طرح كرديم منطقاً همارز باشند.

باشد:

$$
\begin{equation*}
x=e u+x_{1} \quad x_{1}<u \tag{1}
\end{equation*}
$$

bx।

$$
x_{1}<u \Rightarrow b x_{1}<b u
$$

($) \quad b x_{1}=r_{1} u+x_{Y} \quad x_{\varphi}<u \quad, \quad r_{1}<b$
أخر
اكر در مرتبه n فرض كنيم كه:
(n)

$$
\begin{aligned}
b x_{n-1}=r_{n-1} u+x_{n} & \\
r_{n-1} & <b \quad, \quad x_{n}<u
\end{aligned}
$$

در اين صورت $b x_{n}$ را بر تقسيم ميكنبم. جون:

$$
x_{n}<u \Rightarrow b x_{n}<b u
$$

$$
(n+1)
$$

$$
\begin{aligned}
b x_{n}=r_{n} u+x_{n+1} \\
r_{n}<b \quad, \quad x_{n+1}<u
\end{aligned}
$$

و بنا براين با روش بازكشتى تا بينهايت قا بل ادامه است. ثابت ميكنيم كه بديـن ترتيب

اجز اءء (1) را در b ${ }^{n}$ ضرب ميكنيم:

$$
b^{n} x=b^{n} e u+b^{n} x_{1}
$$

|جز اء (ץ) را در

$$
b^{n} x_{1}=b^{n-1} r_{1} u+b^{n-1} x_{r}
$$

اجز n عا در b b ضرب ميكنيم:

$$
b^{r} x_{n-1}=b r_{n-1} u+b x_{n}
$$

اجز اء (n+1) را در

$$
b x_{n}=r_{n} u+x_{n+1}
$$

($n+1$)

$$
\begin{array}{r}
b^{n} x=\left(b^{n} e+b^{n-1} r_{1}+\cdots+b r_{n-1}+r_{n}\right) u+x_{n+1} \\
x_{n+1}<u
\end{array}
$$

$$
q_{n}=b^{n} e+b^{n-1} r_{1}+\cdots+b r_{n-1}+r_{n}
$$

از آنجا:

$$
\frac{q_{n}}{b^{n}}=e+\frac{r_{1}}{b}+\cdots+\frac{r_{n-1}}{b^{n-1}}+\frac{r_{n}}{b^{n}}=e \overline{r_{1} r_{Y} \cdots r_{n-1} r_{n}}
$$

مشاهده ميشود كه ارقام نمايُ در مبــناى b عــدد b-ئى اندازه تقريبى x با $\frac{1}{b^{n}}$ تقريبنقصانى بدست ميآ يد.
اين روش را ميتوان تا بينها يت ادامه داد. بدين ترتيب به هر $x \in E$ يك صورت x يندى
نامتناهى در مبناى b ممر اه ميكنيم كه ((اندازه حقيقى x) ناميده ميشود:

$$
\mu(x)=e, \overrightarrow{r_{1} r_{Y} \cdots r_{n} \cdots}
$$

بديهى است كه این عدد حقيقى $\mu(x)$ به تمام فو اصل رشته زير تعلق دارد:

$$
\left[q_{0}, q_{\circ}+1\left(\supset\left(\frac{q_{1}}{b}, \frac{q_{1}+1}{b}\right\} \supset \cdots\right) \frac{q_{n}}{b^{n}}, \frac{q_{n}+1}{b^{n}} 1 \supset \ldots\right.
$$

رشتهای كه بر پايه (S) و (S') ساخته شده است.
ممكن است كه از مرتبه معينى به بعد ارقام برا بر صفر باشند. در اين صورت انـدازه (x)

هثال ـول طول نموده شده با $A B$ دا با واحد u كه با CD نموده شده است اندازه بگگيريم
(شكل () در دستگاه به مبناى تقسيمات اقليدسى متو الى زير بدست ميآ يد:
(1)
(r)
(μ)
(φ)

$$
\begin{aligned}
x & =r u+x_{1} & & x_{1}<u \\
r x_{1} & =1 \cdot u+x_{r} & & x_{r}<u \\
r x_{r} & =0 \cdot u+x_{r} & & x_{r}<u \\
r x_{r} & =1 \cdot u+x_{r} & & x_{r}<u \ldots
\end{aligned}
$$

هـكل
قسمت صحيح r در دستگاه به مبناى r بصورت $\mid 1$ نوشته ميشود. داريم:

$$
\mu(x)=11, \overrightarrow{101 \cdots}
$$

بردسى عمومى دا از سر بگيريم و اكنون ثابت كنيم كه شرايط اندازه بر آورده شدهاند.
اول از همه بديهى است كه نظير هر جزء $x=u$ يك عدد \mid قرار دارد: $\mu(u)=1$

حال قضيه زير را اثبات ميكنيم:

قضي६\&

$$
\begin{aligned}
& \mu(x+y)=\mu(x)+\mu(y) \\
& \text { هركاه x و } y \text { دو جزء غير مشخص از E و: }
\end{aligned}
$$

$$
\begin{aligned}
& \mu(x)=e, \stackrel{r_{1} r_{Y} \cdots r_{n} \cdots}{ } \\
& \mu(y)=e^{\prime}, \overline{r_{1}^{\prime} r_{Y}^{\prime} \cdots r_{n}^{\prime} \cdots}
\end{aligned}
$$

بترتيب اندازههاى Tنها باشند:
بازاء هر مرتبه n داريم:

$$
\begin{aligned}
& q_{n} u \leqslant b^{n} x<\left(q_{n}+1\right) u \\
& q_{n}^{\prime} u \leqslant b^{n} y<\left(q_{n}^{\prime}+1\right) u
\end{aligned}
$$

از جمـع عضو به عضو در E

$$
\left(q_{n}+q_{n}^{\prime}\right) u \leqslant b^{n}(x+y)<\left(q_{n}+q_{n}^{\prime}+r\right) u
$$

اين نامساويها بيان ميكنتد كه خارج قسمت اقليدسى نامساوىهاى زير سازكار است؛

$$
\begin{aligned}
& q_{n}+q_{n}^{\prime} \leqslant q_{n}^{\prime \prime}<\left(q_{n}+q_{n}^{\prime}+r\right) \\
& \frac{q_{n}^{\prime \prime}}{b^{n}} \in\left[\frac{q_{n}+}{b^{n}} \frac{q_{n}^{\prime}}{\prime}, \frac{q_{n}+q_{n}^{\prime}+r}{b^{n}} \int\right.
\end{aligned}
$$

(هرچه باشد n).
) R^{+}(تعر يف جمـع

جس داريم:

$$
\mu(x+y)=\mu(x)+\mu(y)
$$

تبصر0- تا بـع $x \rightarrow \mu(x)$ صعودى است :

$$
x<y \quad \Rightarrow \quad \mu(x)<\mu(y)
$$

زيرا:

$$
x<y \quad \Rightarrow \quad(\exists z \neq 0, z \in E, x+z=y)
$$

در نتيجه:

$$
\mu(x+z)=\mu(y)
$$

از Tنجا:
(قضيه

$$
\mu(x)+\mu(z)=\mu(y)
$$

:

 حقيقى، اندازه يكـ جز E است يعنى آيا $x \rightarrow \mu(x)$ يـكـ بـرون كسترى E در

برقرارى تساوى:

$$
\mu(E)=R^{+}
$$

مستلزم وارد كردن اصلهاى تكميلى است. بخصـوص مــا نميــدانيم كه آيــا عدد حقيقى بسيار ساده $\frac{1}{r}$ اندازه يكـ جز\& E هست. بدين جهت است كه وجود يكـ جزء $x \in E$ را بقسميكـه باشد ماند يكـ اصل اختتاد ميكنيم Tنرا (اصل نيمسـىی) ميناميم. بوسيله يـــ $\mu(x)=\frac{1}{r}$ اصلى مكل، E و R ${ }^{\text {R }}$ را در يكـ تناظر دوسوئى قراد خواهيم داد.

هـ اصل نيمساذى (B)

هرجه باشد جزء

$$
r x=u
$$

اين جزه يكتا است: اكر جزء ديگر 'x وجود داشت لازم ميآمد: $r x=r x^{\prime}$

از Tنجا:

$$
x=x^{\prime}
$$

B را به خود اين جزء x بكار ميبريم:

$$
\exists x_{Y} \in E \quad r x_{Y}=x
$$

از آنجا:

$$
r^{r} x_{Y}=u
$$

با بازكستى، اكر ا

$$
r^{n-1} x_{n-1}=u
$$

$$
\begin{aligned}
& \mu(x)<\mu(y) \\
& \text { زيرا هون }
\end{aligned}
$$

باشد با بكار بردن ${ }_{\text {ب }}^{\text {به }}$ به x_{n-1} وجود يكـ x_{n} يكتا نتيجه ميشود بقسميكه:

$$
r x_{n}=x_{n-1}
$$

از آنجا:

$$
r^{n} x_{n}=u
$$

$$
r^{n} x_{n}=u
$$

مينويسيم:

$$
x_{n}=\frac{1}{r^{n}} \cdot u
$$

طرفين را در عدد طبيعى q ضرب ميكنيم:
(1)
از Tنجا:

$$
q x_{n}=\frac{1}{p^{n}}(q u)
$$

با مقا يسه با (1) نتـجه ميشود:

$$
q\left(\frac{1}{r^{n}} u\right)=\frac{1}{r^{n}}(q u)
$$

مينو يسيم:

$$
q x_{n}=\frac{q}{p^{n}} u
$$

ممـخنين خاصيت زير را داريم:

هر فاصله باز E تهـى نيست. زيرا اكر $x<y$ دو جزء از x باشند داريم:

$$
\left.\frac{1}{r}(x+y) \in\right] x, y[
$$

اصل نيمسازى امكان ميدهد كه سوراخهاى موجود در E را مسلود كنيم:

$$
\begin{aligned}
& q x_{n}=q\left(\frac{1}{r^{n}} \cdot u\right) \\
& \text { از ضرب تساوى } q \text { نتيجه ميشود: } q \text { ن } \\
& q u=q\left(r^{n} x_{n}\right)=\left(q \cdot r^{n}\right) x_{n}=r^{n}\left(q x_{n}\right)
\end{aligned}
$$

زيرا به

$$
\begin{aligned}
& y=\frac{q}{r^{n}} u
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{q}{r^{n}} u \quad \Longleftrightarrow \quad r^{n} y=q u
\end{aligned}
$$

اكر روش ساخت (y) μ در دستگًاه بمبناى r را به ايــن y بكار بيــريم و در مرتبه n توقف كنيم:

$$
q u \leqslant r^{n} y<(q+1) u
$$

باتساوى:

$$
q u=r^{n} y
$$

بنا براين علد حقيقى كه با y همراه كردمايم عبارتست از:

$$
\mu(y)=\frac{q}{\gamma^{n}}
$$

با اصل نيمسازى ميتوان تأيد كرد كه:
$Q_{r}^{+} \subset \mu(E) \subset R^{+}$
ميماند، ير كردن خللى كه احتمالا" در E وجود دارند.

9ـ اصل فقلدان خلل

ابتدا نظير T'نحه در اعداد بود چند نعريف در E بيان كنيم: در ازاى يك فاصله به دو انتهاى x و y (x (x) عبارت است از تفاضل:
(B_{Y})

$$
y-x
$$

 تشكيل شده از فواصل در E بطوريكه هر كدام از آنها با سرايتيذيرى همهُ بعــدىها را فرابعيرند:
(S) $\quad\left\{x_{0}, y_{0}\right\} \supset\left\{x_{1}, y_{\uparrow}\right\rangle \supset\left\{x_{Y}, y_{\gamma}\right\} \supset \cdots \supset\left\{x_{n}, y_{n}\right\} \supset \cdots$

بعلاوه يادداشت كنيم كه: در E اجزای، آنقدر كوجكـ كه بخواهيم، وجود دارنـد زيرا

نيمركروه ارشميدس E مجهز به اصل نيمسازى داراى يكـ بنيان تويو لوزيك در مفهـوم

اكر، بهر جزء
بقسميكه:

$$
n>p \Rightarrow y_{n}-x_{n}<\nu
$$

يكـ رسته (S) فاصلaهاى فراكير كه درازاى آن بسمت صفر ميل ميكند در E يكـ خلل ايجاد مينما يند اكر هيِج جزع E متعلق به اين فواصل وجود نداشته باشد. اصلى را كه فقدان خلل را تأييد مينما يد به عنوان آخرين اصل اختيار ميكنيم. اصل هB - هر رشته نامتناهى فواصل فراكير كنجيـده در E كــه درازاى آن بسمت صفــر ميل ميكند، هركز يكـ خلل را معين نمينما يل.
بعبارت ديگً بازاء يك رشته مانند (S) (با $y_{n}-x_{n}$ بسمت صفر ميل ميكند) همواره يكـ جزء x از E وجود دارد كه به جميـع اين فو اصل تعلى دارد.

$$
\mu(x)=\alpha
$$

صورت بندى نامتناهى α را در دستگًاه به مبناى

$$
\alpha=e, \overrightarrow{r_{1} r_{Y} \cdots r_{n} \cdots}
$$

اين صورت بندى تحرير فشرده يكـ رشته نامتنامى فواصل فراكير Qr

$$
\begin{aligned}
& \alpha \in\left\{\frac{q_{n}}{r^{n}}, \frac{q_{n}+1}{r^{n}}\right\} \\
& \text { (} n \in N \text { هر حه باشد) } \\
& \text { به هرعدد } \\
& \frac{q_{n}}{p^{n}} u \\
& \text { و يكـ فاصله از E: } \\
& \left\{\frac{q_{n}}{r^{n}} u, \frac{q_{n}+1}{r^{n}} u\right\}
\end{aligned}
$$

ميدا نيم كه ترتيب حغظ ميشود، اين فواصل فرالير
$\lceil e u,(e+1) u\rfloor \supset\left[\frac{q_{1}}{r} u, \frac{q_{1}+1}{r} u\right\} \supset \cdots \supset\left\lceil\frac{q_{n}}{r^{n}} u, \frac{q_{n}+1}{r^{n}} u \ \supset \cdots\right.$ درازای: $\frac{1}{r^{n}} u$ بست صفر ميل ميكند. زيرا اكر عدد v $(\forall n \in N) \quad \frac{1}{r^{n}} u>v$

لازم ميآمد:

$$
u>r^{n} v
$$

رشته مضر بهاى v u برا بسته ميشدند و اصل ارشميدس نفض ميگرديد. بنا به اصل B

$$
x \in\left\lceil\frac{q_{n}}{r^{n}} u, \frac{q_{n}+1}{r^{n}} u\right\rfloor \Rightarrow \mu(x) \in\left\lfloor\frac{q_{n}}{r^{n}}, \frac{q_{n}+1}{r^{n}}\right\}
$$

و بنا براين:

$$
\mu(x)=\alpha
$$

يك مجموعه E دا كه اصلهای: B ((نيم كروه ارشميدسى كامل) مينامند. سس ميتوانيم بگويُيم:

قضيه P- هر نيم كروه ارشميدسى كامل با نيم كروه جمعى كلا" مر تب +R يكـشكل است.

> Yـ تغييـر واحل.

ابتدا يكـ نيم كروه ارشميدسى را در نظر بغيريم. اندازه x را وقتيكه u را واحد اختبار
 .

$$
f(x)=\frac{\mu_{u}(x)}{\mu_{u}(x)}
$$

از E در ${ }^{+}$را در نظر ميگيريم.
هركّاه در ${ }^{+}$عمل كنيم داريم:
1)

$$
f(v)=\frac{\mu_{u}(v)}{\mu_{u}(v)}=1
$$

ץ). $f(x+y)=\frac{\mu_{u}(x+y)}{\mu_{u}(v)}=\frac{\mu_{u}(x)}{\mu_{u}(v)}+\frac{\mu_{u}(y)}{\mu_{u}(v)}=f(x)+f(y)$
پّس f(x) عبارت از اندازه x است وقتيكه v واحد اختبار ميشود:

$$
f(x)=\mu_{v}(x)
$$

يعنى:

$$
\mu_{v}(x)=\frac{\mu_{u}(x)}{\mu_{u}(v)}
$$

بنا براين، خاصيت زير را داريم:
هر هـ باشند اجزای غير صفر u

$$
\mu_{u}(x)=\mu_{u}(v) \mu_{v}(x)
$$

حال تيم كروه ارشميدسىكامل E را در نظر ميگِير يمّ. يکـع قانون تركيب خارجى موسوم به حاصلضرب يك عدد حقيقى در يك جزء از E را معين ميكنيم.

تعريف - بههر زوج α و x يكـ عدد $\alpha \in R^{+}$و يكـ جز

$$
x \in E \quad(x \neq 0)
$$

يكـ جزء از E را همراه ميكنيم كه حاصل ضربس α در x ناميـــده ميشود و ماننــد يكـ
جزء E داراى اندازه α (وقتى كه x واحد اختيار شود) معين ميگردد.

اين تعر يف دارای يكـ معنى است زيرا، چحون E كامل است بهر عــدد حفيقى α يـك
جزء از y از l نظير است كه وقتى x واحد اختيار شود داراى اندازه α است:

$$
(x \neq 0) \quad y=\alpha x \quad \longleftrightarrow \quad \mu_{x}(y)=\alpha
$$

هرجه باشد اعداد

$$
(\alpha+\beta) x=\alpha x+\beta x
$$

اكر $x=0$ باشد خاصيت بديهى است. فرض كنيم $x \neq 0$ و x را واحـــد انتخـــاب

$$
\begin{aligned}
y=\alpha x & \Rightarrow \alpha=\mu(y) \\
z=\beta x & \Rightarrow \beta=\mu(z)
\end{aligned}
$$

از آنجا:

$$
\alpha+\beta=\mu(y)+\mu(z)=\mu(y+z)
$$

و اين حاكى است كه:

$$
y+z=(\alpha+\beta) x
$$

و خاصيت ثابت است.

$$
\alpha(\beta x)=(\alpha \beta) x
$$

اكر $x=0$ باشد خاصيت واضح است و ممحنين اءــر

$$
\text { } \beta \neq 0, x \neq 0 \text { داريم: }
$$

$$
y=\beta x \neq 0
$$

x يا x را ميتوان واحد اختّار كرد. بنا به
(1)

$$
\begin{gathered}
\mu_{x}(z)=\mu_{x}(y) \mu_{y}(z)=\beta \mu_{y}(z) \\
\quad: \quad \mu_{x}(z)=\alpha \beta
\end{gathered}
$$

از آنجا:

$$
z=(\alpha \beta) x
$$

ولى:

$$
z=\alpha y=\alpha(\beta x)
$$

خاصيت اثبات شده است.
تبهر0- رابطه (1) را وقتيكه $z=\alpha y$ اختيار ميشود (با y غيرمشخص) ميتوان نوشت:

$$
\mu_{x}(\alpha y)=\alpha \mu_{x}(y)
$$

(هرحه باشد $x, y \in E, \alpha \in R_{4}$

$$
\alpha(x+y)=\alpha x+\alpha y
$$

يكـ واحد غير مشخص u اختيار ميكنم كه مانند انديس نمينو يسيم. بنا به تبصره قبل:

$$
\begin{aligned}
\mu[\alpha(x+y)] & =\alpha \mu(x+y) \\
& =\alpha[\mu(x)+\mu(y)]
\end{aligned}
$$

(قضيه Y)

پا يههاى آ نا ليز رياضى جديد

$$
\begin{align*}
& =\alpha \mu(x)+\alpha \mu(y) \quad\left(R^{+} \quad \text { توزيـعيذيرى در }\right) \\
& =\mu(\alpha x)+\mu(\alpha y) \quad(ت ص) \\
& =\mu(\alpha x+\alpha y)
\end{align*}
$$

هِ دو جـزء
برا بر ند.

فصمل تهارP

حالتى كه در آن، جمعهمو اره معين نيست اندازهزاويهاهـا

1- نيم تروه محدود
در فصل قبل ما فرض كرديم كه كميتها بقلر دلخواه بزركُاندر ندو واقعاً هم در نظر كـرفتن اجزاء زياد بزرد ناجود است. ما موجودات محلود هستيم و تصود اشياء بـه كميت خــارج از اندازه براى ما مشكل است.

براى تعيين حنين وضعى يكـ بـركـ رسم مستطيلى شكل ABCD را در نظر ميگیيريم (شكل ا) و مسئله زير را طرح مبكنيم:
 براى خوب فهميلن مطلب، موجود متفكرى را تصور كينمي كه در داخل ديل مستطيل نشو و و نما ميكند و براى او دنيا محلود به مستطيل است. برای او مجموع را منصل بهم بـ AE و EF روى قطر AC قـرار دهيم نتطه F به ايـن فطر تعلق داشته باشد
(شكل ا) بعكس اگُر نقطه F به قطر AC تعلق نداشته باشد اين مجهوع براى او وجود ندارد (شكل r ($)$ (
اصلزهاى B

اصل \B+ نوشته ميشود و داراى خاصيتهاى زير است:
) ش شركتخذير است.
Y
ץ) داراى يكـ جزء خنتى ه است.

اصل خاصيتهاى زير است:

$$
\begin{array}{r}
x \leqslant y \quad \Longleftrightarrow \quad(\exists z \in A \quad x+z=y)(1 \\
: \quad \text { بقسميكه منطقا همبارز است با } x \leqslant y \leqslant
\end{array}
$$

$$
z=y-x
$$

اكر $z \neq 0$ باشد مينويسيم:

$$
x<y
$$

A (Y A

نتيجهها:
(1) ه كوجكترين جزء A است. Y (Y رابطه ترتيب بازاء جمـع بايدار است:
($x \leqslant y$ y y وجود دارد، $z) \quad \Rightarrow$
$\Rightarrow \quad\left(\begin{array}{l}\text { g }\end{array}\right.$ (x, $\left.\quad x+z \leqslant y+z\right)$

$$
x \leqslant y \quad \Rightarrow \quad(\exists u \in A \text { وجود دارد و برابر } y \text { است } x+u)
$$

ولى $y+z+u)+z$ وجود دارد و برابر است با:
$\left(B_{1}^{\prime}, 1\right)$ $(x+z)+u$

داريم:

$$
y+z=(x+z)+u
$$

از آنجا:
($\left.B_{Y}^{\prime} ‘\right) \quad x+z \leqslant y+z$
 را عضو به عضو جمع كرد:

$$
x+z \leqslant y+u
$$

زيرا:

$$
\begin{aligned}
& (x \leqslant y \text { y } y \text { وجود دارد } x+u) \Rightarrow x+u \leqslant y+u \\
& (z \leqslant u \text { وج- } x+u) \Rightarrow x+z \leqslant x+u \\
& \text { بنا به سرايتٍٍيرى: } \\
& x+z \leqslant y+u \\
& \text { ץ) فو اصل را در } A \text { مانند } N \text { معين ميكند. مشلا" هر } x \in A \text { در: } \\
& 0 \leqslant x \leqslant g \\
& \text { صدق ميكند. } \\
& A=(\circ, g)
\end{aligned}
$$

ف) هر بخش متناهى و غير تهى A داراى يكـ بزركترين جزء است چو نكه تـرتيب در
A
2ـو خاصبت أبُات ميكنيم:

$$
\begin{gathered}
(x+y) \longleftrightarrow x \leqslant g-y \\
x+y \leqslant g
\end{gathered}
$$

$$
g=\max A
$$

از آنجا نتيجه ميشود:

$$
x \leqslant g-y
$$

($g-y)+y$

$$
x \leqslant g-y \Rightarrow(x+y)
$$

از آنجا نتيجه ميشود:

$$
\text { (وجود دارد } x+y) \quad \Longleftrightarrow\left((g-x)+(g-y) P_{Y}\right. \text { P }
$$

:P, بنا به
$(x+y) \quad \Longleftrightarrow \quad x>g-y$
ولى هرپه باشد $x \in A$ داريم:

$$
g-(g-x)=x
$$

در نتيجه:
$(x+y) \quad \Longleftrightarrow \quad g-(g-x)>g-y$
با بكار بردن P, خاصيت PY ائبات شده است.

- مضربهاى يك جزع

تعويفت بهر جزء X از A و به بعضى اعداد n يكـك جزء nx از A را همراه كنيم بقسميكه:

$$
\circ \cdot x=\circ
$$

ץ) فرض كنيم كه nx معين باشد و nx

$$
n x+x=(n+1) x
$$

$$
\circ \cdot x=\circ \quad 1 \cdot x=x
$$

زير نتيجه ميشوند بشرطيكه مضر بهاى y وجود داشته باشند:

$$
\begin{array}{rlrl}
(n+p) x & =n x+p x & & \\
n(x+y) & =n x+n y & & (n, p \in N) \\
n(p x) & =(n p) x & & (x, y \in A) \\
x & <y \Longleftrightarrow & \Longleftrightarrow x<n y \\
n & <p & \Longleftrightarrow & n x<p x
\end{array}
$$

זــ اصل ارشميلس
نيم خط AC به مبدأ A را درنظر ميخيريم كه شامل قطر شكل ا باشد. اصل ارشميدس روى اين نيم خط:

شكل r
جنين معنى ميدهد:
 را كه نما يندهماى x هستند إنتها به انتها روى آن نتل كنيم نقطهاى مانـلد ت تجاوز نمايد (شكل ((

است. صورت اصل ارشميدس بازاه اين زوج (x, $)$) سازكار است. اكر اولين نتطه از E تجاوز ميكند در خارج از فطر قرار كيرد، nx در نيم كروه محدود A ه وجود ارشميدس را نميتوان بكار برد.
!! ! ! ! وجود ميتو ان تأيد كرد كه يكك نتطه
 اقليدسى q دا كه بزرتترين عدد صحيح است بطوريـكه q و q را موجب شده است. بدين سبب است كه ما صورت اصل ارشميدس را با حفظ روح اين اصل تغيير ميدهيم و اصل زير را بِان مِيكيـم•

اصلل صحيح q وجود دارد بقسميكه:

$$
q x \leqslant y
$$

تبصره - اگر اين اصل را درباره بزرگَترين جزء g از A بكار ببريسم در ايــن صورت بزرتتر ين عدد صحيح q q بقسميكه q وx q) ممان تعداد مضر بهاى غير از صفر x استكه در A وجود دارد.
تبعره Y - هر مجموعهاى كه با اصول
ارشميلسى") ناميده ميشود.
:

ميشود.

تعريفس يكـ زاو يه عبارت از فصل مشترك (ادو نيم صفحهاى است كه كنارههاى آنها حد اقل داراى يكـ نتطه مشترك O باشند در حالت كلى اين كناردها داراى يكـ نقطه مشترك O ميباشند كه رأس زاويه نـاسيده ميشود. زاويـه مححلود بـه دو نيم خـط
 يكك نتش بازى ميكنتد. در حالت مخصوص كه كنارههاى D و 'D بهم منط:قاند: (1) يكـ زاويه نيم صفحه نتيجه ميشود اگر P و مشترك نقش رأس را و دو نيم خط متقا بل بر مبدأ O نقش اضلا ع را ميتو اند داشته باشد. ץ) يكك زاويه صفر نتيجه ميسُود اكر دو نيم خحط منطبق بهم|ند).

شكل
دو زاويه (
 به ((تساوى زاويهها) معين ميشود كه در مجموعه، طبته زاويههاى متساوى را ايجاد مينمايد.

شكل

تشكل 9

شكل ه را درنظر ميگيريم، دو نيم خط

 (است. مجموعه طبقات درتناظر دوسو ئى با مجموعه نيم خطهای P P به مبدأ O قرار دارد. مجموعه اين نيم خطها يكت نقاله ناميده ميشود.

 x $x \leqslant y$

$$
\left(U_{0}, \Delta_{0}\right) \subset\left(U_{0}, \Delta_{0}^{\prime}\right) \quad \Rightarrow \quad x \leqslant y
$$

هركاه x و y دو جزء از A بـاشد، نمايندهماى آنها را مجاور مينامند اكـر داراى يكـ ضلع مشترك باشند و فصل مشتركـ آنها تهى بانشد. در A يكـ جمع بترتيب زير معين ميشود:
هركاه
 1) اكر نيمخط داده ميشود (شكل צ).

(وقتيكه جمع هعين باشد، شركتبذير و جا بجابذير و داراى يك جزه خننا است كه زاويه صفر است.

x+y
*
 سازكار است. بزركترين جزء g آن زاويه نيم صفحه است. اصل ارشميدس را در مورد زاويهها بردسى كنيم: هركاه دو جزء غ غير صفر x x و x و از مفروض باشند آيا يكـ عدد صحيح n وجود دارد بقسميكه nx وجود داشته و nx n و n باشد؟ جواب مبثت است اكر $x>y=1$ باشد: كافى است n اختيار شود. اين مسئله را بازاه d نشان بدهيم. ميدانيم

$$
\begin{equation*}
\circ<x<y<d \tag{1}
\end{equation*}
$$

اثباتكنيم كه در ابن حالت اصل ارشميدس برایى زاويهها يكـ نتيجه از اصل ارشميدس

براى خطوط است. عمود $A_{0} Z$ را از نقطه A بر OU اخراج ميكنبم (شكل ^).

ثـكل 1

بيك زاويه كمتر از d يكـ نيم خط از نقا له نظير است كه Z دا فطع ميكند. بيك زاويه حلد اقل برابر d يك نيم خطط از نقاله نظير است كه Z را فطع نميكند. هركاه B نقطهاى باشدك

 اكر اكر نيمساز در مثلث OA $A_{0} A^{\prime}$ داريم:

$$
\frac{A_{0} A_{1}}{A_{\backslash} A_{\zeta}}=\frac{O A_{0}}{O A_{\zeta}}
$$

$$
A_{\backslash} A_{\Gamma}>A_{0} A_{\backslash}
$$

از آنجا:

$$
A_{0} A_{Y}>Y A_{0} A_{1}
$$

چون اكر

$$
r x \geqslant d>y
$$

اكر در OA,
اگر px px باشد اصل ارشميدس سازگار است.

اثبات ميشُود:

$$
A_{\bullet} A_{p}>p A_{\bullet} A_{\backslash}
$$

جون باره خطهــا روى نيم خط Z، كميتهاى ارشميدسى هستند بس يكـ عدد صحيح وجود دارد بقسميكه:

$$
n A_{0} A_{1}>A_{0} B
$$

اكر بازاء اين عسـدد صحيح n بـاز هم داشته باشيم nx>d باين زاويه nx n يكـ نقطه نظير A_{n} روى وجود دارد بقسميكه: $A_{\mathrm{o}} A_{n}>n A_{\mathrm{o}} A_{\text {। }}$

از آنجا بنا به سرايتبذيرى:

$$
A_{\circ} A_{n}>A_{\circ} B
$$

يعنى:

$$
n x>y
$$

اصل ارشميدسى بازهم سازكار است.

از آنجا قضيه تقسيم اقليدسى نتيجه ميگردرد:
هرجه باشد q ورئه وجود دادد بطوريكه:

$$
q x \leqslant y<q(+1) x
$$

$$
\begin{aligned}
& A_{\curlyvee} A_{\Gamma}>A_{\curlyvee} A_{\curlyvee} \\
& A_{0} A_{r}>\mu A_{0} A_{1} \\
& \text { با روش بازكستى: اگر فرض كنيم } x \text { (} x \text {) } \\
& A_{p} A_{p-1}>(p-1) A_{0} A_{1}
\end{aligned}
$$

「 اگ̋

وجود دارد:

$$
d-x<d
$$

صورت قضيه قبل را در تقسيم اقليدسى d-x d بر x بكار ميبر يم: $q x \leqslant d-x<(q+1) x$

ولى:

$$
q x \leqslant d-x \quad \Rightarrow \quad(q+1) x \leqslant d
$$

$$
d-x<(q+1) x \Rightarrow d<(q+r) x
$$

مينما يد. پس وضيه تقسيم اقليدسى در حالت y نيز داراى ارزش است.
 ولى در A ممواره يكـ بزرگترين مضرب x وجود دارد كه حد اكثر برابر y است. يغنى يكـ

بزركترين عدد صحيح q بقسمى كه qx q باشد. زيرا: $d<y \leqslant r d \Rightarrow 0<y-d \leqslant d$

اكر p خارج قسمت اقليدسى y بر x باشد: $p x \leqslant y-d<(p+1) x$

و اگر $p^{\prime} x \leqslant d<\left(p^{\prime}+1\right) x$

اكر:

$$
(p+1) x+\left(p^{\prime}+1\right) x
$$

وجود داشته باشد.
از:

$$
(y-d)+d=y
$$

تجاوز ميكند.
اصل ارشميدس در اين صورت سازكار است و وجود q حتمى است.

$$
(p+1) x+\left(p^{\prime}+1\right) x
$$

وجود نداشته باشد:
ميتوان با اين وصف نامساويهاى سمت حب را عضو به عضو جمـع كرد:

$$
\left(p+p^{\prime}\right) x \leqslant y
$$

هس باز هم يك بزركترين علد صحيح q وجود دارد بقسميكه qx q زيرا: ($\left.p+p^{\prime}+1\right) x$ وجود نداشته باشد و يا وجود داشته باشد از q ور y
($q=p+p^{\prime}+1$ در نتيجه اين بررسى مشاهله ميشود كه اصل

بكار بردن است سس:
A

Pـ اصر نيمسازى و انلاذه اجز ایى
 بار براى هميشه يك واحد اندازه u انتخاب ميكنيم. روش اندازه فصسل قبل

 برای حل مسئله اندازه در A ما اصل نيمسازى را نيز دخا لت ميدهيـم (اين اصل بـراى زاويهما سازكار است: نظير خاصيت مقدماتى داشتن نيمساز هر زاويه است).

اصل B

$$
r x=u
$$

مانند فصل قبل نتيجه ميخير يم:

$$
\begin{aligned}
& r^{n} x_{n}=u \\
& x_{n}=\frac{1}{r^{n}} u
\end{aligned}
$$

اكر جزع $y=q x_{n}$ كه در آنجا q يكـ علد طبيعى است وجود داشته باشد مينويسبم:

$$
y=\frac{q}{r^{n}} u
$$

ملاحظه كنم اكر:
($\left.\frac{1}{r^{n}} u\right)$
ممكن است كه qu وجود نداشته باشد بس همواره نميتوان نوشت:

$$
q\left(\frac{1}{r^{n}} u\right)=\frac{1}{r^{n}}(q u)
$$

اصل نمسسازى سوراخها را در A مسلود ميكند: هر فاصله باز در A تهى نيست. بخصوص ناصله] بك جزه
 مفهوم داده شده را (III، فصل ץ، ب) ميباشد. خاصيت زير دا ا اثبات ميكنيم:

رشته:

$$
x_{n}=\frac{1}{r^{n}} u
$$

بسمت صفر ميل ميكند.
زيرا فرض كنيم يكـ جزه

$$
n \in N \text { هرجه باشد } \quad x_{n}>v
$$

ثابت ميكنيم كه به تناقض منجر مبشود با:

$$
r^{n} x_{n}=u
$$

معين شده است. جون
باشد و:

$$
r^{n} x_{n}>r^{n} v
$$

يعنى:

$$
u>r^{n} v
$$

بدين ترتيب بزركترين عدد صحيح q وجود نخواهد داشت بقسميكـه qv q باشد و

$$
u, \frac{u}{r}, \cdots, \frac{u}{r^{n}} \cdots
$$

انجام دهيم خارج قسمتهاى اقليدسى

$$
\begin{gathered}
q_{0} u \leqslant x \\
\frac{q_{1}}{r} u \leqslant x \\
\vdots \\
\frac{q_{n}}{r^{n}} u \leqslant x
\end{gathered}
$$

和 $\frac{q_{n}}{r^{n}}$ q_{n}

$$
q_{n}\left(\frac{u}{r^{n}}\right) \leqslant x
$$

از آنجا نتيجه ميشود:

$$
\begin{equation*}
\frac{q_{n+1}}{r^{n+1}} \geqslant \frac{q_{n}}{\gamma^{n}} \tag{1}
\end{equation*}
$$

و رشته مقادير تقريبى نتصانى صعودى است:
(S)

$$
\begin{aligned}
& q_{0} \leqslant \frac{q_{1}}{r} \leqslant \frac{q_{r}}{r^{r}} \leqslant \ldots \leqslant \frac{q_{n}}{r^{n}} \leqslant \ldots \\
& \frac{q_{n+1}}{r^{n+1}} u \in\left[\frac{q_{n}}{r^{n}} u, x\right] \\
& \text { جون طول اين فاصله A اكيدآ كمتـر از } \frac{u}{r^{n}} \text { است نتيجه ميسود: } \\
& \frac{q_{n+1}}{r^{n+1}} u-\frac{q_{n}}{r^{n}} u<\frac{u}{r^{n}}
\end{aligned}
$$

$$
\frac{q_{n+1}}{r^{n+1}}-\frac{q_{n}}{r^{n}}<\frac{1}{\gamma^{n}}
$$

از آنجا نتيجه ميشود كه زهايش دوئى:

$$
q_{n+1}
$$

$$
\bar{\gamma}^{n+1}
$$

از نمايش:

$$
\frac{q_{n}}{r^{n}}=q_{0}, \overline{r_{1} r_{Y} \cdots r_{n}}
$$

با اضافه كــردن رقم دو-ئى ا r_{n+1} بسمت راست آن نتـجه ميگگردد. رشـه نامتناهى (S) در اين صورت در دستگاه به مبناى دو با يكـ صورت بندى نامتناهى نمايش داده ميشود، با اين روش اندازه حقيقى x بدست ميآيد:

$$
\mu(x)=q_{0}, \overrightarrow{r_{,} r_{Y} \cdots r_{n} \cdots}
$$

اكنون ثابت ميكنيم كه براى هر جزء $x \neq g$ از مرتبه معينـى بـه بعـد ميتوان مغــادير
تقريبى اضافى نيز معين كرد.

$$
(\exists p \in N) \quad n \geqslant p \Rightarrow \frac{u}{r^{n}}<g-x
$$

جون:

$$
\frac{q_{n}}{p^{n}} u \leqslant x
$$

$$
\frac{q_{n}}{r^{n}} u+\frac{u}{r^{n}}
$$

بنا براين از مرتبه p به بعد داريم:

$$
\frac{q_{n}}{r^{n}} u \leqslant x<\frac{q_{n+1}}{r^{n}} u
$$

號 $\frac{q_{n}+1}{r^{n}} u$ روش دا نميتوان برای او بكار برد g= max A است.

حال ثابت بكنيم تابـع $x \rightarrow \mu(x)$ كعين كرديسـد با شرا يـطط اندازه سازگار

$$
(x+y) \Rightarrow \mu(x+y)=\mu(x)+\mu(y)
$$

فرض كنيم:

$$
\begin{aligned}
& \mu(x)=q_{0}, \stackrel{r_{1} r_{Y} \cdots r_{n} \cdots}{ } \\
& \mu(y)=q_{0}^{\prime}, \overline{r_{1}^{\prime} r_{Y}^{\prime} \cdots r_{n}^{\prime} \cdots}
\end{aligned}
$$

بترتيب اندازههاى x و y باشند.
دو حالت در نظر ميگيريم:

$$
x+y \neq g \text { حاكت اول }
$$

بنا به
(1)

$$
n \geqslant p \Rightarrow \frac{u}{r^{n}}<g-(x+y)
$$

از رديف p $x+y$ به بعل مينوان اندازههاى تقريبى براى كرد. ولى داريم:

$$
g-(x+y)<g-x
$$

جس بطور او لى داريم:

$$
n \geqslant p \Rightarrow \frac{u}{r^{n}}<g-x
$$

از همين مرتبه p به بعل ميتوان مقادير تقريبى اضافى براى x (همحنيـن بر اى y) معين نمود. n $n \geqslant p$ اختيار ميكنيم. داريم:
(r)
($\left.{ }^{(}\right)$

$$
\frac{q_{n}^{\prime}}{p_{n}} u \leqslant y<\frac{q_{n}^{\prime}+1}{p^{n}} u
$$

مجمو ع ومفدار تقريبى اضافى را بررسى كنيم:

$$
\begin{aligned}
& \underline{q_{n}+q_{n}^{\prime}+r} \\
& r^{n} \\
&
\end{aligned}=\frac{q_{n}+q_{n}^{\prime}}{r_{n}} u+\frac{u}{r^{n-1}} .
$$

تتيجه ميشود كه (P, :

$$
x+y+\frac{u}{\gamma_{n-1}}
$$

از مر تبه
عضو به عضو جمع كرد:

$$
\frac{q_{n}+q_{n}^{\prime}}{r^{n}} u \leqslant x+y<\frac{q_{n}+q_{n}^{\prime}+r}{r^{n}} u
$$

حال اكر:

$$
\frac{q_{n}^{\prime \prime}}{r^{n}}
$$

 است بطوريكه:

$$
\begin{gathered}
q_{n}^{\prime \prime} \frac{u}{r^{n}} \leqslant x \\
\frac{q_{n}^{\prime \prime}}{r^{n}} \in\left[\frac{q_{n}+q_{n}^{\prime}}{r^{n}}, \frac{q_{n}+q_{n}^{\prime}+r}{r^{n}}-\Gamma\right.
\end{gathered}
$$

ولى اين فواصل فراكير كه درازاى حقيقى

$$
\mu(x+y)=\mu(x)+\mu(y)
$$

$$
\begin{aligned}
& \text { حالت دوم: } x+y=g \\
& \text { اكر } x=g \text { یس } y=0 \text { و تساوى : } \\
& \mu(g+o)=\mu(g)+\mu(\circ)
\end{aligned}
$$

واضح است.
فرض كنيم $y \neq g$ و $x \neq g$ ميتوان براى x x از مرتبه m به بعد و براى y از مــر تبه بعد مقادير تعريبى اضافى معين نمود. هركاه m^{\prime}

$$
p=\max \left\{m, m^{\prime}\right\}
$$

باشد از اين مرتبه p به بعد باز مم نامساويهاى (Y) و (r) را مينوانيم بنويسبم:

خون $x+y=g$ است نامساويهاى سمت راست را نميتوان عضو به عضــو بــا هم جمع كرد. ولى ناسساو يهاى سمت جب را جمع ميكنيم و داريم:

$$
\frac{q_{n}+q_{n}^{\prime}}{r^{n}} u \leqslant g
$$

هركاه:

$$
\frac{u}{r^{n}}
$$

سوای صفر است كه در A وجود دارد. ولى: ($\left.q_{n}+q_{n}^{\prime}\right) \frac{u}{\gamma^{n}}$

$$
\text { (} \left.q_{n}+q_{n}^{\prime}+r\right) \frac{u}{r^{n}}
$$

بنابراين در N داريم:

$$
q_{n}^{\prime \prime} \in 【 q_{n}+q_{n}^{\prime}, q_{n}+q_{n}^{\prime}+r 【
$$

از آنجا در +Q:

$$
\frac{q_{n}^{\prime \prime}}{r^{n}} \in\left[\frac{q_{n}+q_{n}^{\prime}}{r^{n}}, \frac{q_{n}+q_{n}^{\prime}+Y}{r^{n}} \zeta\right.
$$

و در نتيجه:

$$
\mu(g)=\mu(x)+\mu(y)
$$

از خاصيتى كه ثابت شد:
. $x+y) \Rightarrow \mu(x+y)=\mu(x)+\mu(y)$
ماند فصل قبل نتيجه ميشود:

$$
x<y \Rightarrow \mu(x)<\mu(y)
$$

اكر a عدد حقيقى اندازه g باشد:
تابع $x \rightarrow \mu(x)$ يكـ درون كسترى A در فاصـلـ x د

$$
\begin{aligned}
& \frac{q_{n}^{\prime \prime}}{p^{n}} \\
& \text { جمله عمومى رشتهاى باشد كه (g) } \mu \text { را معين ميكند. } \\
& \text { تعداد مضر بهاى: } q_{n}^{n}
\end{aligned}
$$

دو-ئى در اين فاصله اندازه يك جزء از A است.

اصل فتدان خلل - A را با سازكار كردن آن با اصل هB فصـل قبـل تكميل ميكنيم كه بهمان

 بكـ برون كسترى A روى (0)
يكى مجمو عه A راكه با اصلهاى A كامل ميناميم. در اين صورت قضيه زير را داريم:

قضيه - هر نيم گروه هحدود با يكـ فاصله محدوديت جمع در +R در اين فاصله يكـ شكل است.
 نيم گروه جابجايذير با جزء خنثاى ه هسئلهاى كه دراين قسهت بايد حلشُود عبارت از مسئله امتداد يني گرو0 جممى سمبل
 كردن جمتِ" بدست ميآيد: مجموعه جديد R يكت گُروه جمعـى است. ضرب نيز اداهه مييابد بطوريكه R يكت هيئت جابجايندير استا
 لگاريتها مورد استفاده ثرار ميگيرد: تابع

دو-نى عمل نمائيم:
 كردن
 فضاى يك بعدى نتيجه هيشود.

 بيكت گروه مهدود منجر ميگردد.

جراى رفـ الين محدوديتت ميتوان تُريف جمـ وا بهر زوج زاويهاى
جهت دار بدون تنيير دادن مفهوم ;اويههائى (بهيخحوجه) كــه روى آنها
عمل ميكنيم، ادامه داد. زاويههاي مجهز با با اين بنيان جديد يكـك گــرو
يكک شكل با گُوه دورانهای با مركز معلوم را تشكيل ميدهند.

بطو(يكه با همشپكلى جمـ سازگار باشد كافی خواهـد بود و اين اهر ما

زاويههاى جهتدار سوق خواهد كرد.

هورد بر(سى قرار دادهايم كه در موارد استعمال اعـداد مختلط مفيــد فايده خواهند بود.

فand

ساخت مجخمو عه اعداد نسبى
 عملها ـ رابطهٔ ترتيب

1- مسئله قر.ينهو پِ.ير كردن جمع
جمع در +R شركت بذير و جا بجابذير و و داراى يكـ جزء خنتاى ه ه است. ولى جمـ بنيان گروه به +R نمى بخشد: او داراى خاصيت زير ير نير نيست (هر عدد داراى يكك قرينه باذاء جمع است)"

اين است مسئلهاى كه طرح ميشود:

 بوده و هر جزء R بازاء اين قانون داراى يراى يكى فرينه باشد؟ ما مسئله فوق را بترتيب زير حل ميك ميكنيم:
 مجموعه آنرا با

$$
a+\bar{a}=\circ
$$

باشد.

تعريف اعداد نسبى
هر عدد +
 است. يكـ عدد مبُت يا منفى و يا صفر را (اعدد نسبى) ميناميم.

مجموعه اعداد منفى و صفر با -R زشان داده ميشود. مجموعه اعداد نسبى با R نمايش

$$
R=R^{+} \cup R^{-}
$$

هر وفت لازم باشد كه از يكك عدد نسبى بدون تكيه بر مُبت يا منفى بسـودن آن صحبت كنيم آنرا با يك حرف يوزانى نمايش ميدهيم: $\alpha \in R$
r- جمع در R
اعداد منفى دا براى تعيين يكـ قانون تركيب در R موسوم به (پمـع) وارد كـرديــم و آنرا با علاهت + نمايش ميدهيم بطوريكه:

$$
a+\bar{a}=\circ
$$

$$
\text { باشد. (هریه باشد + } \left.a \in R^{+}\right)
$$

ميخواهيم كه اين جمـع شركت بذير و جا بجا بذير باشد و با جمـع در +R وقتى كه دو

شر ايط لازم تعيين يك حنين قانون تركيب را بيدا كنيم:

$$
\begin{aligned}
& a+\bar{a}=0 \\
& b+\bar{b}=\circ
\end{aligned}
$$

شرو ع ميكنيم.
عضو به عضو جهـ ميكنيم بايد داشته باشيم: $(a+\bar{a})+(b+\bar{b})=0$ اكر قانون شركت پذير جا بجا پذير باشد نتيجه هيشود:
$(a+b)+(\bar{a}+\bar{b})=0$
ولى براى مر اعات قانون كروه بايد همحنين داشته باشيم:

$$
(a+b)+(\overline{a+b})=0
$$

جس بايد:

$$
\bar{a}+\bar{b}=\overline{a+b}
$$

بس لازم است مجموع دو عدد منغى را بترتيب فوق تعر يف كنيم.
به طرفين:

$$
\bar{a}+\bar{a}=\circ
$$

b اضافه ميكنيم:

$$
(a+\bar{a})+b=b
$$

بنا به شركت بذيرى:

$$
a+(\bar{a}+b)=b
$$

حال دو حالت در نظر ميگيريم: حالت اول: $a \leqslant b$ تفاضل \quad ت

$$
\bar{a}+b=b-a
$$

حالت دوم: $a \geqslant b-b$ تفاضل a وجود دارد. در نتيجه:

$$
(a-b)+(\bar{a}+b)=\circ
$$

ولى براى مراعات قانون گروه بايد همجنين داشته باشيم:

$$
(a-b)+(\overline{a-b})=0
$$

بس بايد:

$$
\bar{a}+b=\overline{a-b}
$$

اختيار نمائيم.
 $\bar{a}+a=$ 。

$$
0=0
$$

بس بيان تعريف زير لازم است:

تعريف - بهمر زوج دو عدد نسبى α و β يكـ عدد نسبى ممر اه ميكنيم كه به مجمو ع دو عدد
و β موسوم است و با β ب $\alpha+\beta$ نمايش داده ميشود و بترتيب زير معين ميگردد:
 :

$$
\begin{aligned}
& \bar{a}+\bar{b}=\overline{a+b} \\
& \text { (r) م منیى و } \beta \text { مبّت: } \\
& a \leqslant b \text { sil } \bar{a}+b=b+\bar{a}=b-a \\
& a \geqslant b \text { sil } \bar{a}+\overline{b=b}+\bar{a}=a-b \\
& \text { جابِجا هذيرى. } \\
& \text { هرچه باشند اعداد نسبى م و } \beta \text { م: } \\
& \alpha+\beta=\beta+\alpha \\
& \text { جا بجا پذيرى بلافاصله از تعريف نتيجه ميشود. }
\end{aligned}
$$

جزع خنثى
هرجه باشد $\alpha \in R$ داريم:

$$
\alpha+\circ=\alpha
$$

اكر
نظر بگيريم:

$$
\bar{a}+\bar{\circ}=\overline{a+} \bar{\circ} \Rightarrow \bar{a}+\circ=\bar{a}
$$

اجزاءٍ متقارن.
نظير هر عدد نسبى α يكـ عدد نسبى ' ${ }^{\prime}$ وجود دارد بقسميكه:

$$
\alpha+\alpha^{\prime}=\circ
$$

كافى است در تعريف b=a $b=a$ اختيار كنيم. نتيجه ميشود: $\bar{a}+a=\circ$
 a قبل از اثبات شركت بذيرى يك تعريف و يكك خاصيت بيان ميكنيم:

تعريف - تغيير علامت α عبارت از اختيار قرينه آن ' است. خاصيت زير را ا'بات ميكنيم:的 $\alpha+\beta$ نيز تغيير علامت ميدهد. اكر α و β همعلامت باشند خاصيت از تعريف (r) نتيجه ميشود.

اكر α و β مختلفالعلاهه باشند نحاصيت از تعريف (r) نتيجه ميشود.
$(a \leqslant b) \quad \bar{a}+b=b-a \quad \Longleftrightarrow a+\bar{b}=\overline{b-a}$
شركت پِذيرى
هرچه باشند اعداد نسبى α و β و
$(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$
ميدانيم اكر α و β و β در ${ }^{+}$د ${ }^{+}$باشند خاصيت محقق است.
اكر

ميتوان شركت پذيرى را وقتى كه دو تا از آنها منغى باشند نيز اثبات نمود.
يس بايد شركت يذيرى را وتتى كه يكى از آنها منفى است ائبات كنيم.
 $\alpha \in R^{-}$

$$
(\alpha+\beta)+\gamma=\gamma+(\alpha+\beta)=\gamma+(\beta+\alpha)
$$

$$
\alpha+(\beta+\gamma)=(\beta+\gamma)+\alpha=(\gamma+\beta)+\alpha
$$

از آنجا شركت بذيرى در حالتيكه جزء منفى آخرين جا را اشغال كند نتيجه ميگردد. ثابت كنيم كه شركت پذيرى در حا لتيكه جزء منفى جــاى دوم را اشغال كند نيــز نتيه

مىگردد.
(جا بجا یذيرى)
$\left(\alpha \in R^{-}\right) \quad(\beta+\alpha)+\gamma=(\alpha+\beta)+\gamma$ α (شُركت پذ يرى برای)
در جاى اول
$=\alpha+(\beta+\gamma)$
(جا بجا یذيرى)
$=(\beta+\gamma)+\alpha$
α شركت بذيرى برای)
در جاى سوم)
$=\beta+(\gamma+\alpha)$

$$
=\beta+(\alpha+\gamma)
$$

و از آنجا شركت پذيرى براى α در جاى دوم نتيجه ميشود. بالاخره براى اثبات شركت بذيرى جمع در R بای بايد ثابت كنيم: $(\bar{a}+b)+c=\bar{a}+(b+c)$

سه حالت در نظر ميخيريم:
حالت اول: $a \geqslant b+c$ بنا به تعريف جمـع در a با $\bar{a}+(b+c)=\overline{a-(b+c)}$
$(\bar{a}+b)+c=(\overline{a-b})+c=\overline{(a-b)}-c$
ولى در +
$a \geqslant b+c \quad \Rightarrow \quad(a-b)-c=a-(b+c)$
يس تساوى ثّابت است.
حالت دوم: $b<a<b+c$. داريم:
$\bar{a}+(b+c)=(b+c)-a$
$(\bar{a}+b)+c=\overline{a-b}+c=c-(a-b)$
و'
$b<a<b+c \Rightarrow c-(a-b)=(b+c)-a$ چس تساوى ثابت است.
حالت سوم: $a \leqslant b$. داريم:
$\bar{a}+(b+c)=(b+c)-a$
$(\bar{a}+b)+c=(b-a)+c$
ولى در +
$a \leqslant b \quad \Rightarrow \quad(b+c)-a=(b-a)+c$
بنا برا ين هرجه باشند α و β و γ ش شركت نتيجه: جمـع در R يكـ بنيان كروه جا بجا يا يذير معين ميكند.

$$
\begin{aligned}
& \alpha+\gamma=\beta ? \\
& \alpha+\alpha^{\prime}=0
\end{aligned}
$$

اكر γ جوابى از مسثله باشد داريم:

$$
\alpha^{\prime}+(\alpha+\gamma)=\beta+\alpha^{\prime}
$$

بنا به شركت بذيرى:

$$
\left(\alpha+\alpha^{\prime}\right)+\gamma=\beta+\alpha^{\prime}
$$

از آنجا:

$$
\gamma=\beta+\alpha^{\prime}
$$

امتحان كنبم:

$$
\alpha+\gamma=\alpha+\left(\alpha^{\prime}+\beta\right)=\left(\alpha+\alpha^{\prime}\right)+\beta=\beta
$$

جواب وجود دارد و يكتا است. مينويسبم: ("تفاضل α اذ β "
تفاضل دو عدد نسبى α و β همواره وجود دارد و يكتا است و آنرا با اضافه كردن قرينه
' ${ }^{\prime}$ عدد دوم به عدد اول β بدست ميآوريم:

$$
\beta-\alpha=\beta+\alpha^{\prime}
$$

بخصوص اكر $\beta=0$ باشد داريم:

$$
\circ-\alpha=\circ+\alpha^{\prime}=\alpha^{\prime}
$$

بدين جهت است كه قرينه α را با (() نشان ميلهمند. داريم:

$$
\beta-\alpha=\beta+(-\alpha)
$$

يكـ رشته جمـع و تفر يق مانند:

$$
\alpha-\beta+\gamma+\delta-\varphi-\theta
$$

همواره در R داراى مفهوم است و اين حاكى از:

$$
\alpha+(-\beta)+\gamma+\delta+(-\varphi)+(-\theta)
$$

ميباشد.

مقدار هطلق.
تعريف - بهر عدد نسبى α يكك عدد مبّت همراه ميكنبم كه با | α | نشان ميدهيم و بتر تبب زير معين ميكنيم:

$$
\begin{aligned}
& \alpha \in R^{+} \Rightarrow|\alpha|=\alpha \\
& \alpha \in R^{-} \Rightarrow|\alpha|=-\alpha
\end{aligned}
$$

بدين ترتيب يك تابع

$$
|\alpha|=\circ \quad \Longleftrightarrow \alpha=\circ
$$

خاصيت زير را اثبات كنيم:
β ه هر جه باشند اعداد نسبى ${ }^{\text {ه }}$

$$
|\alpha+\beta| \leqslant|\alpha|+|\beta|
$$

حالت اول: α و β ممعلامت.

$$
\begin{gathered}
\left(a, b \in R^{+}\right) \quad \beta=\bar{b} \quad, \quad \alpha=\bar{a} \quad \text { د } \quad \text { داريم: } \\
\\
|\alpha|=a=b \quad, \quad|\beta|=b
\end{gathered}
$$

بنا بتعريف جمع (1 يا ب)

$$
|\alpha+\beta|=a+b
$$

$$
|\alpha+\beta|=|\alpha|+|\beta|
$$

$$
\beta=\bar{b}, \alpha=a \text { حالت دوم: } \alpha \text { و } \beta \text { مختلف العلامت }
$$

باز مم داريم:

$$
|\alpha|=a \quad, \quad|\beta|=b
$$

بنا به تعريف (ץ):

$$
\begin{array}{lll}
\alpha \geqslant b & \text { s। } & |\alpha+\beta|=a-b \\
\alpha \leqslant b & \text { را } & |\alpha+\beta|=b-a
\end{array}
$$

خون در + ${ }^{+}$تغاضل دوعدد اكيدأ كمتر از مجموع آنها است سس داريم:

$$
|\alpha+\beta|<|\alpha|+|\beta|
$$

rــ ضرب در R
آيا ميتوان ضرب ${ }^{\text {R }}$ را با جميع خواص آن در R اد ادامه داد؟ باز مم, شرايط لازم دا كه يكك قانون تركيب در R R بايد بـ بـا تركيب دو جزء R با حاصل ضرب معلوم در +R منطبق بــاشد بيدا كنيم • اين قانـون دا بطور

ضرب بنويسبم و بخواهيم كه نسبت به جمـع در R توزيـعذير باشد.
از:

$$
a+\bar{a}=\circ
$$

شروع و طرفين آنرا در b ضرب كنيم.

$$
(a+\bar{a}) b=\circ
$$

بنابه توزيعيذيرى:

$$
\begin{aligned}
& a b+\bar{a} b=0 \\
& a b+\overline{a b}=0
\end{aligned}
$$

$$
\bar{a} b=\overline{a b}
$$

$$
\begin{aligned}
& \text { اگر } b=0 \text { باشد بايد } \\
& \text { بازهم با شروع از: } \\
& a+\bar{a}=\circ \\
& \text { با ضرب طرفين Tآن در } \bar{b} \text { (ميدانيم كه } \\
& (a+\bar{a}) \bar{b}=\circ \\
& \text { بنا به توزيـعيذيرى: } \\
& a b+\bar{a} \cdot \bar{b}=\circ \\
& \text { ميدانيم كه بايد: } \\
& a \bar{b}=\overline{a b} \\
& \overline{a b}+\overline{a b}=\circ \\
& \text { و براى رعايت قانون كروه ممحنين بايد داشنه باشيم: } \\
& \overline{a b}+\dot{a} b=\circ \\
& \text { سس بايد: } \\
& \bar{a} \cdot \bar{b}=a b
\end{aligned}
$$

بنا بر اين تعر يف حاصل ضرب دو عدد منفى بطرز فوق لازم است.

تعر يف- به هر زوج α و β دو عدد نسبى يك عدد نسبى موسوم به حاصلضرب α در β همراه ميكنيم كه بصورت $\alpha \beta$ نوشته و بتر تيب زير معين ميشود: (
:

$$
\bar{a} b=b \bar{x}=\overline{a b}
$$

:

$$
\bar{a} \cdot \bar{b}=a b
$$

به عبارت ديگر:
حاصل ضرب دو عدد همعلامت مُّبت است. حاصل ضرب دو علد مختلفا لعلامت منفى است.
مقدار مطلى حاصل ضرب برابر حاصل ضرب مقادير مطلق است:

$$
|\alpha \beta|=|\alpha| \cdot|\beta|
$$

تابـع | $\alpha \rightarrow \mid \alpha$ يك، يك شكلى بازاء ضرب است.
جا بجا يُنيرى:
هر جه باشند اعداد نسبى ه، β :

$$
\alpha \beta=\beta \alpha
$$

جا بجا يذيرى از روى تعريف Tشكار است.

هرحهه باشد

$$
1 \cdot \alpha=\alpha
$$

اگر $\alpha \in R^{+}$مسئله روشن است اگر $\alpha \in R^{-}$از تعريف (Y) با فرض $b=1$ استفاده

نظير هر عدد نسبى $\alpha \neq 0$ يكك عدد نسبى β است بقسميكه:

$$
\alpha \beta=1
$$

منفى است:

$$
\begin{aligned}
& \beta=\bar{b} \\
& \text { بايد داشته باشيم: } \\
& \bar{a} \bar{b}=1 \\
& \text { تعريف (r) را بكار ميبر يم: } 1 \text { ab= } 1 \text { داريم: } \\
& b=\frac{1}{a} \quad, \quad \bar{b}=\left(\frac{\overline{1}}{a}\right)
\end{aligned}
$$

مينو يسبم:

$$
\beta=\frac{1}{\alpha}
$$

داريم:

$$
\frac{1}{(-\alpha)}=-\left(\frac{1}{\alpha}\right)
$$

شر كت یذيرى:
هرچجه باشند

$$
(\alpha \beta) \gamma=\alpha(\beta \gamma)
$$

علامتها نيز سازگار است زيرا اگك دو عدد منفى باشد حاصل ضرب آنها در هردو طرف مشبت است و اگر يكـ يا سه عدد منفى باشد حاصل ضر بها در هردو طرف منغى هستند.

$$
R^{*}=R-\{0\}
$$

نتيجه: ضرب يكـ بنيان كروه جا بجا يذير را در * معين ميكند.
توزيعِّنِيرى: هرحه باشند $\alpha, \beta, \gamma \in R$

$$
\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma
$$

حالتتاول: β و γ همعلامتاند:

علامت درست است و از لحاظ مقدار مطلق داريم:

$$
|\alpha(\beta+\gamma)|=|\alpha||\beta+\gamma|=|\alpha|(|\beta|+|\gamma|)
$$

$$
|\alpha \beta+\alpha \gamma|=|\alpha \beta|+|\alpha \gamma|
$$

جونكه $\alpha \beta$ و $\alpha \beta$ میعلامتاند.
بس كافى است براى اثبات تساوى بين مقاديــر مطلق از توزيعيذيرى در +R استفاده

حالت دوم: β و α مختلف العلامهاند.
در اين صورت β + γ داراى علامت يكى از آنها است. فرض كنيم داراى علامت β
باشد مينويسيم:

$$
\beta=(\beta+\gamma)+(-\gamma)
$$

$$
\alpha \beta=\alpha(\beta+\gamma)+\alpha(-\gamma)
$$

از آنجا رابطهاى كه بايستى اثبات شود:

$$
\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma
$$

نيجه: جمـ و ضرب يكـ بنيان كروه به R ميخششند (I نصل ب، Y)
Pـ رابطه ترتيب در R.
براى ادامه رابطه ترتبب $a, b \in R^{+}$بغيريم. ميدانيم كه اكر اكر
$a>b \Rightarrow a-b$ م
$a<b \Rightarrow a-b$ منفى
تعريف رابطه ترتيب اكيد:
هركاه دو عدد نسبى α و β مغروض باشند اكـر β - α مثبت بـاشد ميگويند (ل اكيداً

 $\alpha>0 \Longleftrightarrow \alpha$ م
$\circ>\beta$ -
ولى اكر β -

$$
\beta<0 \quad \Longleftrightarrow \quad \beta \text { منفى }
$$

ثابت كنيم رابطه دوتائى كه بدين ترتيب معين شد يكـ رابطه تـرتيب اكيد و كلى در R است. زيرا:

$$
\alpha>\beta \Rightarrow \alpha \neq \beta
$$

جونكه: $\alpha-\beta$ مُبت است و برابر صفر نيست.

$$
(\alpha>\beta \quad, \quad \beta>\gamma) \Rightarrow \alpha>\gamma
$$

جو نكه:

$$
\alpha-\gamma=(\alpha-\beta)+(\beta-\gamma)
$$

و α كه مجهمو ع دو عدد مبُت است خودش نيز مبُت ميباشد.

$$
\begin{aligned}
& \text { } \\
& \alpha>\beta \quad \text { ي } \quad \beta>\alpha
\end{aligned}
$$

زيرا الگر α و β هتمايز باشند يكى از تفاضلهاى
منفى است).
رابطه ترتيب وسيع:
اكر داشته باشيم:

$$
\begin{gathered}
\alpha<\beta \quad \text { ᄂ } \quad \alpha=\beta \\
\alpha \leqslant \beta
\end{gathered}
$$

مينويسيم:

پإيدارى بازاء جمع هرجه باشد γ, β, α

$$
\alpha>\beta \quad \alpha+\gamma>\beta+\gamma
$$

$$
\alpha-\beta=(\alpha+\gamma)-(\beta+\gamma)
$$

اگر يكى از دو طرف مبُت باشد طرف ديگَر نيز مبُت است.

نتيجه- در R ميتوان نامساوى را عضو به عضو جمـع كرد:

$$
(\alpha>\beta \quad, \quad \gamma>\delta) \quad \Rightarrow \quad \alpha+\gamma>\beta+\gamma
$$

ضرب و رابطه ترتيب.

$$
\begin{array}{lllll}
(\gamma>\circ & , & \alpha>\beta) & \Rightarrow & (\alpha \gamma>\beta \gamma) \\
(\gamma<\circ & , & \alpha>\beta) & \Rightarrow & (\alpha \gamma<\beta \gamma)
\end{array}
$$

زيرا $\alpha-\beta$ بنا به فرض مثبت است.
اكر

$$
\alpha \gamma-\beta \gamma>\circ \quad, \quad(\alpha-\beta) \gamma>\circ
$$

اكر γ در اين صورت:

$$
\alpha \gamma-\beta \gamma<0 \quad, \quad(\alpha-\beta) \gamma<0
$$

تبصرٌ ا- عدد منطق عدد نسبى است كه معدار مطلق آن از ${ }^{\text {از }}$ ه باشد:

$$
|\alpha| \in Q^{+} \quad \Longleftrightarrow \quad\left(\quad\left({ }^{\prime}\right)\right.
$$

 مينما يند. ميگويند كه: Q يكـ زير هيئت R است.

$$
|\alpha| \in N \quad \Longleftrightarrow \quad(\quad(\alpha)
$$

مجموعه اعداد صحيح نسبى با Z نشان داده ميشود. جمع در R R يكـ كـروه در Z معين
 صحيح نيست. Z يكك حلعه جا بجا بذير به جزء واحد است (I، فصل ب، Y،

هـ نتقسيم اقليدسى در Z.
 عدد مبُت يكتاى q وجود دارد بطور يكه:

$$
\begin{equation*}
b q \leqslant a<b(q+1) \tag{1}
\end{equation*}
$$

ميخواهيم در حالتيكه a منفى و b مُبت است نتيجه مشا بهى بدست آوريم. علامتها را در (1) تغير ميدهيم. داريم:
(r)

$$
b(-q-1)<(-a) \leqslant b(-q)
$$

دو حالت در نظر ميگيريم:

$$
-a=b(-q): ح
$$

در اين صورت ميگويند كه b، ((- q) را خار ج قسمت تحقيقى (()) بر b مينامند.

$$
b(-q-1)<-a<b(-q) \text { a }
$$

(-q-1)
بتعريف باقيمانده تقسيم عبارت است از:

$$
r=(-a)-b(-q-1)=-a+b(q+1)
$$

داريم:

$$
\begin{aligned}
b(-q & -1)<(-a) \\
-a<b(-q) & \Longleftrightarrow r>0 \\
- & \Longleftrightarrow<b
\end{aligned}
$$

از Tنجا قضبه تقسيم اقليدسى در Z:

$$
\begin{array}{r}
\forall a \in Z \quad, \quad \forall b \in N^{*}, \quad \exists q \in z \quad, \quad \exists r \in N \\
b q \leqslant a<b(q+1) \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
a=b q+r \\
0 \leqslant r<b
\end{array}\right.
\end{array}
$$

\%
در (
 داريم :

قضيو Fr- هر ايدهآل Z اساسى است.

اثبات - حالتى را كه ايدهآل به \}0

اكر $I \neq\{0\}$ يك ايدهآل Z باشد مجموعه اجزاء مئبت ايدهآل Z را بـا I^{+}نشان

$$
\circ \notin I^{+} \quad, \quad I^{+} \in N^{*}
$$

جون +

$$
\delta=\min I^{+}
$$

(1) $\quad a \in I \quad a=\delta q+r \quad \circ \leqslant r<\delta$

جون I يكـ ايدهآل است. داريم:

$$
\begin{aligned}
\delta \in I & \Rightarrow \delta q \in I \\
(a \in I \quad, \quad \delta q \in I) & \Rightarrow a-\delta q=r \in I
\end{aligned}
$$

با فرض rfor امر بيك تناقض منجر ميشود.

$$
\circ<r<\delta \Rightarrow\left(r \in I^{+} \quad, \quad r<\min I^{+}\right)
$$

اين يك تناقض است سس r r و از (1) نتيجه ميشود:

$$
a=\delta q
$$

هر جزء a ايدهآل I مضر بى از δ است بس ايدهآل I اساسى است. مقسوم عليه مشترك دو عدد Z.

دو عدد $a, b \in Z$ اختيار ميكنيم و مجموعه I اعداد زير را در نظر ميغير يم:

$$
a x+b y \quad(\forall x, y \in Z)
$$

ابتدا ثابت كنيم كه I يكـ زير گروه جمعى Z است. 1) جمـ در I درونى است زيرا:

$$
\begin{aligned}
(a x+b y)+\left(a x^{\prime}+b y^{\prime}\right) & =a\left(x+x^{\prime}\right)+b\left(y+y^{\prime}\right) \\
& \left(\begin{array}{l}
\text { انتيار شود } x=y=0) \circ \in I(ץ
\end{array}\right)
\end{aligned}
$$

ץ) متقا بل يك جزء
يكـ جزء I است.

بالاخره I يكى ايدهآل Z است زيرا حاصل ضرب يكـ جزء ax از 1 از در يكـ
جزء $z \in Z$ عبارت است از:

بنا به قضيه (Y)، اين ايده آل I اساسى است، اکر:

$$
\delta=\min I^{+}
$$

ولى: $\quad y=0 \quad, \quad x=1$) $\quad a \in I \quad$ (ختيار شود
(اختيار شود $y=1 \quad, \quad x=0$) $\quad b \in I \quad$,
مس δ يكـ مقسوم عليه مشترك a و و است.
از طرف ديگر:

$$
\delta \in I \Rightarrow\left(\exists x_{0}, y_{0} \in Z ; \quad a x_{0}+b y_{0}=\delta\right)
$$

از آنجا نتيجه ميشود كه هر مقسوم عليه مشترك d اعداد a و b مقسوم عليهى اذ أ است

$$
\left.\begin{array}{rl}
d|a \Rightarrow d| a x_{0} \\
d|b \Rightarrow d| b y_{0}
\end{array}\right\} \Rightarrow d \mid a x_{0}+b y_{0}=\delta
$$

ס بزركّرين مeسوم عليه مشترك a و b است. جس ميتوان صورت قضيه اساسى زير را بيان كرد:

قضيه r- مجموعه مقسوم عليههاى مشتركـ a و b با مجموعـه مقسوم عليــههـــاى بــزركتـــر ين مقسوم عليه مشترك آنها منطبق است. "بمرْ - اگر a و b نسبت بهم اول باشند داريم: بردسى قبل امكان ميدهد كه قضيه زير را بيان كنيم:

$$
a x_{0}+b y_{0}=1
$$

نمائىها و زلًاريتمها

1- قواى صحيح .يكك عدد حقيقى $\alpha \in R^{*}$ مر كاه α يكـ عدد حقيقى مخالف صفر باش

تعريف - بهر عدد طبيعى n يكـ عدد حقيقى ${ }^{\text {ع }}$, α^{n} همراه كنبم كه از راه بازكشتى بطـريق زير معين ميگردد:

$$
\begin{aligned}
& \alpha^{\circ}=1 \\
& \quad: ~
\end{aligned}
$$

معين ميكنيم.

 . 1 (1 ، $n \rightarrow \alpha^{n}$

$$
\begin{aligned}
& \text { (ا ا ا } 1)^{n}=1 \text { زور } \\
& (-1)^{n}=-1 \quad 1 \quad \text { اكر } n \text { فرد باشد } \\
& \text { نگار N عبارت است اذ: \} } \\
& \text { بطود كلى: }
\end{aligned}
$$

جون منظود اعهاد مبُت است يس اثبات همان است كه در N بود (II، فصل ب،

$$
: n, p \in N g \alpha \in R^{+}, \mathrm{P}_{r}
$$

$$
\alpha^{n}>\alpha^{p}
$$

بنا براين ميتوان كفت:
تابع $n \rightarrow \alpha^{n}$ بازاء $\alpha>1$ اكيدأ صعودى است.

$$
\cdot \alpha^{n}<\alpha^{p} \quad(n>p \quad, \quad 0<\alpha<1)
$$

اثبات مشا به قبلى است.
ولى در اينجا بنا به

$$
\left(\circ<\alpha<1 \quad, \quad d \in N^{*}\right) \quad \Rightarrow \quad \alpha^{d}<1
$$

و از آنجا نتيجه ميشود:

$$
\begin{aligned}
& \alpha^{n}>\alpha^{p} \quad(n>p \quad, \quad \alpha>1) \\
& n>p \Rightarrow\left(\exists d \in N^{*} \quad n=p+d\right) \\
& \left(\alpha>1 \quad, \quad d \in N^{*}\right) \Rightarrow \alpha^{d}>1 \quad \text { (} \mathrm{P}_{\mathrm{r}} \text {) } \\
& \text { با ضرب دو طرف نامساوى در عدد مبّت } \\
& \alpha^{d+p}>\alpha^{p}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha>0 \Rightarrow \alpha^{n}>0 \\
& \alpha<\circ \quad \Rightarrow \quad\left(\alpha^{{ }^{n}}>0\right. \\
& \text {, } \left.\quad \alpha^{\Upsilon n+1}<0\right) \\
& (\forall n \in N) \\
& (\forall n \in N) \\
& : n, p \in N, \alpha \in R^{*} \text { هر } \quad \mathrm{P}_{1} \\
& \alpha^{n} \cdot \alpha^{p}=\alpha^{n+p} \\
& \left(\alpha^{n}\right)^{p}=\alpha^{n p} \\
& \alpha^{n} \beta^{n}=(\alpha \beta)^{n} \\
& \text { اثبات عيناً همان است كه در N بود (II، فصل } \\
& : n \in N^{*}, \alpha, \beta \in R^{+} \text {هر هج باشد اعداد مبُت } \\
& \alpha<\beta \quad \Longleftrightarrow \alpha^{n}<\beta^{n}
\end{aligned}
$$

$$
\alpha^{n}<\alpha^{p}
$$

مس ميتوان كُت:
تا بـع $n \rightarrow \alpha^{n}$ بازاء

تعريف - هركاه $n \in N \in R^{*}$ عدد $\alpha \in \alpha^{-n}$ را بطريق زير معين ميكنيم:

$$
\alpha^{-n}=\frac{1}{\alpha^{n}}
$$

خاصيتها:

هرحجه باشند $\alpha \in R^{*}, x, y \in Z$

$$
\alpha^{x} \cdot \alpha^{y}=\alpha^{x+y}
$$

بازاء x و y صحيح مبت يا صغر مطلب معلوم است. خاصيت را در ساير حا لتها اثبات

$$
\begin{aligned}
& x=-n \quad, \quad y=-p \quad(n, p \in N) \\
& \alpha^{x} \alpha^{y}=\frac{1}{\alpha^{n}} \cdot \frac{1}{\alpha^{p}}=\frac{1}{\alpha^{n+p}}=\alpha^{-(n+p)}=\alpha^{x+y}
\end{aligned}
$$

حالت دوم: x و y مختلفالعلامه:

$$
x=n \quad y=-p \quad(n, p \in N)
$$

$$
\alpha^{x} \alpha^{y}=\alpha^{n} \frac{1}{\alpha^{p}}=\frac{\alpha^{n}}{\alpha^{p}}
$$

اكى $n \geqslant p$ باشد بر

$$
\alpha^{x} \cdot \alpha^{y}=\alpha^{n-p}=\alpha^{x+y}
$$

زيرا:

$$
n \geqslant p \quad \Rightarrow \quad x+y=n-p
$$

$$
\begin{aligned}
& \text { اكر n<p } n \text { بر }{ }^{n} \text { اختصار ميكنيم } \\
& \alpha^{x} \alpha^{y}=\frac{1}{\alpha^{p-n}}=\alpha^{-(p-n)}=\alpha^{x+y} \\
& n<p \Rightarrow x+y=-(p-n)
\end{aligned}
$$

جس رابطه ثابت است.
هر هـه باشد $\alpha, \beta \in R^{*}$ و $x \in Z$

$$
\alpha^{x} \beta^{x}=(\alpha \beta)^{x}
$$

$$
\alpha^{x} \beta^{x}=\frac{1}{\alpha^{n}} \cdot \frac{1}{\beta^{n}}=\frac{1}{\alpha^{n} \beta^{n}}=\frac{1}{(\alpha \beta)^{n}}=(\alpha \beta)^{-n}=(\alpha \beta)^{x} \quad x=-n
$$

جس رابطه بازاء x $x \in Z$ صادق است.
هرجه باشند P_{4}

$$
\left(\alpha^{x}\right)^{y}=\alpha^{x y}
$$

بازاء x و y مثبت يا صفر مطلب معلوم است و آنرا در ساير حالتها اثبات ميكنيم.

$$
\begin{aligned}
& \text { حالت اول: } y<0 \text { و } x \text { و } \\
& x=-n \quad, \quad y=-p \quad(n, p \in N) \\
& \alpha^{x}=\alpha^{-n}=\frac{1}{\alpha^{n}} \\
& \text { موجب ميشود: } \\
& \left(\alpha^{\tau}\right)^{y}=\left(\frac{1}{\alpha^{n}}\right)^{-p}=\left(\alpha^{n}\right)^{p}=\alpha^{n p}=\alpha^{\tau y} \\
& \text { حالت دوم: } x \text { x } x \text { و } y \text { : } \\
& x=-n \quad y=p \quad(n, p \in N) \\
& \alpha^{x}=\frac{1}{\alpha^{n}} \\
& \text { موجب ميشود: } \\
& \left(\alpha^{x}\right)^{y}=\left(\frac{1}{\alpha^{n}}\right)^{p}=\frac{1}{\alpha^{n p}}=\alpha^{-n p}=\alpha^{x y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { حالت سوم: } \\
& x=n, \quad y=-p \quad(n, p \in N) \\
& \alpha^{x}=\alpha^{n} \\
& \text { موجب ميشود: } \\
& \left(\alpha^{x}\right)^{y}=\left(\alpha^{n}\right)^{-p}=\left(\frac{1}{\alpha^{n}}\right)^{p}=\frac{1}{\alpha^{n P}}=\alpha^{-n P}=\alpha^{x y} \\
& \text { بس خاصيت بازاء هر مedار x, } y \in Z \text { ثا بت است. } \\
& \text { نگار } \\
& x \in Z \quad \Rightarrow \quad \alpha^{x} \in G_{\alpha} \\
& \text { مو مبـ مسِو د: } \\
& \alpha^{x} \cdot \alpha^{y}=\alpha^{x+y} \in G_{\alpha} \\
& \text { بعلاوه داراى خاصيتهاى زير است: } \\
& \text { 1) شركتخذير است. } \\
& \text { ץ) داراى يكـ جزء خنتى است: } \\
& 1=\alpha^{\circ} \in G_{\alpha} \\
& \text { r) هرجز\& } \\
& \alpha^{-x} \in G_{\alpha} \\
& \text { بنا براين }{ }_{\alpha}
\end{aligned}
$$

 چون ضرب جابجایذير است چس اين زيركروه جابجايذير است. رابطه:

$$
\alpha^{x} \cdot \alpha^{y}=\alpha^{x+y}
$$

نشان ميدهد كه تا بـع $x \rightarrow \alpha^{x}$

از اين به بعد جزع بايه α مُبت فرض ميشود. $\alpha \in R^{+}-\{0\}$

$$
\left.\alpha^{x}>\alpha^{y} \quad \text { موجب ميشود (x>y } \quad, \quad \alpha>1\right)
$$

$$
\begin{aligned}
& \text { حالت الول: } y<0<x \text { : } \\
& x=n \quad y=-p \quad(n, p \in N) \\
& \alpha^{x}=\alpha^{n} \\
& \alpha>1 \Rightarrow \alpha^{n}>1 \\
& \text { از طرف ديگر: } \\
& \alpha^{y}=\frac{1}{\alpha^{p}} \\
& \text { بنابه (} \\
& \alpha>1 \Rightarrow \alpha^{p}>1 \Rightarrow 1>\frac{1}{\alpha^{p}}
\end{aligned}
$$

رابطه آخرى از تقسبم بر بس داديم: : $y<x<0$ -

$$
x=-n, \quad y=-p \quad(n, p \in N)
$$

$$
\begin{align*}
& y<x \Rightarrow n<p \\
& (n<p \quad, \quad \alpha>1) \Rightarrow \alpha^{n}<\alpha^{p} \tag{r}
\end{align*}
$$

از تقسيم بر

$$
\alpha^{n}<\alpha^{p} \Rightarrow \frac{1}{\alpha^{p}}<\frac{1}{\alpha^{n}}
$$

$$
\alpha^{y}<\alpha^{x}
$$

بس خاصيت ثابت است و با اين عبارت بيان ميشود: تابع $x \rightarrow \alpha^{x}$ بازاء $\alpha>1$ اكيدأ صعودى است. $: x, y \in Z$ مر P^{2} $\alpha^{x}<\alpha^{y} \quad(x>y \quad, \quad 0<\alpha<1)$

ائبات شبيه قبلى است و ميتو انيم بگَوئم:
تابـع باز

تعريفـ تابـع عكس $y=\alpha^{x}$ لگاريتم چايه α ناميله ميشود. مينو يسيم:

$$
x=\log _{\alpha} y
$$

$$
\left(x \in Z \quad, \quad y=\alpha^{x}\right) \quad \Longleftrightarrow \quad\left(y \in G_{\alpha} \quad, \quad x=\log _{\alpha} y\right)
$$

نمودار اين تناظر در شكل (1) نشان داده شده است:

$$
\text { شكل } 1
$$

بدين ترتيب تعريف لگاريتم را كه براى اعداد طبيعى معلوم كـرده بوديم (II، فصل ب) به اعداد جديدى ادامه داديم: اعداد صحيح نسبى از يك طرف و اعداد حقيقى از طرف ديگر. خاصيت:

$$
\log _{\alpha} y^{\prime}+\log _{\alpha} y^{\prime \prime}=\log _{\alpha}\left(y^{\prime} y^{\prime \prime}\right)
$$

ميخو اهيم تناظر آنجه در فصل اندازه كميتها عمل كرديم عمـل خواهيم نــمود. تا بـع $y \rightarrow \log _{\alpha} y$ را بر اندازه $y \in G_{\alpha} x \in Z$ تعكير ميكنيم (واحل اندازه α است). ("جمـع كميتها") با ضرب اجزاء ${ }^{\text {ا }}$ ا جا يگز Z اصل نيمسازى به مسدود كردن سوراخخاى نيمَكروه ارشميدسى و به معمول كـردن اعداد دو-ئى

در ${ }_{\alpha}$ خون قانون تركيب ضرب است’ اصل نيمسازى با اين عبارت قا بل بيان است: « $\gamma \cdot \gamma=\beta$ "نظير هر جزء β " جذر عدد حقيقى مبُبت β است. ميدانيم كه γ وجود دارد و يكتا است (IV)، فصل

قضيه ب). بنابراين مينو يسيم:

$$
\gamma^{r}=\beta \quad \Longleftrightarrow \quad \gamma=\beta^{\frac{1}{r}}
$$

هركاه:

$$
\begin{align*}
& \alpha_{\varphi}^{r}=\alpha \tag{1}\\
& \alpha_{r}^{\gamma}=\alpha_{\varphi} \\
& \alpha_{r}^{\gamma}=\alpha_{r}
\end{align*}
$$

ج
(r) جذ $\alpha_{\text {ب }}$
(r) \quad بذر α_{γ}
$\alpha_{n}^{r}=\alpha_{n-1}$
(n) \quad جذر α_{n-1}

دو عدد (r) را بتوان
بنا به سرايتبذيرى داريم:

$$
\alpha_{n}^{\left(r^{n}\right)}=\alpha_{n-1}^{\left(r^{n-1}\right)}=\cdots=\alpha_{r}^{\left(r^{r}\right)}=\alpha_{r}^{\left(r^{r}\right)}=\alpha_{1}^{r}=\alpha
$$

 مينويسيم:

$$
\alpha_{n}=\alpha^{\frac{1}{r^{n}}} \Longleftrightarrow \alpha_{n}^{\left(r^{n}\right)}=\alpha
$$

هرجه باشد q ع q داريم:

$$
\alpha_{n}^{q}=\left(\alpha^{\frac{1}{r^{n}}}\right)^{q} \quad, \quad\left(\alpha_{n}^{r^{n}}\right)^{q}=\alpha^{q}
$$

ولى بنابهP ${ }_{\text {P }}^{\text {تساوى دوم را ميتوان نوشت: }}$

$$
\left(\alpha_{n}^{q}\right)_{r}^{n}=\alpha^{q}
$$

از آنجا نتيجه ميشود:
(ي $_{\alpha}-1$

$$
x^{n}>y
$$

$$
\begin{aligned}
\alpha_{n}^{q} & =\left(\alpha^{q}\right)^{\frac{1}{r^{n}}} \\
\left(\alpha^{q}\right)^{\frac{1}{r^{n}}} & =\left(\alpha^{\frac{1}{r^{n}}}\right)^{q} \\
& \alpha^{\frac{q}{r^{n}}} \\
x & =\frac{q}{r^{n}}
\end{aligned}
$$

بنا بر آنحه كَششت، بدين ترتيب تعريف $x \in Q_{Y}$ ب $x \rightarrow \alpha^{x} x$ (مجموعه اعداد دو-ئتى مبت، منفى ياصفر) ادامه داده شده است. نگًار $Q^{\text {اد }}$ با اين تا بـع را با H_{α} نشان ميدهيم: $: x, y \in Q_{Y}$ هرچه باشند

$$
\alpha^{x} \cdot \alpha^{y}=\alpha^{x+y}
$$

برای x و y دو نما ينده با مخرج n ${ }^{n}$ انتخاب كنيم:

$$
x=\frac{q}{r^{n}} \quad y=\frac{q}{r^{n}} \quad(p, q \in Z)
$$

داريم:

$$
\alpha^{x}=\left(\frac{1}{\alpha^{r^{n}}}\right)^{p} \quad, \quad \alpha^{y}=\left(\frac{1}{\alpha^{r^{n}}}\right)^{q}
$$

از آنجا:

$$
\text { (} \mathrm{P}_{\varphi} \text { نخاصيت) } \quad \alpha^{x} \cdot \alpha^{y}=\left(\alpha^{\frac{1}{r^{n}}}\right)^{p+q}
$$

$$
\alpha^{x} \cdot \alpha^{y}=\alpha^{\frac{p+q}{r^{n}}}=\alpha^{x+y}
$$

$: x, y \in Q_{Y}$ هرجه باشه
$\alpha^{x}>\alpha^{y} \quad(x>y \quad, \quad \alpha>1)$
ابتدا ملاحظه كنيم كه:
$\alpha>1 \Rightarrow \alpha^{\frac{1}{r^{n}}}>1$
$\alpha^{\frac{1}{r^{n}}} \leqslant 1$
هركاه بتوان
حالكافى است كه همان علامتهاى P
$x>y \Rightarrow p>q \Rightarrow\left(\alpha^{\frac{1}{r^{n}}}\right)^{p}>\left(\alpha^{\frac{1}{r^{n}}}\right)^{q}\left(\mathrm{P}_{\gamma}\right.$ خاصي $)$
ميشود كه بازاع

نمودار تناظر دوسوئى در شكل r داده شده است. در شكل r فقط فاصله
 بديهى است كـــه نتوا نستهايم جزيكـ اصلى كوحكـك از ايــن اعــداد دوـئى را نمايش

$$
\begin{aligned}
& \text { شك }
\end{aligned}
$$

 حقيقى x را كه باصورتبندى نامتناهىاش در مبناى r داده شله است (برای تثيت تصور فعلا

آنرا مئبت فرض ميكنيم)
در نظر ميگیير يـم:

$$
x=e, \overline{r_{1} r_{r} \cdots r_{n} \cdots}
$$

ارقام پايه ץ عبارتند از ه و
عدد x با رشته فو اصل فر اكير ${ }^{\text {ع }}{ }^{+}$معين شده است كه از اين صورتبندى نتيجه ميشود:

$$
x \in\left(\frac{q_{n}}{r^{n}}, \frac{q_{n}+1}{r^{n}} \quad(\forall n \in N)\right.
$$

بازاء هر يكـ از اين فو اصل يكـ فاصله ${ }_{\text {ا }}^{\text {ا }}$ نظير وجود دارد
(S)

$$
\left\langle\frac{q_{n}}{\alpha r^{n}}, \alpha r^{\frac{q_{n}+1}{n}}\right.
$$

 كنيم كه در ازاى اين فاصله بسمت صفر ميل ميكند:

$$
l_{n}=\alpha \frac{q_{n}+1}{r^{n}}-\alpha^{\frac{q_{n}}{r^{n}}}=\alpha^{\frac{q_{n}}{r^{n}}}\left(\alpha^{\frac{1}{r^{n}}}-1\right)
$$

اگر e قسمت صحيح x باشد كه قسمت صحيح:

$$
\frac{q_{n}}{r^{n}}
$$

نيز هست. هس:

$$
e \leqslant \frac{q_{n}}{r^{n}}<e+1 \Rightarrow \alpha^{\frac{q_{n}}{r^{n}}}<\alpha^{e+1}
$$

بنا برا ين:

$$
l_{n}<\alpha^{e+1}\left(\alpha^{\frac{1}{r^{n}}}-1\right)
$$

حال ثا بت ثيكنيم كه:
($\alpha^{\frac{1}{r^{n}}}-1$
يعنى

$$
\forall \varepsilon \in R^{+}, \quad \varepsilon \neq 0 \quad \exists p \in N
$$

بقسميكه:

$$
\begin{aligned}
& n>p \Rightarrow \quad \alpha^{\frac{1}{r^{n}}}-1<\varepsilon \\
& \\
& \\
& \alpha^{r^{n}}<1+\varepsilon
\end{aligned}
$$

يعنى:

ولى هرچه باشد عدد طبيعى 1 m داريم: $(1+\varepsilon)^{m}>1+m \varepsilon$

$$
\text { زيرا، (ץ) بازاء } m=\text { درست است. چو نكه: }
$$

$$
1+r \varepsilon+\varepsilon^{r}>1+r \varepsilon
$$

يعنى:
$\frac{1}{r^{n}}<\frac{\varepsilon}{\alpha-1}$

فواصل رشته (S) كه درازاى آنها بسمت صفر ميل ميكند يكـ عـدد حقيقـى معين ميـــنـد

$$
\alpha^{\imath} \in<\alpha^{\frac{q_{n}}{r^{n}}}, \alpha^{\frac{q_{n}+1}{r^{n}}} \int \quad(\forall n \in N)
$$

تعريف - هركاه X يكـ عدد حقيقى باشد كه با يكـ رشته فواصل فراكير اعدأد ${ }^{\text {ي }}$ (كه درازاى آنها بسمت صفر ميل ميكند) معين ميگرددد؛ فو اصل فراకير H_{α} (كه درازاى آنها بسمت صفر ميل ميكند) معين ميشود.

$$
\begin{aligned}
& (1+\varepsilon)^{m+1}>(1+m \varepsilon)(1+\varepsilon)>1+m \varepsilon+\varepsilon \\
& \text { بنا براين، درست است (هرجه باشد } \\
& \text { براى (} 1 \text {) كافى است بنا به (Y) داشته باشيم: } \\
& 1+r^{n} \varepsilon>\alpha
\end{aligned}
$$

تا بع x $x \rightarrow \alpha^{x}$ بدين ترتيب به مجموعه اعداد حقيقى امتداد يا فته است. اين تابع R 1 روى

$$
\alpha^{2} \cdot \alpha^{y}=\alpha^{x+y}
$$

هركاه:

$$
\frac{q_{n}}{r^{n}}, \frac{q_{n}^{\prime}}{r^{n}}
$$

$$
x \in\left[\frac{q_{n}}{r^{n}}, \frac{q_{n}+1}{r^{n}}\left\lceil\quad, \quad y \in\left\{\frac{q_{n}^{\prime}}{r^{n}}, \frac{q_{n}^{\prime}+1}{r^{n}}\right\}\right.\right.
$$

در اينصورت داريم:
$\alpha^{x} \in\left\{\alpha^{\frac{q_{n}}{r^{n}}}, \alpha^{\frac{q_{n}+1}{r^{n}}}\left\{\quad \alpha^{y} \in\left\{\alpha^{\frac{q^{\prime} n}{r^{n}}}, \alpha^{\frac{q^{\prime} n_{n}+1}{r^{n}}}\right.\right.\right.$
با ضرب عضو به عضو نامساويهاى در
$\alpha^{x} \cdot \alpha^{y} \in\left(\alpha^{\frac{q_{n}+q_{n}^{\prime}}{r^{n}}}, \alpha^{\frac{q_{n}+q_{n}^{\prime}+r}{r^{n}}}\right.$
ولى بنا به تعريف تابع x $x \rightarrow \alpha^{x}$ اين رشته فواصل فر اگير عدد: α^{x+y}

را معين مىكنند. يس داريم:

$$
\alpha^{\tau} \cdot \alpha^{y}=\alpha^{x+y}
$$

هرجه باشد اعداد حقيقى x
$\alpha^{x}>\alpha^{y} \quad(x>y \quad, \quad \alpha>1)$
ملاحظه كنيم كه اگر z يكـ عدد حقيقى مبُت باشد بنا به ساخت تابع $z \rightarrow \alpha^{z}$ با $\alpha>1 \Rightarrow \alpha^{2}>1$
$x-y=z$ حال اكر دو عدد حقيقى x $x>y$ تفاضـل x داشته باشيم بقسميكــه يكـ عدد مبُتى است:

$$
\alpha^{x}>\alpha^{y}
$$

$$
\begin{aligned}
& \alpha^{x}=\alpha^{y+z}=\alpha^{y} \cdot \alpha^{z} \\
& \text { جون }
\end{aligned}
$$

تابع
$R^{+}-\{0\}$ قضيه
 را لگاريتم بايه α مى نامند:
$(x \in R) \quad y=\alpha^{x} \quad \Longleftrightarrow x=\log _{\alpha} y \quad\left(y \in R^{+}\right)$
از خاصيت (. $\log _{\alpha} y y^{\prime}=\log _{\alpha} y+\log _{\alpha} y^{\prime}$

نماى مطلق.
ر را، هرجه باشد x α^{x} كنيم، ابتدا فرض كنيم $x=\frac{1}{n}$ و:

$$
\beta=\alpha^{\frac{1}{n}} \quad\left(n \in N^{*}\right)
$$

و ثابت كنيم كه:

$$
\beta^{n}=\alpha
$$

لراريتم هاى زير در بايه α كر فته شدهاند. انديسهاى آنها را حذف كردمايم:

$$
\begin{aligned}
& \log \beta=\log \alpha^{\frac{1}{n}}=\frac{1}{n} \quad\left(y \rightarrow \log _{\alpha} y\right. \text { تعريف تابي) } \\
& \text { جون } \log \alpha=1 \text { است ميتوانبم بنويسبم: } \\
& \log \beta=\frac{1}{n} \log \alpha
\end{aligned}
$$

(r) $\quad \log \alpha=n \log \beta$

ولى اكر دستور اساسى را بيك حاصل ضرب

$$
\underset{\leftarrow 4 \operatorname{lin}_{n}}{(\beta)}=\underset{\longleftrightarrow}{\log \beta+\cdots+\log \beta}
$$

$$
\begin{aligned}
& \log \beta^{n}=n \log \beta \\
& \quad \text { از آنجا: } \begin{array}{l}
\text { اين صورت دستود (r) نوشته ميشود } \alpha
\end{array} \\
& \log \beta^{n} \\
& \alpha=\beta^{n}
\end{aligned}
$$

و بدين جهت است كه:

$$
\alpha^{\frac{1}{n}}
$$

$x=\frac{p}{n}$, ا(ريشه مرتبه n -ام α) ميـنامند و غالباً بصورت: با $n \in N^{*}$ و است، با استفاده از دستورات لگاريتمى بسادگى اثبات ميشود كه:

$$
\left(\alpha^{\frac{1}{n}}\right)^{p}=\left(\alpha^{p}\right)^{\frac{1}{n}}
$$

كاربرد هنلدسى اعداد حقيتىى

در اين فصل، ميخو اهمم نظرى اجمالى ازيك آكبيوماتيك بدميم كه بريابي آن خواص

 منطقى از خو اص هنسى اذ فيل تساوى دو باره خط و دو زاويه دا معلوم كرد.

1- هندسه يك بعدى

 جز هما را با حروف كوجكـ لاتين a b، c c نمايش ميلميم.

اصل بخش
 نيم خطهاى به كناره a موسوماند. اين بخشُها را نيم خطها آنها را با بييجِ كدام از آنها تعلق نداشته باشد. از آنجا:

$$
\begin{gathered}
D_{a} \cup D_{a}^{\prime}=D-\{a\} \\
D_{a} \cap D_{a}^{\prime}=\varnothing
\end{gathered}
$$

تعريف - اكر b و c بتر تيب به نيم خطهاى به مبدأ a تعلقداشته باشند ميگويند: (a بين b و c
1- كتاب (اصول هندسه اقليـسسى Principes de la Géométrie Euclidienne) تألبi ربرت بـريزاك Robert Brisac

واقع است).
گروه جابجايذير انتقالها روى D.
هر تابع (يا هر تبديل transformation نقطهاى) كــهـ D را روى D بنگارد ((مبادله

 كه ((انتقالات) ناميده ميشوند و با دستگاه اصلهاى زير معين هستند:
 C

C بدان معنى استكه اكر a بين b و c قرار دارد هر انتقالى اين سه نغطه دا به سه نعطه
 از آنجا نتيجه ميشود كه تبديل شده هر نيم خط يكـ نيم خطـ اس است و تبديل شده دو نيم خط متقا بل دو نيم خط متقا بل است.

پاره خطها. یاره خطهاى جهت دار
تعريفات - يكـ زوج نامرتب دو نتطه a و b را يكـ باره خطط مينامند. باره خط را با با يا $b a b$ نمايش ميدهند.
يك زوج مرتب دو نتطه a و b را یاره خط جه

a مبدأ و b منتها ناميده ميشود.
باره خط جهت دار $\overrightarrow{\text { با }}$ باره خ خط

همبستگى. بردارها.
تعريف - دو پاره خط جهت دار $b \overrightarrow{c d}$ همسنگ ناميده ميشوند اكر انتقالى كه a را دوى

$$
\begin{aligned}
& \text { مى نگارد c دا نيز روى } d \text { بنگارد. مينو يسيم: } \\
& \overrightarrow{a b} \equiv \overrightarrow{c d}
\end{aligned}
$$

ميخوانيم: (" $\overrightarrow{a b}$ همسنگ $\overrightarrow{c d}$ است).
را بطه: $\overrightarrow{a b} \equiv \overrightarrow{c d}$ را بطه در مجموعه يكك تقسيم بندى به طبقات هم ارز بوجود مياورد. هر طبتسهاى يكك بـردار

ناميله ميشود.

تعريف - يك طبعه هم ارزى بارهخطهاى جهتدار را ((بردار)) مينامند. يكك بردار را با مجموعه بردارها با: E نشان داده خواهد شد. بههر بردار \vec{x} طبقه $\overrightarrow{a b}$ يك طبعه بردار \vec{x} موسوم است و با x (بدون ثيكان) نمايش داده ميشود. بنا به اصل يك بردار مفروض يكـ نما ينده يكتا با مبدأ o وجود دارد. از آنسجا نتيجه ميشود كه اگر يكـ

 داده ميشود. بدين ترتيب مجموعه E بردارها با نتاط واقـ بر D به تناظر دو سوئى كــذاشته ميشود. بر یايه اصل بخش \C تعريفهاى زير را ميتوان بيان نمود:

تعريف - دو بردار مجموعه E ((هم جهت)) ناميده ميشوند اكر نما يندههـاى بـه مبدأ oـى آنــها هر دو بيك نيم خط به مبدأ o تعلق داشته باشند. دو بردار مختلفالجهت هستند اكر اين نما يندهها به دو نيم خطط متقا بل به مبداً o متعلــت باشند.
به سبب Cب، اين تعريف مستقل از انتخاب 0 است. را بطهٔ ((هم جهت بودن)) يكـ را بطه همارزى در E است كه E دا به دو طبقه هـم ارزى ار تقسيم ميكند.

تعريف - D را جهت دار ميناميم اگر بههر كدام از اين دو طبته يكـ علامت مميــزه نسبت دایه شود. مهلا" اكر آنها را با: E

$$
E=E^{+} \cup E^{-}
$$

هر كدام از اين طبقات در تناظر دو سوئى با مجموعه طو لها است.

جمع بردارها:
تعريف - بههر زو ج مرتب ميكنيم كـه با $\vec{x}+\vec{x}$ نما يش داده ميشود و بتر تيب زير معين است:
 نغطه b انتهاى اولى است اختيار ميكنيـم، مجموع داده خو اهد شد. اين جمع نظير قانون تركيب انتقالها است است تناظر دوسوئى بين مجموع انتقا لها و E يك يك يك شكلى
㞔 انتقال

اصل ترتيب ه- - مجموع دو بردار همجهت بردارى درهمان جهت است. از آنجانتيجه ميشود كه با پذيرفتن تعريف ترتيب معلوم درمجموعه اعداد نسبى، در E نيز يكـ ترهـ ترتيب كلى معين خواهد شد.

تعويف- هركاه $\vec{x}-\vec{y} \in E^{+}$

در اين صورت ميگو يند كه:
 $\vec{y} \leqslant \vec{x}$ يا (》
برای ا ينكه گروه E باگروه جمـع اعداد حقيقى يكـ شكل باشد سه اصل زيـر ر را اضافه
(C C $_{4}$ بقسميكه:

$n \vec{x}>\vec{y}$

اصل نيمسازى:

$$
\vec{y}=\vec{x}
$$

اين اصل وجود ((وسط) دا براى هر پاره خط D تأمين مينمايد.

اصل فقدان خلل.

- هر رشته نامتنامى فراگیير بردارهاى E كه (اطول آن بسمت صفر ميل ميكند هـركز يكك خلل معين نمينما يد.
 و قضيه اندازه در مورد آن بكار برده شود.

اندازء بردارهاى E.
 انتخاب ميشود و طول آن واحد طول را و جهت آن جهت + روى D ار معين مينمايد.

مجموعه +R اعداد حقيقى مبّت يا صفر در تناظر دو سوئى است.
مجموعه + ${ }^{+}$بردارهاى D همجهت بـا
دو سو ئى است.
مجموعه -E بردارهاى D در جهت مخالف نيز با مجموعه طو لها در تناظر دو سوئـى است آنرا با
بدين ترتيب مجموءه $E=E^{+} \cup E^{-}$با مجموعه R اعداد حقيقى (مثبت، منفى، يــا صفر) در تناظر دوسوئى قرار ميگيرد.
بدين ترتيب عدد حقيقى همراه هربردار

$$
\begin{aligned}
& \mu(\vec{x}+\vec{y})=\mu(\vec{x})+\mu(\vec{y}) \\
& \vec{x}<\vec{y} \Rightarrow \mu(\vec{x})<\mu(\vec{y})
\end{aligned}
$$

بدين تر تيب مجموعه نقاط يكك خطط كه با o نظير عـدد صفر (نقطهاى كـه روى خطط جهتدار مبدأ ناميده ميشود) انتخاب شده است بــا مجموعه R در تناظر قرار داده ميشود.
 هرجه باشند اعداد حقيقى α و β و بردارهاى
$(\alpha+\beta) \vec{x}=\alpha \vec{x}+\beta \vec{x}$ $\alpha(\beta \vec{x})=(\alpha \beta) \vec{x}$
$\alpha(\vec{x}+\vec{y})=\alpha \vec{x}+\alpha \vec{y}$
اين خاصيتها را كه به خاصيتهاى بنيان كروه جا بجا پِذير E الحاق كنيم، روى E E يـى

rــ هندسه زاو.يههاى جهرتهار

در هندسه مسطحه، مجموعـه ها يايه تئورى، صفحه است. صفحه يكـ مجموعــه غير تهى نقاطى است كه با اصلهاى زير سازكار است:

اصل تعلق.

-D, نقاط صفحه بيك خخط تعلق ندارند.
C, خطوطى كه در اينجا مسورد بحث است بخشهاى غير تهى از P هستند كه بـا اصل
فصل قبل سازكارند.

(يعنى منعلق بيك خطط) باشند.
r-r b
(DY بازاء هرخط D از P يكـ تقسيم بدو بخش غير تهى در P وجود دارد كه بهنيمفخحهاى

متقابل به كناره D موسومانـد بقسميكه: اكـــر دو نقطه a و b بيكـ نيمصفحه متعلق باشند هيج نتطهاى از D بين a و b وجود ندارد. اكر دو نقطه a و b به نيم صفحههاى متقا بل تعلق داشته باشند يك نغطه از D بين a و b

وجود دارد.
كناره D- D- دونيم صفحــه متقا بل بهيج كدام از آنها تعلق ندارد. اگر ايسن دونيم صفحه
را با

$$
P_{D} \cup P_{D}^{\prime}=P-\{D\} \quad, \quad P_{D} \cap P_{D}^{\prime}=\varnothing
$$

از آنجا نتيجه ميشود كـه اگــر دو خـطط D و Δ در o 0 يكديگ, متقا بل o و و

زاويههاـ تعر يف قبلى (IV، فصل ب، ب) را يادآورى كنيم: يكـ زاويه عبارت اذ فصل مستركـ دو نيم صفحهاى است كه كنارهماى آنها حد اقل داراى يكت نقطه مشترك باشند
 Do و D D_{0} زاويه $\left(D_{o}, \Delta_{o}\right)$ هردو ضلع بكـ نقش بازى ميكند.

Fَروه جا بِجا يذير دورانهاى به مركز o.
 به مركز o) ناميده ميشوند و با دستگاه اصلهاى زير سازكارند: - دورانهاى بمركز o

 متقا بل تبديل مينما يد. يكـ دوران، همحجنين، يكـ نيم صفحه را بيكـ نيم صفحه و دو نيم صفحه متقا بـل را بدو نيم صفحه متقا بل تبديل مينمايد. و نيز از آن نتيجه ميشود كه دوران يكـ زاويـه را بيكـ زاويه تبديل ميكند: در واقـــع جون دوران يك تناظر دوسوئى است (اصل

تبديل شدههاى اين دو بخش تبديل ميگردد. ازاين بهبعل، درصفحه P؛ يكى بار براى هميشه يكـ نتطه o انتخاب ميكنيم. نيمخطهمائى كه در نظر ميگیريم بـه مبلأ o خواهند بــود و بدين جهت در نمايشى اين نيم خطاها از اناـيس صرفهجوئى ميكنيم.
برمبناى اصلهائى كه بيان كرديم ميتوان تساوى دوزاويه برأس o را تعريف كرد ومجموعه

 است اكنون اصلهاى
 كنجيده در + ${ }^{+}$(برای محدوديت جمـع اعداد حقيقى در اين فاصله) يكـ شكل است.

زاويههاى جهتدار:
تعويفـ زاويه جهتدار زاويسهاى است كه دو ضلـ آن يكـ زو ج مرتب دو نيم خطهم مبدأ را تشكيل ميدهند.
اكر D
جهتدار:
هما نطور كه قبلا " اشاره شد انديس o را حذف ميكنيم. دو زاويه جهتدار ('

دا روى Δ

$$
\left(D, D^{\prime}\right)=\left(\widetilde{\Delta^{\prime}}, \Delta^{\prime}\right)
$$

يكـ را بطه همارزى در مجموعه زاو يههاى جهت دار بدست ميا يد كــه بيكـ تقسيم بندى مجموعه به طبقههاى همارز تحقق ميبخشد.
مجموعه اين طبقهها را با A و هرطبقه را با يكـ حرفى كه بالاى آن يكك يپكان منحنى قرار دارد نمايش ميدهيم:

$$
\hat{x} \in \mathcal{A}
$$

بهطبغه
 $f(A \cap B)([f(A) \cap f(B)]$

$$
f(A \cap B)=f(A) \cap f(B)
$$

 ميشود.

浣
شكل 1
نيم صفحهماى متقا بل , و تعريفهاى زير دا بيان كنيم (شكلهاى ا وب).

دو جزء صiحه به ازآنجا نتيجه ميشود كه دوطبقه متما يز زاويههاى نيمصفخه وجود دارد: يكى با نيمصفحه P,

$$
\left(\widehat{\Delta, \Delta^{\prime}}\right)_{p_{1}}
$$

ديگرى با نيم صفحه ${ }^{\text {P }}$ نما يش داده ميشود، مينو يسبم:

$$
\left(\widehat{\Delta, \Delta^{\prime}}\right)_{P_{Y}}
$$

تناظر دو سوئى بين A و و مجموعه نيم خطهاى P به مبدأ o وجود ندارد. رابطه ((همجهت بودن) يكـ رابطه هـمـارززى در A تقسيم مينمايد.

تعريفــ يكـ صفحه را جهتدار مينامند اءــر بهر يكـ از طبقات آن يكـ علامت مميزه نسبت داده شود آنها را با با هركدام از اين طبقات در تناظر دوسوئى با مجموعه A ط طبعههاى زاويهماى غير جهتدار

قرار دارد.

جمع طبقههاى زواياى جهتدار

شكل
 به كناره Δ تعلق دارند. بس، زاويههـاى جهتدار (

ميكنيم بنا به تعريف:

$$
(\widehat{\Delta, D})+\left(\widehat{D,} D^{\prime}\right)=\left(\widehat{\Delta, D^{\prime}}\right)
$$

Y ب) آنها را با زاويههـاى (بوده و مجاور نيستند (زاويه بزرگتر زاويه كوجكا (D آ

شكل
در اين حالت، زاويههاى جهتدار (

$$
(\widehat{, D} D)+\left(\widehat{D, D^{\prime}}\right)=\left(\widehat{\Delta, D^{\prime}}\right)
$$

تعريف جمع دد A.
هركاه از اين طبقه اختتار كنيم كه ضلـ اول آن جز در يكك حالت با زاويه (' همجهت باشند و $x+y$ وجود نداشت اگر هردو شرط حالت استثنائى باهم تحقق يابند مجمود (اين كـروه شبه ارشميدسى است و محلدود است به سبب اينكه جمـع ممواره در آن معين نبست). لازم بيادآورى است كه زاويههاى نيمصفحه مبُت و منفى

اندازه زاويههاى جهتدار.
تعر يفت يكك زاويهه جهتدار واحلى عبارت از يكـ جزء غير صفر مطلق u آ آن واحد زاويه را و جهت آن جهت + در صفحه را معين ميكند. ميدانيم (IV، فصل (Y) كــه هرگاه واحد زاو يـه انتخاب شلده بــاشد مجموعه طبقههــاى زاويههاى غير جهتدار با فاصله

است.
مجموعه + A^{+}
است.
 فاصله - $\left.-a, o\rangle \subset R^{-}\right)$در تناظر دوسوئى قرار داده ميشود. مجموعه:

$$
\mathcal{A}=A^{+} \cup \mathcal{A}^{-}
$$

بدين ترتيب در تناظر دو سوئى با فاصله - $-a, a) \subset R$ قرار دارد. عدد حقيقى كه بدين ترتيب همراه هر جزء آنرا با
به سبب تعريف جمـع دو جـزء زاويـههــاى غير جهتدار تابـع حقيتى در فاصله (-a,a)

$$
(x+y \text { وجود دارد }) \Rightarrow \mu(\vec{x}+\vec{y})=\mu(\hat{x})+\mu(\hat{y})
$$

Fسترش جمع در A.
جمعى كه ما براى اجزاء A A بازاء بعضى زوجهاى آيا ممكن است به هر زوج ميشود همراه كرد كه با جزئى كه قبلا" معين كرديم منطبت باشد (وقتى كه

دارد)؟.
جواب اين سؤال بلافاصله با تعريفى كه تا حال بعمل آورديسم القا ميشود: كافى است

محلوديتى را كه در آن وجود دارد رفع كنيم:

$$
\text { (} \left.\left.\widehat{D}, D^{\prime}\right) \text { معين ميكنيم (هرحه باشد و } \widehat{y}\right) \text {. }
$$

بطود جبرى، اين عبارت از كسترش تعريف جمع گروه محدود

(P_{Y} ، φ فصل (IV)
در اين حالت فرض ميكنيم:

$$
\begin{aligned}
& \vec{x}+\vec{y}=-[(\vec{g}-\vec{x})+(\vec{g}-\vec{y})] \\
& \vec{x}+\vec{y}=(\vec{g}-\vec{x})+(\vec{g}-\vec{y})
\end{aligned}
$$

اكر
در اين حالت مجموع دو جزء همعلامت يك جزء بر با علامت مخالف است.
 برخورد نميكند؟ جر

$$
\vec{x}+\vec{y}=-[(\vec{g}-\hat{x})+(\vec{g}-\hat{y})]
$$

بنا به شركتِذيرى و جا بجابذيرى نتيجه ميشود:

$$
\vec{x}+\vec{y}=-(\vec{g}+\vec{g})+(\vec{x}+\vec{y})
$$

$$
\begin{gathered}
\vec{g}+\hat{g}=\stackrel{?}{\circ} \\
\vec{g}=-\hat{g}
\end{gathered}
$$

بس لازم است كه اجزاء解
 مجموعه A زواياى نيمصفحه جهتدار با آن مواجه شديم ديگر در 'A از

مركز o در تناظر دوسوئى است.
-تعر يف جمع در
به هر زو ج موسوم است و با هركاه (
 صورت با (

معين ميكند.

تبصر ه- بنيانهاى A و 'A A كلا" متفاوتاند:

1) را بطه تر تيب كلى كه در A وجود دارد در 'A ديگر وجـود نـد
 ندارد.
Y ب) بنيانهـاى جمعى A و نيست در صورتيكه در يك אكروه محدود است در صورتيكه A A به مركز o است. مضر بهای است.

تسترش مفهوم انلازه
اجز ا=
استنای
 در 'A A^{\prime}

$$
\mu(\vec{u})=1
$$

ولى Tآيا بازاء جمـع دد ${ }^{\prime}$ بازهم خاصيت:
(1)

$$
\mu(\vec{x}+\vec{y})=\mu(\vec{x})+\mu(\vec{y})
$$

را داريم؟
جواب منفى است، كافى است مثال زير را اختبار كنيم:

$$
\vec{x}=\vec{y}=\hat{g}
$$

تا ثابت شود كه اين تساوى ممو اره ممكنالوقو ع نيست.
زيرا داريم:

$$
\hat{g}+\hat{g}=\circ
$$

(تعريف جمع در A 1 (
سس داريم:

$$
\mu(g+g)=0
$$

از طرف ديگر:

$$
\mu(\hat{g})+\mu(\hat{g})=a+a=r a
$$

$r a \neq 0$ یس تساوى (1) ممكنا الوقو ع نيست حو نك
مسئلهاى كه از حالا طرح ميشود اين است:
آيا ممكن است، مفهوم جمع را به بنيان جمعى الـ
(1) همو اره صادق باشد؟
ابتدا شرا يط لازم را كه چخنين اندازهاى بايد بآ آنها سازكار باشد يِدا كنيم بازهم اعدادى را كه به بنا بر آنحه كذشت قبلاً لازم است كه ه و ra هردو مانند اندازههـاى يكـ جزء هـ در نظر كرفته شو ند.
ميتوان جلو تر رفت و اعداد ديگرى پيدا كرد كه بايد ماند اندازههــاى مْ در نظر كرفته

از تساوى (1) شروع ميكنيم- هرجه باشد

$$
\mu(\vec{x}+\hat{x})=\mu(\vec{x})+\mu(\vec{x})
$$

يعنى:

$$
\mu(r \vec{x})=r \mu(\vec{x})
$$

و با روش بازكشتى هرچه باشد n

$$
\mu(n \hat{x})=n \mu(\vec{x})
$$

از طرف ديگر بنا به تعريف خود اندازهماى نسبى، داريم:

$$
\mu(-\hat{x})=-\mu(\hat{x})
$$

بنابراين اكـر مضرب (n را بصورت

$$
\mu(-n \hat{x})=-n \mu(\hat{x})
$$

بطور خلاصه (هرجه باشد $k \in Z)$ بايل داشته باشيم:

$$
\mu(k \hat{x})=k \mu(\hat{x})
$$

بعد از اين چون ه و ra بايد هردو مانتد اندازههاى مَ در نظر كرفته شوند تساوى قبلى كه در مانند اندازه 0 در نظر كرفته شود. پس جميـع اعداد مجموعه:

$$
\begin{aligned}
& \{\cdots,-r n a, \cdots,-\psi a,-r a, \circ, r a, \psi a, \cdots, n a, \cdots\} \quad(n \in N) \\
& \text { را مانند اندازه هِ با يد در نظر گرفت. } \\
& \text { و بالاخخره چون هرچه باشد } \\
& \vec{x}=\vec{x}+\hat{0}
\end{aligned}
$$

است بايد داشته باشيم:

$$
\mu(\hat{x})=\mu(\hat{x})+\mu(\hat{0})
$$

بنا براين اگر b عددى از فاصله (باشد كه يكى از اعداد غير مشخص مجموعه:

$$
b+r k a \quad(k \in Z)
$$

مانند اندازه
يس با همر اه كردن يكـ مجموعه اعداد حعيقى (بقسميكه اختالاف ما بين دو تا غيرمشخص
 جهت كه اكنون طبقات اعـداد حقيقى مدو لو ra (modulo) را مــوردد بررسى قــراد ميدهيم.

اعلداد حقيقى هممنهشت ملولو rar
تآريف- هرگاه a يكى عدد حقيقى مفروض غير صفر باشد، ميگو يند كــه دو عــد حقيقى b و هم نهشت مدو لو ra هستند اگر تغاضل T Tنها مضرب نسبى از Ya باشد مينويسند:

$$
b \equiv c \quad(\bmod r a)
$$

مجموعه اعداد تحقيقى rka با $r a Z$ J $k \in Z$ ميناميم. بنا به تعر يف داريم:

$$
(b \equiv c \quad(\bmod r a)) \quad \Longleftrightarrow \quad(b-c) \in r a Z
$$

اين رابطه در R مانند را بطه همنهستى كه در (II فصل \&) بررسى نموديم معين است

اين يك را بطه هم ارزى است، در R يكـ تقسيم بندى به طبعات هم ارزى انجام ميدهد كه به ((طبقات هم نهشتی ملو لو ra) هو سوم|ند. مجموعه اين طبقات را بصورت نما ينده و فقط يكى دارد و $E_{Y_{a}}$ با اين فاصله در تناظر دوسوئى است. طبعه عدد b را با C C C نمايش ميلهيم. بدين تر تيب داريم:

$$
\varrho(b)=\{\cdots, b-r n a, \cdots, b-r a, b, b+r a, \cdots, b+r n a, \cdots\}
$$

$$
n \in N \text { با }
$$

همانطور كه در N بود در $E_{\text {د }}$ يك جمـع را با:

$$
\varrho(b)+\varrho(c)=\bigodot(b+c)
$$

تعريف يكس انلازه جليد اجزاى A
از اين یس علامت (سو ئى 'A A^{\prime} ميلهد.
ميدانيم كه اين تابع بازاء جمع يكـ هم شكلى نيست. بـررسى كه بعمل آورديــم بــه تعيين يكـ تا بـعجديد در بطوريكه خو اهيم ديد در (() صادق است.

تعريف - به هرجزء بدين ترتيب يك تابع جديد در
را با:

$$
\vec{x} \rightarrow \vec{\mu}(\vec{x})
$$

نما يُ ميدهيم:
بالاى حرف μ يكـ خط ميكشيم:

$$
\bar{\mu}(\vec{x})=\varrho(b)
$$

ميخو انيم: (اندازه́ \widehat{x} مساوى طبقه b)" بنا به تعريف اين تابع داريم:

$$
\bar{\mu}(\vec{u})=\varrho(1)
$$

حال خاصيت اصلى زير را ابات كنيم:

$$
\bar{\mu}(\vec{x}+\hat{y})=\bar{\mu}(\hat{x})+\bar{\mu}(\hat{y})
$$

P_{1}
اثبات:
) ا اين رابطه وقتيكه ديديم كه:

$$
(\hat{x}+\hat{y} \text { درد }) \Rightarrow(\mu(\hat{x})+\mu(\hat{y})=\mu(\hat{x}+\hat{y}))
$$

خاصيت P, در اين صورت درست است جونكه بازاء نما يندهماى طبقاتى كه مورد نظر ميباشند درست است.
(r آر

$$
\begin{aligned}
& \vec{x}+\vec{y}=-[(\vec{g}-\vec{x})+(\hat{g}-\hat{y})] \\
& \text { اكر } \\
& \hat{x}+\hat{y}=(\hat{g}-\hat{x})+(\hat{g}-\hat{y})
\end{aligned}
$$

اكر
حالت اول را در نظر ميگيريم:

$$
\begin{aligned}
& \text { تابع } \\
& \mu(\vec{x}+\vec{y})=-\mu(\vec{g}-\vec{x})-\mu(\vec{g}-\vec{y}) \\
& \text { در R عمل ميكنيم: } \\
& \mu(\vec{x}+\hat{y})=-\mu(\vec{g})+\mu(\vec{x})-\mu(\vec{g})+\mu(\vec{y}) \\
& =\mu(\hat{x})+\mu(\hat{y})-r a
\end{aligned}
$$

جون

$$
\mu(\vec{x}+\vec{y})=\mu(\vec{x})+\mu(\vec{y})-r a
$$

بنا بر تعريف اندازه جديد از آنجا نتيجه ميشود:

$$
\bar{\mu}(\vec{x}+\hat{y})=\bar{\mu}(\vec{x})+\bar{\mu}(\hat{y})
$$

بس خاصيت PY ثابت است و از آنجا قضيه زير نتيجه ميشود:

قضيه - كروه دورانهاى بمركز o با كروه جمعى طبقات اعــداد حقيقى مدو لــو a بیـ شكل است.

فضه

هنلدسء اقليلدسى مسظهحه

در اين فصل اكسيوماتيكـ صفحه را كه در كادر ايـن كتـاب نميتوانــد وارد شـود كــار
ميخذاريم.
خاطر نشان كنيم كه صفحه بيكـ زير كروه اذ كروه مبادلهماى P مجهز است كه עــــروه تغيير مكانها روى PP « ناميده ميشود. اين تنيير مكانها دو نوعاند.

دورا نها - بهر نقطه ه از P كروه دورانهاى هم همر اه است كه درفصل قبل مورد بر رسى قرار كرفت.

انتقالها ـ كه مجموعه آنها يكـ زير كروه جابجا بذير از كروه تغيير مكانهاى صفحه است.

 b مى b
 D' باز هم با انتقال روى 'D بردسى شده در فصل قبل منطبق است.

1- فضاى \& بردإرهاى صفحه.

$$
\begin{aligned}
& \text { باره خط جهت داد } \overrightarrow{a b} \text { همجنين هم سنگیى } \overrightarrow{a b} \equiv \overrightarrow{c d}
\end{aligned}
$$

يكـ را بطه همارزى بدست ميآ يد كه در مجموعه باره خطهاى جهت دار P بيكـ تقسيم-
بندى طبقات همارز تحقق ميبخشد. هر طبقه يكـ بردار ناميده ميشود كه با مجموعه اين بردارها را ع ميناميم.
هر بـردار \vec{x} همان انتقالى است كه ابتداى a را روى انتهاى b يـكـ نما ينــده
ج مى نگارد.

زيرفضاى D\& بردارهاى \& مو ازى D.
 D را معين كند.
مجموعه D شده در هندسه يكى بعدى روى D يكـ شكل است.
بيك بردار

تعريف جمع در \&.
قانون تأليف انتقالهها كه بزبان بردارى بيان شود، قانون جمـع بردارها را معين ميكند. بههر زوج مرتب بردارهاى
(\vec{y} را همـراه ميكنيم كه بصورت $\vec{x}+\vec{y}$ ميگردد:
هرگـاه $\overrightarrow{a b}$ نمايش \vec{x} باشد \vec{y} را با بردار $\overrightarrow{b c}$ بـه مبــدأ b نمــايش دهيــم.

شكل 1

شـكل r

مجموع اين تعريف در ع يكى بنيان كروه جابجا بذير (تروه انتقالها جابجا بذاير است) ميـــن ميكند.
 بردارمـاى

$$
\vec{x} \in \mathcal{E}_{D}, \quad \vec{y} \in \mathcal{E}_{D^{\prime}} \quad \vec{x}+\vec{y}=\vec{z}
$$

اين، فضيه تجزيه مر بردار و ' ميباشند.

 (

تعريف D
آنرا بصورت حال دو برداد بنا به تضيه 1 داديم:

$$
\begin{array}{ll}
\vec{z}=\vec{x}+\vec{y} & , \quad \overrightarrow{z^{\prime}}=\overrightarrow{x^{\prime}}+\overrightarrow{y^{\prime}} \\
\vec{x}, \vec{x}^{\prime} \in \mathcal{E}_{D} & , \quad \vec{y}, \vec{y}^{\prime} \in \mathscr{E}_{D^{\prime}}
\end{array}
$$

حال در كروه جابجا بذير \& عمل كنيم: $\vec{z}+\overrightarrow{z^{\prime}}=(\vec{x}+\vec{y})+\left(\overrightarrow{x^{\prime}}+\overrightarrow{y^{\prime}}\right)$

بنا به جابجا بذيرى و شركت بذيرى: $\vec{z}+\overrightarrow{z^{\prime}}=\left(\vec{x}+\overrightarrow{x^{\prime}}\right)+\left(\vec{y}+\overrightarrow{y^{\prime}}\right)$

$$
\vec{x}+\overrightarrow{x^{\prime}} \in \varepsilon_{D} \quad, \quad \vec{y}+\overrightarrow{y^{\prime}} \in \Theta_{D^{\prime}}
$$

جو نكه

قضيها ץ- اكر
 جمـع است (I، فصل س، Y)

نتيجه - به بردارهاى كنيم (شكل ${ }^{\text {r) }}$

هركاه DE است. بنا به قضيه r اين تابع يكك يكـ شكلى بازاه جمـع است.
 روى D انتخاب ميكنيم،
ميدانيم كه مشخصات اندازه روى

$$
\begin{array}{lll}
\mu_{u}(\vec{u})=1 & , & \mu_{u}\left(\vec{x}+\overrightarrow{x^{\prime}}\right)=\mu_{u}(\vec{x})+\mu_{u}\left(\overrightarrow{x^{\prime}}\right) \\
\mu_{w}(\vec{w})=1 & , & \mu_{w}\left(\vec{z}+\overrightarrow{z^{\prime}}\right)=\mu_{w}(\vec{z})+\mu_{w}\left(\overrightarrow{z^{\prime}}\right)
\end{array}
$$

نگاشت دو سو ئى
بازاه جمع است. بس در R داريم:

$$
\mu_{w}(\vec{z})=\mu_{u}(\vec{x})
$$

$$
\mu_{w}(\vec{z})=\alpha \quad \Longleftrightarrow \quad \vec{z}=\alpha \vec{w}
$$

بس ميتو انيم بغوئيم:

$$
\begin{aligned}
& \text { قضيو\&r- هركاه } \\
& \vec{x}=\alpha \vec{u} \quad \text { موجب ميشود } \quad \vec{z}=\alpha \vec{w}
\end{aligned}
$$

اين قضيه تالس است.
از اين قضيه نتيجه ميشود كه ع يكـ فضاى بردارى روى هيئت اعداد حقيقى است.
 از
 جون

$$
\begin{aligned}
(\alpha+\beta) \vec{z} & =\alpha \vec{z}+\overrightarrow{\beta z} \\
\alpha(\overrightarrow{\beta z}) & =(\alpha \beta) \vec{z} \quad \alpha, \beta \in R, \vec{z} \in \mathcal{E}_{\Delta}
\end{aligned}
$$

ميماند اثبات اينكه، هرحه باشند

$$
\begin{equation*}
\alpha\left(\vec{z}+\overrightarrow{z^{\prime}}\right)=\alpha \vec{z}+\alpha \overrightarrow{z^{\prime}} \tag{1}
\end{equation*}
$$

بنا به قضهه 1 براى اثبات تساوى طرفين (() كافى است تساوى تصاوير آنها را روى D و تساوى تصاوير آنها را روى 'D اثبات كنيم. مشلا" تساوى تصاوير روى D را اثبات ميكنيم. هركاه x باشد فضيه Y را بكار ميبريم:

$$
\left.\overrightarrow{(z}+\overrightarrow{z^{\prime}}\right) \rightarrow\left(\vec{x}+\overrightarrow{x^{\prime}}\right)
$$

بنا به فضيه
$\alpha \vec{z} \rightarrow \alpha \vec{x} ; \quad \alpha \vec{z}^{\prime} \rightarrow \alpha \overrightarrow{x^{\prime}} ; \quad \alpha\left(\vec{z}+\vec{z}^{\prime}\right) \rightarrow \alpha\left(\vec{x}+\overrightarrow{x^{\prime}}\right)$
باز بنا به قضيه ץ:

$$
\left(\alpha \vec{z}+\alpha \overrightarrow{z^{\prime}}\right) \rightarrow\left(\alpha \vec{x}+\alpha \overrightarrow{x^{\prime}}\right)
$$

ولى در زير فضاى بردارى

$$
\alpha\left(\vec{x}+\overrightarrow{x^{\prime}}\right)=\alpha \vec{x}+\alpha \overrightarrow{x^{\prime}}
$$

 بهمين ترتيباند سِ تساوى (1 (1) ثا بت است.

قضهه 1، در اين صورت حاكى است كه فضاى بردارى \& دو بعدى است.
r- حـ حاصل ضرب عددى.
ابتدا تعريف زير را بيان ميكنيم:
وقتى كه 'D عمود بر D است تصوير D برَ بردار \vec{z} روى D بموازات 'D تصوير قائم ت

تعريف حاصل ضرب عددى (شكل P)
 ضـرب هركاه D خط موازى مه باشد فرض ميكنيم:

$$
\vec{x} \vec{y}=\mu_{u}(\vec{x}) \mu_{u}\left(\overrightarrow{y^{\prime}}\right)
$$

$\vec{\circ} \vec{y}=\vec{\circ}$ اكر

بلافاصله مشاهله ميشود كه حاصل ضرب عددى فقط در دو حالت برابر صفر است: a) يكى از بردارهاى

هرجه باشد P_{1}

$$
(\alpha \vec{x}) \vec{y}=\vec{x}(\alpha \vec{y})=\alpha(\vec{x} \vec{y})
$$

ميدانيم كه:

$$
\mu(\alpha \vec{x})=\alpha \mu(\vec{x})
$$

:س بنا به تعريف حاصلضرب عددى داريم:

$$
(\alpha \vec{x}) \vec{y}=\alpha(\vec{x} \vec{y})
$$

اكر
كز ين خو اهد شد.
چس داريم:

$$
\vec{x}(\alpha \vec{y})=\alpha(\vec{x} \vec{y})
$$

خاصيت ثابت است.

جا بجا پذيرى
هرجه بـاشد P_{r}

$$
\vec{x} \vec{y}=\vec{y} \vec{x}
$$

هركاه D و 'D بترتيب دو خط مـوازى

شكل

دو بردار واحدى همطول در در (شكل ه) دو یاره خط متساوىاند). در اين صورت داريم:

$$
\begin{aligned}
& \vec{x}=\alpha \vec{u} \quad, \quad \vec{y}=\beta \vec{v} \quad(\alpha, \beta \in R) \\
& \vec{x} \vec{y}=(\alpha \beta) \vec{u} \vec{v} \\
& \vec{y} \vec{x}=(\alpha \beta) \vec{v} \vec{u}
\end{aligned}
$$

پس كافى است ثا بت كنيم:

$$
\vec{u} \vec{v}=\vec{v} \vec{u}
$$

متقارناند. حون تقارن يكـ يكـ شكلى بين كروههاى

$$
\mu_{u}\left(\overrightarrow{o n^{\prime}}\right)=\mu_{v}\left(\overrightarrow{m^{\prime}}{ }^{\prime}\right)
$$

ذذيرى ثابت است.

توزيعينيوى نسبت بهجمع

$$
\text { هرچه بـاشند } \mathrm{P}_{r}
$$

$$
\vec{x}(\vec{y}+\vec{z})=\vec{x} \vec{y}+\vec{x} \vec{z}
$$

هركاه خطط D موازى جميـع اندازهها كه بكار ميبريم در E\&اند \mathcal{E}_{D} انتخاب شده و انديسهای مر بوط را حذف ميكنيم). بنا به تعر يف حاصل ضرب علدى داريم:

$$
\begin{aligned}
& \vec{x} \vec{y}=\mu(\vec{x}) \mu\left(\overrightarrow{y^{\prime}}\right) \\
& \vec{x} \vec{z}=\mu(\vec{x}) \mu\left(\overrightarrow{z^{\prime}}\right)
\end{aligned}
$$

عضو به عضو جمـع ميكنيم و بنا به توزيـعيذيرى در R R (

$$
\vec{x} \vec{y}+\vec{x} \vec{z}=\mu(\vec{x})\left[\mu\left(\overrightarrow{y^{\prime}}\right)+\mu\left(\overrightarrow{z^{\prime}}\right)\right]
$$

از Tنجا:

$$
\vec{x} \vec{y}+\vec{x} \vec{z}=\mu(\vec{x}) \mu\left(\overrightarrow{y^{\prime}}+\overrightarrow{z^{\prime}}\right)
$$

ولى بنا به فضيه ץ، بس بنا به تعريف حاصل ضرب عدرى:

$$
\vec{x}(\vec{y}+\vec{z})=\mu(\vec{x}) \mu\left(\overrightarrow{y^{\prime}}+\overrightarrow{z^{\prime}}\right)
$$

از مقايسه دو تساوى آخرى، توزيعيذيرى اثبات ميگردد.
مجذور عددى يك بردار.
$\overrightarrow{x^{\top}}$ تعريف- حاصل ضرب عددى مينويسيم.
اكر

$$
\overrightarrow{x^{\curlyvee}}=\mu_{u}^{\curlyvee}(\vec{x})
$$

برا بر مجذور عدد حقيقى است كـه اندازه x در
\vec{x} است (اكر u واحد طول انتخاب شود).
قضيه فيثاغورث.
دو بردار غير مشخص \vec{x} و \vec{x} در نظرميگيريم كه با $\overrightarrow{o b}$ و $\overrightarrow{o b}$ نمايش داده شدهاند.اذ:

$$
\begin{aligned}
& \overrightarrow{o b} \equiv \overrightarrow{o a}+\overrightarrow{a b} \\
& \overrightarrow{a b} \equiv \overrightarrow{o b}-\overrightarrow{o a}
\end{aligned}
$$

نتيجه ميشود:

سس
با استفاره از خواص

$$
\begin{align*}
& (\vec{y}-\vec{x})^{r}=(\vec{y}-\vec{x})(\vec{y}-\vec{x})=\overrightarrow{y^{r}}+\vec{x}^{r}-r \vec{x} \vec{y} \tag{1}\\
& \text { اكر } \\
& \text { در اين صورت: }
\end{align*}
$$

(r)

$$
(\vec{y}-\vec{x})^{r}=\overrightarrow{y^{\top}}+\vec{x}
$$

و بعكس اكر از (r) شروع كنيم جون (() همواره سازكار است نتيجه ميشود كه:

$$
\vec{x} \cdot \vec{y}=\circ
$$

يعنى اكر بردارهاى
 است كه:

$$
(\vec{y}-\vec{x})^{r}=\overrightarrow{y^{r}}+\overrightarrow{x^{r}}
$$

9

شـكل

rـ مختتصات كارنز.ين (دكارنى).

a م) مختصات يك بردار از فضاى بردارى \&.
در صفحه P دو خط متقاطع D و
واحدى

در اين صورت مجموعه مر تب normé بنابه قضيه ا به هر بردار ع

$$
\begin{aligned}
& \vec{x} \in \mathcal{E}_{D}, \quad \vec{y} \in \mathcal{E}_{D^{\prime}} ; \quad \vec{x}+\vec{y}=\vec{z} \\
& \text { اندازه } \\
& \vec{x}=a \vec{u} ; \quad \vec{y}=b \vec{v} \quad(a, b \in R)
\end{aligned}
$$

$$
\vec{z}=a \vec{u}+\vec{b}
$$

دو عدد حقيقى a و b، در اين ترتيب را: " $\{\vec{u}, \vec{v}\}$ (رمختصات \vec{z} در دستگاه مقايسن

مينامند.
a
بعكس بههر زوج مرتب (a,b) يكـبردار يكتاى \& با مجموعه زو جهاى (a, $)$ دو عدد متعلق به R در تناظر دوسو ئى است.

P b م

 نقشى نداشت) مجموعه نقطه O و بردارهـاى همطول O ور در P ناميده ميشود.
بهر نتطه m ازصفحه يك بردار يكتاى m بی
 است.

$$
\overrightarrow{o m} \equiv a \cdot \overrightarrow{o u}+b \cdot \overrightarrow{o v}
$$

در تناظر دوسوئى است. دو عدد زو ج مرتب (a, b) به ((مختصات m در دستگاه مقايسه m د a طول و b عرض نقطه m است.

دستعـــاه مقــايسه ارتـو نورمه orthonormé اكر بردارهاى
 در اين شرايط داريم:

$$
\left\{\begin{array}{l}
\vec{u} \cdot \vec{v}=\circ \tag{r}\\
\overrightarrow{u^{r}}=\vec{v}^{r}=1
\end{array}\right.
$$

حال اكر دو بردار از ع را اختتار نمائيم:

$$
\vec{z}=a \vec{u}+b \vec{v} \quad, \quad \overrightarrow{z^{\prime}}=a^{\prime} \vec{u}+b^{\prime} \vec{v}
$$

حاصل ضرب عددى

$$
\vec{z} \vec{z}^{\prime}=(a \vec{u}+b \vec{v})\left(a^{\prime} \vec{u}+b^{\prime} \vec{v}\right)=a a^{\prime} \vec{u}^{r}+b b^{\prime} \vec{v}^{r}+\left(a b^{\prime}+b a^{\prime}\right) \vec{u} \vec{v}
$$

با توجه به را بطه (

$$
\overrightarrow{z z^{\prime}}=a a^{\prime}+b b^{\prime}
$$

بخصوص اكـر

$$
z^{r}=a^{r}+b^{r}
$$

كه مربـع طول z را بـر حسب مختصات \vec{z} بدست ميدهد.

اجز اء مثلثات

Pـ راد
براى تعيين و اندازهكيرى طول دايره، در دايره يك حند برمنتظم n ضلعى محاط ميكنيم

 كنجيده در R كه طول آن بسمت صفر ميل ميكند معين ميگردد:

$$
\left(p_{n}, p_{n}^{\prime}\right)
$$

عدد حقيقى l كه متعلى به همه اين فو اصل است بنا به تعر يف انــدازه طول دايره است. اكر d اندازه قطر دايره باشد عدد حقيقى $\frac{l}{d} \pi$ نشان ميدهيم:

$$
\pi=\frac{l}{d}
$$

اين عدد π اصم و بر ای جميـع دواير يكى است. در دستگاه اعشارى مقدار تقريبى آن تا ها / / ا/ تقريب نقصان عبارت است از:

$$
\pi=r, \overrightarrow{|\psi| \Delta q \ldots}
$$

تعريف راديانـ راديان واحد اندازهكيرى زاويه است بفسمى كه اندازه زاويه نيم صفحه برابر π
از اين سس همه زاويهها را با واحد راديان اندازهكيرى ميكنيم.
دايره مثلثاتى.
تعريفـ مجموعه Γ نقاط صفحه جهت دار P كه بفاصله | از نقطه O قرار دارند دايره مثلثاتى به مركز o ناميده ميشود. دايره Γ با مجموعه نيمخطهاى P به مبدأ o در تناظر دو سوئى است جو نكه بهر نتطه از Γ يك نيم خط يكتاى om به مبدأ o نظير است و بهر نيم خط

ها بفاصله

شكل
از آنجا نتيجه ميشود كه دايره Γ با مجموعه تناظر دو سوئى است. لازم به يادآورى است كه بيك عدد حقيقى x يك طبقه يكتاى:

$$
\mathcal{C}(x) \in E_{\curlyvee \pi}
$$

 نظير $\mathcal{C}(x) \in E_{\Upsilon \alpha}$ نظير نيست ولى يكـ طبته يكتاى $x \in R$
 بحث قراد خواهد كرفت در دستگاه مقايسه ارتونورمه

هـ تو ابع مثلثانى
 اين طبعه را و بالاخخره زوج يكتاى (() مختصات m m دا همراه كنيم.

$$
x \in R \rightarrow \mathcal{C}(x) \in E_{Y \pi} \rightarrow m \in \Gamma \rightarrow(a, b) \quad(a, b \in R)
$$

بدين ترتيب دو تابـع R بطور توأم در R معين ميشود. اولى كه به x a را نظير ميكند نوشته ميشود:

$$
a=\cos x
$$

ميخوانيم: (a (مساوى كسينوس x x)
دومى كه به x؛ b را نظير ميكند نوشته ميشود:

$$
b=\sin x
$$

ميخو انيم: ("b مساوى سينوس x)"

1) اكر بجاى x يكـ عدد حقيقى ديگُرى از طبعه C و بنا براين $\cos x$ \sin تغيير نميكنتد ايـن خاصيت بدين تر تيب بيان ميشود كـــه ((توا بـع

r

$$
a^{r}+b^{r}=1
$$

از آنجا، هرچه باشد $x \in R$ خاصيت زير نتيجه مى شود:

$$
\cos ^{r} x+\sin ^{r} x=1
$$

 ץ ب) به اعداد حقيقى متقابل x و x نعطه داراى يك طول و عرضهاى متقا بلاند يس:

$$
\cos (-x)=\cos x
$$

$$
\sin (-x)=\sin x
$$

 طو لهاى متقا بل و عرضهاى متساويند، پس:

$$
\cos (\pi-x)=-\cos x
$$

$$
\sin (\pi-x)=\sin x
$$

بـه اعداد x و x طولهاى متقا بل و عرضهاى متقا بل هستند، يس:

$$
\cos (\pi+x)=-\cos x
$$

$$
\sin (\pi+x)=\sin x
$$

به اعداد x و $\frac{\pi}{r}$ دو نتطه از Γ متقارن نسبت به نيمساز زاويه (ou, ov) نظيرانــد اين تقارن بردارهاى واحدى را به عرض ديگرى تبديل مينمايد پس:

$$
\cos \left(\frac{\pi}{r}-x\right)=\sin x
$$

$$
\sin \left(\frac{\pi}{r}-x\right)=\cos x
$$

وـ عبارت مثلثاتى حاصل ضرب علدى.

هـركاه (

$$
\vec{y}=y \vec{u} \quad, \quad \vec{z}=z \cdot \vec{m}
$$

و براى حاصل ضرب عددى:

$$
\vec{y} \vec{z}=y z \vec{u} \vec{m}
$$

 (\vec{u}

$$
\vec{u} \cdot \vec{m}=\cos x
$$

$$
y z=y z \cos x
$$

حاصل ضرب دو بردار مساوى حاصل ضرب اندازه طولهــاى آنها در كسينوس يكـ عدد از طبعهاى است كه زاويه آنها را اندازه ميگيرد.

9 شـكل 9
-- - دستو وهاى مثلثانى جمع
هــركاه

$$
\begin{aligned}
& (\text { ou, om })+(\widehat{\text { om,om }})=\left(\widehat{\text { ou, om }}{ }^{\prime}\right) \\
& \text { بنا به خاصيت }{ }^{\text {ب }} \text { فصل قبل، طبقه مدولو } \pi \text { ك كه: } \\
& \text { (om,om') } \\
& \text { را اندازه ميگيرد برابر است با } C \text { يعنى: } \\
& \mathcal{C}\left(x^{\prime}-x\right)
\end{aligned}
$$

اكر مثلثاتى حاصل ضرب عددى داريم:

$$
\vec{m} \overrightarrow{m^{\prime}}=\cos \left(x^{\prime}-x\right)
$$

ولى در دستگاه مقايسه
sin x^{\prime} وختصات ${ }^{\prime}$ عبارتند از $\cos x^{\prime}$ عند
بنا به خاصبت §ّ نتيجه ميشود:
$\vec{m} \overrightarrow{m^{\prime}}=\cos x^{\prime} \cos x+\sin x^{\prime} \sin x$
سس داريم:
$\cos \left(x^{\prime}-x\right)=\cos x^{\prime} \cos x+\sin x^{\prime} \sin x$
اكر بجاى x، x - قرار دهيم:
$\cos \left(x^{\prime}+x\right)=\cos x^{\prime} \cos x-\sin x^{\prime} \sin x$
اكر بجاى
$\sin \left(x^{\prime}+x\right)=\sin x^{\prime} \cos x+\sin x \cos x^{\prime}$
اكر در اين دستود اخير بجاى x، x - قرار دهيم:

$$
\sin \left(x^{\prime}-x\right)=\sin x^{\prime} \cos x-\sin x \cos x^{\prime}
$$

اين جهار را بطه را (ادستورهاى مثلثاتى جمع)" ميناميم.

اعداد مختلط

در قرن XVI دانشهندان علم جير كــهـ به حـل معادلـه درجه سوم شرداختّند با اين مسئله مواجه شدند كه اعداد حقيقى با عبارتهائى نهوده
 (ياضيدان ايتالياثى اولين كسى بود كه جذر عددهاى منفى , ال انند يك عدد در نظر گرفت.
 جديسـد ضرب و بعد جمـع در R را وهعت ميبخشيم• شرايطط لازم تعريف عدد مخختلط و بنيان عملى operatoire را كــه بايد در مجموعه . اعداد مختلط معين نمود روشن مينهايند C بدين ترّيب هيئتى بدست ميآيد كه هيئت R اعداد حقيقى درآن

غوطهور است.
تصمور هــدول يكت عدد موهومى بطرز سادای و بدون توسل جــه
هندسه حاهل ميشود
ليكن در مورد تصور Гارگومان (آوند) يكت عـدد موهومى مطلب

مين كنيم بايد از نهايشي هندسى اعداد موهومى كمك بگيريم: زير گروه ضربى U اعداد مخغتلط به مدول واحد با گروه دورانى به

ا- در Tكاليز، بردسى توابع با متغيرهاى مختلط امكان تميينTركومان يك مدد موهومى دا ببون يارى جستن از هنده بدست ميدهد.

پا يههاى آنا ليز رياضى جديد
مركز o يكـ شكل استت. دوران كه با طبقههاي اعـداد حقيقى بـا مدول

چنين طبقهاى خواهد بود.

U9 فٌ

ساهُ
lolac
.
عدم امكان بيدا كردن علدى (در + ${ }^{+}$) كه مجذور آن برابر يك عدد طبيعى غير مجذور كامل باشلد ما را به روى كار آوردن اعداد جليدى: ((اعداد حقيقى)" هدايت كرد. ميدانيم كه هر عدد حقيقى هُبت داراى جذرى است. ليكن ميتو ان تأيد كرد كـــه هر عدو حقيقى هنفى دارای جذرى در R نِست زيرا اءكر فرض كنيم x داشته باشل بنا به تعريف جذر بايل داشته باشيم:

$$
\sqrt{-x} \sqrt{-x}=-x
$$

ولى بنا بـه تعر يف ضرب در R؛ مجذور يكـ عــد حقيقى غير مشخص غير صفر مُبت است. چس مجذور در R وقتيكه $x>0$ است وجهد ندارد.
وقتيكه جبر يون قرن XVI بـه حل معادله درجه سوم پرداختند مسئلهاى كــه مز احم بود عبارت بود از اينكه اعداد حقيقى با عبارتهائى نموده ميشدند كه جذر اعداد منفى در آنها وجود داشت. بومبلى ديــاضىدان ايتا لِائـى (كــه كتاب جبر او بسال IDVY در بو لو نى منتشر شد)

اولين كسى بود كه از سمبل او با اين سمبلهاى جديد اعمال شناخته شده در R دا با خو اص آنها بكار بست.

او با فرض، بنا به تعريف:

$$
\sqrt{-1} \sqrt{-1}=-1
$$

و حون:

$$
-x=(-1) x
$$

نوشت:

$$
\sqrt{-x}=\sqrt{-1} \sqrt{x}
$$

خاصيت معلوم اعداد نمائسى دا ادامه داد'. در يكـ مرحله اوليه مــا بدين تـر تيب عمل ميكنيم

و آنرا (اعلد موهومى خا لصى هيناميم. كه مجموعه آن با
يكى عمل ضرب در R $R \cup \stackrel{\bullet}{R}$ معين ميكنيم بقسميكه بـا عمل ضر R و R و وقتيكه روى دو
عدد R عمل ميكني:" مطابق باشد و داراى همان خو اص ضرب R ور در R باشد و داشته باشيم:
(r)

$$
\begin{align*}
i \cdot i & =-1 \tag{1}\\
i a & =\dot{a} \quad(a \in R \quad ه ر ج ه ~ ب ا ش د)
\end{align*}
$$

فرض كنيم o = اكر طرفين (ץ) را در b (b ض ضرب كنيم بايد داشته باشبم:

$$
(i a) b=\stackrel{\bullet}{a} b
$$

اكر بخو اميم كه اين عمل شركت پذير باشد بايد فرض كنيم:

$$
\begin{aligned}
& i(a b)=\dot{a} b \\
& \text { بنا به (r) بايد داشته باشبم: } \quad \text { i(ab) }=(\dot{a} b)
\end{aligned}
$$

بس بايد:

$$
(\dot{a b})=\dot{a} b
$$

اختيار نمائيم.
لازم است كه حاصل ضرب áb يكى عدد موهومى خالص در يكـ عدد حقيقى را مـانند
1- دد اواخر قرن XVII لايبنيتز (1949-V\Y) با اراثه نتيجه:

$$
\sqrt{1+\sqrt{-r}}+\sqrt{1-\sqrt{-r}}=\sqrt{4}
$$

هويكنس Huygens (199ه-1999) را سختت مبهوت ساخت.

موهومى خالص نظير حاصل ضرب ab معين نمائيم. از طرف ديگر طرفين (ץ) را در أ ضرب ميكنيم:

$$
\dot{i}(\mid a)=\dot{i} \dot{a}
$$

بنا به شركتبذيرى:
(ii) $a=\dot{i} \vec{a}$

يعنى:

$$
(-1) a=\mathfrak{i}
$$

در b

$$
-a b=(i \dot{a}) b
$$

اكر بخواميم كه عمل جابجابذير نيز باشد بايد داشته باشيم:

$$
-a b=(\dot{i} b) \dot{a}
$$

$\stackrel{\bullet}{b} \dot{a}=-a b$
بس لازم است كه حاصل ضرب دوعدد موهومى خالص را بطر يق فوق معين نمائيم. اكــر حاصل ضرب ab دو عـــد R همانطود باشد كه ميدانيم، بايد بنابراين يكـ عمل ضرب در RU
(μ)

$$
\begin{align*}
& \dot{a} b=b \dot{a}=(\dot{a} b) \\
& \dot{a} \dot{b}=\dot{b} \dot{a}=-a b
\end{align*}
$$

بنا بهتعريف اين عمل ضرب جا بجايذير است. بسادكى معلوم ميشود كه اين عمل داراى يك جـزء خنناى ا است و شركت بذير است و هــر جـزه سواى صفر داراى يكت معكوس ميباشد.
عمل ضرب در R $R \cup \dot{R}$ يك بنيان كروه جابجابِير دا معين مينما يـــد (ايـن نتيجه فبلا"
مدلل شده است: §هـ).
در اين كروه، استخراج جذر يك عدد حقيقى همواره امكانبذير است. معادله:

$$
x^{\Upsilon}=a \quad(a \in R)
$$

دارای دو ريشٌa $a<0$
باشد.
ولى جذر يك عدد موهومى خالص در اين كروه وجود نــدارد و نميتوان يـكـ حاصل ضرب موهومى خا لص بدست آورد مگر در حالتى كه دو عامل ضرب بترتيب به R و R داشته باشند.

اكر مسئل استخراج جذر يكـ عدد منفى در كروه R $\cup \stackrel{\bullet}{\text { جر }}$ كروه بدان قرار حل نشده است.
ولى نقص اصلى كروه مورد نظر فقط در Tنجا نيست، ما خو اهيم ديد كه ادامه عمل جمـع R با خو اصش در آنجا مقدور نيست. مسئله زير را مورد بردسى قرار دهيم: آيا امكان بذير است كه عمل جمعى را در مجموعه R R معين كنيم با جمعى كه بين دو عدد R عمل ميشود منطبت باشل و داراى همان خو اص بـاشد؟ از مجمو $a+b$ دو عدد R شرو ع ميكنیم. بنا به (Y) دار يم:

$$
i(a+b)=(a+b)
$$

اگر بخواهيم كه عمل ضرب نسبت به جمـ توزيـع خذير باشد با يد داشته باشيم:

$$
i(a+b)=\dot{i} a+i b=\dot{a}+\dot{b}
$$

جس بايد:

$$
\dot{a}+\dot{b}=(a \dot{\bullet} b)
$$

باشد.
اكنون حالت مجموع يكـ عدد حقيقى و يكـ عدد موهومى خا لص را آزما يش ميكنيم:

$$
a+\dot{b}
$$

و ثابت كنيم كه اكُ اين عمل جمـع داراى خو اص عمل جمـع R باشد نميتوان اين مجموع را بيكك عدد R و يا بيكـ عدد R تبديل كرد.) فرض كنيم:

$$
a+\dot{b}=x
$$

با $x \in R$ به طرفين ($x \in$) اضافه ميكنيم:

$$
(-a)+(a+\dot{b})=-a+x
$$

اكر بخو اهيم كه جمـع شركت بذير باشد بايد داشته باشيم:

$$
(-a+a)+\dot{b}=-a+x
$$

$$
\dot{b}=-a+x
$$

$b=0$ ولى تنها جزء مشترك
صادق نيست (در اين صورت x=0 خواهد شد) بس اگر

$$
(a+\dot{b}) \in R
$$

ممكن نيست
Y

$$
\begin{gathered}
a+\dot{b}=\dot{x} \\
a=\dot{x}+(-\dot{b})
\end{gathered}
$$

با دوش مشابهى نتيجه ميشود:

يعنى بنا به (ه):

$$
a=(x \dot{\bullet} b)
$$

و حنين دابطهاى جز بازاء $a=0$ (كه در اين صورت $a=b$ ($x=b$ ممكن نيست سس اكر
a $a \neq$ 。

$$
(a+\stackrel{\bullet}{b}) \in \stackrel{\bullet}{R}
$$

امكان ندارد.
از اين بررسى نتيجه ميشود كه اكر بخواهيم عمل جمع R R را با خواص آن آن ادامه دهمب'
 اين عددهاى جديد و عملهاى مطلوب را حگگونه بايد معين كرد؟
فرض كنيم $a+\dot{b}$ معين شده باشد؛ دو عدد از اين نوع 1 را باهم جمـع كنيم:

$$
(a+\dot{b})+(c+\dot{d})
$$

باذاء جا بجا إذيرى و شركت بذيرى نتيجه ميشود:

$$
\begin{aligned}
& (a+c)+(\dot{b}+\dot{d}) \\
& a+c+(b \dot{\bullet})
\end{aligned}
$$

خوشبختانه مشاهده ميشود كه با جمـع دو عدد از اين كونه عددى از همان كو نه بـدست ميآيد هس بايد:

$$
(a+\dot{b})+(c+\dot{d})=(a+c)+(b \dot{+}+d)
$$

حال بينيم حاصل ضرب دو تا از اين اعداد به جه كيفيت است؟
از:

$$
(a+\stackrel{\bullet}{b})(c+\dot{d})
$$

شرو ع ميكنيم:
بنا به توزيـع پذيرى نتيجه ميشود:

و بنا به جا بجا هذيرى و شركت هذيرى:

$$
\begin{gathered}
(a c-b d)+(\dot{b c})+(\dot{a} d) \\
a c-b d+(b c \dot{\bullet}+a d)
\end{gathered}
$$

و بالاخخره بنا به (ه):

يس حاصلضرب دو عدد از اين كو نه نيز عددى از همين كونه است و بايد:

$$
(a+\stackrel{\bullet}{b})(c+\stackrel{\bullet}{d})=a c-b d+(b c+a d)
$$

 اكر بخواهيم هنين مجموعى را معين كنيم بايد مجموعــهاى وسيـعتـر از R بغيريم•

$$
\begin{aligned}
& a c+\dot{b} c+a \dot{d}+\dot{b} \dot{d} \\
& \text { بنا به روابط (世) و (ץ) داريم: } \\
& a c+(\stackrel{\bullet}{b})+(\stackrel{\bullet}{a d})-b d
\end{aligned}
$$

در هر جزء از اين مجموعه دو عدد حقيقى باهم وارد ميشو ند كه داراى نقشهاى يكسانى
در صفحات بعد زو ج مر تب (a,b) دو عدد حقيقى دا معمول ميكنيم و فــوانين تركيب اعداد مختلط را با اتكاء به شرايط لازم كه بدست آورديم معين ميسازيم.

ץـ اعداد مختلط.
كعاريف_ يكـ زوج مرتب (a,b) دو عدد حقيقى b, a را عدد مختلط ميناميم.
 عدد دوم b، ((قسمت موهومى (a, (a))، ناميده ميشود.

تساوىـ دو عدد مختلط برابرند اكـر قسمتهاى حقيقى آنها يكى و فسمتهاى موهومى آنها مم يكى باشد.

$$
\begin{aligned}
& (a, b)=\left(a^{\prime}, b^{\prime}\right) \quad \Longleftrightarrow \quad\left(a=a^{\prime} \quad, \quad b=b^{\prime}\right) \\
& \text { مجموعه اعداد مختلط را C ميناميم. } \\
& \text { عدد موهومى را با يكـ حرف يو نانى نيز نمايش ميدهيم: } \\
& \alpha=(a, b)
\end{aligned}
$$

براى تجهيز C با يكـ بنيان جمعى و با يكـ بنيان ضر بى با تعاريف زيـر از فصل قبل

تعريف جمع در C.
 اولى موسوم است و با (a, b) + (c, $)$ نما يش داده ميشود و با:

$$
\begin{aligned}
(a, b)+(c, d)= & (a+c ، b+d) \\
& \text { معين ميگردد همراه ميكنيم. }
\end{aligned}
$$

به دو عدد مختلط ((a, b, d)) يكـ عدد مختلط كه حاصل ضرب دوعدر اولى ناميده ميشود و با $(a, b)(c, d)$ نمايش داده ميشود و با:

$$
(a, b)(c, d)=(a c-b d, a d+b c)
$$

معين ميگردد همراه ميكنيم.

rـ خواص جمع•
جا بِجا پֶذيرى.

شركتیخيرى.
هر⿱夂ه باشد اعداد مختلط α و β و γ داريم:

$$
(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)
$$

$$
\text { با فرضهاى قبلى و با فرض } \gamma=(e, f) \text { داريم: }
$$

$$
(\alpha+\beta)+\gamma=(a+c, b+d)+(e, f)=
$$

$$
((a+c)+e,(b+d)+f)
$$

$$
\alpha+(\beta+\gamma)=(a, b)+(c+e, d+f)
$$

$$
=(a+(c+e), b+(d+f))
$$

بخاطر شركت پذيرى در R دو عدد حاصل برابرند.

جزء خننى.

هرجه باشد $\alpha \in C$ يكـ جزء ω در C وجود دارد بقسميكه: $\alpha+\omega=\alpha$
ميدانيم كه اكر ω وجود داشته باشد يكتا است.
$\alpha=(a, b)$ (ω ماريم: $\omega=(\circ, \circ)$
$\alpha+\omega=(a+\circ, b+\circ)=(a, b)=\alpha$ سس جزء خنثاى جمـ (o, o) است.

$$
\begin{aligned}
& \text { هرجه باشد اعداد مختلط } \alpha \text { وم داريم: } \\
& \alpha+\beta=\beta+\alpha \\
& \text { زيرا، فرض ميكنيم } \\
& \alpha+\beta=(a+c, b+d) \\
& \beta+\alpha=(c+a, d+b) \\
& \text { بخاطر جا بجايذيرى جمـع در R دو عدد حاصل برابرند. }
\end{aligned}
$$

اعداد مختلط متقا بل.
هرجه باشد

$$
\alpha+\beta=\omega
$$

فرض كنيم $\alpha=(a, b=(x, y)$ و $\alpha=(a)$ را بقسمى بيدا ميكنيم كه:

$$
\begin{aligned}
& (a, b)+(x, y)=(\circ, \circ) \\
& (a+x, b+y)=(\circ, \circ)
\end{aligned}
$$

با مساوى قرار دادن قسمتهاى حقيقى با هم و قسمتهاى موهومى با هم:

$$
a+x=\circ \quad, \quad b+y=\circ
$$

از T Tنجا:

$$
x=-a \quad, \quad y=-b
$$

 ميباشد. متفا بل α با α - نما يش داده ميشود. از جهار خاصيتى كه مدلل شد خنين برميآيد كه C يكـك كــروه جمعى جا بجا يذير است.

بــ خواص ضرب.
جا بجا يٍذيوى.
هرجه باشد اعداد مختلط α و β داريمز:

$$
\alpha \beta=\beta \alpha
$$

با قرارهاى قبلى و قراردادن $\gamma=(e, f)$

$$
\alpha \beta=(a c-b d, a d+b c)
$$

$$
\beta \alpha=(c a-d b, d a+c b)
$$

بخاطر جابجابذيرى در R دو عدد حاصل برابرند.

شر كتضذيرى.
هرجه باشد اعداد مختلط α و β و γ داريم:

$$
(\alpha \beta) \gamma=\alpha(\beta \gamma)
$$

باز هم با قرارهاى قبلى و قرار دادن $\gamma=(e, f)$ ذاريم:

$$
\begin{aligned}
(\alpha \beta) \gamma & =(a c-b d, a d+b c)(e, f) \\
& =((a c-b d) e-(a d+b c) f,(a c-b d) f+(a d+b c) e)
\end{aligned}
$$

$$
\begin{aligned}
\alpha(\beta \gamma) & =(a, b)(c e-d f, c f+d e) \\
& =(a(c e-d f)-b(c f+d e), a(c f+d e)+b(c e-d f))
\end{aligned}
$$

بخاطر شركت بذيرى و جابجا بذيرى و توزيعيذيرى (جمع و ضــرب)
حاصل برابرند.
جزء خنثاى ضرب.
هرجه باشد $\alpha \in C$ عدد ع دد C وجود دارد بقسميكه:

$$
\alpha \varepsilon=\alpha
$$

 هرجه باشد

$$
\begin{aligned}
\alpha \varepsilon & =(a, b)(1, \circ)=(a \times 1-b \times \circ, a \times \circ+b \times 1) \\
& =(a, b)=\alpha
\end{aligned}
$$

بس جزء خنناى ضرب (1,) است.
عكس يك علدد مختلط.
هرجه باشد

$$
\alpha \beta=\varepsilon
$$

با فرض
(1)

$$
(a, b)(x, y)=(1, \circ)
$$

$$
(\circ, \circ)(x, y)=(\circ, \circ)
$$

سس عدد مختلط $\omega=(0,0)$
فرض ميكنيم $\alpha \neq(\circ, \circ$ باشد شرط (α () معادل است با:

$$
(a x-b y, a y+b x)=(1, \circ)
$$

از آنجا:

$$
\begin{align*}
& a x-b y=1 \tag{r}\\
& b x+a y=\circ \tag{r}
\end{align*}
$$

($\left.{ }^{(}\right)$

$$
\left(a^{\Upsilon}+b^{\zeta}\right) x=a
$$

(Δ)

$$
\left(b^{r}+a^{r}\right) y=-b
$$

جون
نتيجه ميشود:

$$
x=\frac{a}{a^{r}+b^{r}} \quad, \quad y=\frac{-b}{a^{r}+b^{r}}
$$

امتحان هيكنيم:

$$
(a, b) \quad\left(\frac{a}{a^{r}+b^{r}}, \frac{-b}{a^{r}+b^{r}}\right)=\left(\frac{a^{r}+b^{r}}{a^{r}+b^{r}}, \frac{-a b+a b}{a^{r}+b^{r}}\right)=(1, \circ)
$$

از آنجا نتيجه ميشود كه هر عدد مختلط:

$$
\alpha=(a, b) \neq(\circ, \circ)
$$

داراى يكك معكوس است:

$$
\beta=\left(\frac{a}{a^{r}+b^{r}}, \frac{-b}{a^{r}+b^{r}}\right)
$$

اين معكوس با $\frac{1}{\alpha}$ نما يش داده ميشود.
مجموعه اعلاد مختلط سوای ω را با C نمايش ميدهند:

$$
C^{*}=C-\{\omega\}
$$

از جهار خاصيت ضرب نتيجه ميشود كه *C يك كروه ضر بى جا بجابِير است.
توزيع چذيرى ضرب بازاء جمع.
هرجه باشد اعداد مختلط α و β و γ داريم:

$$
\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma
$$

با قرارهاى قبلى مينويسيم:

$$
\begin{aligned}
& \alpha(\beta+\gamma)=(a, b)(c+e, d+f) \\
&=(a(c+e)-b(d+f), a(d+f)+b(c+e)) \\
&: \\
& \\
& \alpha \beta=(a c-b d, a d+b c) \\
& \alpha \gamma=(a e-b f, a f+b e)
\end{aligned}
$$

از T آنجا:

$$
\begin{aligned}
& \alpha \beta+\alpha \gamma=(a c-b d+a e-b f, a d+b c+a f+b e) \\
& \text { بخاطر خواص جمع و ضرب در R داريم: } \\
& \alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma
\end{aligned}
$$

هيئت اعداد مختلد.
جمـع و ضرب هر دو روى C بنيان يكـ كروه جا بجا يذير را معين ميسازند و چون ضرب

هـ غـ ظهوردى R در C.

اكر R نمايش مجموعه اعداد مختلط بصورت (a, $)$ باشد نظير هـر عدد $a \in R$ يك
 تناظر دو سوئى قرار دارند:
$R \rightleftarrows R$
براى جمـع دو عدد R داريم:

$$
(a, \circ)+(b, \circ)=(a+b, \circ)
$$

يس اين تناظر بازاء جمـع يك شكل است.
براى ضرب دو عدد R داريم:

$$
(a, \circ)(b, \circ)=(a b-\circ, a \times \circ+b \times \circ)=(a b, \circ)
$$

تناظر بازاء ضرب يكى شكل است.
با همانى قرار دادن R و R مجموعه R را در C غوطهور ميسازند و قرار ميگذارند.

$$
(a, \circ)=a
$$

(هرجه باشد $a \in R$) بخصوص داريم:
جزء خنثاى جمع در C:

$$
\omega=(\circ, \circ)=\circ
$$

و جزه خنتاى ضرب در C:

$$
\varepsilon=(1,0)=1
$$

یس از اين غوطهورى ميگو يند كه C يكـ فوق هيئت R است:

$$
R \subset C
$$

مجموعه R اعداد مختلط (o, $)$).
فرض ميكنيم:

$$
\begin{aligned}
& (\circ, 1)=i \\
& \text { داريم: } \\
& (0,1)(0,1)=(0-1,0+0)=(-1,0) \\
& \text { كه نوشته ميشود: } \\
& i^{r}=-1 \\
& \text { خون: } \\
& (-1,0)=-1 \\
& \text { هرحه باشد } a \in R \text { داريم: } \\
& (\circ, 1)(a, \circ)=(\circ-\circ, \circ+a)=(\circ, a) \\
& \text { ينیى (چون a, a }) \text {) است): } \\
& i a=(\circ, a)
\end{aligned}
$$

دوتساوى ممان (متحل) مجموعهاى است كه ما در مقدمه (§ I) ملاحظه كـرديم. يكـ جـزء
 به عدد موهومى خالص موسوم است.
ميتوان تحقيق كرد كــه ضرب در R R
مختلط تطبيق ميكند، تساوىهاى (ץ) و (ץ) فصل ا $ا$ با علامتهاى جلديد نوشته ميشوند:

$$
\begin{gathered}
(i a) b=i(a b) \\
(i a)(i b)=-a b
\end{gathered}
$$

رابطه اول بخاطر شركتذذيرى و رابطه دوم بخاطر جا بجايذيرى و يكـ شركتبذيرى ثابت است. ضرب اعداد مختلط درونى در R $R \cup \stackrel{\bullet}{2}$ است. بـــــلاوه عـكس عبارت است از:

$$
-\frac{i}{a} \in(R \cup \dot{R})
$$

بدين تر تيب معلـوم ميشود كــه R R يكك زيركروه ضر بى C است.

جمـ يكـ عدد R با يكـ عدد R نتيجه ميدهد:

$$
a+i b=(a, \circ)+(\circ, b)=(a, b)
$$

یس هر عدد مختلط مجموع يكـ عدو حقيقى و يكك عدد موهومى خا لص است.
هون هر عدد مختلط α را ميتوانيبم بنويسبم؛

$$
\alpha=a+i b
$$

كه a قسمت حقيقى و b قسمت موهومى است. چس در هرمحاسبه مر بوط به اعداد مختلط ميتو ان

8- اعلاد مختلط مزذوج.
تعريف - ((مزدو ج علد مختلط a + $a+i b$ بنا به تعر يف عدد مختلط $a+$ است. مـزدوج α را با

$$
\alpha=a+i b \Rightarrow \bar{\alpha}=a-i b
$$

نظير هر عدد $\alpha \in C$ يكـ عدد يكتاى $\alpha \in C$ وجود دارد. بدين تــرتيب در C تا بعى
معين ميشود.

$$
\alpha \rightarrow \bar{\alpha}
$$

كه مقاديرش دا در C اختتار مينما يد. بعضى از خو اص اين تابع دا اثبات ميكنيم.

اولا" هر عدد مختلط مزدو ج يكـ عدد ديگر است:
در حقيقت بنا بتعريف، عدد مختلط $\alpha=a+i b=a-i b$ مزدوج عد $\alpha=a+$ गس داريم:

$$
\overline{\bar{\alpha}}=\alpha
$$

ثانياً اگر α و β داراى يكـ مزدوج باشند برا برند:

$$
\bar{\alpha}=\bar{\beta} \quad \Rightarrow \quad \alpha=\beta
$$

زيرا اكر

$$
\begin{aligned}
& a-i b=c-i d \\
& \quad \alpha=\beta \text { يعنى } b=d \text { و اين ايجاب ميكند } a=c=1
\end{aligned}
$$

تا بـع $\alpha \rightarrow \bar{\alpha}$

اين تابع يكـ تعاكس است (با تابـع عكس منطبق است).

$$
g \bar{\beta}=c-i d
$$

$$
\begin{equation*}
\bar{\alpha}+\bar{\beta}=(a+c)-i(b+d) \tag{4}
\end{equation*}
$$

از طرف ديگر:

$$
\alpha+\beta=(a+c)+i(b+d)
$$

از T نججا:
(v)

$$
\begin{aligned}
& \overline{\alpha+\beta}=(a+c)-i(b+d) \\
& \text { از مقايسه (Y) و (V) تتيجه ميشود: } \\
& \overline{\alpha+\beta}=\bar{\alpha}+\bar{\beta} \\
& \text { 位 } \alpha \rightarrow \bar{\alpha} \overline{P_{\mu}} \\
& \overline{\alpha \beta}=\bar{\alpha} \cdot \bar{\beta}
\end{aligned}
$$

با علامتهاى قبلى داريم:
از يك طرف:
(1) $\quad \bar{\alpha} \bar{\beta}=(a-i b)(c-i d)=(a c-b d)-i(b c+a d)$

از طرف ديگر:

$$
\alpha \beta=(a+i b)(c+i d)=(a c-b d)+i(b c+a d)
$$

از آنجا:
(9)

$$
\begin{gathered}
\overline{\alpha \beta}=(a c-b d)-i(b c+a d) \\
\overline{\alpha \beta}=\bar{\alpha} \cdot \bar{\beta}
\end{gathered}
$$

از اين خواص نتيجه ميشود كه در هر محاسبه روى اعداد مختلط اكر بجاى اين اعـــداد مزدو جهاى Tنها را قرار دهيم بجاى نتيجه نيز مزدوج آن بدست خو اهد آمد.

V- ملوول .بك عدد مختلط.

اكر

$$
\alpha \bar{\alpha}=(a+i b)(a-i b)=a^{r}+b^{r}
$$

بس حاصل ضرب يكـ عدد مختلط در مزدوج خودش (است. بنا براين حاصل ضرب بيان ميكنيم:

مدول $\alpha=a+i b$ عبارت است از:

$$
\sqrt{a^{r}+b^{r}}
$$

آنرا با | α | نشان داده و (همدول α) هيخوانيم.

$$
\text { ـس تابع | | } \alpha \rightarrow \mid \text { مجموعه C را روى + }{ }^{+} \text {مى نگارد. }
$$

部 هم ارزیهاى منطقى زير را در R داريم:

$$
\begin{gathered}
\left(\sqrt{a^{r}+b^{r}}=0\right) \quad\left(a^{r}+b^{r}=0\right) \quad \Longleftrightarrow \quad(a=0, b=0) \\
|\alpha|=0 \Longleftrightarrow \alpha=0
\end{gathered}
$$

خاصيت ثابت است.
P

$$
|\alpha \beta|=|\alpha||\beta|
$$

بنا به تعريف داريم:

$$
|\alpha|^{r}=\alpha \bar{\alpha}, \quad|\beta|^{r}=\beta \bar{\beta}, \quad|\alpha \beta|^{r}=\alpha \beta \overline{\alpha \beta}
$$

بنا به خاصيت

$$
|\alpha \beta|^{\gamma}=\alpha \beta \bar{\alpha} \bar{\beta}
$$

بنا به جا بجا بذيرى و شركت بذيرى:

$$
|\alpha \beta|^{r}=(\alpha \bar{\alpha})(\beta \bar{\beta})=|\alpha|^{r}|\beta|^{r}=(|\alpha||\beta|)^{r}
$$

اين دوعدد حقيقى مثبت كه داراى مجذورات متساوى هستند خودشان
ثابت است.
نتيجه- اكر $\beta=\frac{1}{\alpha}$ باشد از خاصيت قبلى نتيجه ميشود:

$$
1=|\alpha| \cdot\left|\frac{1}{\alpha}\right|
$$

از آنجا:

$$
\left|\frac{1}{\alpha}\right|=\frac{1}{|\alpha|}
$$

مدول معكوس عدد برابر معكوس مدول آن است.

مدول مجموع دو عدد مختلط حد اكثر برابر مجمو ع مدو لهاى Tانها است.

$$
|\alpha+\beta| \leqslant|\alpha|+|\beta|
$$

ابتدا لم زير را اثبات ميكنيم:

لـمم- هرچه باشد علد مختلط γ داريم

$$
\gamma+\bar{\gamma} \leqslant r|\gamma|
$$

بايد توجه كرد كه نامساوى مورد استدلال در R مطرح است: بايد از نسوشتن نامساويها در C احتراز كرد زيرا هيتج بنيان ترتيب در C معين نميشود.

$$
\begin{aligned}
& \quad: \quad \text { فرض كنيم } \bar{\gamma}=a-i b \\
& \gamma+\bar{\gamma}=r a+i b \\
& |\gamma|=\sqrt{a^{r}+b^{r}}
\end{aligned}
$$

(عدد حقيقى)
(علد حقيقى مُبت يا صفر)
ولى در R داريم:

$$
r a \leqslant r \sqrt{a^{r}+b^{r}}
$$

زيرا آكر a منفى باشل نامساوى واضت است و اگر a مُبت باشد كافى است مجذورات دوطرف را مقا يسه و مشاهده كنيم كه:

$$
a^{r} \leqslant a^{r}+b^{r}
$$

$$
\begin{aligned}
& |\alpha+\beta|^{r}=(\alpha+\beta)(\overline{\alpha+\beta}) \\
& |\alpha+\beta|^{r}=(\alpha+\beta)(\bar{\alpha}+\bar{\beta})
\end{aligned}
$$

حاصل ضرب را در هييت C كسترش بدهيم:
(1०) $|\alpha+\beta|^{r}=\alpha_{\bar{\alpha}}+\beta \bar{\beta}+\alpha \bar{\beta}+\beta_{\alpha}=|\alpha|^{r}+|\beta|^{r}+\alpha \bar{\beta}+\beta_{\bar{\alpha}}$ حال فرض ميكنيم: $\gamma=\alpha \bar{\beta} \gamma$ نتيجه ميشود:

$$
\begin{equation*}
\bar{\gamma}=\bar{\alpha} \beta \tag{Y}
\end{equation*}
$$

(P_{Δ})

$$
|\gamma|=|\alpha||\beta|
$$

از لم قبل در مورد γ استفاده ميكنبم:
(11)

$$
\begin{gathered}
\alpha \bar{\beta}+\beta_{\alpha} \leqslant r|\alpha||\beta| \\
-|\alpha+\beta|^{r} \leqslant|\alpha|^{r}+|\beta|^{r}+r|\alpha||\beta|
\end{gathered}
$$

از آنجا:

$$
|\alpha+\beta|^{r} \leqslant(|\alpha|+|\beta|)^{r}
$$

زير Fروه ضرب U اعداد مختلط به مدول واحل.
مجمو ع اعداد مختلط با مدول واحد را U بناميم:

$$
(\alpha \in \mathbf{C} \quad, \quad|\alpha|=1) \quad \Longleftrightarrow \quad \alpha \in U
$$

() ضرب دد U درونى است: زيرا:
$\left(P_{\Delta}\right)$

$$
|\alpha \beta|=|\alpha||\beta|
$$

بنا براين:

$$
(|\alpha|=1 \quad, \quad|\beta|=1) \Rightarrow|\alpha \beta|=1
$$

r) مر جزء

$$
\left(\left|\frac{1}{\alpha}\right|=\frac{1}{|\alpha|},|\alpha|=1\right) \Rightarrow\left|\frac{1}{\alpha}\right|=1
$$

بس U يك زير گروه ضر بى C است.

gٌon

كار!و د هidسی آو نل ياك علـد متختلط

1- صفحه مختلط.

بك دستگاه مقايسه اور تونورمه

در دستگاه مقايسه ميباشند:

$$
o m \equiv a o u+b o u
$$

نظير اين نظطه m عدد مختلط يكتاى $\alpha=a+i b=$ وجود دارد بعكس نظير هـر عدد
 است.
مجموعه P نقاط صفحه بدين ترتيب در تناظر دوسوئى با مجموعه C اعداد مختلط است.

بردارهاى صفحه را در نظر بگیريم.
اكر (a,) زوج مختصات

$$
x=a u+b v
$$

§ را در تناظر دو سو نیى با مجموعه زوجهاى (a, b) ينى مجموعه C اعداد مختلط قرار ميلهد.

$$
\begin{aligned}
& \alpha=a+i b \rightleftarrows x=a u+b v \\
& \text { هركاه x و x دو بردار از } \\
& x=a u+b v \\
& x^{\prime}=a^{\prime} u+b^{\prime} v \\
& \text { در كروه جمعى ع عمل كنيم، نتيجه ميشود: } \\
& x+x^{\prime}=\left(a+a^{\prime}\right) u+\left(b+b^{\prime}\right) v
\end{aligned}
$$

حال اگر α و

$$
\begin{aligned}
\alpha & =a+i b \\
\alpha^{\prime} & =a^{\prime}+i b^{\prime}
\end{aligned}
$$

در كروه جمعى C عمل كنيمَ نتيجه ميشود:

$$
\alpha+\alpha^{\prime}=\left(a+a^{\prime}\right)+i\left(b+b^{\prime}\right)
$$

بدين ترتيب تناظر
كروه جمعى C يكـ شكل گروه جمعى \& يعنى گروه انتقالهاى Aستوى است.

$$
\zeta^{\prime}=\alpha+\zeta^{*} \text { تا }
$$

بطوريكه:

$$
\zeta^{\prime}=\alpha+\zeta
$$

$$
o m^{\prime} \equiv o a+o m \quad \text { ي } \quad m m^{\prime} \equiv o a
$$

پس نقطه 'm تبديل شده m در انتقال معين شده با بردار ג است. در يـكـ شكلى قبل، هر انتقال x از صفتحه P با تابـ
rـ آونل .بك عدد مختلط.
هركاه m α نگار α در صفحه مختلط باشد. $r \in R^{+}$اندازه طول

ثابت ميكنيم كه r مدول α است. زيرا داريم:

$$
|\alpha|^{r}=a^{r}+b^{r} \quad(\gamma: \mid \text { فصل })
$$

ولى قبلا" ديديم كه (ץ فصل، V) اگر a و b مخختصات m باشند:

$$
r^{r}=a^{r}+b^{r}
$$

جس داريم:

$$
r^{r}=|\alpha|^{r}
$$

از آنجا:

$$
r=|\alpha|
$$

بدين تر تيب يكك نما يش هندسى مدول α بدست ميآيد.
مدول يكـ عدد مختلط عبارت از يكك علد حقيقى است كه اندازه فاصله نگار آن تا مركز 0 دستگاه مقايسه است.
حال فرض ميكنيم $\alpha \neq 0$ نگار α آن بر 0 منطبت نيست.

مودولو π چ قراد دارد (V و فصل r).

تعريفـ » آوند يك عدد مختلطه) عبارت از يكى غير مشخص از اعداد حقيقى طبقه:

$$
\mathcal{C}(a) \in E_{Y \pi}
$$

است كه بدين ترتيب همراه a است.
مينو يسيم:

$$
\arg \alpha \equiv a \quad(\bmod \upharpoonright \pi)
$$

rـ صور ت مثلثانى .بك عـل
ا بتدا يكـ عدد مختلط α به مدول واحد را در نظر ميگيريم:

$$
|\alpha|=1
$$

 Г به مركز o است.
مجموعه U اعداد مختلط به مدول واحد در تناظر دو سوئى بــا مجموعه نقاط دايره بنا براين با مجموعه $E_{Y \pi}$ $\arg \alpha \equiv a \quad(\bmod r \pi)$
مختصات m عبارتند از $\sin a$ و علد موهومى a و نوشته ميشود:

$$
\alpha=\cos a+i \sin a
$$

و اين صورت مُلـاتى علد مختلط $\alpha \in U$ است:

$$
(|\alpha|=1, \arg \alpha \equiv a \quad(\bmod r \pi) \quad \Longleftrightarrow \quad(\alpha=\cos a+i \sin a
$$

 هركّاه α و ${ }^{\prime}$ دو علد موهومى از U باشند:

$$
\alpha \alpha^{\prime}=(\cos a+i \sin a)\left(\cos a^{\prime}+i \sin a^{\prime}\right)
$$

$$
=\left(\cos a \cos a^{\prime}-\sin a \sin a^{\prime}\right)+i\left(\sin a \cos a^{\prime}+\sin a^{\prime} \cos a\right)
$$

با استفاده از فرمو لهاى جمـع مثلثات:

$$
\alpha \alpha^{\prime}=\cos \left(a+a^{\prime}\right)+i \sin \left(a+a^{\prime}\right)
$$

از آنجا نتيجه ميشود؛

$$
\arg \left(\alpha \alpha^{\prime}\right) \equiv \arg \alpha+\arg \alpha^{\prime} \quad(\bmod \curlyvee \pi)
$$

 يعنى گروه دورانهاى مستوى به مركز o ميباشند.

甲ــ صورت مثلثاتى .يك علدى مختلط غير مشخص.
هركاه r عدد حقيقى مبّت غير صغر باشد:
$r \in R^{+} \quad(r \neq 0)$

بدين تر تبب تابعى معين ميشود كه با دو سو ئى C را روى C مى منگارد. اكر z بردارى از ع همر اه ک باشد:

$$
\zeta=a+i b \quad \rightleftarrows \quad z=a u+b v
$$

در C عمل ميكنبم، داريم:

$$
r \zeta=r(a+i b)=r a+i r b
$$

$$
\text { بردار 'z همراه } \zeta \text { ع عبارت ميشود از: }
$$

$$
z^{\prime}=r a u+r b v
$$

در فضاى بردارى ع عمل ميكنيم، نتيجه ميشود:

$$
\begin{aligned}
& \text { بهر علد مختلط C C } C \text { عدد مختلط ' }{ }^{\prime} \text { را با: } \\
& \xi^{\prime}=r \zeta
\end{aligned}
$$

$$
\begin{aligned}
& \arg \alpha \equiv a \quad(\bmod r \pi) \quad \Longleftrightarrow \quad \alpha=\cos a+i \sin a \\
& \arg \alpha^{\prime}=a^{\prime} \quad\left(\bmod \ulcorner\alpha) \quad \Longleftrightarrow \quad \alpha^{\prime}=\cos a^{\prime}+i \sin a^{\prime}\right. \\
& \text { در كروه ضربى U عمل ميكنيم: }
\end{aligned}
$$

$$
z^{\prime}=r(a u+b v)=r z
$$

تتبجه دا بترتيب زير بيان ميكنيم:

$$
r \in R^{+} ; \quad \zeta \in \mathbf{C}^{*} ; \quad \arg (r \zeta) \equiv \arg \zeta \quad(\bmod r \pi)
$$

حال اكر $\alpha \in$ يك عدد مختلط باشد، فرض كنیم:

$$
|\alpha|=r \quad, \quad \arg \alpha \equiv a \quad(\bmod \vdash \pi)
$$

عدد مختلط α / r داراى مدول واحل است يس:

$$
\frac{\alpha}{r} \in U
$$

بنا بر آنحه كذشت داريم:

$$
\arg \frac{\alpha}{r} \equiv a \quad(\bmod \curlyvee \pi)
$$

$: \frac{\alpha}{r} \in U$ با استفاده از صورت مثلثاتى معلوم

$$
\begin{aligned}
& \frac{\alpha}{r}=\cos a+i \sin a \\
& \alpha=r(\cos a+i \sin a)
\end{aligned}
$$

و اين، صورت مثلثاتى يكـ علد مختلط غير مشخص ג از C است:

$$
\begin{array}{r}
(|\alpha|=r \quad, \quad \arg \alpha \equiv a \quad(\bmod r \pi) \quad \Longleftrightarrow \\
r(\cos a+i \sin a))
\end{array}
$$

و بالاخره خاصيت زير را داريم:
هرجه باشد اعداد مختلط غير صفر α و ${ }^{\prime}$ $\arg \left(\alpha \alpha^{\prime}\right) \equiv \arg \alpha+\arg \alpha^{\prime} \quad(\bmod r \pi)$

فرض كنيم $r=\left|\alpha=\left|\alpha^{\prime}\right|\right.$ باشد در اين صورت: $r=\left|\alpha{ }^{\prime}=\right|$

$$
\begin{aligned}
& \frac{\alpha}{r} \in U \quad, \quad \frac{\alpha^{\prime}}{r^{\prime}} \in U \\
& \text { ميدانيم كه در U: } \\
& \arg \left(\frac{\alpha}{r} \frac{\alpha^{\prime}}{r^{\prime}}\right) \equiv \arg \frac{\alpha}{r}+\arg \frac{\alpha^{\prime}}{r^{\prime}}(\bmod r \pi)
\end{aligned}
$$

$$
\begin{aligned}
& \arg \frac{\alpha \alpha^{\prime}}{r r^{\prime}} \equiv \arg \alpha \alpha^{\prime} ; \quad \arg \frac{\alpha}{r} \equiv \arg \alpha, \quad \arg \frac{\alpha^{\prime}}{r^{\prime}} \equiv \arg \alpha^{\prime} \\
& \text { زس خاصيت ثا بت است. } \\
& \text { هـ نا بع }
\end{aligned}
$$

 همراه كنيم. بدين تر تيب تابعى معين ميشود كه با دو سوئى C را روى C مىنگارد. (1) ابتدا بحالت $\alpha \in U$ بيردازيم. در اين صورت داريم: $\left|\zeta^{\prime}\right|=|\zeta|$

چونكه

$$
\arg \zeta^{\prime} \equiv \arg \alpha+\arg \zeta \quad(\bmod \curlyvee \pi)
$$

نتطه ' از از نقطه ؟ با يكـ دوران حول o بزاويه باندازه α بدست ميآيد.
 . $\alpha \in R^{+}$) اكنون ميهر دازيم به حالت

 $\alpha \in C^{*}$ فرض ميكنيم:

$$
|\alpha|=r \quad, \quad \arg \alpha \equiv a \quad(\bmod r \pi)
$$

داريم:

$$
\zeta^{\prime}=\alpha \zeta \quad \Longleftrightarrow \quad \zeta=r\left(\frac{\alpha}{r} \zeta\right)
$$

از
رسيد.
بنابراين از ζ به ${ }^{\prime}$ با با تركيب دو تبديل ميتوان رسيد.
اين تركيب جابجا پذير است. جو نكه:

$$
r\left(\frac{\alpha}{r} \zeta\right)=\frac{\alpha}{r}(r \zeta)
$$

و آنرا ((همانندى α) ميناميم خاصيت زير را داريم:

كروه ضربى "C يك شكل كروه هما نندىهاى مستوى به مركز o است.

צـ توان صحيح اعداد موهومى•
تعريفد هرگاه علد مختلط ه $\alpha \neq 0$ مفروض باشد بهر عدد طبيعى n عدد مختلط ${ }^{n}$ بر را با روش بازكشتى زير همراه كنيم:

$$
\begin{aligned}
& \alpha^{o}=1 \\
& \quad: ~
\end{aligned}
$$

معين كنيم.
توان منفى α را كه با $n \in N$) $\alpha^{-n \in ~ ن م ا ~ ي ش ~ د ا د ه ~ م ي ش و د ~ ب ا: ~}$

$$
\alpha^{-n}=\frac{1}{\alpha^{n}}
$$

معين نما يُيم.
تابع $x \rightarrow \alpha^{x}$ بدين ترتيب معين ميشود هرجه باشد $x \in Z$ حون خو x خو اص كروه ضر بى
 مينما يند:

$$
\begin{aligned}
& \quad \text { هرجه باشد } n, p \in Z g \alpha, \beta \in \mathbf{C}^{*} \\
& \alpha^{n} \alpha^{p}=\alpha^{n+p} \\
&\left(\alpha^{n}\right)^{p}=\alpha^{n p} \\
&(\alpha \beta)^{n}=\alpha^{n} \beta^{n}
\end{aligned}
$$

$$
\alpha^{x} \alpha^{x \prime}=\alpha^{x+x^{\prime}}
$$

 C
در بقّبه فصل ما مدول و آوند $n \in Z$ مورد n با با

مسول و آونل
هركاه عدد مختلط $\alpha \neq 0$ و عدد صححـح نسبى n مفروض باشند. خاصيت زير را داريم:

$$
\left(\alpha \in C^{*} \quad, \quad n \in Z\right) \quad \Rightarrow \quad\left\{\begin{array}{l}
\left|\alpha^{n}\right|=|\alpha|^{n} \\
\arg \alpha^{n}=n \arg \alpha \quad(\bmod \curlyvee \pi)
\end{array}\right.
$$

) ا ا بتدا خاصيت مدو لها را ائبات نمائيم.
(1)

$$
\left|\alpha^{n}\right|=|\alpha|^{n}
$$

اين رابطه بازاء n $n>0$ ثابت است با فرض درستى آن بازاء n درستى آنـــرا

$$
a^{n+1}=\alpha^{n} \cdot \alpha \Rightarrow\left|\alpha^{n+1}\right|=\left|\alpha^{n}\right||\alpha|
$$

بنا به فرض بازكشتى از آن نتيجه ميشود:

$$
\left|\alpha^{n+1}\right|=|\alpha|^{n}|\alpha|=|\alpha|^{n+1}
$$

يس رابطه (1) (هرچه باشد 1 ($n \in N$ ثابت است.

$$
\begin{aligned}
& \quad \text { بازاء } n=-p(p \in N) \\
\alpha^{-p}= & \frac{1}{\alpha^{p}}
\end{aligned}
$$

از آنجا:

$$
\left|\alpha^{-p}\right|=\frac{1}{\left|\alpha^{p}\right|}=\frac{1}{|\alpha|^{p}}=|\alpha|^{-p}
$$

جس رابطه (1) (هرچه باشد $n \in Z$) ثابت است. r

$$
\arg \alpha^{n}=n \arg \alpha \quad(\bmod \upharpoonright \pi)
$$

اين را بطه بازاء n n واضح است.

با فرض درستى آن بازاء n درستى آنرا بازاء n+1 اثبات ميكنيم: بنا به خاصيت

$$
\alpha^{n+1}=\alpha^{n} \cdot \alpha
$$

كه موجب ميشود:

$$
\begin{aligned}
\arg \alpha^{n+1} \equiv \arg \alpha^{n}+\arg \alpha & (\bmod r \pi) \\
& : \text { بموجب فرض بازكتى }
\end{aligned}
$$

$\arg \alpha^{n+1} \equiv n \arg \alpha+\arg \alpha \equiv(n+1) \arg \alpha$

$$
\begin{aligned}
& \text { بازاء } n=-p(p \in N) \text { داريم: }=1 \\
& \alpha^{p} \cdot \alpha^{-p}=1
\end{aligned}
$$

$$
\arg \alpha^{p}+\arg \alpha^{-p} \equiv \circ \quad(\bmod r \pi)
$$

$$
\begin{aligned}
& \arg \alpha^{-p} \equiv-\arg \alpha^{p} \quad(\bmod 2 \pi)
\end{aligned}
$$

$$
\begin{aligned}
& \arg \alpha^{-p} \equiv-p \arg \alpha \quad(\bmod r \pi) \\
& \text { يس خاصيت (Y) (هرچه باشد n }
\end{aligned}
$$

هركاه عدد مختلط غير صفر α و علد نسبى صحيح n مفروض بــاشنـد، بــا استفـاده از صورت مثلثاتى عدد مختلط α

$$
\alpha=r(\cos a+i \cos a)
$$

$$
\begin{aligned}
& |\alpha|=r \quad, \quad \arg \alpha \equiv \mathrm{a} \quad(\bmod \ulcorner\pi) \\
& \text { بنا به خاصيت } \\
& \left|\alpha^{n}\right|=r^{n} \\
& \text {, } \quad \arg \alpha^{n} \equiv n \alpha \\
& (\bmod r \pi) \\
& \text { بدين تر تيب صورت مثلثاتى }{ }^{\text {n }} \text { بدست ميآ يد: } \\
& \alpha^{n}=r^{n}(\cos n a+i \sin a)
\end{aligned}
$$

هرجه باشد $a \in R$ و $\quad r \in R^{+}$واريم:

$$
[r(\cos a+i \sin a)]^{n}=r^{n}(\cos n a+i \sin n a)
$$

ح حل معادلات دوجملهاى.
 وجود دارد بقسميكه:

$$
\zeta^{n}=\alpha
$$

號 ${ }^{n}-\alpha=0$ همارزى منطقى زير را داريم:

$$
\begin{aligned}
& \zeta^{n}=\alpha \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
|\zeta|^{n}=|\alpha| \\
\arg \zeta^{n} \equiv \arg \alpha \quad(\bmod r \pi)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& |\zeta|=|\alpha|^{\frac{1}{n}} \\
& \text { r } \\
& \arg \zeta^{n} \equiv \arg \alpha \quad(\bmod r \pi ;
\end{aligned}
$$

مم ارز است با:
بايد داشته باشيم:
$n \arg \zeta \equiv a \quad(\bmod r \pi)$

يعنى:

$$
n \arg \zeta=a+r k \pi \quad(k \in Z)
$$

$$
\arg \zeta=\frac{a}{n}+\frac{r k \pi}{n}
$$

بعكس نظير هر عدد $k \in Z$ يكـ عدد حقيقى:

$$
\frac{a}{n}+\frac{k}{n} \curlyvee \pi
$$

$$
\mathcal{C}\left(\frac{a}{n}+\frac{k}{n} r \pi\right)
$$

را در

$$
\frac{a}{n}+\frac{k}{n} \curlyvee \pi \equiv \frac{a}{n}+\frac{k^{\prime}}{n} \curlyvee \pi \quad(\bmod \curlyvee \pi)
$$

$$
\frac{k-k^{\prime}}{n} r \pi=\circ \quad(\bmod r \pi)
$$

يس لازم و كافى است كه:

$$
\frac{k-k^{\prime}}{n} \in Z
$$

اين شرط در Z منطقاً هم ارز است با:

$$
n \mid\left(k-k^{\prime}\right)
$$

يعنى:

$$
k \equiv k^{\prime} \quad(\bmod n)
$$

ميدا نيم كه در Z، n طبقه مدولو n وجود دارد كه نما يندههاى آنها عبار تند از:

$$
k \in(\circ, n) \subset Z
$$

$$
\text { بطور خلاصهه، معادله } \alpha=\alpha \text { = }{ }^{n} \text { داراى } n \text { جواب در C است: }
$$

$$
\zeta_{k+1}=|\alpha|^{\frac{1}{n}}\left[\cos \left(\frac{a}{n}+\frac{k}{n} r \pi\right)+i \sin \left(\frac{a}{n}+\frac{k}{n} r \pi\right)\right]
$$

$$
k \in\{0,1, r, \cdots, n-1\}
$$

$$
\begin{aligned}
& \circ, 1, r, \cdots, n-1
\end{aligned}
$$

$$
\begin{aligned}
& \arg \xi \equiv \frac{a}{n}+\frac{k}{n} r \pi
\end{aligned}
$$

$$
n=r
$$

معادله

$$
\begin{aligned}
\zeta_{1} & =|\alpha|^{\frac{1}{r}}\left(\cos \frac{a}{r}+i \sin \frac{a}{r}\right) \\
\zeta_{r} & =|\alpha|^{\frac{1}{r}}\left[\cos \left(\frac{a}{r}+\pi\right)+i \sin \left(\frac{a}{r}+\pi\right)\right]=-|\alpha|^{\frac{1}{r}}\left(\cos \frac{a}{r}+i \sin \frac{a}{r}\right) \\
& =-\zeta_{1}
\end{aligned}
$$

هر علد مختلط غير صفر α داراى دو جذر متقا بل الست.

و اخه نامه

A		Binaire	یايه دو (دستكاه)
abstraction	تجريد	binaire	دويى (مانند عدداعثارى)
abstrait	هجرد	b-naire	b - يى (مانهى (م)
additif	جمعى		اعهارى)
adjacent	مجاور	bissection	نيمسازى
adjoint	معاون		
analogie	مشابهت	C	
anneau	حلقه	Cardinal	اصلى
apériodique	غير متناوب	champ	ميدان
appartenance	تعلق	chiffrage	رقمبندى
application	كاربرد، نكاشت	classe	طبقه
appliquer	به كاربردن،	classe résiduelle	طبقه هاندهاى
argument	Tوند	coincidence	انطباق
associatif	شر كتيذير	collection	كلكسيون
associativité	شر كتدينى	commutatif	جابجايذير
associer	همراه كردن	commutativité	جابجايذيى
automorphe	خودشكل	complémentaire	متم
automorphie	خودشكلى	composant	مؤ لفه
axiome	الصل موضوعه	composé	تر كيب
axiomatique	اكسيو ماتيك	composition	تركيب
		congru	عٌمهنهה
B		congruence	معمنهشتى
Bijection	دوسو كستى	corps	هينّ
Bijective	دوكستر	correspondance	تناظر
Binaire	دوتايى (رابطه)	correspondant	نظير

construction	ساخت	externe	برونى
D		F	
déchiffrage	بسط رقمى	figuration	صورتبندى
déduction	استنتاج	figure	صوزت
demi-groupe	نيمهروه	fini	متّاهى
dénombrement	شمارش		
dense	متراكم	G	
densité	تراكم	général	عمو می، كلى
déplacement	تغيير مكان	graduer	مدرج كردن
disjoint	متغاير		
distributif	توزيعيذير	I	
distributivité	توزيعهذيى يوى	idéal	ايدها
domaine	حوزهه، ناحيه	idéal principal	ايدهآل إله
domaine d'intégrité	حوزه تماسيت	image	نـكار
		immergé	غوطهور
E		immersion	غوطهونى
écart	دورى لغزش	implication	استلزام
élément	جز	impliquer	مستلزم بودن
emboîté	فونإيّ (فاصله)	impropre	ناجود
endomorphe	درون ثشل	inclus	كنجيده
endomorphie	درون شـكلى	inclusion	كنجيدكى
ensemble	مجموعه	indentique	همان
équilibre	ههمتراز	identité	همانی
équimultiple	همهضرب	induction	استقى\|
exponentiation	نمايى كردن	induit	القا شهه
exponentiel	نما يـ	infini	زامتناهى
équipotence	همتوانى	injection	دزون كستى
équipotentiel	همتوان	injectif	درونگّر
équivalence	هم.ارزى	interne	درونى
équivalence - logique	هماززى منطقى	intersection	فصل مشترك
équivalent	همازز	intuition	هكاشفه، شهو دو
extention	كستى	intuitive	شهودى

inversion
معكوسيت، انعكاس
involution

\mathbf{L}

lacunes
خلل
\checkmark
لغتى
منطقً همارز logiqument equivalent

M

magorant
magorer
masse
minorant
minorer
module
modulo
monogène
monotone
multiplicatif

N
neutre
notation
notion
numération

0

opération
opératoire
ordinal
ordonné
ordre

فرابند فرابستن

جرم
فروبند
فروبستن
قدر مطلق، مدول
مدولو
تكزاد
يكنواخت
ضر:بى

خنیى
علامت
مفهوم
شمار

orthonormé ترتيب

P

partage
partiel
périodique
permutation
prolongement
proposition

Q

quantificateur

R

\mathbf{S}

sous-anneau زيرحلقه
sous-groupe زير گروه زيره
sens-ensemble
sous-espace
strict
strictement
supplémentaire
sur-corps

خندىنما
بخشى (اصل) جزيى متناوب مبادله امتداد كزاره خوديذير خوديذيرى

اكيدا

surjection	برون كستى	trou	موراغ
surjectif	برونگّ		
symbole	سمبل، إسنها	\mathbf{U}	
symétrie	تقارن	unicité	يكتا يـى
symétrisation	قر ينهذيركِدن	unique	يـكتا
		unité	,احد، يـك
T		univoque	يـكو، يكارزشى
théorie	تُورى		
topologie	تويولرّى	V	
total	كلى	vérifié	ساز
transitif	سرايتينى	vérifier	صدقكردن، ساز كارشن
transitivité	سرا يتديّ يوى	vide	تهى
		voisinage	مجاورت

فهر ست راهنما

بنيان تويولوزيك
اجتماع: اج

اجزاء مثلثات: PIA
بنيان نيم كروه: 19
بارْخطا:
 يايدارى بازاء نسبت ترتيب:
 بايدارى زابطه ترتيب نسبت جمع و ضرب: ifq

تابع:
 تجزيه: ال11

ترتيب: (1)

$\Delta A ، \Delta Y$
تعاكس: FP
تعلق: raf
تنيير واحد: (FY)
تفريق: SA، تقارن:

تنظر: |\&،

 بزركترين مقسوعلبه مشترك: 10ه، ،10f، 109
بسط رقى يك صورتبندى: هQ
بسط مبناى b: ar

FFF ITVA FFF: زير تروه
توان: تا
, IFF ، IOV ،

شر كتـــذيــرى: VQ ،HFF ،KEV ،YE ،YOF ،191 ،IFF

قوه صحيع يك عدد: GY\& ،YYF ،AD ،AF

كوحیترين مضرب مشترك: 99، 10 كا

د
سمبلهای منطقى:
سII FIO Wوزاخها و خلل:
dra

صFA : صفحه مختلط صوزت مثلثاتى يك عدد: FFA FFY إץ، سشץ

غوطهورى: © (IFF KM

فرابند_فروبند: WI
فصل مشترك: 18

كاربرد هندسى: FAD 6AQ
كارتزين (دكازتى): كاء
كميتها: HWV ،MIF ،Y\&V ،YOD
 ،KE1 ،KEO ،YOF ، IQA ،IFW ،IFY

جبر طبقات مدولو: 119 (YAA
Yا جذز (YOQ (YOA (INF (IA)
جزء خنتى: IFD ، IFQ، 90 ، VY ، ΔF 6I ،HFF ، YQO ،KY\& ، KEO ، YOF ،199
\%
،YQA ،YQY ، $19 Y$ ، 181 ،IHY GAF : צow

حلقه: حA
FA :حفره تماميت

خ خوديذيرى

دايره مثلثاتى: دا9 دزازى يك فاصله: اءي
PIV : دستگاه مقايسه الوتونورمه
دستور موار: FAY
PoV : بوانها_انتقالها

راديان: FIA

رقمبندى: 19
FP : روش شمازشى

YOO ،YQ\& ،YQD ،YQF ،FFO : زاويها:
كمترش مفهوم اندازه: Pop زير فضا: سّ،
P) :تكاشت همانى: PAY :نمائى كردن
نماى مطلق: اMA
 همشكلى: هF
 هندسه يكبعى: PA9 هيئت: YQ،

يكتائى:

Fنجيدگى: p

لـكاريتم: YYF

مانده: 110
مجموعهها: FFI: مدول
PFI مسئله ازشميدس: ما
 معادلات:
 مقدار مطلق: FFF YYY ، (IOY مقسومعليههاى مشترك

