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Preface 

This is the second volume of a 2-volume textbook* which evolved from a 
course (Mathematics 160) offered at the California Institute of Technology 
during the last 25 years. 

The second volume presupposes a background in number theory com­
parable to that provided in the first volume, together with a knowledge of 
the basic concepts of complex analysis. 

Most of the present volume is devoted to elliptic functions and modular 
functions with some of their number-theoretic applications. Among the 
major topics treated are Rademacher's convergent series for the partition 
function, Lehner's congruences for the Fourier coefficients of the modular 
functionj('r), and Heeke's theory of entire forms with multiplicative Fourier 
coefficients. The last chapter gives an account of Bohr's theory of equivalence 
of general Dirichlet series. 

Both volumes of this work emphasize classical aspects of a subject which 
in recent years has undergone a great deal of modern development. It is 
hoped that these volumes will help the nonspecialist become acquainted 
with an important and fascinating part of mathematics and, at the same 
time, will provide some of the background that belongs to the repertory of 
every specialist in the field. 

This volume, like the first, is dedicated to the students who have taken 
this course and have gone on to make notable contributions to number 
theory and other parts of mathematics. 

T.M.A. 
January, 1976 

*The first volume is in the Springer-Verlag series Undergraduate Texts in Mathematics under 
the title Introduction to Analytic Number Theory. 
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Preface to the Second Edition 

The major change is an alternate treatment of the transformation formula for 
the Dedekind eta function, which appears in a five-page supplement to Chap­
ter 3, inserted at the end of the book (just before the Bibliography). Other­
wise, the second edition is almost identical to the first. Misprints have been 
repaired, there are minor changes in the Exercises, and the Bibliography has 
been updated. 

T.M.A. 
July, 1989 
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Elliptic functions 1 

1.1 Introduction 
Additive number theory is concerned with expressing an integer n as a sum 
of integers from some given set S. For example, S might consist of primes, 
squares, cubes, or other special numbers. We ask whether or not a given 
number can be expressed as a sum of elements of S and, if so, in how many 
ways this can be done. 

Letf(n) denote the number of ways n can be written as a sum of elements 
of S. We ask for various properties off(n), such as its asymptotic behavior 
for large n. In a later chapter we will determine the asymptotic value of the 
partition function p(n) which counts the number of ways n can be written as a 
sum of positive integers ~ n. 

The partition function p(n) and other functions of additive number theory 
are intimately related to a class of functions in complex analysis called 
elliptic modular functions. They play a role in additive number theory analo­
gous to that played by Dirichlet series in multiplicative number theory. The 
first three chapters of this volume provide an introduction to the theory of 
elliptic modular functions. Applications to the partition function are given 
in Chapter 5. 

We begin with a study of doubly periodic functions. 

1.2 Doubly periodic functions 
A function f of a complex variable is called periodic with period w if 

f(z + w) = f(z) 

whenever z and z + w are in the domain off If w is a period, so is nw for 
every integer n. If w 1 and w 2 are periods, so is mw1 + nw2 for every choice of 
integers m and n. 



1 : Elliptic functions 

Definition. A function f is called doubly periodic if it has two periods w 1 

and w 2 whose ratio w2/w1 is not real. 

We require that the ratio be nonreal to avoid degenerate cases. For 
example, if w 1 and w2 are periods whose ratio is real and rational it is easy 
to show that each of w 1 and w2 is an integer multiple of the same period. In 
fact, if w2jw~ = ajb, where a and b are relatively prime integers, then there 
exist integers m and n such that mb + na = 1. Let w = mw1 + nw2 • Then 
w is a period and we have 

so w 1 = bw and w 2 = aw. Thus both w 1 and w 2 are integer multiples of w. 
If the ratio w 2 jw 1 is real and irrational it can be shown thatfhas arbitrarily 

small periods (see Theorem 7.12). A function with arbitrarily small periods 
is constant on every open connected set on which it is analytic. In fact, at 
each point of analyticity off we have 

f'(z) = lim f(z + z") - f(z), 
Zn-+0 Zn 

where {z"} is any sequence of nonzero complex numbers tending to 0. Iff 
has arbitrarily small periods we can choose {z"} to be a sequence of periods 
tending to 0. Then f(z + z") = f(z) and hence f'(z) = 0. In other words, 
f'(z) = 0 at each point of analyticity off, hencefmust be constant on every 
open connected set in whichfis analytic. 

1.3 Fundamental pairs of periods 

Definition. Let f have periods w 1 , w 2 whose ratio w2 jw 1 is not real. The 
pair (w1 , w 2 ) is called a fundamental pair if every period off is of the form 
mw1 + nw2 , where m and n are integers. 

Every fundamental pair of periods w 1, w2 determines a network of 
parallelograms which form a tiling of the plane. These are called period 
parallelograms. An example is shown in Figure l.la. The vertices are the 
periods w = mw1 + nw2 • It is customary to consider two intersecting edges 
and their point of intersection as the only boundary points belonging to the 
period parallelogram, as shown in Figure 1.1 b. 

Notation. If w 1 and w 2 are two complex numbers whose ratio is not real 
we denote by Q(w 1, w2 ), or simply by n, the set of all linear combinations 
mw1 + nw2 , where m and n are arbitrary integers. This is called the lattice 
generated by w 1 and w2 • 
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1.3: Fundamental pairs of periods 

(a) (b) 

Figure 1.1 

Theorem 1.1. If (wb w 2) is a fundamental pair of periods, then the triangle 
with vertices 0, Wt. w 2 contains no further periods in its interior or on its 
boundary. Conversely, any pair of periods with this property is fundamental. 

PROOF. Consider the parallelogram with vertices 0, wb w1 + w 2, and w 2, 
shown in Figure 1.2a. The points inside or on the boundary of this parallel­
ogram have the form 

z = aw 1 + f3w 2 , 

where 0 ::s;; a ::s;; 1 and 0 ::s;; f3 ::s;; 1. Among these points the only periods are 0, 
w1 , w 2, and w1 + w 2, so the triangle with vertices 0, w1 , w 2 contains no 
periods other than the vertices. 

0 0 
(a) (b) 

Figure 1.2 

3 



I : Elliptic functions 

Conversely, suppose the triangle 0, w 1, w 2 contains no periods other 
than the vertices, and let w be any period. We are to show that w = mw 1 + 
nw2 for some integers m and n. Since w 2 jw 1 is nonreal the numbers w 1 and 
w 2 are linearly independent over the real numbers, hence 

where t 1 and t 2 are real. Now let [t] denote the greatest integer s t and 
write 

t 1 = [t 1 ] + r1 , t 2 = [t 2 ] + r2 , where 0 s r1 < 1 and 0 s r2 < 1. 

Then 
I 

If one of r 1 or r 2 is nonzero, then r 1 w 1 + r 2 w 2 will be a period lying inside 
the parallelogram with vertices 0, w~> w 2 , w 1 + w 2 • But if a period w lies 
inside this parallelogram then either w or w 1 + w 2 - w will lie inside the 
triangle 0, w~> w 2 or on the diagonal joining w 1 and w 2 , contradicting the 
hypothesis. (See Figure 1.2b.) Therefore r 1 = r 2 = 0 and the proof is 
complete. D 

Definition. Two pairs of complex numbers (w 1, w 2 ) and (w 1', w2 '), each with 
nonreal ratio, are called equivalent if they generate the same lattice of 
periods; that is, ifQ(w1, w 2 ) = Q(w 1', w2 '). 

The next theorem, whose proof is left as an exercise for the reader, 
describes a fundamental relation between equivalent pairs of periods. 

Theorem 1.2. Two pairs (w~> w 2 ) and (w 1', w2 ') are equivalent if, and only if, 

there is a 2 x 2 matrix (; ~) with integer entries and determinant 

ad - be = ± 1, such that 

or, in other words, 

wz' = aw2 + bw 1, 

w 1' = cw2 + dw 1• 

1.4 Elliptic functions 

Definition. A functionfis called elliptic if it has the following two properties: 
(a) f is doubly periodic. 
(b) f is meromorphic (its only singularities in the finite plane are poles). 

4 



1.4: Elliptic functions 

Constant functions are trivial examples of elliptic functions. Later we 
shall give examples ofnonconstant elliptic functions, but first we derive some 
fundamental properties common to all elliptic functions. 

Theorem 1.3. A nonconstant elliptic function has afundamental pair of periods. 

PROOF. Iffis elliptic the set of points wherefis analytic is an open connected 
set. Also, f has two periods with nonreal ratio. Among all the nonzero 
periods off there is at least one whose distance from the origin is minimal 
(otherwisefwould have arbitrarily small nonzero periods and hence would 
be constant). Let w be one of the nonzero periods nearest the origin. Among 
all the periods with modulus I w I choose the one with smallest nonnegative 
argument and call it w 1 . (Again, such a period must exist otherwise there 
would be arbitrarily small nonzero periods.) If there are other periods 
with modulus I w 1 I besides w 1 and - w 1, choose the one with smallest 
argument greater than that of w1 and call this w2 • If not, find the next 
larger circle containing periods # nw1 and choose that one of smallest 
nonnegative argument. Such a period exists since f has two noncollinear 
periods. Calling this one w 2 we have, by construction, no periods in the 
triangle 0, wl> w 2 other than the vertices, hence the pair (w 1, w 2} is funda­
mental. D 

Iff and g are elliptic functions with periods w 1 and w2 then their sum, 
difference, product and quotient are also elliptic with the same periods. So, 
too, is the derivativef'. 

Because of periodicity, it suffices to study the behavior of an elliptic 
function in any period parallelogram. 

Theorem 1.4. /fan ellipticfunctionfhas no poles in some period parallelogram, 
thenfis constant. 

PROOF. Iffhas no poles in a period parallelogram, thenfis continuous and 
hence bounded on the closure of the parallelogram. By periodicity, f is 
bounded in the whole plane. Hence, by Liouville's theorem,fis constant. D 

Theorem 1.5. If an elliptic functionfhas no zeros in some period parallelogram, 
thenfis constant. 

PROOF. Apply Theorem 1.4 to the reciprocal 1/f D 

Note. Sometimes it is inconvenient to have zeros or poles on the bound­
ary of a period parallelogram. Since a meromorphic function has only a 
finite number of zeros or poles in any bounded portion of the plane, a period 
parallelogram can always be translated to a congruent parallelogram with 
no zeros or poles on its boundary. Such a translated parallelogram, with no 
zeros or poles on its boundary, will be called a cell. Its vertices need not be 
periods. 

5 



1 : Elliptic functions 

Theorem 1.6. The contour integral of an elliptic function taken along the 
boundary of any cell is zero. 

PROOF. The integrals along parallel edges cancel because of periodicity. D 

Theorem 1.7. The sum of the residues of an elliptic function at its poles in any 
period parallelogram is zero. 

PROOF. Apply Cauchy's residue theorem to a cell and use Theorem 1.6. D 

\ 
Note. Theorem 1. 7 shows that an elliptic function which is not constant 

has at least two simple poles or at least one double pole in each period 
parallelogram. 

Theorem 1.8. The number of zeros of an elliptic function in any period parallel­
ogram is equal to the number of poles, each counted with multiplicity. 

PROOF. The integral 

_1 J f'(z) dz 
2ni c f(z) ' 

taken around the boundary C of a cell, counts the difference between the 
number of zeros and the number of poles insid'e the cell. But f'lf is elliptic 
with the same periods asf, and Theorem 1.6 tells us that this integral is zero. 

D 

Note. The number of zeros (or poles) of an elliptic function in any period 
parallelogram is called the order of the function. Every nonconstant elliptic 
function has order ;;;:: 2. 

1.5 Construction of elliptic functions 

We turn now to the problem of constructing a nonconstant elliptic function. 
We prescribe the periods and try to find the simplest elliptic function having 
these periods. Since the order of such a function is at least 2 we need a 
second order pole or two simple poles in each period parallelogram. The 
two possibilities lead to two theories of elliptic functions, one developed by 
Weierstrass, the other by Jacobi. We shall follow Weierstrass, whose point 
of departure is the construction of an elliptic function with a pole of order 
2 at z = 0 and hence at every period. Near each period w the principal part 
of the Laurent expansion must have the form 

A B 
( ) 2 +--. z-w z-w 

6 



1.5: Construction of elliptic functions 

For simplicity we take A = 1, B = 0. Since we want such an expansion near 
each period w it is natural to consider a sum of terms of this type, 

summed over all the periods w = mw 1 + nw2 • For fixed z -:/= w this is a 
double series, summed over m and n. The next two lemmas deal with con­
vergence properties of double series of this type. In these lemmas we denote 
by n the set of all linear combinations mw1 + nw2 , where m and n are 
arbitrary integers. 

Lemma 1. If a. is real the infinite series 

converges absolutely if, and only if, a. > 2. 

PROOF. Refer to Figure 1.3 and let rand R denote, respectively, the minimum 
and maximum distances from 0 to the parallelogram shown. If w is any of 
the 8 nonzero periods shown in this diagram we have 

r ~ lwl ~ R (for 8 periods ro). 

Figure 1.3 

In the next concentric layer of periods surrounding these 8 we have 2 · 8 = 16 
new periods satisfying the inequalities 

2r ~ lwl ~ 2R (for 16 new periods ro). 

In the next layer we have 3 · 8 = 24 new periods satisfying 

3r ~ lwl ~ 3R (for 24 new periods ro), 

7 



I : Elliptic functions 

and so on. Therefore, we have the inequalities 

~~ ~ I~ I~ ~ ~ for the first 8 periods w, 

(2~t ~ ~~~~ ~ (2~t for the next 16 periods w, 

and so on. Thus the sum S(n) = L lwl-~, taken over the 8(1 + 2 + · · · + n) 
nonzero periods nearest the origin, satisfies the inequalities 

8 2·8 n·8 8 2·8 n·8 
R~ + (2Rt + ... + (nRt ~ S(n) ~ ~ + (2r)~ + ... + (nrt' 

or 

8 n 1 8 n 

R~ L k~-1 ~ S(n) ~ ~ L k~-1. 
k=1 r k=1 

This shows that the partial sums S(n) are bounded above by 8((1X - 1)/r~ if 
IX > 2. But any partial sum lies between two such partial sums, so all of the 
partial sums of the series L I w 1- ~ are bounded above and hence the series 
converges if IX > 2. The lower bound for S(n) also shows that the series 
diverges if IX ~ 2. D 

Lemma 2. If IX > 2 and R > 0 the series 

I 1 ~ 
lwi>R (z- w) 

converges absolutely and uniformly in the disk I z I ~ R. 

PROOF. We will show that there is a constant M (depending on R and IX) 

such that, if IX ~ ·1, we have 

(1) 
1 M 

---<-­lz- wl~- lwl~ 

for all w with I w I > R and all z with I z I ~ R. Then we invoke Lemma 1 to 
prove Lemma 2. Inequality (1) is equivalent to 

(2) lz: w~~ ~ ~· 
To exhibit M we consider all win Q with lwl > R. Choose one whose 

modulus is minimal, say lwl = R + d, where d > 0. Then if lzl ~ R and 
I w I ~ R + d we have 

8 



1.6: The Weierstrass ffJ function 

and hence 

l~~a > ( 1 _ _ R )a=~ 
w - R + d M' 

where 

( R )-a 
M= 1-R+d . 

This proves (2) and also the lemma. D 

As mentioned earlier, we could try to construct the simplest elliptic 
function by using a series of the form 

1 
L (z-w)z· 

wen 

This has the appropriate principal part near each period. However, the 
series does not converge absolutely so we use, instead, a series with the 
exponent 2 replaced by 3. This will give us an elliptic function of order 3. 

Theorem 1.9. Let f be defined by the series 

1 
f(z) = L ( )3' 

wen Z- W 

Thenfis an elliptic function with periods w1, w2 and with a pole of order 3 at 
each period w in n. 

PROOF. By Lemma 2 the series obtained by summing over I w I > R converges 
uniformly in the disk lzl ::;; R. Therefore it represents an analytic function 
in this disk. The remaining terms, which are finite in number, are also 
analytic in this disk except for a 3rd order pole at each period w in the disk. 
This proves thatfis meromorphic with a pole of order 3 at each win n. 

Next we show thatfhas periods w 1 and w 2 • For this we take advantage 
of the absolute convergence of the series. We have 

But w - w1 runs through all periods in n with w, so the series for f(z + w1) 

is merely a rearrangement of the series for f(z). By absolute convergence we 
have f(z + w 1) = f(z). Similarly, f(z + w 2 ) = f(z) so f is doubly periodic. 
This completes the proof. D 

1.6 The Weierstrass f.J function 

Now we use the function of Theorem 1.9 to construct an elliptic function 
or order 2. We simply integrate the series forf(z) term by term. This gives us 
a principal part - (z - w)- 2/2 near each period, so we multiply by - 2 to 

9 



1 : Elliptic functions 

get the principal part (z- w)- 2 • There is also a constant of integration to 
reckon with. It is convenient to integrate from the origin, so we remove the 
term z- 3 corresponding to w = 0, then integrate, and add the term z- 2 . 

This leads us to the function 

1 iz -2 
2 + L: ( )3 dt. 
Z 0 ro;OO t- W 

Integrating term by term we arrive at the following function, called the 
Weierstrass f.J function. 

Definition. The Weierstrass f.J function is defined by the series 

1 { 1 1} f.J(z) = 2 + L ( )2 - 2 · 
Z w;OO Z- W W 

Theorem 1.10. The function f.J so defined has periods w1 and w2 • It is analytic 
except for a double pole at each period w in n. Moreover p(z) is an even 
function of z. 

PROOF. Each term in the series has modulus 

I 1 1 I lw2 
- (z- w)2 1 I z(2w- z) I 

(z - w)2 - w2 = w2(z - w)2 = w2(z - w)2 • 

Now consider any compact disk lzl :::;; R. There are only a finite numoer of 
periods w in this disk. If we exclude the terms of the series containing these 
periods we have, by inequality (1) obtained in the proof of Lemma 2, 

l(z -1 
ro)2 1:::;; 1~2 ' 

where M is a constant depending only on R. This gives us the estimate 

I z(2w- z) I MR(21wl + R) MR(2 + R/lrol) 3MR 
< < <--

W2(z- w)2 - lwl4 - lwl 3 - lwl 3 

since R < lwl for w outside the disk lzl:::;; R. This shows that the truncated 
series converges absolutely and uniformly in the disk I z I :::;; R and hence 
is analytic in this disk. The remaining terms give a second-order pole at 
each winside this disk. Therefore p(z) is meromorphic with a pole of order 2 
at each period. 

Next we prove that f.J is an even function. We note that 

(-z- w)2 = (z + w)2 = (z- (-w))2• 

Since -w runs through all nonzero periods with w this shows that p( -z) = 
p(z ), so f.J is even. 
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1.8: Differential equation satisfied by ffJ 

Finally we establish periodicity. The derivative of f.J is given by 

p'(z) = -2 L ( 1 )3" 
wen Z- W 

We have already shown that this function has periods w1 and 1102 • Thus 
p'(z + w) = p'(z) for each period w. Therefore the function p(z + w) - p(z) 
is constant. But when z = - w/2 this constant is p(w/2) - p(- ro/2) = 0 
since f.J is even. Hence p(z + w) = p(z) for each w, so f.J has the required 
periods. 0 

1. 7 The Laurent expansion of f.J near the 
origin 

Theorem 1.11. Let r =min {lwl:w =f. 0}. Thenfor 0 < lzl < r we have 

(3) 
1 00 

f.J(z) = 2 + L (2n + 1)G2n+ 2z2", 
Z n=l 

where 

(4) for n ~ 3. 

PROOF. IfO < lzl < r then lz/wl < 1 and we have 

1 
1 1 ( 00 (z )") ---..,(-__...,),...,.2 = 2 1 + L (n + 1) - , 

2 1 Z W n=l W w --
w 

(z- wf 

hence 

Summing over all w we find (by absolute convergence) 

1 00 1 1 00 

p(z) = 2 + L (n + 1) L ------..+2 z" = 2 + L (n + 1)Gn+ 2z", 
Z n=l w;<oW Z n=l 

where Gn is given by (4). Since p(z) is an even function the coefficients G2n+ 1 

must vanish and we obtain (3). 0 

1.8 Differential equation satisfied by f.J 

Theorem 1.12. The function f.J satisfies the nonlinear differential equation 

[p'(zW = 4p 3(z) - 60G4 p(z) - 140G6 • 

PROOF. We obtain this by forming a linear combination of powers of f.J and 
p' which eliminates the pole at z = 0. This gives an elliptic function which has 
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1 : Elliptic functions 

no poles and must therefore be constant. Near z = 0 we have 

t-J'(z) = - ~ + 6G4z + 20G6 z3 + · · ·, 
z 

an elliptic function of order 3. Its square has order 6 since 

, 2 4 24G4 
[t-J (z)] = - -- - 80G6 + .. ·, z6 z2 

where + · · · indicates a power series in z which vanishes at z = 0. Now 

3 4 36G4 
4t-J (z) = - + -- + 60G6 + .. · z6 z2 

hence 

' 2 3 60G4 [t-J (z)] - 4t-J (z) = - - - 140G6 + .. · z2 
so 

[t-J'(z)] 2 - 4t-J 3(z) + 60G4t-J(z) = -140G6 + · · ·. 
Since the left member has no pole at z = 0 it has no poles anywhere in a 
period parallelogram so it must be constant. Therefore this constant must 
be -140G6 and this proves the theorem. D 

1.9 The Eisenstein series and the invariants 
9 2 and 9 3 

Definition. If n ~ 3 the series 

is called the Eisenstein series of order n. The invariants 9 2 and 9 3 are the 
numbers defined by the relations 

The differential equation for t-7 now takes the form 

[t-J'(z)Y = 4t-J 3(z) - g2 t-J(z) - g3. 

Since only g2 and g3 enter in the differential equation they should determine 
t-7 completely. This is actually so because all the coefficients (2n + l)G2n+ 2 

in the Laurent expansion of t-J(z) can be expressed in terms of g2 and g3 . 

Theorem 1.13. Each Eisenstein series Gn is expressible as a polynomial in g2 

and g 3 with positive rational coefficients. In fact, if b(n) = (2n + 1 )G 2n + 2 

we have the recursion relations 
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1.10: The numbers e1, e2 , e3 

and 
n-2 

(2n + 3)(n - 2)b(n) = 3 L b(k)b(n - 1 - k) for n ::2: 3, 
k=l 

or equivalently, 

m-2 
(2m+ l)(m- 3)(2m- l)G2m = 3 L (2r - 1)(2m- 2r- l)G2rG2m-2r 

r=2 

form ::2:4. 

PROOF. Differentiation of the differential equation for f.J gives another 
differential equation of second order satisfied by f.J, 

(5) 

Now we write f.J(z) = z- 2 + L:'= 1 b(n)z2" and equate like powers of z 
in (5) to obtain the required recursion relations. D 

Definition. We denote by e1, e2 , e3 the values of f.J at the half-periods, 

The next theorem shows that these numbers are the roots of the cubic 
polynomial4g;J 3 - 92f.J - 93· 

Theorem 1.14. We have 

4g;J 3(z) - 92 f.J(z) - 93 = 4(f.J(z) - e1)(f.J(z) - e2)(f.J(z) - e3). 

Moreover, the roots e1, e2 , e3 are distinct, hence g2 3 - 27g/ # 0. 

PROOF. Since f.J is even, the derivative f.J' is odd. But it is easy to show that 
the half-periods of an odd elliptic function are either zeros or poles. In fact, 
by periodicity we have f.J'( -!w) = f.J'(w - !w) = f.J'(!w), and since f.J' is odd 
we also have f.J'( -!w) = - f.J'(!w). Hence f.J'(!w) = 0 if f.J'(!w) is finite. 
Since f.J'(z) has no poles at !w1 , !w2 , !(w1 + w2 ), these points must be 
zeros of f.J'. But f.J' is of order 3, so these must be simple zeros of f.J'. Thus 
f.J' can have no further zeros in the period-parallelogram with vertices 
0, w 1, w2 , w 1 + w2 . The differential equation shows that each of these points 
is also a zero of the cubic, so we have the factorization indicated. 

Next we show that the numbers e1, e2 , e3 are distinct. The elliptic function 
f.J(z)- e1 vanishes at z = !w1. This is a double zero since f.J'(!w 1) = 0. 
Similarly, f.J(z)- e2 has a double zero at !w2. If e1 were equal to e2, the 
elliptic function f.J(z) - e1 would have a double zero at !w1 and also a double 
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1 : Elliptic functions 

zero at ~OJ2 , so its order would be ~ 4. But its order is 2, so e 1 =f. e2. Similarly, 
e1 =f. e3 and e2 =f. e3. 

If a polynomial has distinct roots, its discriminant does not vanish. (See 
Exercise 1.7.) The discriminant of the cubic polynomial 

4x3- 92X- 93 

is 9/ - 279/. When x = &;J(z) the roots of this polynomial are distinct so 
the number g/ - 279/ =f. 0. This completes the proof. 0 

1.11 The discriminant L\ 

The number ,1 = 9/ - 279/ is called the discriminant. We regard the 
invariants 9 2 and 93 and the discriminant ,1 as functions of the periods OJ 1 
and OJ2 and we write 

The Eisenstein series show that 9 2 and 93 are homogeneous functions of 
degrees -4 and -6, respectively. That is, we have 

92(AOJ1,AOJ2) = A- 49 2(0J~>OJ2 ) and 93(AOJ1,AOJ2) = A- 693(0JbOJ2) 

for any A =f. 0. Hence ,1 is homogeneous of degree -12, 

,1(AOJ~> AOJ2) = A -l 2,1(0J1, OJ2). 

Taking A = 1/0J1 and writing c = OJ2/0J1 we obtain 

92(1, c)= OJ1 4 92(0J1, OJ2), 93(1, c)= OJ1 693(0J1, OJ2), 
,1(1, c) = OJ 112,1(0J1, OJ2). 

Therefore a change of scale converts 92 , 93 and ,1 into functions of one 
complex variable c. We shall label OJ 1 and OJ2 in such a way that their ratio 
c = OJ2/0J1 has positive imaginary part and study these functions in the upper 
half-plane Im(c) > 0. We denote the upper half-plane Im(c) > 0 by H. 

If c E H we write 92(c), 93(c) and ,1(c) for 92(1, c) 93(1, c) and ,1(1, c), 
respectively. Thus, we have 

and 

+oo 1 
92(c) = 60 L ( )4 ' 

m, n = - oc m + nc 
(m, n) * (0, 0) 

+ 00 1 

93(c) = 140 m,n~-oo (m + m)6 
(m,n)*(O,O) 

,1(c) = 92 3(c) - 279/(c). 

Theorem 1.14 shows that ,1(c) =f. 0 for all c in H. 
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l.l2: Klein's modular function J(r) 

1.12 Klein's modular function J(r) 

Klein's function is a combination of g2 ·and g3 defined in such a way that, 
as a function of the periods w 1 and w2 , it is homogeneous of degree 0. 

Definition. If w2/w 1 is not real we define 

g23(wl, w2) 
J(w1, w2) = ~( ) . 

wl,w2 

Since g2 3 and~ are homogeneous of the same degree we have J(A.w~> A.w2) 
= J(w 1, w2). In particular, if r E H we have 

J(1, r) = J(w 1, w2). 

Thus J(w 1, w2) is a function of the ratio r alone. We write J(r) for J(l, r). 

Theorem 1.15. The functions g2(r), g3(r), ~(r), and J(r) are analytic in H. 

PROOF. Since ~(r) =I= 0 in H it suffices to prove that g2 and g3 are analytic 
in H. Both g, and g3 are given by double series of the form 

+oo 1 

m,n~-oo (m + nr)~ 
(m,n),<(O,O) 

··ith IX > 2. Let r = x + iy, where y > 0. We shall prove that if IX > 2 this 
series converges absolutely for any fixed r in H and uniformly in every strip 
S of the form 

S = {x + iy:lxl ~A, y ~ {J > 0}. 

(See Figure 1.4.) To do this we prove that there is a constant M > 0, depending 
only on A and on {J, such that 

1 
(6) 

M ,.--------:-:: < .,-------,-::-
1m+ nrl"- lm +nil" 

for all r inS and all (m, n) =I= (0, 0). Then we invoke Lemma 1. 
To prove (6) it suffices to prove that 

lm + nrl 2 >Kim+ nW 
for some K > 0 which depends only on A and b, or that 

(7) (m + nx)2 + (ny)2 > K(m2 + n2). 

If n = 0 this inequality holds with any K such that 0 < K < 1. If n =I= 0 
let q = m/n. Proving (7) is equivalent to showing that 

(q + xf + y2 

(8) 1 2 > K 
+q 
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1 : Elliptic functions 

y 

-A A 

Figure 1.4 

for some K > 0. We will prove that (8) holds for all q, with 

()2 
K=----~ 

1 + (A + b)2 

if I xI ~ A andy 2 b. (This proof was suggested by Christopher Henley.) 
If I q I ~ A + b inequality (8) holds trivially since (q + x)2 2 0 and 

y2 2 b2 . Iflql >A+ b then lx/ql < lxi/(A +b)~ A/(A +b)< 1 so 

hence 

and 

(9) 

11 + ::12 1 -1::1 > 1 -_A = _b 
q q A+b A+b 

qb 
lq + xl 2 A+ b 

Now q2 j(l + q2 ) is an increasing function of q2 so 

q2 (A + b)2 
-- > ------=--= 
1 + q2 - 1 + (A + b)2 

when q2 > (A + bf. Using this in (9) we obtain (8) with the specified K. 0 

1.13 Invariance of J under unimodular 
transformations 

If w 1, w 2 are given periods with nonreal ratio, introduce new periods 
w 1', w 2 ' by the relations 
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1.13: In variance of J under unimodular transformations 

where a, b, c, dare integers such that ad - be = 1. Then the pair (rot'• ro2') 
is equivalent to (rot. ro2); that is, it generates the same set of periods n. 
Therefore g2(rot'• ro2') = g2(rot, ro2) and g3(rot', ro2') = g3(rot. ro2) since g2 
and g3 depend only on the set of periods n. Consequently, ~(rot'• ro2') = 
~(rot, ro2) and J(rot'• ro2') = J(rot, ro2). 

The ratio of the new periods is 

, ro2' aro2 + brot ar + b 
't' = rot' cro2 + drot C't' + d' 

where r = ro2/rot. An easy calculation shows that 

, (a' +b) ad- be Im(r) 
lm(r) = Im cr + d = lcr + dl2 Im(r) = jcr + dl2' 

Hence r' E H if and only if r E H. The equation 

, ar + b 
't' =---

C't' + d 

is called a unimodular transformation if a, b, c, dare integers with ad - be = 1. 
The set of all unimodular transformations forms a group (under composition) 
called the modular group. This group will be discussed further in the next 
chapter. The foregoing remarks show that the function J(r) is invariant 
under the transformations of the modular group. That is, we have: 

Theorem 1.16. If r E H and a, b, c, d are integers with ad - be = 1, then 
(ar + b)/(cr +d) E Hand 

(10) J(a' + b) = J(r). 
C't' + d 

Note. A particular unimodular transformation is r' = r + 1, hence (10) 
shows that J(r + 1) = J(r). In other words, J(r) is a periodic function of't' 
with period 1. The next theorem shows that J(r) has a Fourier expansion. 

Theorem 1.17. If r E H, J(r) can be represented by an absolutely convergent 
Fourier series 

ao 

(11) J(r) = L a(n)e2"i"'. 
n=- oo 

PROOF. Introduce the change of variable 

Then the upper half-plane H maps into the punctured unit disk 

D = {x: 0 < lxl < 1}. 
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I : Elliptic functions 

(See Figure 1.5.) Each r in H maps onto a unique point x in D, but each 
x in D is the image of infinitely many points in H. If r and r' map onto x 
then e21tit = e21tit' so rand r' differ by an integer. 

H 

Figure 1.5 

If X ED, let 

f(x) = J(r) 

where r is any of the points in H which map onto x. Since J is periodic with 
period 1, J has the same value at all these points so .f(x) is well-defined. 
Now f is analytic in D because 

, d d dr , ;dx J'(r) f (x) = -d J(r) = -d J(r) -d = J (r) -d = 2 . 27tit' x r x r nw 

so f'(x) exists at each point in D. Since f is analytic in D it has a Laurent 
expansion about 0, 

C1) 

f(x) = L a(n)x", 
n=- oo 

absolutely convergent for each x in D. Replacing x by e21tit we see that J(r) 
has the absolutely convergent Fourier expansion in (11). D 

Later we will show that a_n = 0 for n;;::: 2, that a_ 1 = 12-3, and that 
the Fourier expansion of 123 J(r) has integer coefficients. To do this we first 
determine the Fourier expansions of g2(r), g3(r) and ~(r). 

1.14 The Fourier expansions of g 2(r) 
and g3(r) 

Each Eisenstein series L<m,nl*<O,o> (m + nr)-k is a periodic function of r of 
period 1. In particular, g2(r) and g3(r) are periodic with period 1. In this 
section we determine their Fourier coefficients explicitly. 

We recall that 

1 
g3(r) = 140 L 6 • 

(m,n),O(O, 0) (m + nr) 
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1.14: The Fourier expansions of g2(r) and g3(r) 

These are double series in m and n. First we obtain Fourier expansions for 
the simpler series 

+oo 1 
L and 

m=-oo(m+mf 

+oo 1 
I ( )6. m=-oo m+m: 

Lemma3. lfr: E Hand n > 0 we have the Fourier expansions 

+ 00 1 8n:4 00 I _ I r3e2"irnt 
m=-oo (m + nt}4 - 3 r=l 

and 

PROOF. Start with the partial fraction decomposition of the cotangent: 

n cot nr: =- + L ---- . 1 +oo ( 1 1) 
r: m=-oo r: + m m 

m'1'0 

Let x = e2"ir. If r: E H then lx I < 1 and we find 

cos nr: e2"ir + 1 x + 1 ( X 1 ) 
n:cot nr: = n-.-- = ni 2,.;r 1 = n:i--1 = -ni -1-- + -1--

sm nr: e - x - - x - x 

= - ni( I Xr + I xr) = -n:i(1 + 2 I xr). 
r=l r=O r=l 

In other words, if r: E H we have 

1 +oo ( 1 1) ( 00 
) - + I -- - - = -ni 1 + 2 I e2"irt . 

r: m=- 00 r: + m m r= 1 
m'1'0 

Differentiating repeatedly we find 

(12) 
00 1 00 I - - (2n:i)2 I re2"irt 

- ! 2 - m=-oo (r: + m)2 - r=l 
m'1'0 

1 

+oo 1 oo . 
-3! L 4 = -(2n:i)4 L r3e2n~rr 

m=-oo (r: + m) r=l 

and 

- 5 I ~00 1 = (2 )6 ~ 5 2 . t £..- - ni £..- r e "" . 
·m=-oo (r: + m)6 r=l 

Replacing r: by nr: we obtain Lemma 3. 0 
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I : Elliptic functions 

Theorem 1.18. If r E H we have the Fourier expansions 

gz(r) =- 1 + 240 L a 3(k)e2"ikr 4~{ 00 
} 

3 k= 1 

and 

where aa(k) = Ldlk da. 

PROOF. We write 

+oo 1 

gz(r) = 60 m,n~-oo (m + nr)4 
(m, n) * (0, 0) 

= 6o{ I ~ + f Y ( 1 4 + 1 4)} 
m=-oo m n=lm=-oo (m+nr) (m-nr) 

m*O(n=O) 

{ 
oo +oo 1 } 

= 60 2((4) + 2n~l m=~oo (m + nr)4 

= 60 - + - L L r3xnr {
2n4 16n4 oo oo } 

90 3 n=l r=l 

where x = e2 ";". In the last double sum we collect together those terms for 
which nr is constant and we obtain the expansion for g2(r). The formula 
for g3 (r) is similarly proved. 0 

1.15 The Fourier expansions of 8(r) and J(r) 

Theorem 1.19. lfr E H we have the Fourier expansion 

00 

,1(r) = (2n)12 L r(n)e2"inr 
n= 1 

where the coefficients r(n) are integers, with r(l) = 1 and r(2) = - 24. 

Note. The arithmetical function r(n) is called Ramanujan's tau function. 
Some of its arithmetical properties are described in Chapter 4. 

PROOF. Let 
00 

B = L a5(n)x". 
n=l n= 1 

Then 

64n12 
,1(r) = g23(r)- 27g/(r) = ~ {(1 + 240A)3 - (1 - 504B)2}. 
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1.15: The Fourier expansions of Ll(r) and J(r) 

Now A and B have integer coefficients, and 

(1 + 240A)3 - ( 1 - 504B)2 = 1 + 720A + 3(240f A 2 + (240)3 A 3 - 1 
+ 1008B - (504)2 B2 

= 122(5A + 7B) 

+ 123(100A2 - 147B2 + 8000A3). 
But 

00 

5A + 7B = L {5a3(n) + 7a5(n)}x" 
n=l 

and 

so 

5d3 + 7d5 = 0 (mod 12). 

Hence 123 is a factor of each coefficient in the power series expansion of 
(1 + 240A)3 - (1 - 504B)2 so 

~(r) = 64n12 {123 I r(n)e2"i"'} = (2n)12 I r(n)e21tin< 
27 n=l n=l 

where the r(n) are integers. The coefficient of x is 122(5 + 7), so r(l) = 1. 
Similarly, we find r(2) = - 24. 0 

Theorem 1.20. If r E H we have the Fourier expansion 

00 

123 J(r) = e- 2";' + 744 + L c(n)e2 ";"', 

n=l 

where the c(n) are integers. 

PROOF. We agree to write I for any power series in x with integer coefficients. 
Then if x = e2";' we have 

and hence 

g23(r) = ~tn12(1 + 240x + I)3 = ~tn12(1 + 720x +I), 

~(r) = ~tn12 {123x(1 - 24x + I)} 

g/(r) 1 + 720x + I 1 
J(r) = ~(r) = 123x(1 - 24x + I) = 123x (1 + 720x + I)(1 + 24x + I) 

so 

1 00 

123 J(r) = - + 744 + L c(n)x", 
X n=l 

where the c(n) are integers. 0 
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I : Elliptic functions 

Note. The coefficients c(n) have been calculated for n :=:; 100. Berwick 
calculated the first 7 in 1916, Zuckerman the first 24 in 1939, and Van 
Wijngaarden the first 100 in 1953. The first few are repeated here. 

c(O) = 744 
c(1) = 196, 884 
c(2) = 21, 49~, 760 
c(3) = 864, 299, 970 
c(4) = 20, 245, 856, 256 
c(5) = 333, 202, 640, 600 
c(6) = 4, 252, 023, 300, 096 
c(7) = 44, 656, 994, 071, 935 
c(8) = 401, 490, 886, 656, 000 

The integers c(n) have a number of interesting arithmetical properties. In 
1942 D. H. Lehmer [20] proved that 

(n + 1)c(n) = 0 (mod 24) for all n :2: 1. 

In 1949 Joseph Lehner [23] discovered divisibility properties of a different 
kind. For example, he proved that 

c(5n) = 0 (mod 25), 

c(7n) = 0 (mod 7), 

c(lln) = 0 (mod 11). 

He also discovered congruences for higher powers of 5, 7, 11 and, in a later 
paper [24] found similar results for the primes 2 and 3. In Chapter 4 we will 
describe how some of Lehner's congruences are obtained. 

An asymptotic formula for c(n) was discovered by Petersson [31] in 1932. 
It states that 

e4"vn 
c(n) "' M as n --+ oo . 

....; 2 n3/4 

This formula was rediscovered independently by Rademacher [37] in 
1938. 

The coefficients r(n) in the Fourier expansion of L\(r) have also been 
extensively tabulated by D. H. Lehmer [19] and others. The first ten entries 
in Lehmer's table are repeated here: 

r(1) = 1 

r(2) = -24 

r(3) = 252 

r(4) = -1472 

r(5) = 4830 

r(6) = -6048 

r(7) = - 16744 

r(8) = 84480 

r(9) = - 113643 

r(lO) = -115920. 

Lehmer has conjectured that r(n) =f. 0 for all n and has verified this for all 
n < 214928639999 by studying various congruences satisfied by r(n). For 
papers on r(n) see Section F35 of [27]. 
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Exercises for Chapter I 

Exercises for Chapter 1 

1. Given two pairs of complex numbers (w 1, w2) and (w 1', w/) with nonreal ratios 
w2 jw1 and w/jw{ Prove that they generate the same set of periods if, and only if, 

there is a 2 x 2 matrix (: :) with integer entries and determinant ± 1 such that 

2. Let S(O) denote the sum of the zeros of an elliptic function f in a period parallelo­
gram, and let S( oo) denote the sum of the poles in the same parallelogram. Prove 
that S(O) - S( oo) is a period off [Hint: Integrate <:f(z)/f(z).] 

3. (a) Prove that p(u) = p(v) if, and only if, u - v or u + vis a period of p. 
(b) Let a~> ... , a. and b1 , ••• , bm be complex numbers such that none of the numbers 

p(a;) - p(b i) is zero. Let 

f(z) = }J
1 
[p(z) - p(ak)] /.fJ [p(z) - p(b,)]. 

Prove that f is an even elliptic function with zeros at a~> ... , a. and poles at 
b!, ... , bm. 

4. Prove that every even elliptic function f is a rational function of p, where the 
periods of p are a subset of the periods off 

5. Prove that every elliptic function f can be expressed in the form 

where R1 and R 2 are rational functions and p has the same set of periods as f 

6. Let f and g be two elliptic functions with the same set of periods. Prove that there 
exists a polynomial P(x, y), not identically zero, such that 

P[J(z), g(z)] = C 

where C is a constant (depending on f and g but not on z). 

7. The discriminant of the polynomial f(x) = 4(x - x 1)(x- x2)(x- x3 ) is the 
product 16{(x2 - x1)(x3 - x2)(x3 - x1)} 2. Prove that the discriminant of f(x) = 
4x3 - ax - b is a 3 - 27b2 • 

8. The differential equation for p shows that p'(z) = 0 if z = wd2, w2/2 or 
(w1 + w2)/2. Show that 

p"(~~) = 2(ei- e2)(ei- eJ) 

and obtain corresponding formulas for p"(w2/2) and p"((w1 + w2)/2). 
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1 : Elliptic functions 

9. According to Exercise 4, the function fJ(2z) is a rational function of fJ(z). Prove 
that, in fact, 

(2z) = {~'(z) + ig2}
2 + 2g3 ~(z) = _ 2~(z) + !(~~(z))2 • 

~ 4~3(z) - g2~(z) - g 3 4 ~ (z) 

10. Let w1 and w2 be complex numbers with non real ratio. Let f(z) be an entire function 
and assume there are constants a and b such that 

f(z + ro1) = af(z), f(z + ro2) = bf(z), 

for all z. Prove that f(z) = Ae82, where A and B are constants. 

11. If k ;:::: 2 and r E H prove that the Eisenstein series 

L (m + nr)-2k 
(m, n) * (0, 0) 

has the Fourier expansion 

12. Refer to Exercise 11. If r E H prove that 

and deduce that 

G2k(- 1/r) = r 2kG 2k(r) 

G2k(i) = 0 

G2k(e2ni/3) = 0 
if k is odd, 

if k ¢= 0 (mod 3). 

13. Ramanujan's tau function r(n) is defined by the Fourier expansion 

00 

~(r) = (2rr)12 L r(n)e2ninr, 
n=l 

derived in Theorem 1.19. Prove that 

r(n) = 8000{(a3 o a 3) o a 3}(n)- 147(a5 o a5 )(n), 

where f o g denotes the Cauchy product of two sequences, 
n 

(f o g)(n) = L f(k)g(n - k), 
k=O 

and a.(n) = Ldln d" for n;:::: 1, with a 3(0) = 2!0 , a 5(0) = - s64· 
[Hint: Theorem 1.18.] 

14. A series of the form L;:== 1 f(n)x"/(1 - x") is called a Lambert series. Assuming 
absolute convergence, prove that 

oo x" oo 

L f(n) ~~n = L F(n)x", 
n=l 1-x n=l 

where 

F(n) = L f(d). 
djn 
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Exercises for Chapter I 

Apply this result to obtain the following formulas, valid for I xI < 1. 

oo Jl(n)x" 
(a) n~l 1 - x" =X. 

00 q>(n)x" x 
(b) L -1 - n = (1 - )2. n=l X X 

00 nax" 00 

(c) L --. = L u.(n)x". 
n=11-x n=l 

00 il(n)x" 00 

(d) I --. = I x",. 
n=11-x n=l 

(e) Use the result in (c) to express g2(r) and g 3(r) in terms of Lambert series in 
X= e2nit. 

Note. In (a), Jl(n) is the Mobius function; in (b), q>(n) is Euler's totient; and in (d), 
il(n) is Liouville's function. 

15. Let 

and let 

00 

F(x) = L 
n=l 

(nodd) 

1 + x" 

(a) Prove that F(x) = G(x) - 34G(x2 ) + 64G(x4 ). 

(b) Prove that 

00 n5 31 

.~1 1 + e"" = 504. 
(n odd) 

(c) Use Theorem 12. 17 in [ 4] to prove the more general result 

~ n4k+I 24k+I _ 1 
2: 1 + e"., = 8k + 4 8 4k+l· 

n =I 
(nodd) 
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2 The modular group 
and modular functions 

2.1 Mobius transformations 

In the foregoing chapter we encountered unimodular transformations 

, ar + b 
r=--

er + d 

where a, b, e, d are integers with ad - be = 1. This chapter studies such 
transformations in greater detail and also studies functions which, like 
J(r), are invariant under unimodular transformations. We begin with some 
remarks concerning the more general transformations 

(1) f(z) = az + b 
ez + d 

where a, b, e, d are arbitrary complex numbers. 
Equation (1) definesf(z) for all z in the extended complex number system 

C* = C u { oo} except for z = -d/e and z = oo. We extend the definition 
off to all of C* by defining 

and 
a 

f(oo) = -, 
e 

with the usual convention that z/0 = oo if z :f. 0. 
First we note that 

(2) f(w) _ f(z) = (ad - be)(w - z) 
(ew + d)(ez + d)' 

which shows thatfis constant if ad - be = 0. To avoid this degenerate case 
we assume that ad - be :f. 0. The resulting rational function is called a 
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2.1 : Mobius transformations 

Mobius transformation. It is analytic everywhere on C* except for a simple 
pole at z = -d/e. 

Equation (2) shows that every Mobius transformation is one-to-one on 
C*. Solving (1) for z in terms off(z) we find 

df(z)- b 
z = --=---.-C---

-ef(z) +a' 

so f maps C* onto C*. This also shows that the inverse function f -l is a 
Mobius transformation. 

Dividing by w - z in (2) and letting w --+ z we obtain 

, ad-be 
f (z) = (ez + d)2' 

hence f'(z) # 0 at each point of analyticity. Therefore f is conformal every­
where except possibly at the pole z = -d/e. 

Mobius transformations map circles onto circles (with straight lines 
being considered as special cases of circles). To prove this we consider the 
equation 

(3) Azz + Bz + Bz + c = 0, 

where A and C are real. The points on any circle satisfy such an equation 
with A # 0, and the points on any line satisfy such an equation with A = 0. 
Replacing z in (3) by (aw + b)/(ew + d) we find that w satisfies an equation 
of the same type, 

A'ww + B'w + E'w + C' = 0 

where A' and C' are also real. Hence every Mobius transformation maps a 
circle or straight line onto a circle or straight line. 

A Mobius transformation remains unchanged if we multiply all the 
coefficients a, b, e, d by the same nonzero constant. Therefore there is no loss 
in generality in assuming that ad - be = 1. 

For each Mobius transformation (1) with ad - be = 1 we associate the 
2 x 2 matrix 

Then det A = ad - be = 1. If A and B are the matrices associated with 
Mobius transformations f and g, respectively, then it is easy to verify 
that the matrix product AB is associated with the composition fog, where 

(fog)(z) = f(g(z)). The identity matrix I=(~ ~) is associated with the 

identity transformation 

1z + 0 
f(z) = z = Oz + 1' 
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2: The modular group and modular functions 

and the matrix inverse 

A_ 1 =( d-b) 
-c a 

is associated with the inverse off, 

dz- b 
f-l(z) = --­

-cz +a 

Thus we see that the set of all Mobius transformations with ad - be = 1 
forms a group under composition. This chapter is concerned with an impor­
tant subgroup in which the coefficients a, b, c, d are integers. 

2.2 The modular group r 
The set of all Mobius transformations of the form 

, ar + b 
r =---

cr + d' 

where a, b, c, dare integers with ad - be = 1, is called the modular group and 
is denoted by r. The group can be represented by 2 X 2 integer matrices 

A=(: ~) withdetA = 1, 

provided we identify each matrix with its negative, since A and -A represent 
the same transformation. Ordinarily we will make no distinction between 

the matrix and the transformation. If A = (: ~) we write 

Ar = ar +b. 
cr + d 

The first theorem shows that r is generated by two transformations, 

Tr = r + 1 and Sr = 
1 

Theorem 2.1. The modular group r is generated by the two matrices 
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T = (~ ~) and s = (~ 
That is, every A in r can be expressed in the form 

A = T"'ST" 2S · · · ST"k 

-1) o· 

where the n; are integers. This representation is not unique. 



2.2: The modular group r 

PROOF. Consider first a particular example, say 

A= c; 2:} 
We will express A as a product of powers of Sand T. Since S2 = I, only the 
first power of S will occur. 

Consider the matrix product 

4n + 9) 
11n + 25 · 

Note that the first column remains unchanged. By a suitable choice of n 
we can make llln + 251 < 11. For example, taking n = -2 we find 
lln + 25 = 3 and 

-2 ( 4 1) AT = 11 3 . 

Thus by multiplying A by a suitable power of T we get a matrix (: 

I d I < I c 1. Next, multiply by S on the right: 

~)with 

-2 ( 4 1)(0 -1) (1 
AT S = 11 3 1 0 = 3 

-4) 
-11 . 

This interchanges the two columns and changes the sign of the second column. 
Again, multiplication by a suitable power of T gives us a matrix with 
I d I < lc 1. In this case we can use either T4 or T 3 . Choosing T4 we find 

AT- 2ST4 = (31 -4)(1 4) (1 0) 
-11 0 1 - 3 1 . 

Multiplication by S gives 

AT- 2ST4 S = (~ 
Now we multiply by T3 to get 

-1) 
-3. 

AT- 2ST4 ST 3 = G -1)(1 3) = (0 
-3 0 1 1 

Solving for A we find 

A = sT- 3ST- 4 ST2 . 

-1) 0 = s. 

At each stage there may be more than one power of T that makes I d I < I c I 
so the process is not unique. 

To prove the theorem in general it suffices to consider those matrices 

A=(: ~)in r with c 2 0. We use induction on c. 
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2: The modular group and modular functions 

If c = 0 then ad = 1 so a = d = ± 1 and 

A= ( ± ~ ± ~) = (~ ±n = y±n. 

Thus, A is a power ofT. 
If c = 1 then ad - b = 1 so b = ad - 1 and 

A = G ad; 1) = (~ ~)(~ - ~)(~ ~) = yasrd. 

Now assume the theorem has been proved for all matrices A with lower 
left-hand element < c for some c ;;::: 1. Since ad - be = 1 we have (c, d) = 1. 
Dividing d by c we get 

d = cq + r, where 0 < r < c. 

Then 

and 

-a)· 
-c 

By the induction hypothesis, the last matrix is a product of powers of S 
and T, so A is too. This completes the proof. 0 

2.3 Fundamental regions 

Let G denote any subgroup of the modular group r. Two points r and r' 
in the upper half-plane H are said to be equivalent under G if r' = A r for 
some A in G. This is an equivalence relation since G is a group. 

This equivalence relation divides the upper half-plane H into a disjoint 
collection of equivalence classes called orbits. The orbit Gr is the set of all 
complex numbers of the form At where A E G. 

We select one point from each orbit; the union of all these points is 
called a fundamental set of G. To deal with sets having nice topological 
properties we modify the concept slightly and define a fundamental region 
of G as follows. 

Definition. Let G be a subgroup of the modular group r. An open subset 
Ra of H is called a fundamental region of G if it has the following two 
properties: 

30 

(a) No two distinct points of Ra are equivalent under G. 
(b) If r E H there is a point r' in the closure of Ra such that r' is equivalent 

tor under G. 



2.3: Fundamental regions 

For example, the next theorem will show that a fundamental region Rr 
of the full modular group r consists of all -r in H satisfying the inequalities 

1-rl > 1, 1-r + il < 1. 

This region is the shaded portion of Figure 2.1. 

-r = u + iv, v > 0 

1-rl= I 

----------~----.----+-----.----+--------.-u 
-1 -t 0 I 

2 

Figure 2.1 Fundamental region of the modular group 

The proof will use the following lemma concerning fundamental pairs of 
periods. 

Lemma 1. Given w1', w/ with w2'/w 1' not real, let 

n = {mwl' + nw2': m, n integers}. 

Then there exists a fundamental pair (w1, w2) equivalent to (w 1', w2') such 
that 

(w2 ) (a b) (w/) w
1 

= c d w
1

, with ad- be = 1, 

and such that 

PROOF. We arrange the elements of nina sequence according to increasing 
distances from the origin, say 

n = {0, wlo w2, ... } 

where 

O<lw1 l:::;;lw2 1:::;;··· and argwn<argwn+l if lwnl=lwn+ll· 
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2: The modular group and modular functions 

Let w1 = w1 and let w 2 be the first member of this sequence that is not a 
multiple of w1• Then the triangle with vertices 0, wl> w 2 contains no element 
of Q except the vertices, so (w1, w2 ) is a fundamental pair which spans the 
set n. Therefore there exist integers a, b, c, d with ad - be = ± 1 such that 

If ad- be= -1 we can replace c by -c, d by -d, and w1 by -w1 and the 
same equation holds, except now ad - be = 1. Because of the way we have 
chosen w1, w2 we have 

and 

since w1 ± w2 are periods in Q occurring later than w2 in the sequence. 0 

Theorem 2.2. If r' E H, there exists a complex number -r in H equivalent to r' 
under r such that 

1-rl ~ 1, 1-r + 11 ~ 1-rl and 1-r- 11 ~ 1-rl. 

PRooF. Let w1' = 1, w/ = -r' and apply Lemma 1 to the set of periods 
Q = {m + m': m, n integers}. Then there exists a fundamental pair w1, w 2 

with lw2 1 ~ lw1 l, lw1 ± w 2 1 ~ lw2 1. Let -r = w 2/w 1• Then -r = (: :}' 

with ad - be = 1 and 

1-rl ~ 1, 1-r ± 11 ~ 1-rl. 0 

Nate. Those -r in H satisfying I -r ± 11 ~ I -r I are also those satisfying 
1-r+i'I::S;;l. 

Theorem 2.3. The open set 

Rr = {-reH:I-rl > 1,1-r + i'l < 1} 

is a fundamental region for r. Moreover, if A E r and if Ar = 't for some 
-r in Rr, then A = I. In other words, only the identity element has fixed 
points in Rr. 

PROOF. Theorem 2.2 shows that if -r' E H there is a point -r in the closure of 
Rr equivalent to -r' under r. To prove that no two distinct points of Rr are 

equivalent under r, let -r' = Ar where A=(: :} We show first that 

Im(-r') < lm(-r) if-r ERr and c # 0. We have 

, Im(-r) 
lm(-r) = lc-r + dl2. 
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2.3: Fundamental regions 

If-rERrandc ::I Owe have 

lc-r + dl 2 = (c-r + d)(ci +d)= c2-ri + cd(r + i) + d2 > c2 - lcdl + d2• 

If d = 0 we find I c-r + d 12 > c2 ~ 1. If d ::I 0 we have 

c2 - lcdl + d2 =(lei- ldl)2 + lcdl ~ lcdl ~ 1 

so again lc-r + dl 2 > 1. Therefore c ::I 0 implies lc-r + dl 2 > 1 and hence 
lm(-r') < lm(-r). In other words, every element A of r with c ::1 0 decreases 
the ordinate of each point -r in Rr. 

Now suppose both-rand -r' are equivalent interior points of Rr. Then 

, m+b 
't =--

C't + d 
and 

dr' - b 
't = . 

-c-r' +a 

If c ::I 0 we have both lm(-r') < Im(-r) and Im(-r) < Im(-r'). Therefore c = 0 
so ad = 1, a = d = ± 1, and 

A=(::)=(±~ ±~)=T±b. 
But then b = 0 since both-rand -r' are in Rr so -r = -r'. This proves that no 
two distinct points of Rr are equivalent under r. 

Finally, if Ar = -r for some -r in Rr, the same argument shows that c = 0, 
a = d = ± 1, so A = I. This proves that only the identity element has fixed 
points in Rr. 0 

Figure 2.2 shows the fundamental region Rr and some of its images under 
transformations of the modular group. Each element of r maps circles into 
circles (where, as usual, straight lines are considered as special cases of 
circles). Since the boundary curves of Rr are circles orthogonal to the real 

I T 

Figure 2.2 Images of the fundamental region Rr under elements of r 
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2: The modular group and modular functions 

axis, the same is true of every image f(Rr) under the elements f of r. The 
set of all images f(Rr). where fEr, is a collection of nonoverlapping open 
regions which, together with their boundary points, cover all of H. 

2.4 Modular functions 

Definition. A functionfis said to be modular if it satisfies the following three 
conditions: 

(a) f is meromorphic in the upper half-plane H. 
(b) f(Ar) = f(r) for every A in the modular group r. 
(c) The Fourier expansion offhas the form 

00 

f(r) = L a(n)e2"int. 
n= -m 

Property (a) states thatfis analytic in H except possibly for poles. Property 
(b) states that f is invariant under all transformations of r. Property (c) is 
a condition on the behavior of fat the point r = ioo. If x = e2"it the Fourier 
series in (c) is a Laurent expansion in powers of x. The behavior off at ioo is 
described by the nature of this Laurent expansion near 0. If m > 0 and 
a( -m) '# 0 we say thatfhas a pole of order mat ioo. If m ~ 0 we say fis 
analytic at ioo. Condition (c) states thatfhas at worst a pole of order mat 
ioo. 

The function J is a modular function. It is analytic in H with a first order 
pole at ioo. Later we show that every modular function can be expressed as 
a rational function of J. The proof of this depends on the following property 
of modular functions. 

Theorem2.4. Iffis modular and not identically zero, then in the closure ofthe 
fundamental region Rr, the number of zeros off is equal to the number of 
poles. 

Nate. This theorem is valid only with suitable conventions at the boundary 
points of Rr. First of all, we consider the boundary of Rr as the union of 
four edges intersecting at four vertices p, i, p + 1, and ioo, where p = e2"if3 

(see Figure 2.3). The edges occur in equivalent pairs (1), (4) and (2), (3). 
Iffhas a zero or pole at a point on an edge, then it also has a zero or pole 

at the equivalent point on the equivalent edge. Only the point on the leftmost 
edge (1) or (2) is to be counted as belonging to the closure of Rr. 

The order of the zero or pole at the vertex p is to be divided by 3; the order 
at i is to be divided by 2; the order at ioo is the order of the zero or pole at 
x = 0, measured in the variable x = e2"it. 
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2.4: Modular functions 

/ 

(1) 

p 

"' 
/ 

/ 

ooi __ ..... __ 

Figure 2.3 

.... , 
' ' 

(4) 

p + 1 

PROOF. Assume first that f has no zeros or poles on the finite part of the 
boundary of Rr· Cut Rr by a horizontal line, Im('r) = M, where M > 0 is 
taken so large that all the zeros or poles off are inside the truncated region 
which we call R. [Iff had an infinite number of poles in Rr they would have 
an accumulation point at ioo, contradicting condition (c). Similarly, since f 
is not identically zero, f cannot have an infinite number of zeros in Rr.] 
Let oR denote the boundary of the truncated region R. (See Figure 2.4.) 

Let N and P denote the number of zeros and poles off inside R. Then 

N - P = - - d1: = - + + + + 1 i f'(7:) 1 {1 l l l l } 
2ni oR j(1:) 2ni (1) (Zl (J) <4 > (5) 

where the path is split into five parts as indicated in Figure 2.5. The integrals 
along (1) and (4) cancel because of periodicity. They also cancel along (2) 
and (3) because (2) gets mapped onto (3) with a reversal of direction under 

-t + iM ..------------, t + iM -
R t 

-
p p + 1 

Figure 2.4 
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2: The modular group and modular functions 

J (1) 

(5) 

(3) 

~ 

Figure 2.5 

the mapping u = S(r) = -1/r, orr = s- 1u = S(u). The integrand remains 
unchanged because f[S(u)] = f(u) implies f'[S(u)]S'(u) = f'(u) so 

J'(r) d = f'[S(u)] S'( ) d = f'(u) d 
f(r) r f[S(u)] u u f(u) u. 

Thus we are left with 

N - P = - 1 J f'(r) dr. 
2ni (5 ) f(r) 

We transform this integral to the x-plane, x = e2"i'. As r varies on the 
horizontal segment r = u + iM, -t ~ u ~ t, we have 

sox varies once around a circle K of radius e- 2"M about x = 0 in the negative 
direction. The points above this segment are mapped inside K, so f has no 
zeros or poles inside K, except possibly at x = 0. The Fourier expansion 
gives us 

say, with 

Hence 

f(r) = a_mm + ... = F(x), 
X 

f'(r) = F'(x) ~:. f'(r) F'(x) 
f(r) dr = F(x) dx. 

1 J f'(r) 1 J: F'(x) 
N- p = 2ni (5) f(r) dr =- 2ni JK F(x) dx = -(NF- PF) = PF- NF, 

where N F and PF are the number of zeros and poles ofF inside K. 
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2.4: Modular functions 

If there is a pole of order m at x = 0 then m > 0, N F = 0, P F = m so 
P F - N F = m, and 

N=P+m. 

Thereforejtakes on the value 0 in Rr as often as it takes the value oo. 
If there is a zero of order nat x = 0, then m = -n so Pp = 0, Np = n, 

hence 

N + n = P. 

Again,jtakes the value 0 in Rr as often as it takes the value oo. This proves 
the theorem ifjhas no zeros or poles on the finite part of the boundary of Rr. 

Ifjhas a zero or a pole on an edge but not at a vertex, we introduce detours 
in the path of integration so as to include the zero or pole in the interior of R, 
as indicated in Figure 2.6. The integrals along equivalent edges cancel as 
before. Only one member of each pair of new zeros or poles lies inside the new 
region and the proof goes through as before, since by our convention only 
one of the equivalent points (zero or pole) is considered as belonging to the 
closure of Rr. 

Figure 2.6 

Iff has a zero or pole at a vertex p or i we further modify the path of 
integration with new detours as indicated in Figure 2.7. Arguing as above we 
find 

N-P=- + + + -dr 1 {(J f ) f J-I/2+iM}f'(r) 
2ni c, c, c2 112 + iM f(r) 

= 2~i {(L, + LJ + LJj~; dr + m. 

where x- m is the lowest power of x occurring in the Laurent expansion near 
X = 0, X = e2"it. 
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2: The modular group and modular functions 

-t + iM 

l 

Figure 2.7 

•• 
p+l 

Near the vertex p we write 

f(r) = (r - p)kg(r), where g(p) =F 0. 

The exponent k is positive ifjhas a zero at p, and negative ifjhas a pole at p. 
On the path C 1 we write r - p = re;8 where r is fixed and rx ::;; (} ::;; n/2 
where rx depends on r. Then 

f'(r) k g'(r) 
-=--+-
f(r) r - p g(r) 

and 

_1_ f f'(r) dr = _1_ fa (~ + g'(p + rei8))rei8i d(} 
2ni c, f(r) 2ni ,12 re'8 g(p + re'8) 

- -krx' r fa g'(p + rei8) ;e ' - ~-- -- + - .8 e dO, where a - 2 a. 
2n 2n ,12 g(p + re' ) 

As r --+ 0, the last term tends to 0 since the integrand is bounded. Also, 
rx' --+ n/3 as r --+ 0 so 

Similarly, 
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hm- --dr =- -. . 1 f f'(r) k 
r-+O 2ni c, f(r) 6 

lim - 1- f f'(r) dr = 
r-+0 2ni c3 f(r) 

k 
6 



2.5: Special values of J 

so 

lim-1 (J + J )f'(r) dr =- ~ 
r--+0 2ni c, c, f(r) 3 ° 

Similarly, near the vertex i we write 

f(r) = (r - i)1h(r), where h(i) i= 0 

and we find, in the same way, 

lim - 1 J f'(r) dr = - !.__ 
r-+O 2ni c2 f(r) 2 

Therefore we get the formula 
k l 

N- p = m- 3- 2" 

If/has a pole at x = 0, and zeros at p and i, then m, k and l are positive and 
we have 

k l 
N+ 3 + 2=P+m. 

The left member counts the number of zeros of fin the closure of Rr (with the 
conventions agreed on at the vertices) and the right member counts the 
number of poles. Iff has a zero of order n at x = 0 then m = - n and the 
equation becomes 

k l 
N + n + 3 + 2 = P. 

Similarly, iff has a pole at p or at i the corresponding term k/3 or l/2 is 
negative and gets counted along with P. This completes the proof. D 

Theorem 2.5. Iff is modular and not constant, then for every complex c the 
function! - c has the same number of zeros as poles in the closure of Rr. 
In other words,ftakes on every value equally often in the closure of Rr. 

PROOF. Apply the previous theorem to f - c. D 

Theorem 2.6. Iff is modular and bounded in H thenfis constant. 

PRooF. Since f is bounded it omits a value so f is constant. 

2.5 Special values of J 

D 

Theorem 2.7. The function J takes every value exactly once in the closure of 
Rr. In particular, at the vertices we have 

J(p) = 0, J(i) = 1, J(ioo) = oo. 

There is a .first order pole at ioo, a triple zero at p, and J(r) - 1 has a double 
zero at 7: = i. 
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2: The modular group and modular functions 

PROOF. First we verify that g2(p) = 0 and g3(i) = 0. Since p3 = 1 and 
p2 + p + 1 = 0 we have 

1 1 1 1 1 
60 gz(p) = ~n (m + np)4 ~n (mp3 + np)4 = P4 ~n (mpz + n)4 

1 1 1 1 1 
= P ~n (n- m- mp)4 = p M~N (N + Mp)4 = 60p gz(p), 

so g2(p) = 0. A similar argument shows that g3(i) = 0. Therefore 

J( ) = gz3(p) = 0 
p Ll(p) 

and J(") = g/(i) = 1 
l 3( ") . gz l 

The multiplicities are a consequence of Theorem 2.4. 

2.6 Modular functions as rational functions 
of J 

D 

Theorem 2.8. Every rational function of J is a modular function. Conversely, 
every modular function can be expressed as a rational function of J. 

PROOF. The first part is clear. To prove the second, suppose f has zeros at 
z 1> ••• , zn and poles at p1, .•. , Pn with the usual conventions about multi­
plicities. Let 

g(r) = Il J(r) - J(zk) 
k= 1 J(r) - J(pk) 

where a factor 1 is inserted whenever zk or Pk is oo. Then g has the same zeros 
and poles as fin the closure of Rr, each with proper multiplicity. Therefore 
f /g has no zeros or poles and must be constant, so f is a rational function 
ofJ. D 

2. 7 Mapping properties of J 

Theorem 2.7 shows that J takes every value exactly once in the closure 
of the fundamental region Rr. Figure 2.8 illustrates how Rr is mapped by 
J onto the complex plane. 

The left half of Rr (the shaded portion of Figure 2.8a) is mapped onto the 
upper half-plane (shaded in Figure 2.8b) with the vertical part of the boundary 
mapping onto the real interval (- oo, 0]. The circular part of the boundary 
maps onto the interval [0, 1], and the portion of the imaginary axis v > 1, 
u = 0 maps onto the interval (1, + oo ). Points in Rr symmetric about the 
imaginary axis map onto conjugate points in J(Rr). The mapping is con­
formal except at the vertices r = i and r = p where angles are doubled 
and tripled, respectively. 
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2. 7: Mapping properties of J 

J 

I p ' 
I ' I \ 

I \ 

I \ 
I u 

-1 0 1 
0 = J(p) 1 = J(i) 

(a) (b) 

Figure 2.8 

These mapping properties can be demonstrated as follows. On the 
imaginary axis in Rr we have -r = iv hence x = e2"ir = e- 2"" > 0, so the 
Fourier series 

1 00 

123 J(-r) = - + L c(n)x" (x = e2"ir) 
X n~o 

shows that J(iv) is real. Since J(i) = 1 and J(iv) --+ + oo as v --+ + oo the 
portion of the imaginary axis 1 ~ v < + oo gets mapped onto the real axis 
1 ~ J(r) < + oo. 

On the left boundary of Rr we have r = -! + iv, hence x = e2"ir = 
e- 2""e-"i = -e- 2"" < 0. For large v (small x) we have J( -! + iv) < 0 so 
J maps the line u = -! onto the negative real axis. Since J(p) = 0 and 
J( oo) = oo, the left boundary of Rr is mapped onto the line - oo < J(r) ~ 0. 
As the boundary of Rr is traversed counterclockwise the points inside Rr 
lie on the left, hence the image points lie above the real axis in the image 
plane. 

Finally, we show that J takes conjugate values at points symmetric about 
the imaginary axis, that is, 

J(r) = J( -i). 

To see this, writer = u + iv. Then 

and 

Thus -r and -i correspond to conjugate points x and .X, but the Fourier 
series for J has real coefficients so J(r) and J( -i) are complex conjugates. 
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2: The modular group and modular functions 

In particular, on the circular arc ri = 1 we have -r = -1/r, hence 
J( -i) = J( -1/r) = J(r) so J is real on this arc. 

2.8 Application to the inversion problem for 
Eisenstein series 

In the Weierstrass theory of elliptic functions the periods w 1, w2 determine 
the invariants g2 and g3 according to the equations 

1 
g 2 = g 2(w 1, w 2 ) = 60 L ( )4 

mw1 + nw2 

1 
g3 = g3(wl> w 2 ) = 140 L ( )6 • 

mw1 + nw2 

(4) 

A fundamental problem is to decide whether or not the invariants g2 and g3 

can take arbitrary prescribed values, subject only to the necessary condition 
g2 3 - 27g/ i= 0. This is called the inversion problem for Eisenstein series 
since it amounts to solving the equations in (4) for w1 and w2 in terms of g2 

and g3 . The next theorem shows that the problem has a solution. 

Theorem 2.9. Given two complex numbers a2 and a 3 such that a2 3 - 27 a 3 2 i= 0. 
Then there exist complex numbers w1 and w 2 whose ratio is not real such 
that 

and 

PROOF. We consider three cases: (1) a2 = 0; (2) a3 = 0; (3) a2 a3 i= 0. 

Case 1. If a2 = 0 then a3 i= 0 since a2 3 - 27a/ i= 0. Let w1 be any 
complex number such that 

6 g3(1, p) 
wl =---

a3 

and let w 2 = pw 1 , where p = e2"i13 . We know that g3(1, p) i= 0 because 
g2(1, p) = 0 and ~(1, p) = g2 3 - 27g/ i= 0. Then 

and 

1 
g2(w 1, w2 ) = g2(wl> w1 p) = - 4 g 2(1, p) = 0 = a2 

wl 

Case 2. If a 3 = 0 then a2 i= 0 and we take w 1 to satisfy 

az 
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2.9: Application to Picard's theorem 

and let w 2 = iw1. Then 

and 

1 
g2(w1, w2 ) = g2(w1, iw1) = - 4 g2(1, i) = a2 

wl 

1 
g3(w1, w2 ) = g3(w1, iw1) = - 6 g3(1, i) = 0 = a3. 

wl 

Case 3. Assume a2 ::/= 0 and a3 ::/= 0. Choose a complex r with Im r > 0 
such that 

a23 

J(r)= 3 27 2" 
a2 - a3 

Note that J(r) ::/= 0 since a2 ::/= 0 and that 

J('r)- 1 27a/ 
J(r) ~ 

(5) 

For this r choose w1 to satisfy 

and let w 2 = rw1 . Then 

g2(w1, w2 ) w1 - 4g2(1, r) 2 g2(1, r) a2 
= 6 =Wl --=-

g3(wl, w2) w1 g3(1, r) g3(1, r) a3' 

so 

(6) 

But we also have 

J(r) - 1 
J(r) 

27g3 2(w1, w2 ) 

g/(w1,w2) 

Comparing this with (5) we find that g2(w1, w2 ) = a2 and hence by (6) we 
also have g3(wt. w2 ) = a3 • This completes the proof. D 

2.9 Application to Picard's theorem 

The modular function J can be used to give a short proof of a famous theorem 
of Picard in complex analysis. 

Theorem 2.10. Every nonconstant entire function attains every complex value 
with at most one exception. 

Note. An example is the exponential function f(z) = ez which omits 
only the value 0. 
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2: The modular group and modular functions 

PROOF. We assume f is an entire function which omits two values, say a 
and b, a i= b, and show thatfis constant. Let 

( ) _ f(z)- a 
g z - b . 

-a 

Then g is entire and omits the values 0 and 1. 
The upper half-plane H is covered by the images of the closure of the 

fundamental region Rr under transformations of r. Since J maps the closure 
of Rr onto the complex plane, J maps the half-plane H onto an infinite­
sheeted Riemann surface with branch points over the points 0, 1 and oo 
(the images of the vertices p, i and oo, respectively). The inverse function J- 1 

maps the Riemann surface back onto the closure of the fundamental region 
Rr. Since J'(r) i= 0 if r i= p orr i= i and since J'(p) = J'(i) = 0, each single­
valued branch of J- 1 is locally analytic everywhere except at 0 = J(p ), 
1 = J(i), and oo = J( oo ). For each single-valued branch of r 1 the composite 
function 

h(z) = r 1[g(z)] 

is a single-valued function element which is locally analytic at each finite 
z since g(z) is never 0 or 1. Therefore his arbitrarily continuable in the entire 
finite z-plane. By the monodromy theorem, the continuation of h exists as a 
single-valued function analytic in the entire finite z-plane. Thus his an entire 
function and so too is 

cp(z) = eih(z). 

But Im h(z) > 0 since h(z) E H so 

jcp(z)j = e-Imh(z) < 1. 

Therefore cp is a bounded entire function which, by Liouville's theorem, 
must be constant. But this implies h is constant and hence g is constant since 
g(z) = J[h(z)]. Thereforefis constant sincef(z) =a + (b - a)g(z). D 

Exercises for Chapter 2 

In these exercises, r denotes the modular group, S and T denote its gen­
erators, S(r) = -1/r, T(r) = r + 1, and I denotes the identity element. 

1. Find all elements A of r which (a) commute with S; (b) commute with ST. 

2. Find the smallest integer n > 0 such that (ST)" = I. 

3. Determine the point r in the fundamental region Rr which is equivalent to 
(a) (8 + 6i)/(3 + 2i); (b) (!Oi + ll)/(6i + 12). 

4. Determine all elements A of r which leave i fixed. 

5. Determine all elements A of r which leave p = e2nil 3 fixed. 
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Exercises for Chapter 2 

QUADRATIC FORMS AND THE MODULAR GROUP 

The following exercises relate quadratic forms and the modular group r. We 
consider quadratic forms Q(x, y) = ax2 + bxy + cy2 in x and y with real 
coefficients a, b, c. The number d = 4ac - b2 is called the discriminant of 
Q(x, y). 

6. If x and y are subjected to a unimodular transformation, say 

(1) X = IJ.X' + {Jy', y = )IX' + by', Where (~ !) E r, 

prove that Q(x, y) gets transformed to a quadratic form Q1(x', y') having the same 
discriminant. Two forms Q(x, y) and Q1(x', y') so related are called equivalent. This 
equivalence relation separates all forms into equivalence classes. The forms in a given 
class have the same discriminant, and they represent the same integers. That is, if 
Q(x, y) = n for some pair of integers x andy, then Q1(x', y') = n for the pair of 
integers x', y' given by (1). 

In Exercises 7 thru 10 we consider forms ax2 + bxy + cy2 with d > 0, 
a > 0, and c > 0. The associated quadratic polynomial 

f(z) = az2 + bz + c 

has two complex roots. The root • with positive imaginary part is called the 
representative of the quadratic form Q(x, y) = ax2 + bxy + cy2 • 

7. (a) If d is fixed, prove that there is a one-to-one correspondence between the set 
of forms with discriminant d and the set of complex numbers '!: with Im( !) > 0. 

(b) Prove that two quadratic forms with discriminant d are equivalent if and only if 
their representatives are equivalent under r. 

Note. A reduced form is one whose representative • ERr. Thus, two 
reduced forms are equivalent if and only if they are identical. Also, each 
class of equivalent forms contains exactly one reduced form. 

8. Prove that a form Q(x, y) = ax2 + bxy + cyl is reduced if, and only if, either 
-a < b ~a< cor 0 ~ b ~a =c. 

9. Assume now that the form Q(x, y) = ax2 + bxy + cyl has integer coefficients 
a, b, c. Prove that for a given d there are only a finite number of equivalence classes 
with discriminant d. This number is called the class number and is denoted by h(d). 

Hint: Show that 0 <a~ Jdjj for each reduced form. 

10. Determine all reduced forms with integer coefficients a, b, c and the class number 
h(d) for each d in the interval 1 ~ d ~ 20. 

CONGRUENCE SUBGROUPS 

The modular group r has many subgroups of special interest in number 
theory. The following exercises deal with a class of subgroups called con­
gruence subgroups. Let 

and 
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2: The modular group and modular functions 

be two unimodular matrices. (In this discussion we do not identify a matrix 
with its negative.) If n is a positive integer write 

A = B (mod n) whenever a = IX, b = /3, c = y and d = (j (mod n). 

This defines an equivalence relation with the property that 

A1 = A2 (mod n) and B1 = B2 (mod n) 
implies 

A1B1 = A2 B2 (mod n) and A1 - 1 = A2 - 1 (mod n). 

Hence 

A = B (mod n) if, and only if, AB- 1 =I (mod n), 

where I is the identity matrix. We denote by r<•> the set of all matrices in r 
congruent modulo n to the identity. This is called the congruence subgroup 
of level n (stufe n, in German). 

Prove each of the following statements: 
11. r<•J is a subgroup of r. Moreover, if B E r<•J then A-lBA E r<•J for every A in r. 

That is, r<•> is a normal subgroup of r. 
12. The quotient group r ;rt•> is finite. That is, there exist a finite number of elements of 

r, say A1, ••. , Ak, such that every Bin r is representable in the form 

B = A;B<•J where 1 ~ i ~ k and B<•J E rt•>. 

The smallest such k is called the index of rt•> in r. 
13. The index of r<•> in r is the number of equivalence classes of matrices modulo n. 

The following exercises determine an explicit formula for the index. 
14. Given integers a, b, c, d with ad - be = 1 (mod n), there exist integers ex, {3, y, o 

such that ex = a, {3 = b, y = c, 0 = d (mod n) with exb - {3y = 1. 

15. If (m, n) = 1 and A E r there exists A in r such that 

A= A (mod n) and A= I (mod m). 

16. Letf(n) denote the number of equivalence classes of matrices modulo n. Thenfis a 

multiplicative function. 

17. If a, b, n are integers with n ~ 1 and (a, b, n) = 1 the congruence 

ax - by = 1 (mod n) 

has exactly n solutions, distinct mod n.(A solution is an ordered pair (x, y) of integers.) 

18. For each prime p the number of solutions, distinct mod p•, of all possible congruences 
of the form 

ax - by = 1 (mod p•), where (a, b, p) = 1, 

is equal to j(p•). 

19. If pis prime the number of pairs of integers (a, b), incongruent mod p•, which satisfy 
the condition (a, b, p) = 1 is p2•- 2(p2 - 1). 

20. f(n) = n3 ~1• J1,(d)/d2, where J.l is the Mobius function. 
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The Dedekind eta function 3 

3.1 Introduction 

In many applications of elliptic modular functions to number theory the 
eta function plays a central role. It was introduced by Dedekind in 1877 
and is defined in the half-plane H = {r: Im(r) > 0} by the equation 

00 

(1) rJ(r) = e"it/12 fl (1 _ e2"inr). 
n=1 

The infinite product has the form fl (1 - x") where x = e2"ir. If r E H then 
I xI < 1 so the product converges absolutely and is nonzero. Moreover, 
since the convergence is uniform on compact subsets of H, rJ(r) is analytic 
on H. 

The eta function is closely related to the discriminant Ll(r) introduced 
in Chapter 1. Later in this chapter we show that 

Ll(r) = (2n) 12 rJ 24(r). 

This result and other properties of rJ(r) follow from transformation formulas 
which describe the behavior of rJ(r) under elements of the modular group r. 
For the generator Tr = r + 1 we have 

00 

(2) rJ(r + 1) = e"i(t+ 1)/12 fl (1 _ e2"in(t+ 1)) = e"i/12rJ(r). 
n=1 

Consequently, for any integer b we have 

(3) rJ(T +b)= e"ib/12rJ(T). 

Equation (2) also shows that rJ 24(r) is periodic with period 1. 
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3: The Dedekind eta function 

For the other generator Sr = -1/r we have the following theorem. 

Theorem 3.1. If r E H we have 

(4) '7( ~ 1) = (- i't)1/2'7( r). 

Note. We choose that branch of the square root function z1' 2 which is 
positive when z > 0. 

This chapter gives two different proofs of (4). The first is a short proof of 
C. L. Siegel [48] based on residue calculus, and the second derives (4) as a 
special case of a more general functional equation which relates 

11(ar +b) 
C't + d 

to '7(t) when 

(: ~) E r and c > 0. 

(See Theorem 3.4.) A third proof, based on interchange of summation in a 
conditionally convergent iterated series, is outlined in the exercises. 

3.2 Siegel's proof of Theorem 3.1 

First we prove (4) for r = iy, where y > 0, and then extend the result to all 
r in H by analytic continuation. If r = iy the transformation formula becomes 
17(ijy) = y 1' 2'1(iy), and this is equivalent to 

log 17(ijy) - log 17(iy) = ! logy. 
Now 

ny <Xl 

log 17(iy) = - 12 +log }I (1 - e- 2""Y) 

ny <Xl ny <Xl <Xl e-2nmny 
= - - + L log(1 - e- 2nny) = - - - L L 

12 n= 1 12 n= 1 m= 1 m 
ny <Xl 1 e-Znmy ny <Xl 1 1 

= - 12 - m~ 1 ;n 1 - e 2nmy = - 12 + m~ 1 ;n 1 - e2nmy' 

Therefore we are to prove that 

<Xl 1 1 <Xl 1 1 1t ( 1) 1 
(S) m~ 1 ;n 1 - e 2"mY - m~ 1 ;n 1 - e 2"mfy - 12 y - y = - 210g y. 

This will be proved with the help of residue calculus. 
For fixed y > 0 and n = 1, 2, ... , let 

1 nNz 
Fn(z) = - -8 cot niNz cot--, 

z y 
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3.2: Siegel's proof of Theorem 3.1 

-y y 

Figure 3.1 

where N = n + ! . Let C be the parallelogram joining the vertices y, i, - y, - i 
in that order. (See Figure 3.1.) Inside C, Fn has simple poles at z = ik/N and 
at z = ky/N fork= ± 1, ±2, ... , ±n. There is also a triple pole at z = 0 
with residue i(y - y- 1 )/24. The residue at z = ik/ N. is 

1 nik 
8nk cot y· 

Since this is an even function of k we have 

n 1 nik 
Res Fn(z) = 2 L -8 cot-. 

z=ik/N k= 1 nk Y 

But 

·e _ cos i() _ . e- 8 + e8 

cot z - . ·e - z _ 8 8 sm z e - e 
e

28 + 1 1 ( 2 ) 
- i e28 - 1 = i 1 - 1 - e28 . 

Using this with() = nk/y we get 

n 1n1 1n1 
I Res F (z) = - L - - - L - -~..,.-. 

k= -n z=ik/N n 4ni k= 1 k 2ni k= 1 k 1 - e2"k/y 
ki<O 

Similarly 

Hence 2ni times the sum of all the residues ofF n(z) inside C is an expression 
whose limit as n--+ oo is equal to the left member of(5). Therefore, to complete 
the proof we need only show that 

lim J Fn(z) dz = -!logy. 
n-+ oo C 
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3: The Dedekind eta function 

On the edges of C (except at the vertices) the function zFn(z) has, as 
n ~ oo, the limit i on the edges connecting y, i and - y, - i, and the limit - i 
on the other two edges. Moreover, Fn(z) is uniformly bounded on C for all n 
(because N = n + ! and y > 0). Hence by Arzehl's bounded convergence 
theorem (Theorem 9.12 in [3]) we have ' 

lim JFn(z)dz = J limzFn(z)dz 
n-~>oo C C n-+oo Z 

= ~ {- JY + Ji _ f-y + J- i} dz 
8 -r y I -y Z 

= ~ { _ JY + Ji} dz 
4 -· y z 

= ~ {-(tog y + ~i) + ( ~i - logy)} = - ~logy. 
This completes the proof. D 

3.3 Infinite product representation for ~(r) 

In this section we express the discriminant Ll(T) in terms of IJ(T) and thereby 
obtain a product representation of Ll(T). The result makes use of the following 
property of Ll(T). 

Theorem 3.2. If(: ~) E r then 

Ll(:: : ~) = (n + d)12Ll(T). 

In particular, 

Ll(T + 1) = Ll(T) and 

PROOF. Since Ll(w1 , w 2 ) is homogeneous of degree -12 we have 

Ll(w~> w 2 ) = w 1 - 12Ll(1, T) = w 1 - 12Ll(T), 

where T = w 2/w 1• Also, 

Ll(w1, w2 ) = Ll(w 1', w2') 

if (w~> w 2 ) and (w 1', w 2 ') are equivalent pairs of periods. Taking w 1 = 1, 
w 2 = T, w 1 ' = cT + d, w 2 ' =aT+ b, we find 

Ll(T) = Ll(w1, w2 ) = Ll(cT + d, aT +b)= (cT + d)- 12Ll 1,-- . D ( aT+ b) 
CT + d 
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3.4: The general functional equation for 'l(t) 

Theorem 3.3. If • e H and x = e2";' we have 

00 

(6) ~(•) = (2n)12'724(•) = (2n)12x n (1 - x")24_ 
n= 1 

Consequently, 

00 00 

(7) L •(n)x" = X n (1 - x")24 whenever I X I < 1 
n= 1 n= 1 

where •(n) is Ramanujan's taufunction. 

PROOF. Let f(•) = ~(•)/'1 24(•). Then f(• + 1) = f(•) and f( -1/L) = f(•), 
so f is invariant under every transformation in r. Also, f is analytic and non­
zero in H because~ is analytic and nonzero and 11 never vanishes in H. 

Next we examine the behavior off at ioo. We have 
00 00 

'724('t") = e2nit n (1 _ e2nint)24 = X n (1 _ x")24 = x(1 + J(x)), 
n=1 n=1 

where /(x).denotes a power series in x with integer coeflkients. Thus, 1724(•) 
has a first order zero at x = 0. By Theorem 1.19 we also have the Fourier 
expansion 

00 

(8) ~(•) = (2n)12 L •(n)x" = (2n)12x(1 + /(x)). 
n= 1 

Thus, near ioo the function f has the Fourier expansion 

(9) f( ) = ~(•) = (2n)12x(1 + /(x)) = (2 )12(1 /( )) 
• 1724(r) x(1 + /(x)) n + x ' 

so f is analytic and nonzero at ioo. Therefore f is a modular function which 
never takes the value 0, so f must be constant. Moreover, (9) shows that 
this constant is (2n)12, hence ~(•) = (2n)12'724(•). This proves (6), and (7) 
follows from (8). D 

3.4 The general functional equation for rJ(r) 

Extracting 24th roots in the relation 

~(a• + b) = (c• + d)12~(•) 
C't" + d 

and using (6) we find that 

'7(::: :) = e(c• + d)1i 2'7(•), 

where e24 = 1. For many applications of '7(•) we require more explicit 
information concerning e. This is provided in the next theorem. 
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3: The Dedekind eta function 

Theorem 3.4 (Dedekind's functional equation). If(; !) E f, c > 0, and 

,. E H, we have 

(10) '7(:: : :) = e(a, b, c, d){- i(cr + dW1 2'1(r) 

where 

e(a, b, c, d)= exp{ n{ a 1;cd + s( -d, c))} 
and 

(11) k-l r (hr [hr] 1) s(h, k) = L - - - - - - . 
r= 1 k k k 2 

Note. The sum s(h, k) in ( 11) is called a Dedekind sum. Some of its properties 
are discussed later in this chapter. 

We will prove Theorem 3.4 through a sequence of lemmas. First we note 
that Dedekind's formula is a consequence of the following equation, obtained 
by taking logarithms of both members of (10), 

( ar + b) (a + d ) (12) log '7 cr + d =log 'f(r) +ni ~ + s( -d, c) +!log{ -i(cr +d)}. 

From the definition of 'l(r) as a product we have 

nir 00 • nir oo 
log 'f(r) =- + L log(l - e2"'"') =-- LA.( -inr), 

12 n=l 12 n=l 
(13) 

where A.(x) is defined for Re(x) > 0 by the equation 

(14) 
00 e-2nmx 

A.(x) = -log(1 - e-lnx) = L --. 
m=l m 

Equations (12) and (13) give us 

Lemma 1. Equation (12) is equivalent to the relation 

(15) L A.(- inr) = LA. -in-- + - r - --oo oo ( ar + b) ni ( ar + b) 
n=l n=l cr+d 12 cr+d 

( a+ d ) + ni ~ + s( -d, c) +!log{ -i(cr +d)}. 

We shall prove (15) as a consequence of a more general transformation 
formula obtained by ShO lseki [17] in 1957. For this purpose it is convenient 
to restate (15) in an equivalent form which merely involves some changes 
in notation. 
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3.5: Iseki's transformation formula 

Lemma 2. Let z be any complex number with Re(z) > 0, and let h, k and H be 
any integers satisfying (h, k) = 1, k > 0, hH = -1 (mod k). Then Equation 
(15) is equivalent to the formula 

(16) I A{~ (z - ih)} = I A{~ (~ - iH)} 
n= 1 k n= 1 k Z 

1 7t ( 1) . + 2log z - 12k z - z + ms(h, k). 

PROOF. Given(: ~)in r, with c > 0, and given r with Im(r) > 0, choose 

z, h, k, and H as follows: 

k = c, h = -d, H=a, z = -i(cr +d). 

Then Re(z) > 0, and the condition ad- be = 1 implies -hH- bk = 1, so 
(h, k) = 1 and hH = -1 (mod k). Now b = -(hH + 1)/k and iz = cr + d, 
so 

iz-d iz+h 
t=--=--

c k 

and hence 

b _ H iz + h hH + 1 _ iz (H i) 
ar+- -k-- k -k +-z· 

Therefore, since cr + d = iz, we have 

at + b = ~ (H + ~). 
cr + d k z 

Consequently 

ar + b 1 i ( 1) a + d i ( 1) 
r - cr + d = k (h - H) + k z - z = - -c- + k z - z 

so 

rri (r _ ar + b) = _ rri(~) _ __!:___ (z _ ~). 
12 cr + d 12c 12k z 

Substituting these expressions in (15) we obtain (16). In the same way we 
find that (16) implies (15). 0 

3.5 Iseki's transformation formula 

Theorem 3.5 (lseki's formula). If Re(z) > 0 and 0 :::;; ct :::;; 1, 0 :::;; f3 :::;; 1, let 

00 

(17) A(ct, /3, z) = L {A((r + ct)z- i/3) + A((r + 1 - ct)z + i/3)}. 
r=O 
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3 : The Dedekind eta function 

Then if either 0 :::;; a :::;; 1 and 0 < {3 < 1, or 0 < a < 1 and 0 :::;; {3 :::;; 1, 
we have 

Note. The sum on the right of (18), which contains Bernoulli polynomials 
Bix), is equal to 

PROOF. First we assume that 0 <a< 1 and 0 < {3 < 1. We begin with the 
first sum appearing in (17) and use (14) to write 

(19) 
oo oo oo e21timP 

L).((r + a)z - i/3) = L L __ e-27tm(r+a>z. 

r=O r=Om=l m 

Now we use Mellin's integral for e-x which states that 

(20) 
1 fc+ ooi 

e-x = -2 . r(s}x-• ds, 
1!:1 c- ooi 

where c > 0 and Re(x) > 0. This is a special case of Mellin's inversion formula 
which states that, under certain regularity conditions, we have 

foo 1 fc+ooi 
cp(s) = x•- 1tjl(x) dx if, and only if, t/J(x) = -2 . cp(s)x-• ds. 

0 1!:1 c- ooi 

In this case we take cp(s) to be the gamma function integral, 

r(s) = Loo x•-le-x dx 

and invert this to obtain (20}. (Mellin's inversion formula can be deduced 
from the Fourier integral theorem, a proof of which is given in [3]. See also 
[49], p. 7 .) Applying (20) with x = 2nm(r + a)z and c = 3/2 to the last 
exponential in (19) and writing f<c> for f;~ ~i we obtain 

oo oo oo e21timP 1 f L .1((r + a)z- i/3) = L L ---2 . r(s){2nm(r + a)z} -s ds 
r=O r=Om=l m 1!:1 (3/2) 

1 f r(s) oo 1 oo e21timP 

= -2 . -<2 >· I < >" I ----r:;:s ds 1tl (3/2) 7tZ r=O r+a m=l m 

1 J r(s) = -2 . -(2 )• '(s, a)F({3, 1 + s) ds. 
m <312> nz 
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Here ((s, oc) is the Hurwitz zeta function and F(x, s) is the periodic zeta function 
defined, respectively, by the series 

oc I 
((s, oc) = I ( + )s' 

r=O r Q( 

and 
00 e2ttimx 

F(x, s) = I -s~ 
m=l m 

where Re(s) > I, 0 < oc ::;: l, and xis real. In the same way we find 

oc I f r(s) y L).((r + I - oc)z + i/3) = ~2 . ~(2 )s ~(s, I - oc)F(l - {3, I + s) ds, 
r=O 7rl (3/2) 7rZ 

so (I 7) becomes 

(21) 

where 

A(oc, {3, z) = ~21 . f z-s<l>(oc, {3, s) ds, 
m (3/2) 

r(s) 
(22) <l>(oc, {3, s) = (2n)' {((s, oc)F(/3, I + s) + ((s, 1 - oc)F(l - {3, I + s)}. 

Now we shift the line of integration from c = 1 to c = -l Actually, we 
apply Cauchy's theorem to the rectangular contour shown in Figure 3.2, 

i +iT -- i +iT 

~ 
0 

t -i- iT t-iT 

Figure 3.2 

and then let T-> oo. In Exercise 8 we show that the integrals along the 
horizontal segments tend to 0 as T-> oo, so we get 

f3!2l - f_ 3/2) + R 

where R is the sum of the residues at the poles of the integrand inside the 
rectangle. This gives us the formula 

A(oc, {3, z) = ~2I . f z-s<l>(oc, {3, s) ds + R. 
7rl (-3/2) 
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3 : The Dedekind eta function 

In this integral we make the change of variable u = - s to get it back in 
the form of an integral along the ! line. This gives us 

(23) A(oc, /3, z) = -2
1 . f z"<l>(oc, /3, -u) du + R. 
m (3/2) 

Now the function <I> satisfies the functional equation 

(24) <l>(oc, /3, - s) = <1>(1 - /3, oc, s). 

This is a consequence of Hurwitz's formula for ((s, oc) and a proof is outlined 
in Exercise 7. Using (24) in (23) we find that 

(25) A(oc, /3, z) = A(1 - /3, oc, z- 1) + R. 

To complete the proof of Iseki's formula we need to compute the residue 
sum R. 

Equation (22) shows that <l>(oc, /3, s) has a first order pole at each of the 
points s = 1, 0 and -1. Denoting the corresponding residues by R(1), 
R(O) and R(- 1) we find 

r( 1) 1 oc ( 2ninP - 2ninP) 
R(1) = -2 {F(/3, 2) + F(l- /3, 2)} = -2 L ~ + _e - 2-

nz nz n= 1 n n 

1 oc e2ninP 1 _ (2ni)2 n 
= -2 L -2- = -2 2, B2(f3) = - B2(f3), nz n = _ oc n nz . z 

n>'O 

where we have used Theorem 12.19 of [4] to express the Fourier series as a 
Bernoulli polynomial. 

To calculate R(O) we recall that ((0, oc) = ! - oc. Hence ((0, 1 - oc) = oc - ! 
so 

X e27tinp - e- 27tinP 

R(O) = ((0, oc)F(/3, 1) + ((0, 1 - oc)F(l - /3, 1) = (!- oc) L ----
n= 1 n 

oo e2"inP oc e2"inp 
= (!- oc) L -- = -B1(oc) L -- = 2niB1(oc)B 1(/3), 

n=-oo n n=-oc n 
n>'O n>'O 

where again we have used Theorem 12.19 of [4]. To calculate R( -1) we 
write 

R( -1) = Res z-•<t>(oc, /3, s) = lim (s + 1)z-•<l>(oc, /3, s) 
s= -1 s-- 1 

= lim(- s + 1 )z•<I>(oc, /3, - s). 
•-1 

Using the functional equation (24) we find 

R( -1) = lim(l - s)z•<l>(1 - /3, oc, s) = -Res z•<I>(1 - /3, oc, s). 
•-1 s= 1 
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3.5: lseki's transformation formula 

Note that this is the same as R(1) = Ress=l z-•<1>(0(, {3, s), except that z is 
replaced by - z- 1, il( by 1 - {3, and {3 by 0(. Hence we have 

R( -1) = -nzB2(0(). 

Thus 

R = R( -1) + R(O) + R(1) = -nznto G)(iz)-"B2-n(O()BnCf3). 

This proves Iseki's formula under the restriction 0 < il( < 1, 0 < {3 < 1. 
Finally, we use a limiting argument to show it is valid if 0 ~ il( ~ 1 and 

0 < {3 < 1, or if 0 ~ {3 ~ 1 and 0 < il( < 1. For example, consider the series 

oo ex; oc e2"imP L A((r + ll()Z- i{3) = L L -- e-27tm(r+<X)z 

r=O r=Om=1 m 
oc 27timP oo 

= L _e __ e- 27tm<Xz L e-21tmrz 
m= 1 m r=O 

say, where 

As m -+ oo, fa.(m) -+ 0 uniformly in il( if 0 ::;: il( ~ 1. Therefore the series 

00 

L e2"imPfim) 
m=1 

converges uniformly in il( if 0 ~ il( ~ 1, provided 0 < {3 < 1, so we can pass 
to the limit il( -+ 0 + term by term. This gives us 

00 ex; 

lim L .1((r + il()z - i{3) = L .1(rz - i{3). 
tX--+0+ r=O r=O 

Therefore, if 0 < {3 < 1 we can let il( -+ 0 + in the functional equation. The 
other limiting cases follow from the invariance of the formula under the 
following replacements: 

il(-+ 1- 0(, {3-+1-{3 

il(-+ {3, {3-+ 1 - 0(, z-+-
z 

il(-+ 1 - {3, {3-+ 0(, z-+ -. D 
z 
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3 : The Dedekind eta function 

3.6 Deduction of Dedekind's functional 
equation from Iseki's formula 

Now we use Iseki's formula to prove Equation (16) of Lemma 2. This, in turn, 
will prove Dedekind's functional equation for 17(-r). 

Equation (16) involves integers hand k with k > 0. First we treat the case 
k = 1 for which Equation (16) becomes 

(26) f A{n(z - ih)} = f A{n(~- iH)} +~log z - .!:_ (z - ~). 
n= 1 n= 1 Z 2 12 Z 

Since A(x) is periodic with period i this can be written as 

(27) L A(nz) = LA - +-log z-- z-- . oo oo (n) 1 n ( 1) 
n=1 n=1 Z 2 12 Z 

We can deduce this from Iseki's formula (18) by taking {3 = 0 and letting 
ex -+ 0 +. Before we let ex -+ 0 + we separate the term r = 0 in the first term 
of the series on the left of(18) and in the second term of the series on the right 
of (18). The difference of these two terms is A(exz) - A(iex). Each of these tends 
to oo as ex-+ 0+ but their difference tends to a finite limit. We compute this 
limit as follows: 

. 1 _ e-2,ia 

A(exz)- A(iex) = log(l - e- 2"'11)- log(1 - e- 2 " 11z) =log 1 _ e 2 , 11z· 

By L'Hopital's rule, 

1 -21till 2 . . r -e r m z 
lffi 1 -27EIZZ= lffi-=-

11-+0 + - e a-+0 2nz z 

so 

lim (A(exz) - A(iex)) = log~ = n2i - log z. 
a-+0+ Z 

Now when ex-+ 0+ the remaining terms in each series in (18) double up 
and we obtain, in the limit, 

(28) ni 00 oo (r) nz 1t ni - - log z + 2 L A(rz) = 2 LA - - - + - + -. 
2 r= 1 r= 1 Z 6 6z 2 

This reduces to (27) and proves (16) in the case k = 1. 
Next we treat the case k > 1. We choose rational values for ex and {3 in 

Iseki's formula (18) as follows. Take 

ex = ~· where 1 ~ J1. ~ k - 1 
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and write 

h11 = qk + v, where 1 ~ v ~ k - 1. 

Now let 

Note that v = hfl (mod k) so - Hv = - Hhfl = 11 (mod k), and therefore 
-Hv/k = 11/k (mod 1). Hence a.= 11/k = -Hv/k (mod 1) and f3 = vjk = 
h11/k (mod 1). Substituting in Iseki's formula (18) and dividing by 2 we get 

Rewrite this as follows: 

Now sum both sides on 11 for 11 = 1, 2, ... , k - 1 and note that 

{rk + 11:r = 0, 1,2, ... ; 11 = 1,2, ... ,k- 1} = {n:n =/= 0 (modk)} 

and similarly for the set of all numbers rk + k - fl. Also, since v = hfl (mod k), 
as 11 runs through the numbers 1, 2, ... , k - 1 then v runs through the same 
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3: The Dedekind eta function 

set of values in some other order. Hence we get 

"~1 A(-kn (z- ih)) = f A(~(~- iH)) + ~ (~- z) kf < 
_ n= 1 k Z 2 Z Jl= 1 k 

n,EO (modk) niO (modk) 

n(l )k-1p n(1 ) - - - - z I - + - - - z (k - 1) 2 z Jl= 1 k 12 z 

k- 1 p (v 1) ni k- 1 v ni + ni I - --- -- I - +- (k- 1) 
Jl= 1 k k 2 2 Jl= 1 k 4 

x - 3(k - 1) + (k - 1) + ni L - - - -((k-1)(2k-1) ) k-lp(v 1) 
k Jl= 1 k k 2 

CD 

I 
n= 1 

niO(modk) 

( n (1 )) n ( 1)( 1) k-
1 p (v 1) A - - - iH + - z - - 1 - - + ni I - - - - . 

k z 12 z k Jl= 1 k k 2 
But v was defined by the equation hp = qk + v, so we have 

Therefore 

q = [h: J ~ = hp - [hpJ 
k k k . 

k-l p (v 1) h-J p (hp [hpJ 1) I - - - - = I - - - - - - = s(h, k). 
Jl= 1 k k 2 Jl= 1 k k k 2 

Therefore we have proved that 

(29) 

+ 1~ (z _ D(~ _ n + nis(h,k). 

Add this to Equation (27) which corresponds to the case k = 1: 

I A(mz) = LA - -- z-- +-log z. CD CD (m) 7t ( 1) 1 
m=1 m=1 Z 12 Z 2 

This accounts for the missing terms in (29) with n = 0 (mod k), if we write 
n = mk. When (27) is combined with (29) we get 

fA(~ (z - ih)) = fA(~(~- iH)) - ~ (= - ~) +~log z + nis(h, k). 
n= 1 k n= 1 k Z 12k Z 2 
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This proves (16) which, in turn, completes the proof of Dedekind's functional 
equation for TJ(T). For alternate proofs seep. 190 and [18], [35], and [45]. D 

3. 7 Properties of Dedekind sums 

The Dedekind sums s(h, k) which occur in the functional equation for 17(r) 
have applications to many parts of mathematics. Some of these are described 
in an excellent monograph on Dedekind sums by Rademacher and Grosswald 
[38]. We conclude this chapter with some arithmetical properties of the sums 
s(h, k) which will be needed later in this book. In particular, Theorem 3.11 
plays a central role in the study of the invariance of modular functions under 
transformations of certain subgroups of r, a topic discussed in the next 
chapter. 

Note. Throughout this section we assume that k is a positive integer and 
that (h, k) = l. 

Dedekind sums are defined by the equation 

(30) s(h, k) = kf !'.. (hr - [hr]- ~)-
r= 1 k k k 2 

First we express these sums in terms of the function ((x)) defined by 

((x)) = {x - [x] - ! ~f x ~s not_ an integer, 
0 If xIs an mteger. 

This is a periodic function of x with period 1, and (( -x)) = -((x)). Actually, 
((x)) is the same as the Bernoulli periodic function B1(x) discussed in [4], 
Chapter 12. Since ((x)) is periodic and odd we find that 

I ((!'..))- o 
rmod k k 

and, more generally, 

L ((hr)) - 0 for (h, k) = l. 
r mod k k 

Since 

the Dedekind sums can now be represented as follows: 

(31) s(h,k) = rm~k ((i))((~)} 
This representation is often more convenient than (30) because we can exploit 
the periodicity of ((x)). 

61 



3: The Dedekind eta function 

Theorem 3.6 
(a) If h' = ± h (mod k), then s(h', k) = ± s(h, k), with the same sign as 
in the congruence. Similarly, we have: 
(b) lfhli = ± 1 (mod k) then s(Ji, k) = ±s(h, k). 
(c) If h2 + 1 = 0 (mod k), then s(h, k) = 0. 

PROOF. Parts (a) and (b) follow at once from (31). To prove (c) we note that 
h2 + 1 = 0 (mod k) implies h = -Ji (mod k), where 1i is the reciprocal of 
h mod k, so from (a) and (b) we get s(h, k) = -s(h, k) = 0. 0 

For small values of h the sum s(h, k) can be easily evaluated from its 
definition. For example, when h = 1 we find 

k- 1 r (r 1) 1 k- 1 2 1 k- 1 
s(1, k) = L - - - - = 2 L r - - L r 

r=1k k 2 k r=1 2kr=1 

(k - 1)(2k - 1) k - 1 (k - 1)(k - 2) 
---

6k 4 12k 

Similarly, the reader can verify that 

(2 k) = (k - 1)(k - S) if k is odd. 
s ' 24k 

In general there is no simple formula for evaluating s(h, k) in closed form. 
However, the sums satisfy a remarkable reciprocity Jaw which can be used 
as an aid in calculating s(h, k). 

3.8 The reciprocity law for Dedekind sums 

Theorem 3.7 (Reciprocity Jaw for Dedekind sums). If h > 0, k > 0 and 
(h, k) = 1 we have 

12hks(h, k) + 12khs(k, h) = h2 + k2 - 3hk + 1. 

PROOF. Dedekind first deduced the reciprocity Jaw from the functional 
equation for Jog 17(r). We give an arithmetic proof of Rademacher and 
Whiteman [39], in which the sum L~= 1 ((hr/k))2 is evaluated in two ways. 
First we have 

(32) I - = I - = I - =I ---k ((hr))2 ((hr))2 ((r))2 k- 1 (r 1 )2 
r= 1 k r mod k k r mod k k r= 1 k 2 • 
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We can also write 

= kf (h2~2 + [hr]2 + ~ _ hr + [hr] _ 2hr [hr]) 
r= 1 k k 4 k k k k 

= 2hkf !:_ (hr _ [hr] _ ~) 
r= 1 k k k 2 

k-l [hr]([hr] ) h2 k-l 2 1 k-l +I- - +1 -2Ir +-IL 
r= 1 k k k r= 1 4 r= 1 

Comparing this with (32) and using (30) we obtain 

k-l [hr]([hr] ) h2 + 1 k-1 1 k-1 
(33) 2hs(h, k) + ,~1 k k + 1 = ~ ,~/2 - k r~1 r. 

In the sum on the left we collect those terms for which [hr/k] has a fixed value. 
Since 0 < r < k we have 0 < hr/k < hand we can write 

(34) [h; J = v - 1, where v = 1, 2, ... , h. 

For a given v let N(v) denote the number of values of r for which [hr/k] = 
v - 1. Equation (34) holds if, and only if 

hr 
v-1<-<v 

k ' 
or 

k(v - 1) kv 
h < r < h' 

equality being excluded since (h, k) = 1 and 0 < r < k. Therefore, if 
1 ~ v ~ h - 1, Equation (34) holds when r ranges from [k(v - 1)/h] + 1 
to [kv/h], and hence 

N(v) = [k: J- [k(v ~ 1)] if 1 ~ v ~ h- 1. 

But when v = h the quotient kv/h = k and since r = k is excluded we have 

N(h) = k - 1 - [k(h; 1)]. 
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Hence 

(35) :t1

1 
[h: ]([~ J + 1) = J1 (v- 1)vN(v) 

h ([kv] [k(v - 1)]) v~Y- 1)v h - h - h(h- 1) 

h- 1 [k J 
= v~1 : {(v - 1)v - v(v + 1)} 

+ kh(h- 1)- h(h- 1) 

= - 2 I v ~ + h(h - 1 Hk - 1 ). h-1 [k J 
v= 1 h 

Now we also have 

h-1 (kv [kv] 1) h-1 [kv] 2kh-1 2 h-1 
2hs(k, h)= 2 I v -- - -- = -2 I v - +- I v - I v 

v=l h h 2 v=l h hv=1 v=l 

so (35) becomes 

k- I [h J ([h J ) 2k h- I h- 1 r~l : : + 1 = 2hs(k,h)- h v~1 v 2 + v~1 v + h(h- 1)(k- 1). 

We use this in (33) and multiply by 6k to obtain the reciprocity law. 0 

3.9 Congruence properties of Dedekind sums 

Theorem 3.8. The number 6ks(h, k) is an integer. Moreover, !{8 = (3, k) we have 

(a) 12hks(k, h) = 0 (mod Bk) 

and 

(b) 12hks(h, k) = h2 + 1 (mod Bk). 

PROOF. From (30) we find 

(36) 
6h k- I k- I [hr] k- I 

6ks(h,k) = k ,~/2 - 6r~1 r k - 3,~/· 

Since 6 I~: t r 2 = k(k - 1)(2k - 1) each term on the right of (36) is an 
integer. Moreover, (36) shows that 

6ks(h, k) = h(k - 1)(2k - 1) (mod 3) 

so we have 

(37) 12ks(h, k) = 2h(k- 1)(2k- 1) = h(k- 1)(k + 1) (mod 3). 
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If 31 k then 3~h and (37) implies 

12ks(h, k) = - h =/= 0 (mod 3). 

If3~kthen3l(k- l)(k + l)and(37)implies 

(38) 12ks(h, k) = 0 (mod 3). 

In other words, 12ks(h, k) = 0 (mod 3) if, and only if, 3~k. Hence, inter­
changing hand k, we have 

12hs(k, h) = 0 (mod 3) if, and only if, 3~h. 

If e = 3 this implies (a) since (h, k) = 1. If e = 1, (a) holds trivially. Part (a), 
together with the reciprocity law, gives (b) since k 2 - 3hk = 0 (mod ek). 

D 
Note. Theorems 3.8(b) and 3.6(c) show that 

s(h, k) = 0 if, and only if, h2 + 1 = 0 (mod k). 

Theorem 3.9. The Dedekind sums satisfy the congruence 

(39) 12ks(h, k) = (k - 1)(k + 2) - 4h(k - 1) + 4 L - (mod 8). [ 2hr] 
r <k/2 k 

If k is odd this becomes 

(40) 12ks(h, k) = k - 1 + 4 L [2~r] (mod 8). 
r<k/2 

PROOF. From (36) we obtain 

12ks(h, k) = 2h(k - 1)(2k - 1) - 12 L r .!.. - 3k(k - 1) k-1 [h J 
r= I k 

k-1 [h J = -2h(k- 1) + 4hk(k- 1)- 12r~/ : 

+ k(k- 1)- 4k(k- 1). 

Now we reduce the right member modulo 8. Since 4k(k - 1) = 0 (mod 8) 
this gives us 

k-1 [h J 12ks(h, k) = -2h(k- 1)- 4,~/ : + k(k- 1) (mod 8) 

k-1 [hr] = (k - l)(k - 2h) - 4 L - (mod 8) 
r=l k 
r odd 

= (k- 1)(k - 2h)- 4 L - + 4 L - (mod 8). k-
1 [hr] [2hr] 

r=l k r<k/2 k 
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The next to last term is equal to 

-4 I __,._ = 4 I __,._ - 4 I __,._ + 2 I 1 k - I [h J k - I ((h )) k- I h k- I 

r=l k r=l k r=l k r=l 

= 0- 2h(k- 1) + 2(k- 1) = (k- 1)(2- 2h). 
Since 

(k - 1)(k - 2h) + (k- 1)(2- 2h) = (k- 1)(k + 2)- 4h(k- 1) 

this proves (39). 
When k is odd we have 4h(k - 1) = 0 (mod 8) and 

(k - 1)(k + 2) = k 2 + k - 2 = k- 1 (mod 8) 

since k 2 = 1 (mod 8). Hence (39) implies (40). D 

Theorem 3.10. If k = 2;.k 1 where A. > 0 and k 1 is odd, then for odd h ;::: 1 
we have 

(41) 12hks(h, k) = h2 + k 2 + 1 + 5k - 4k I [2~v] (mod 2H 3 ). 
v<h/2 

PROOF. Since h is odd we can apply (40) to obtain, after multiplication by k, 

12hks(k,h) = k(h- 1) + 4k I [2~v] (mod 2H 3 ). 

v<h/2 

By the reciprocity Jaw we have 

12hks(h, k) = h2 + k 2 - 3hk + 1 - 12hks(k, h) 

= h2 + k 2 - 3hk + 1 - k(h- 1)- 4k I [2~v] (mod 2H 3 ) 
v<h/2 

[ 2kv] = h2 + k 2 + 1 + k - 4hk - 4k I - (mod 2H 3 ). 
v <h/2 h 

Since h is odd we have 4k(h + 1) = 0 (mod 2A+ 3 ) hence k - 4hk = 5k 
(mod 2A+ 3 ) and we obtain (41). D 

Finally, we obtain a property of Dedekind sums which plays a central 
role in the study of the in variance of modular functions under transforma­
tions of certain subgroups of the modular group. This will be needed in 
Chapter 4. 

Theorem 3.11. Let q = 3, 5, 7 or 13 and let r = 24/(q - 1). Given integers 
a, b, c, d with ad- be= 1 such that c = c 1q, where c 1 > 0, let 

{ a+ d} { a+ d} b = s(a, c) - ----uz- - s(a, cd - 12c
1 

. 

Then rb is an even integer. 
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PROOF. Taking k = c in Theorem 3.8(b) we find 

{ a + d} 2 12ac s(a, c)-~ =a + 1 - a(a +d)= -be (mod ec), 

where e = (3, c). The same theorem with k = c1 = cjq gives, after multi­
plication by q, 

12ac{s(a, cd- a1~1d} = qa 2 + q- qa(a +d)= -qbc (mod elc), 

where e 1 = (3, cd. Note that e1je so both congruences hold modulo e1c. 
Subtracting the congruences and multiplying by r we find 

12acrc5 = r(q- 1)bc (mod elc). 

But r(q - 1)bc = 24bc = 0 (mod e1c) so this gives 

12acrc5 = 0 (mod elc). 

Now (a, c) = 1 since ad - be = 1. Also, 12cc5 is an integer so we can cancel 
a in the last congruence to get 

(42) 12crc5 = 0 (mod elc). 

Next we show that we also have 

(43) 12crc5 = 0 (mod 3c). 

Assume first that q > 3. In this case e = (3, qc 1) = (3, cd = e1 so (42) 
becomes 

12crc5 = 0 (mod ec). 

If e = 3 this gives (43). But if e = 1 then 3,f'c so 3{c1 and (38) implies 
12cs(a, c) = 0 (mod 3) and 12cs(a, cd = 0 (mod 3). Hence 

12crb = r(q - 1)(a + d) = 24(a + d) = 0 (mod 3), 

which, together with (42), implies (43). 
Now assume that q = 3 so r = 12. Then e = 3 and e1 is 1 or 3. lfe1 = 3 

we get (43) by the same argument used above, so it remains to treat the case 
e1 = 1. In this case 3,f'c1 so (38) implies 12c1s(a, c1) = 0 (mod 3), hence 

Also, 

so 

(44) 

12cs(a, c1) = 0 (mod 9). 

12c<5 = 12cs(a, c) - (a + d) - 12cs(a, c1) + 3(a + d) 

= 12cs(a, c) + 2(a + d) (mod 9), 

12racb = 12racs(a, c) + 2r(a 2 + ad) (mod 9). 
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3: The Dedekind eta function 

But Theorem 3.8(b) gives us 12acs(a, c) = a2 + 1 (mod 9) since 31 c. Hence 
(44) becomes 

12racb = r(a 2 + 1) + 2ra 2 + 2rad (mod 9) 

= 3ra 2 + r + 2r(l + be) = 3r + 2rbc = 0 (mod 9) 

since r = 12 and 9l12c. This shows that 

12racb = 0 (mod 9). 

Now 3{a since (a, c) = 1 so we can cancel a to obtain 12rcb = 0 (mod 9) 
which, with (42), implies (43). 

Our next goal is to show that we also have 

(45) 12crb = 0 (mod 24c) 

since this implies rb is even and proves the theorem. To prove (45) we treat 
separately the cases c odd and c even. 

Case 1: c odd. Apply (40) with k = c to obtain 

{ a+ d} 12c s(a,c)-~ = c- 1 + 4T(a,c)- (a+ d) (mod 8) 

where we have written 

T(a,c) = L -. [ 2av] 
v < c/2 C 

We only need the fact that T(a, c) is an integer. Applying (40) again with 
k = c1 = cjq and multiplying by q we have 

12c{s(a, c1)- al;c~} = c- q + 4qT(a, cd- q(a +d) (mod 8). 

Subtracting the last two congruences and multiplying by r we find 

12crb = r(q- 1) + r(q- !)(a+ d)= 0 (mod 8) 

since r(q - 1) = 24 and 4r = 0 (mod 8). Combining this with (43) we obtain 
(45) and the theorem is proved for odd c. 

Case 2: c even. Write c = 2;.y withy odd. Now a is odd since (a, c)= 1 so 
if a ~ 1 we can apply Theorem 3.10 with k = c and h = a to obtain 

12ac{s(a,c)- a 1;cd} = a2 + c2 + 1 

+ 5c - 4cT(c, a) - a( a + d) (mod 2H 3 ) 

= c2 + 5c - be - 4cT(c, a) (mod 2H 3 ) 

since ad - be = 1. Similarly, 

12ac{s(a, cd- a1~ 1d} = cc 1 + 5c- qbc- 4cT(c 1, a) (mod 2.<+ 3 ). 
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Subtract, multiply by rand use the congruence 4cr = 0 (mod 2" + 3 ) to obtain 

12carb = rccdq- 1) + r(q- 1)bc = 0 (mod 2H 3 ). 

Since a is odd we can cancel a to obtain 

(46) 12cr<5 = 0 (mod 2H 3 ). 

Now (43) states that 12cr<5 = 0 (mod 3 · 2;,y) which, together with (46) 
implies (45) and proves the theorem for a ~ 1. 

To prove it for a < 0, write <5 = b(a) to indicate the dependence on a. 
If a' = a + tc, where t is an integer, an easy calculation shows that 
b(a')- b(a) = t(q- 1)/12sinces(a, c)= s(a', c)ands(a',ctl = s(a, c1). There­
fore rb(a') - rb(a) = 2t, an even integer. Choosing t so that a' ~ 1 we know 
rb(a') is even by the above argument, so rb(a) is also even. This completes 
the proof. D 

3.10 The Eisenstein series G i r) 

If k is an integer, k ~ 2, and if T E H the Eisenstein series 

(47) 
1 

G2k(r) = L 2k 
(m,n);t(O,O) (m + m) 

converges absolutely and has the Fourier expansion 

(48) 
2(2ni)2k oc . 

G2k(T) = 2((2k) + (2k- 1)! n~I0'2k-dn)e2mnr 

where, as usual, O"~(n) = Ldln d~. The cases k = 2 and k = 3 were worked out 
in detail in Chapter 1, and the same argument proves (48) for any k ~ 2. If 
k = 1 the series in (47) no longer converges absolutely. However, the series 
in (48) does converge absolutely and can be used to define the function G2(r). 

Definition. If r E H we define 
w 

(49) G2(r) = 2((2) + 2(2ni)2 L O"(n)e2"inr. 
n~l 

If x = e2"ir the series on the right of (49) is an absolutely convergent 
power series for I xI < 1 so G2(r) is analytic in H. This definition also shows 
that G2(r + 1) = G2(r). 

Exercises 1 through 5 describe the behavior of G 2 under the other generator 
of the modular group. They show that 

(50) G2( ~ 1) = r 2G2(r)- 2nir, 

a relation which leads to another proof of the functional equation IJ( -1/r) = 
(- ir) 1121J(r). 
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3: The Dedekind eta function 

Exercises for Chapter 3 

I. If r E H prove that 

(51) 
" 

G2(r) = 2((2) + I I 
I 2· 

m=-x (m + nr) 

Hint: Start with Equation (12) of Chapter I, replacer by nr, where 11 > 0, and sum 
over all n 2 I. 

2. Use the series in (51) to show that 

(52) (-J) x x J 
r- 2 G2 - = 2((2) + I I 2' 

T m=-x n=-x(m + 11T) 

the iterated series in (52) being the same as that in (51) except with the order of sum­
mation reversed. Therefore, proving (50) is equivalent to showing that 

(53) I I I = I I I _ 2ni 
m=-xn=-oc(m+nr)2 n=-xm=-x(m+nr)2 T 

3. (a) In the gamma function integrall(z) = J~ e -ttz- 1 dt make the change of variable 
t = :xu, where :x > 0. to obtain the formula 

(54) :x-=l(z) = {"'e-""u=-t du, 

and extend it by analytic continuation to complex rx. with Re(:x) > 0. 
(b) Take z = 2 and rx. = -2ni(m + nr) in (54) and sum over alln 2 I to obtain the 

relation 

where 

and 

oc I IX I 2 = -8n2 cos(2nmu)g,(u) du, 
n=-x(nr+m) 0 

n*O 

X 

9,(uJ = u I e2 ninru if u > o 
n=1 

-I 
g,(O) = lim g,(u) = - .. 

u-0+ 2nn 

4. (a) Use Exercise 3 to deduce that 

(55) m=~ x n=~ x (nr ~ mf = - 8rr2 m=~ x f f(t) cos(2nmt) dt, 

n*O 

where 
X 

f!tl = I g,(r + k). 
k=O 
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(b) The series on the right of (55) is a Fourier series which converges to the value 
!{f(O +) + f(l- )}. Show that 

-1 X 

f(O+) = ~. + I g,(k) 
2mr k=l 

and that 

X 

f(l-) = I g,(k) = I o-(n)elninr, 
k= 1 n= 1 

and then use (55) to obtain (50). 

5. (a) Use the product defining IJ(r) to show that 

(b) Show that (50) implies 

d 
-4ni ~log IJ(r) = G2(r). 

dr 

d (-1) d I d -logl]- =~logl](r)+~~log(-ir). 
dr r dr 2 dr 

Integration of this equation gives 17( -1/r) = C( -ir)1121J(r) for some constant C. 
Taking r = i we find C = I. 

6. Derive the reciprocity law for the Dedekind sums s(h, k) from the transformation 
formula for log IJ(r) as given in Equation (12). 

Exercises 7 and 8 describe properties of the function 

r(s) 
<l>(e<, {3, s) = (2n)s {((s, e<)F(/3, 1 + s) + ((s, 1 - e<)F(l - {3, 1 + s)} 

which occurs in the proof of Iseki's formula (Theorem 3.5). The properties 
follow from Hurwitz's formula (Theorem 12.6 of [4]) which states that 

r(s) · 12 · ;2 W - s, a)= (2n)' {e-1t1s F(a, s) + e"15 F( -a, s)}. 

7. (a) IfO <a< I andRe (s) > I, prove that Hurwitz's formula implies 

r(l - s) "(! )/2 . I 2 F(a s) = --- {e"' -s C(l - s a)+ e"'cs- )/ r(l - s I -a)} ' ( 2n) 1 - s • ' ' , • 

(b) Use (a) to show that <l>(e~., (3, s) can be expressed in terms of Hurwitz zeta functions 
by the formula 

<l>(x, (3, s) . 
---- = e"'512 {((s, ex)(( -s, I - {J) + ((s, I - (;()(( -s,ff)] 
r(s)r( -s) 

+ e-nis/ 2 {(( -s, I - f3)((s, I - (;() + (( -s, fJ)((s, (;()} 

and deduce that <l>(x, {3, s) =<I>( I - {3, ex, -s). 

8. This exercise gives an estimate for the modulus of the function z-'<l>(x, {3, s) which 
occurs in the integral representation of !\(ex, (3, s) in the proof of Iseki's formula 
(Theorem 3.5). 
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3: The Dedekind eta function 

(a) Show that the formula of Exercise 7(b) implies 
-nz-• . 

z-'<l>(a, {3, s) = -.- {e-nr•l 2[((s, a)(( -s, /3) + ((s, I - a)(( -s, I - /3)] 
s Sill ns 

+ enisf2 [((s, a)(( -s, 1 - /3) + ((s, I -a)(( -s, /3)]}. 

(b) Forfixedzwith/argz/ < n/2,chooset5 > Osothat/argz/ ~ n/2- b,andshow 
that if s = a + it where a ;;:: -1 we have 

/z-'/ = O(eltl<nJ2-3l), 

where the constant implied by the 0-symbol depends on z. 
(c) If s =a+ it where a z -1 and /tl z I, show that 

1 (e-nltl) 
/s sin ns/ = 0 -1-t/- ' 

and that 

/enis/2/ = O(enltl/2), /e-nis/2/ = O(enltl/2). 

(d) If a;;:: -f and /t/;;:: I obtain the estimate /((s, a)/= 0(/t/c) for some c > 0 
(see [4], Theorem 12.23) and use (b) to deduce that 

I z -•<l>(a, {3, s) I = 0( It /2c- 1e- w). 

This shows that the integral of z-'<1>(~, {3, s) along the horizontal segments of the 
rectangle in Figure 3.2 tends to 0 as T --> oo. 

PROPERTIES OF DEDEKIND SUMS 

9. If k ;;:: I the equation 

s(h, k) = ,Ik ((i))((h:)) 
is meaningful even if h is not relatively prime to k and is sometimes taken as the 
definition of Dedekind sums. Using this as the definition of s(h, k) prove that 
s(qh, qk) = s(h, k) if q > 0. 

10. If p is prime prove that 
p-i 

(p + l)s(h, k) = s(ph, k) + I s(h + mk, pk). 
m=O 

11. For integers r, h, k with k z I prove that we have the finite Fourier expansion 

((hr)) I k ~1 • 2nhrv nv 
- = - - L.. Sill -- cot-
k 2k •·= 1 k k 

and derive the following expression for Dedekind sums: 

I k- 1 nhr nr 
s(h, k) = - I cot- cot-. 

4k r= 1 k k 

12. This exercise relates Dedekind sums with the sequence {11(11)) of Fibonacci numbers 
I, I, 2, 3, 5, 8, ... , in which u(l) = u(2) = I and u(n + I)= u(n) + u(n - I). 
(a) If h = u(2n) and k = u(2n + I) prove that s(h, k) = 0. 
(b) If h = u(2n- I) and k = u(2n) prove that 12hks(h, k) = h2 + e- 3hk + I. 

72 



Exercises for Chapter 3 

FORMULAS FOR EVALUATING DEDEKIND SUMS 

The following exercises give a number of formulas for evaluating Dedekind 
sums in closed form in special cases. Assume throughout that (h, k) = 1, 
k ~ 1, h ~ 1. 

13. If k = r (mod h) prove that the reciprocity law implies 

12hks(h, k) = k2 - { 12s(r, h) + 3}hk + h2 + I. 

Use the result of Exercise 13 to deduce the following formulas: 

14. If k = I (mod h) then 12hks(h, k) = (k - l)(k - h2 - 1). 

15. If k = 2 (mod h) then 12hks(h, k) = (k- 2)(k- t(h 2 + 1)). 

16. If k = -1 (mod h) then 12hks(h, k) = k2 + (h 2 - 6h + 2)k + h2 + I. 

17. If k = r (mod h) and if h = t (mod r) where r 2 I and t = ±I, then 

h2 - t(r- l)(r - 2)h + r 2 + I 
12hks(h, k) = k2 - k + h2 + I. 

r 

This formula includes those of Exercises 14 and 15 as special cases. 

18. Show that the formula of Exercise 17 determines s(h, k) completely when r = 3 
and when r = 4. 

19. If k = 5 (mod h) and if h = t (mod 5), where t = ±I or ± 2, then 

h k) k2 h2 + 4t(t - 2)(t + 2)h + 26 2 
12hks( , = - 5 k + h + I. 

20. Assume 0 < h < k and let r 0 , r 1, ••• , rn+ 1 denote the sequence of remainders in the 
Euclidean algorithm for calculating the gcd (h, k), so that 

Prove that 

s(h,k)= _I_ "f {(-J)i+t r/ + ri-12 +I}- (-1)" +I. 
12i~t riri-! 8 

This also expresses s(h, k) as a finite sum, but with fewer terms than the sum in the 
original definition. 
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4 Congruences for the coefficients 
of the modular function} 

4.1 Introduction 
The function j(r) = 123 J(r) has a Fourier expansion of the form 

1 00 . 

j(r) = - + L c(n)xn, (x = e2m) 
X n=O 

where the coefficients c(n) are integers. At the end of Chapter 1 we mentioned 
a number of congruences involving these integers. This chapter shows how 
some of these congruences are obtained. Specifically we will prove that 

c(2n)=O (mod2 11 ), 

c(3n) = 0 (mod 35), 

c(5n) = 0 (mod 52 ), 

c(7n) = 0 (mod 7). 

The method used to obtain these congruences can be illustrated for the 
modulus 52 . We consider the function 

00 

/ 5(r) = I c(5n)xn 
n=l 

obtained by extracting every fifth coefficient in the Fourier expansion of j. 
Then we show that there is an identity of the form 

(1) 

where the a; are integers and <D(r) has a power series expansion in x = e21tir 

with integer coefficients. By equating coefficients in (1) we see that each 
coefficient of f 5(r) is divisible by 25. 

Success in this method depends on showing that such identities exist. 
How are they obtained? 
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4.2: The subgroup r 0(q) 

Theorem 2.8 tells us that every modular function f is a rational function 
of j. Sometimes this rational function is a polynomial in j with integer co­
efficients, giving us an identity of the form 

f(r) = a 1j(r) + a 2/(r) + · · · + a1,/(r). 

However, the function f 5(r) is not invariant under all transformations of 
the modular group rand cannot be so expressed in terms of j(r). But we 
shall find that f 5(r) is invariant under the transformations of a certain 
subgroup of r, and the general theory enables us to express f 5(r) as a poly­
nomial in another basic function <l>(r) which plays the same role as j(r) 
relative to this subgroup. This representation leads to an identity such as 
(1) and hence to the desired congruence property. 

The subgroup in question is the set of all unimodular matrices (: ; ) 

with c = 0 (mod 5). More generally we shall consider those matrices in r 
with c = 0 (mod q), where q is a prime or a power of a prime. 

4.2 The subgroup r 0 (q) 

Definition. If q is any positive integer we define r 0(q) to be the set of all 

matrices (: ; ) in r with c = 0 (mod q). 

It is easy to verify that r 0(q) is a subgroup of r. The next theorem gives a 
way of representing each element of r in terms of elements of r 0 (p) when 
p is prime. In the language of group theory it shows that r 0(p) is of finite 
index in r. 

Theorem 4.1. Let Sr = -1/r and Tr = r + 1 be the generators of the full 
modular group r, and let p be any prime. Then for every V in r, V rt r 0(p), 
there exists an element Pin r 0(p) and an integer k, 0 :::;; k < p, such that 

V = PSTk. 

PROOF. Given V = ( ~ ~)where C ;j:. 0 (mod p). We wish to find 

P = (: ;). with c = 0 (mod p), 

and an integer k, 0 :::;; k < p, such that 
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4: Congruences for the coefficients of the modular functionj 

All matrices here are nonsingular so we can solve for (: ~) to get 

G ~) = (~ ~)(~ -!r1 = (~ ~)( -~ ~) = (~~ = ~ A) c· 

ChoosP. k to be that solution of the congruence 

kC = D (mod p) with 0 ~ k < p. 

This is possible since C ¥= 0 (mod p). Now take 

c = kC - D, a = kA - B, b = A, d =c. 
Then c = 0 (mod p) so pEr o(p). This completes the proof. 0 

4.3 Fundamental region of r 0{p) 

As usual we write Sr = - 1/r and Tr = r + 1, and let Rr denote the funda­
mental region of r. 

Theorem 4.2. For any prime p the set 

p-1 

Rr u U STk(Rr) 
k=O 

is a fundamental region of the subgroup r 0(p ). 

This theorem is illustrated for p = 3 in Figure 4.1. 

PROOF. Let R denote the set 

p-1 

R = Rr u U STk(Rr). 
k=O 

We will prove 

(i) if r E H, there is a V in r 0(p) such that Vr belongs to the closure of R, and 
(ii) no two distinct points of Rare equivalent under r 0(p). 

To prove (i), choose r in H, choose r 1 in the closure of Rr and choose 
A in r such that A r = r 1 . Then by Theorem 4.1 we can write 

A- 1 = PW 

where PEr0 (p) and W =I or W = ST" for some k, 0 ~ k ~ p- 1. Then 
P = A- 1w- 1 and p- 1 = WA. Let V = p- 1• Then VEr0(p) and 

Vr =WAr= Wr1• 

Since W = I or W = STk, this proves (i). 
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4.3: Fundamental region of r 0(p) 

-1 I 
-2 

I 

0 I 
2 

Figure 4.1 Fundamental region for r 0(3) 

T 

Next we prove (ii). Suppose r 1 E R, r 2 E R and Vr 1 = r 2 for some V in 
r 0(p). We will prove that r 1 = r 2 • There are three cases to consider: 

(a) r 1 ERr, r 2 ERr. In this case r 1 = r 2 since VEr. 
(b) r 1 ERr, r 2 E STk(Rr). 
(c) r 1 E STk'(Rr), r 2 E STk2(Rr). 

In case (b), r 2 = STkr3 where r 3 ERr. The equation 

implies 

v = STk = G 
This contradicts the fact that v E r o(p). 

Finally, consider case (c). In this case 

and 

-1) 
k . 

where r 1' and r 2 ' are in Rr. Since Vr1 = r 2 we have VSTk'r 1 ' = STk2r/ so 
VSTk' = STk 2 , 
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4: Congruences for the coefficients of the modular function j 

Since VEr0 (p) this requires k 2 = k 1 (modp). But both k 1 , k 2 are in the 
interval [0, p- 1], so k2 = k 1• Therefore 

v = ST0 S = S2 = 1 

and r 1 = r 2 . This completes the proof. 0 

We mention (without prooO the following theorem of Rademacher [34] 
concerning the generators of r 0 (p). (This theorem is not needed in the 
later work.) 

Theorem 4.3. For any prime p > 3 the subgroup r 0(p) has 2[pj12] + 3 
generators and they may be selected from the following elements: 

where Tr = r + 1, Sr = -1/r, and 

( 
k' 

V. = STkST-k'S = 
k -(kk' + 1) 

where kk' = - 1 (mod p), The subgroup r 0 (2) has generators T and V1; 

the subgroup r 0 (3) has generators T and V2 , 

Here is a short table of generators: 

p 2 3 5 7 11 13 17 19 

Generators: T T T T T T T T 

vl v2 v2 v3 v4 v4 v4 Vs 
v3 Vs v6 Vs v7 Vs 

Vs v9 v12 
v!O v13 v!3 

4.4 Functions automorphic ur1der the 
subgroup r o(p) 

We recall that a modular function f is one which has the following three 
properties: 

(a) f is meromorphic in the upper half-plane H, 
(b) f(Ar) = f(r) for every transformation A in the modular group r, 
(c) The Fourier expansion off has the form 

00 

f(rl = I ane2ttinr, 
n= -m 
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4.4: Functions automorphic under the subgroup r 0(p) 

If property (b) is replaced by 

(b') f(Vr) = f(r) for every transformation V in r 0 (p), 

thenfis said to be automorphic under the subgroup r 0(p). We also say that 
f belongs to r o(p). 

The next theorem shows that the only bounded functions belonging to 
r 0 (p) are constants. 

Theorem 4.4. Iff is automorphic under r 0(p) and bounded in H, then f is 
constant. 

PROOF. According to Theorem 4.1, for every v in r there exists an element 
Pin r 0 (p) and an integer k, 0 :::; k :::; p, such that 

V = PAk> 

where Ak = STk if k < p, and AP = I. For each k = 0, 1, ... , p, let 

rk = {PAk:PEro(p)}. 

Each set rk is called a right coset of r 0(p). Choose an element J1k from the 
coset rk and define a function fk on H by the equation 

fk(r) = f(l-k r). 

Note that fp(r) = f(Pr) = f(r) since P E r 0(p) and f is automorphic under 
r 0(p). The function value fk(r) does not depend on which element J1k was 
chosen from the coset r k because 

fk(r) = f(J!k r) = f(PAk r) = f(Ak r) 

and the element Ak is the same for all members of the coset r k. 
How does fk behave under the transformations of the full modular group? 

If V E r then 
fk(Vr) = f(l-k Vr). 

Now J1k VErso there is an element Q in r 0 (p) and an integer m, 0 :::; m :::; p, 
such that 

Therefore we have 

Moreover, as k runs through the integers 0, 1, 2, ... , p so does m. In other 
words, there is a permutation a of {0, 1, 2, ... , p} such that 

fk(Vr) = fa(kl(r) for each k = 0, 1, ... , p. 

Now choose a fixed win Hand let 
p 

q>(r) = n {fk(r) - f(w)}. 
k;Q 
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Then if V E r we have 

p p 

<p(Vr) = fl {fk(Vr)- f(w)} = fl Ua(kl(r)- f(w)} = <p(r), 
k=O k=O 

so <p is automorphic under the full group r. Now <p is bounded in H (since 
each fk is). Therefore, <p omits some value hence, by Theorem 2.5, <p is 
constant, so <p(r) = <p(w) for all r. But <p(w) = 0 because 

p 

<p(w) = fl {fk(w) - f(w)} 
k=O 

and the factor with k = p vanishes since fP = f Therefore <p(r) = 0 for all r. 
Now take r = i. Then 

p 

0 = TI {f,.(i) - f(w)} 
k=O 

hence some factor is 0. In other words, f(w) = f,.(i) for some k. But w was 
arbitrary so f can take only the values f 0 (i), ... , fp(i). This implies that f is 
constant. 0 

4.5 Construction of functions belonging 
tor o(p) 

This section shows how to construct functions automorphic under the 
subgroup r 0 (p) from given functions automorphic under r. 

Theorem 4.5. Iff is automorphic under r and if p is prime, let 

fp(r) = ~ Pf f(r + A)· 
p A=O p 

Then fP is automorphic under r 0 (p). Moreover, iff has the Fourier expansion 

00 

f(r) = I a(n)e2ninr 
n= -m 

then fP has the Fourier expansion 

00 

fp(r) = I a(np)e2ninr. 
n=-[rnjp) 

PROOF. First we prove the statement concerning Fourier expansions. We have 

1 p-I oo 

fp('r:) = - I I a(n)e2nin(r+Al/P 
PA=On=-rn 

1 oo p-I 
" ( ) 2ninrjp " e2ninA/P =- L.. ane L.. . 

P n= -rn A=O 
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4.5: Construction of functions belonging to r 0 (p) 

But 

so 
00 00 

fp('r:) = L a(n)e2xin</p = L a(np)e2xin•. 
n= -m n= -[m/p] 

pin 

This shows that fP has the proper behavior at the point -r: = ioo. Also, 
fP is clearly meromorphic in H because it is a linear combination of functions 
meromorphic in H. 

Next we must show that 

fp(V-r:) = fp(-r:) whenever V E r 0(p). 

For this we use a lemma. 

Lemma l. If VEr0(p) and if 0 ~A~ p- 1, let T;.-r: = (-r: + A)/p. Then 
there exists an integer J.L, 0 ~ J.L ~ p - 1 and a transformation »j. in 
r 0(p2) such that 

T;. V = »j. Tw 

Moreover, as A runs through a complete residue system modulo p, so does J.L. 

First we use the lemma to complete the proof of Theorem 4.5, then we 
return to the proof of the lemma. 

If V E r o(P) we have 

1P- 1 (V-r:+A) 1p-t 
fp(V-r:) =- L f =- L f(T;. V-r:). 

p A=O p p A=O 

Now we use the lemma to write the last sum as 

1p-1 1p-1 

- L: f(»j. ~ •> = - L: f(~ •> = fp(•>· 
p 1'=0 p 1'=0 

This proves that fP is invariant under all transformations in r 0(p), so fP is 
automorphic under r 0 (p). 0 

PRooF OF LEMMA 1. Let V = (: :). where c = 0 (modp), and let A be 

given, 0 ~A~ p - 1. We are to find an integer J.L, 0 ~ J.L ~ p- 1 and a 

transformation »j. = ( ~ ~) such that »j. E r 0(p2) and 

T;.V = W11 T11 • 
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4: Congruences for the coefficients of the modular function j 

Since T;. = (~ ~)we must satisfy the matrix equation 

or 

( a + AC b + Ad) = (A A)l + Bp) 
pc pd C CJ1 + Dp 

with C = 0 (mod p2). Equating entries we must satisfy the relations 

(2) {A = a + Ac 
C = pc 

(3) {AJl + Bp = b + Ad 
CJ1 + Dp = pd 

with 

and AD- BC = 1. 

Now (2) determines A and C. Since pIc, we have C = 0 (mod p2 ). Substi­
tuting these values in (3) we must satisfy 

(4) {(a + AC)Jl + Bp = b + Ad 
Cp)l + Dp = pd. 

Choose J1 to be that solution of the congruence 

)la = b + Ad (mod p) 

which lies in the interval 0 ::::; J1 ::::; p - 1. This is possible because ad - be = 1 
and pIc imply p{ a. Note that distinct values of A mod p give rise to distinct 
values of J1 mod p. Then, since pIc we have 

)la +)lAC = b + Ad (mod p) 

or 
(a + AC)Jl = b + Ad (mod p). 

Therefore there is an integer B such that 

(a + Ac)Jl + Bp = b + Ad. 

Therefore the first relation in (4) is satisfied. The second relation requires 
D = d- CJl. Thus, we have found integers Jl, A, B, C, D such that 

Clearly AD - BC = 1 since all matrices in this equation have determinant 
1 or p. This completes the proof of the lemma. D 
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4.6: The behavior oft~ under the generators of r 

4.6 The behavior of JP under the generators 
ofr 

Let Tt = t + 1 and St = -1/t be the generators of r. Since T E r 0(p) we 
have fp(Tt) = fp(r). The next theorem gives a companion result for fp(Sr). 

Theorem 4.6. Iff is automorphic under r and if p is prime, then 

J; (- ~) = J; (r) + ~ f(pr) - ~ 1(!:). p t p p p p 

To prove this we need another lemma. 

Lemma 2. Let TAr= (r + A)/p. Thenfor each A in the interva/1 ~A~ p- 1 
there exists an integer f.1 in the same interval and a transformation V in 
r 0 (p) such that 

TAS = VTW 

Moreover, as A runs through the numbers 1, 2, ... , p - 1, so does f.l. 

PROOF OF LEMMA 2. We wish to find (: ~) in r 0{p) such that 

or 

-1) = (a af.1 + bp)· 
0 C Cf.l + dp 

Take a = A, c = p and let f.1 be that solution of the congruence 

Af.l = - 1 (mod p) 

in the interval 1 ~ f.1 ~ p - 1. This solution is unique and f.1 runs through a 
reduced residue system mod p with A. Choose b to be that integer such that 
af.1 + bp = -1, and take d = - f.l. Then Cf.l + dp = 0 and the proof is 
complete. 0 

PROOF OF THEOREM 4.6. We have 

( 1) p-I (Sr + A) (Sr) p-I pfp - - = L f -- = f - + L f(TASt) 
t A=O p p A= I 

= 1(- ~) + PI1 f(VT~-' r) = f(rp) + PI1 
f(Tp. t)- 1(!:) 

tp !-!=1 !-!=0 p 

= f(rp) + pfp(r)- !G). 0 
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4: Congruences for the coefficients of the modular function j 

4.7 The function cp(r) = t1(qr)/t1(r) 

The number of poles of an automorphic function in the closure of its fun­
damental region is called its valence. A function is called univalent on a 
subgroup G if it is automorphic under G and has valence 1. Such a function 
plays the same role in G that J plays in the full group r. 

It can be shown (using Riemann surfaces) that univalent functions exist 
on G if and only if the genus of the fundamental region R 6 is zero. [This is 
the topological genus of the surface obtained by identifying congruent edges 
of R 6 . For example, the genus of Rr is zero because Rr is topologically 
equivalent to a sphere when its congruent edges are identified.] 

Our next goal is to construct a univalent function on the subgroup 
r 0(p) whenever the genus of r 0(p) is zero. This will be done with the aid of 
the discriminant A = g2 3 - 27g/. 

We recall that A(r) is periodic with period 1 and has the Fourier expansion 
(Theorem 1.19) 

00 

A(r) = (2n)12 L r(n)e2xin< 
n=l 

where the r(n) are integers with r(1) = 1 and r(2) = -24. However, A(r) is 
not invariant under all transformations of r. In fact we have 

A(:::~)= (cr + d)12A(r) if (: ~) E r. 

In particular, 

A(r + 1) = A(r) and A(~ 1) = r 12A(r). 

Even though A(r) is not invariant under r it can be used to construct functions 
automorphic under the subgroup r 0(q) for each integer q. 

Theorem 4.7. For a .fixed integer q, let 
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cp(r) = A(qr) ifr E H. 
A(r) 

Then cp is automorphic under r 0(q). Moreover, the Fourier expansion of cp 
has theform 

where the bn are integers and x = e2"i'. 



4.7: The function cp(r) = .:1(qr)/<1(r) 

PROOF. First we obtain the Fourier expansion. We have 

~(r) = (2n) 12J1 r(n)x" = (2n) 12x{ 1 + n~1r(n + 1)x"} 

where x = elnir. Hence 

so 

cp(r) = ~(qr) = xq-1 1 + L~ 1 r(n + 1)x"q = xq-1(1 + I b x") 
~(r) 1+L:'=1r<n+1)x" n=1" 

where the b" are integers. 
Now cp is clearly meromorphic in H, and we will prove next that cp is 

invariant under r o(q). 

If v = G ~) E ro(q) then c = c1q for some integer c1. Hence 

~(Vr) = (cr + d) 12~(r) = (c 1qr + d) 12~(r). 

On the other hand, 

ar + b a(qr) + bq 
qVr = q--d = ( ) d = W(qr), 

cr + c1 qr + 
where 

W =(a bq)· 
c1 d 

But wE r because det w =ad - bc1q =ad - be = 1. Hence 

~(qVr) = ~(W(qr)) = (c1(qr) + d) 12 ~(qr), 

so 

(Vr) = ~(qVr) = (c1qr + d) 12~(qr) = (r). 
cp ~(Vr) (c 1 qr + d) 12 ~(r) cp 

This completes the proof. 0 

Now cp has a zero of order q - 1 at oo and no further zeros in H. Next we 
show that cp does not vanish at the vertex r = 0 of the fundamental region 
of r 0 (q). In fact, we show that cp(r) ...... oo as r ...... 0. 

Theorem 4.8. If r E H we have 

(-1) 1 
cp q:;- = q12cp(r)" 

Hence cp(r) ...... oo as r ...... 0. 
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4: Congruences for the coefficients of the modular function j 

PROOF. Since 11( -1/r) = r 1211(r) we have 

11(- ;, ) = (qr) 12 11(qr) 

so 

(/)(-qr1) _ ~1( q ~r1 ) ~1(-n T1211(r) _ 12 1 - ~1( ~,1) - ~1( _ q1r) = (qr) 1211(qr) = q cp(r)' 

Since cp has a zero at x we have cp(- 1 /(tJT))-> 0 as r-> 0 so cp( r) ~ x. 0 

4.8 The univalent function <l>(r) 

The function cp has a zero of order q - 1 at oo and no further zeros so its 
valence is q - 1. We seek a univalent function automorphic under r 0(q) 
and this suggests that we consider cp2 , where r:x = 1/(q - 1). The Fourier 
expansion of cp~ need not have integer coefficients, since 

On the other hand we have the product representation 

00 

11(r) = (2n) 12x fl (1 - x"f4 

n=l 

so 

where the coefficients dq(n) are integers. Therefore if r:x = 1/(q - 1) we have 

(5) ( 

00 )24~ 
cp~(r) = X 1 + n~l dq(n)x" 

and the Fourier series for cp~(r) will certainly have integer coefficients if 
24r:x is an integer, that is, if q - 1 divides 24. This occurs when q = 2, 3, 4, 5, 
7, 9, 13, and 25. 

Definition. If q - 1 divides 24 let r:x = 1/(q - 1) and r = 24r:x. We define the 
function ci> by the relations 

~ (11(qr))2 (1J(qr))' 
Cl>(r) = cp (r) = 11(r) = 1J(r) · 
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4.9: In variance of <l>(r) under transformations of r 0(q) 

The function«<> so defined is analytic and nonzero in H. The Fourier series 
for«<> in (5) shows that«<> has a first order zero at oo and that 

1 1 
«l>(r) = x + I(x), 

where I(x) is a power series in x with integer coefficients. 
Since cp is automorphic under r 0(q) we have cp(Vr) = cp(r) for every 

element V of r 0(q). Hence, extracting roots of order q - 1, we have 

«l>(Vr) = e«l>(r) 

where eq- 1 = 1. The next theorem shows that, in fact, e = 1 whenever 
24/(q - 1) is an even integer and q is prime. This occurs when q = 2, 3, 5, 7, 
and 13. For these values of q the function «<>is automorphic under r 0(q). 

4.9 Invariance of<l>(r) under transformations 
of r o(q) 

The properties of Dedekind sums proved in the foregoing chapter lead to a 
simple proof of the invariance of the univalent function «l>(r). 

Theorem 4.9. Let q = 2, 3, 5, 7, or 13, and let r = 24/(q - 1). Then the function 

(6) «l>(r) = (1'/(qr))' 
1'/(!) 

is automorphic under the subgroup r o(q). 

PROOF.Ifq = 2wehaver = 24and«l>(r) = L\(qr)/L\(r).lnthiscasethetheorem 
was already proved in Theorem 4.7. Therefore we shall assume that q ~ 3. 

Let V = (: ~) be any element of r 0(q). Then ad- be= 1 and 

c = 0 (mod q). We can suppose that c ~ 0. If c = 0 then Vis a power of 
the translation Tr = r + 1, and since 1'/(! + 1) = e"ii12,.,(r) we find 

«l>(r + 1) = (1'/(qr + q))' = e"ir(q-1J/12«l>(r) = «l>(r). 
1'/(! + 1) 

Therefore we can assume that c > 0 and that c = c1q, where c1 > 0. 
Dedekind's functional equation for 1'/(r) gives us 

(7) 

where 

(8) 
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4: Congruences for the coefficients of the modular function j 

We also have 

where 

V: =(a bq) 
1 d . cl 

Since vl E r we have 

which, together with (7), gives us 

~(Vr) = (:~~j)' ~(r). 

But (8) shows that (e(Vd/e(V))' = e-xirb. where 

_ {a+d } {a+d } {) = 12C + s( -d, c) - 12c
1 

+ s( -d, c1) • 

Since ad - be = 1 we have ad = 1 (mod c) and ad = 1 (mod c1) so 
s( -d, c)= -s(a, c) and s( -d, c1) = -s(a, c1), and Theorem 3.11 shows that 
rb is an even integer. Therefore e-"irb = 1 and ~Vr) = ~(r). D 

4.10 The function j P expressed as a 
polynomial in <1> 

If p is prime and iff is automorphic under r, we have shown that the 
function 

fp(r) = ~ PI1 !(r + A.) 
p .1.=0 p 

is automorphic under r 0 (p), and its Fourier coefficients consist of every pth 
coefficient off To obtain divisibility properties of the coefficients of jp(r) 
we shall expressjP as a polynomial in the function~. 

In deriving the differential equation for the Weierstrass p function we 
formed a linear combination of p, p 2 and p 3 which gave a principal part 
near z = 0 equal to that of [p'(z)Y, The procedure here is analogous. 
Both functions j P and ~ have a pole at the vertex r = 0 of the fundamental 
region of r 0 (p). We form a linear combination of powers of~ to obtain a 
principal part equal to that of j P. 
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4.10: The function j P expressed as a polynomial in <1> 

To obtain the order of the pole of jp('r:) at r = 0 we use Theorem 4.6 
which gives us the relation 

j (- ~) = j (r) + ~ j(pr) - ~ j(~) p '!: p p p p 

valid for prime p. Replacing r by pr in this formula we obtain 

Theorem 4.10. If p is prime and r E H then 

( 1) 1 1 jP -- = jP(pr) + - j(p2r) -- j(r). 
pr p p 

Hence if x = e2"it we have the Fourier expansion 

pjP(- :.) = x-p>- x- 1 + I(x), 

where I(x) is a power series in x with integer coefficients. 

PROOF. We have 

j(r) = x- 1 + c(O) + c(l)x + c(2)x2 + · · ·, 
jp(r) = c(O) + c(p)x + c(2p)x2 + · .. , 

pjP(pr) = pc(O) + pc(p)xP + pc(2p)x2P + · ·., 
and 

so 

j(p2 r) = x- p> + c(O) + c( 1 )xP2 + c(2)x2P2 + ... , 

pjP(- :. ) = pjP(pr) + j(p2 r) - j(r) 

= x-p>- x- 1 + I(x). 

Now we can expressjP as a polynomial in <1>. 

Theorem 4.11. Assume p = 2, 3, 5, 7 or 13, and let 

( Yf(p•))' 24 
<l>(r) = '7(•) , where r = p _ 1 . 

Then there exist integers a 1, .•• , ap> such that 

PROOF. By Theorem 4.10 we have 

pjp(- :. ) = x-p> - x- 1 + J(x), 

D 
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4: Congruences for the coefficients of the modular function j 

and, since 12oc = r/2, Theorem 4.8 gives us 

pr12Cf>(- ~) = _1_ = x-1 + I(x). 
pr Cf>(r) 

Let 1/J(r) = p'f2Cf>( -1/(pr)). Then the difference 

pj (- ~)- {l/l(r)}P2 
P pr 

has a pole of order ~ p2 - 1 at x = 0, and the Laurent expansion near x = 0 
has integer coefficients. Hence there is an integer b1 such that 

pj (- ~)- {I/J(r)}P2- b1{1/J(r)}P,_ 1 
P pr 

has a pole of order ~ p2 - 2 at x = 0, and the Laurent expansion near x = 0 
has integer coefficients. In p2 steps we arrive at a function 

( 1 ) . ( 1 ) 2 2-1 f -- = PJ -- - {1/J(r)}P -bdi/J(r)}P - · · ·- b ,_ 1/J(r) pr P pr P 1 

which is analytic at x = 0 and has a power series expansion with integer 
coefficients. Moreover, all the numbers b~> ... , bP,_ 1 are integers. Replacing 
r by - 1/(pr) we obtain 

f(r) = pjp(r) - {pr12Cf>(r)}P2 - b1 {pr12Cf>(r)}P,_ 1 - .•• - bP,_ 1 {pr/2Cf>(r)}. 

Now f(r) is automorphic under r 0(p) and analytic at each point r in H. 
The function f is also analytic at the vertex r = 0 (by construction). Therefore 
f is bounded in H so f is constant. But this constant is pc(O) since Cf>(r) 
vanishes at oo. Thus we find 

pjp(r) = {pr/2Cf>(r)}P2 + b1 {prf2Cf>(r)}P>- 1 + ... + bp>- 1 {prf2Cf>(r)} + pc(O) 

so jp(r) is expressible as indicated in (9). 0 

Theorem 4.12. The coefficients in the Fourier expansion of j(r) satisfy the 
following congruences: 

c(2n) = 0 (mod 211) 

c(3n) = 0 (mod 35) 

c(Sn) = 0 (mod 52) 

c(7n) = 0 (mod 7). 

PROOF. The previous theorem shows that for p = 2, 3, 5, 7 and 13 we have 

c(pn) = 0 (mod p<'12l- 1), 

where r = 24/(p - 1). Therefore we simply compute (r/2) - 1 to obtain the 
stated congruences. Note that (r/2) - 1 = 0 when p = 13 so we get a trivial 
congruence in this case. D 

90 



Exercises for Chapter 4 

Note. By repeated application of the foregoing ideas Lehner [24] derived 
the following more general congruences, valid for ex ~ 1 : 

c(2an) = 0 (mod 23a+s) 
c(3an) = 0 (mod 32a+ 3) 

c(Yn) = 0 (mod 5a+l) 

c(?an) = 0 (mod 7a). 

Since it is known that c(13) is not divisible by 13, congruences of the above 
type cannot exist for 13. In 1958 Morris Newman [30] found congruences 
of a different kind for 13. He showed that 

( 13n) c(13np) + c(13n)c(13p) + p- 1c p = 0 (mod 13), 

wherep- 1p = 1 (mod 13)andc(x) = Oifxisnotaninteger. Thecongruences 
of Lehner and Newman were generalized by Atkin and O'Brien [5] in 1967. 

Exercises for Chapter 4 

1. This exercise relates the Dedekind function ~(r) to the Jacobi theta function .9(r) 
defined on H by the equation 

oc oc 

.r+(r) = 1 + 2 I enin2, = I enin2'. 

n=l n=-oc 

The definition shows that .9 is analytic in H and periodic with period 2. 
Jacobi's triple product identity (Theorem 14.6 in [4]) states that 

oc oc 

fl (1- x2")(1 + x2•-lz2)(1 + x2•-lz-2) = I xm2z2m 

n=l m=-oc 

if z # 0 and I x I < 1. 
(a) Show that x and z can be chosen to give the product representation 

00 

:~(r) = TI <1 _ e2ni"'H1 + e<2n-l)nit)2. 
n=l 

This implies that i:l(r) is never zero in H. 
(b) If r E H prove that 

(c) Prove that i:l( -1/r) = (- ir) 1' 2i:l(r). 
Hint: If Sr = -1/r, find elements A and B of r such that 

Sr; 1 = A(T; 1) and Sr + I = B(r + 1). 
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4: Congruences for the coefficients of the modular function j 

2. Let G denote the subgroup of r generated by the transformations Sand T 2 , where 
Sr = -1/r and Tr = T + 1. 

(a) If(: :) E G prove that a = d (mod 2) and b = c (mod 2). 

(b) If V E G prove that there exist elements A and B of r such that 

Vr 2+ 1 =A(': 1) and Vr + 1 = B(r + 1). 

(c) If (: :) E G and c > 0 prove that 

( aT+ b) 
9 cr + d = e(a, b, c, d){- i(cr + dW 129(r), 

where I e(a, b, c, d) I = 1. Express e(a, b, c, d) in terms of Dedekind sums. 

Exercises 3 through 8 outline a proof(due to Mordell [28]) of the multiplica­
tivity of Ramanujan's function <(n). We recall that 

00 00 L <(n)e21tint = (2n)-12A(<) = e21tit n (1 - e21timt)24. 
n=l m=l 

3. Let p be a prime and let k be an integer, 1 :::;; k :::;; p - 1. Show that there exists an 
integer h such that 

and that h runs through a reduced residue system mod p with k. 

4. If p is a prime, define 

Prove that: 

(-1) 12 (b) FP -,- = r Fp(r). 

Note: Exercise 3 will be helpful for part (b). 

5. Prove that F p(r) = r(p)<i(r), where r(p) is Ramanujan's function. 

6. Use Exercises 4 and 5 to deduce the formulas 

(a) r(p"+ 1) = r(p)r(p")- p 11 r(p"- 1)forn;:::: 1. 

(b) r(p"n) = r(p)r(p"- 1n)- p11 r(p"- 2 n) for rx;:::: 2 and (n, p) = 1. 

7. If rx is an integer, rx;:::: 0, and if (n, p) = 1, let 
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g(rx) = r(p"n) - r(p")r(n). 

Show that g(rx + 1) is a linear combination of g(rx) and g(rx- 1) for rx;:::: 2 and deduce 
that g(rx) = 0 for all rx. 



Exercises for Chapter 4 

8. Prove that 

In particular, when (m, n) = 1 this implies r(m)r(n) = r(mn). 

9. If r E H and x = e2 ni' prove that 

{5o4J
0
a 5(n)x"r = {j(r)- 12 3 }"~1 r(n)x", 

where a 5(0) = - 1/504. Equate coefficients of x" to obtain the identity 

n n-1 

(504)2 L a 5(k)a 5(n- k) = r(n + I)- 984r(n) + L c(k)r(n- k). 
k=O k=l 

10. Use Exercise 9 together with Exercise 10 of Chapter 6 to prove that 

65520 n-I 

-- {a11(n)- r(n)} = r(n + I)+ 24r(n) + L c(k)r(n- k). 
691 k=l 

This formula, due to Lehmer [20], can be used to determine the coefficients c(n) 
recursively in terms of r(n). Since the right member is an integer, the formula also 
implies Ramanujan's remarkable congruence 

r(n) = a 11(n) (mod 691). 

93 



5 Rademacher's series for 
the partition function 

5.1 Introduction 

The unrestricted partition function p(n) counts the number of ways a positive 
integer n can be expressed as a sum of positive integers ::::;; n. The number of 
summands is unrestricted, repetition is allowed, and the order of the sum­
mands is not taken into account. 

The partition function is generated by Euler's infinite product 

(1) 

where p(O) = 1. Both the product and series converge absolutely and repre­
sent the analytic function Fin the unit disk I xI < 1. A proof of (1) and other 
elementary properties of p(n) can be found in Chapter 14 of [ 4]. This chapter 
is concerned with the behavior of p(n) for large n. 

The partition function p(n) satisfies the asymptotic relation 

eK,Jii 

p(n) "' ;; as n -+ oo, 
4ny3 

where K = n:(2/3)1i 2 . This was first discovered by Hardy and Ramanujan [13] 
in 1918 and, independently, by J. V. Uspensky [52] in 1920. Hardy and 
Ramanujan proved more. They obtained a remarkable asymptotic formula 
of the form 

" (2) p(n) = L Pk(n) + O(n- 114), 
k<rz../n 
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5.2: The plan of the proof 

where rx is a constant and P 1(n) is the dominant term, asymptotic to 

eKv'ilj(4nj3). The terms P2(n), P 3(n), ... are of similar type but with smaller 
constants in place of K in the exponential. Since p(n) is an integer the finite 
sum on the right of (2) gives p(n) exactly when n is large enough to insure 
that the error term is less than 1/2. This is a rare example of a formula which 
is both asymptotic and exact. As is often the case with asymptotic formulas 
of this type, the infinite sum 

(3) 

diverges for each n. The divergence of (3) was shown by D. H. Lehmer [21] 
in 1937. 

Hans Rademacher, while preparing lecture notes in 1937 on the work of 
Hardy and Ramanujan, made a small change in the analysis which resulted 
in slightly different terms Rk(n) in place of the Pk(n) in (2). This had a profound 
effect on the final result since, instead of (2), Rademacher obtained a con­
vergent series, 

00 

(4) p(n) = L Rk(n). 
k=1 

The exact form of the Rademacher terms Rk(n) is described below in Theorem 
5.10. Rademacher [35] also showed that the remainder after N terms is 
O(n- 114 ) when N is of order Jn, in agreement with (2). 

This chapter is devoted to a proof of Rademacher's exact formula for 
p(n). The proof is of special interest because it represents one of the crowning 
achievements of the so-called "circle method" of Hardy, Ramanujan and 
Littlewood which has been highly successful in many asymptotic problems 
of additive number theory. The proof also displays a marvelous application 
of Dedekind's modular function t]('r). 

5.2 The plan of the proof 

This section gives a rough sketch of the proof. The starting point is Euler's 
formula (1) which implies 

F(x) = ~ p(k)xk "fO I I 1 
n+ 1 L... n+ 1 1 < X < ' 

X k=O X 

for each n ;::::: 0. The last series is the Laurent expansion of F(x)/xn+ 1 in the 
punctured disk 0 < I xI < 1. This function has a pole at x = 0 with residue 
p(n) so by Cauchy's residue theorem we have 

1 i F(x) p(n) = -2 . --;;-:t:I dx, 
m ex 
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5: Rademacher's series for the partition function 

where C is any positively oriented simple closed contour which lies inside 
the unit circle and encloses the origin. The basic idea of the circle method is 
to choose a contour C which lies near the singularities of the function F(x). 

The factors in the product defining F(x) vanish whenever x = 1, x2 = 1, 
x3 = 1, etc., so each root of unity is a singularity of F(x). The circle method 
chooses a circular contour C of radius nearly 1 and divides C into arcs 
Ch.k lying near the roots of unity e2"ihfk, where 0 ~ h < k, (h, k) = 1, and 
k = 1, 2, ... , N. The integral along C can be written as a finite sum of integrals 
along these arcs, 

N k-1 r 
k~1 h~o Jch k. 

(h,k)= 1 • 

On each arc Ch,k the function F(x) in the integrand is replaced by an elemen­
tary function 1/Jh.k(x) which has essentially the same behavior as F near the 
singularity e2"ihfk. This elementary function 1/Jh,k arises naturally from the 
functional equation satisfied by the Dedekind eta function 17(r). The functions 
F and 11 are related by the equation 

and the functional equation for 11 gives a formula which describes the behavior 
ofF near each singularity e2"ihfk. The replacement ofF by 1/Jh,k introduces 
an error which needs to be estimated. The integrals of the 1/Jh,k along Ch,k are 
then evaluated, and their sum over h produces the term Rk(n) in Rademacher's 
series. 

In 1943 Rademacher [38] modified the circle method by replacing the 
circular contour C by another contour in the r-plane, where x = e2nit. This 
new path of integration simplifies the estimates that need to be made and 
clarifies the manner in which the singularities contribute to the final formula. 

The next section expresses Dedekind's functional equation in terms of F. 
Sections 5.5 and 5.6 describe the path of integration used by Rademacher, 
and Section 5.7 carries out the plan outlined above. 

5.3 Dedekind's functional equation expressed 
in terms ofF 

Theorem 5.1. Let F(t) = 1/0~= 1 (1 - tm) and let 

(5) ( 2nih 2nz) 
x = exp -k- - k2 , , (2niH 2n) x = exp -k- - z , 

where Re(z) > 0, k > 0, (h, k) = 1, and hH = -1 (mod k). Then 

(6) F(x) = e"is(h,k) - exp ---- F(x') (z)1/2 ( n nz ) 
k 1~ 1~2 . 
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5.4: Farey fractions 

Note. If lzl is small, the point x in (5) lies near the root of unity e2"ihlk, 

whereas x' lies near the origin. Hence F(x') is nearly F(O) = 1, and Equation 
(6) gives the behavior ofF near the singularity e2"ih/k. Aside from a constant 
factor, for small I z I, F behaves like 

z1i2 exp(t;z). 

PROOF. If (: ~) E r with c > 0, the functional equation for 17(r) implies 

(7) 1 _ 1 . 112 { ·(a + d )} 1J(t) - IJ(r') { -z(cr + d)} exp m ---uc + s( -d, c) , 

where r' = (ar + b)/(cr + d). Since F(e2"ir) = e"ir/12/IJ(r), (7) implies 

(8) F(e2nir) = F(e2nir') exp(ni(r1~ r')} -i(cr + d)P12 

xexp{n{a 1~cd + s(-d,c))} 

Now choose 

hH + 1 
a= H, c = k, d = -h, b = - k , and 

Then 

, iz- 1 + H 
r =------,---

k 

and (8) becomes 

iz + h 
t=-k-. 

( ( 2nih 2nz)) ( (2niH 2n)) 112 F exp -- -- = F exp -- - - z 
k k k kz 

{ n nz } x exp 12kz - 12k + nis(h, k) . 

When z is replaced by z/k this gives (6). 

5.4 Farey fractions 

0 

Our next task is to describe the path of integration used by Rademacher. 
The path is related to a set of reduced fractions in the unit interval called· 
Farey fractions. This section describes these fractions and some of their 
properties. 
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5: Rademacher's series for the partition function 

Definition. The set of Farey fractions of order n, denoted by Fn, is the set of 
reduced fractions in the closed interval [0, 1] with denominators ~n, 
listed in increasing order of magnitude. 

EXAMPLES 

F1: ¥.t 
Fz: ¥. !. t 
F 3 : ¥. i. !, i, t 
F 4: ¥. !, i, !. i, -.f, t 
F s: ¥. !. !. !, ~. !. !, i. -.f, !. t 
F 6: ¥. i. !. !. i, ~. !, !, i. -.f, !, i. t 
F 7: ¥. ~. i, !. !, ~. i. ~. ~. !. 4. !. i, ~. -.f, !. i. ~. t 

These examples illustrate some general properties of Farey fractions. 
For example, F n c F n + 1, so we get F n + 1 by inserting new fractions in F n. 
If(a/b) < (c/d) are consecutive in Fn and separated in Fn+ 1> then the fraction 
(a + c)/(b + d) does the separating, and no new ones are inserted between 
a/b and c/d. This new fraction is called the mediant of a/b and c/d. 

Theorem 5.2. lf(a/b) < (c/d), their mediant (a + c)/(b + d) lies between them. 

PROOF 

a+c a be-ad 
b + d - b = b(b + d) > 0 and 

c a+ c be- ad 
d - b + d = d(b + d) > o. 0 

The above examples show that i and~ are consecutive fractions in Fn 
for n = 5, 6, and 7. This illustrates the following general property. 

Theorem 5.3. Given 0 ::; a/b < c/d ::; 1. If be - ad = 1 then a/b and c/d are 
consecutive terms in F nfor the following values of n: 

max(b, d) ::; n ::; b + d - 1. 

PROOF. The condition be -ad = 1 implies that a/b and c/d are in lowest 
terms. If max(b, d) ::; n then b ::; n and d ::; n so a/b and c/d are certainly in 
Fn. Now we prove they are consecutive if n ::; b + d- 1. If they are not 
consecutive there is another fraction h/k between them, a/b < h/k < cfd. 
But now we can show that k ~ b + d because we have the identity 

(9) k = (be - ad)k = b(ck - dh) + d(bh - ak). 

But the inequalities a/b < h/k < c/d show that ck - dh ~ 1 and bh - ak ~ 1 
so k ~ b + d. Thus, any fraction h/k that lies between a/b and c/d has 
denominator k ~ b + d. Therefore, if n ::; b + d - 1, then a/b and c/d must 
be consecutive in Fn. This completes the proof. 0 
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5.5: Ford circles 

Equation (9) also yields the following theorem. 

Theorem 5.4. Given 0 :s;; ajb < cjd :s;; 1 with be - ad = 1, let h/k be the 
mediant of ajb and cjd. Then a/b < h/k < cjd, and these fractions satisfy 
the unimodular relations 

bh- ak = 1, ck- dh = 1. 

PROOF. Since h/k lies between ajb and cjd we have bh- ak 2 1 and 
ck - dh 2 1. Equation (9) shows that k = b + d if, and only if, bh - ak = 
ck- dh = 1. D 

The foregoing theorems tell us how to construct F n + 1 from F n. 

Theorem 5.5. The set F n + 1 includes F n. Each fraction in F n + 1 which is not in 
Fn is the mediant of a pair of consecutive fractions in Fn. Moreover, if 
ajb < cjd are consecutive in any Fn, then they satisfy the unimodular 
relation be - ad = 1. 

PROOF. We use induction on n. When n = 1 the fractions 0/1 and 1/1 are 
consecutive and satisfy the unimodular relation. We pass from F 1 to F 2 by 
inserting the mediant 1/2. Now suppose a/b and cjd are consecutive in F" 
and satisfy the unimodular relation be - ad = 1. By Theorem 5.3, they will 
be consecutive in F m for all m satisfying 

max(b, d) :s;; m :s;; b + d - 1. 

Form their mediant h/k, where h = a + c, k = b + d. By Theorem 5.4 
we have bh - ak = 1 and ck - dh = 1 so h and k are relatively prime. 
The fractions ajb and cjd are consecutive in F m for all m satisfying 
max(b, d) :s;; m :s;; b + d- 1, but are not consecutive in Fk since k = b + d 
and h/k lies in Fk between ajb and cjd. But the two new pairs a/b < h/k and 
h/k < c/darenowconsecutiveinFkbecausek = max(b,k)andk = max(d,k). 
The new consecutive pairs still satisfy the unimodular relations bh - ak = 1 
and ck - dh = 1. This shows that in passing from F n to F" + 1 every new 
fraction inserted must be the mediant of a consecutive pair in F "'and the new 
consecutive pairs satisfy the unimodular relations. Therefore F n+ 1 has these 
properties ifF" does. D 

5.5 Ford circles 

Definition. Given a rational number h/k with (h, k) = 1. The Ford circle 
belonging to this fraction is denoted by C(h,· k) and is that circle in the 
complex plane with radius 1/(2k2 ) and center at the point (h/k) + i/(2k2 ) 

(see Figure 5.1). 

Ford circles are named after L. R. Ford [9] who first studied their 
properties in 1938. 
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5: Rademacher's series for the partition function 

h 
k 

Figure 5.1 The Ford circle C(h, k) 

Theorem 5.6. Two Ford circles C(a, b) and C(c, d) are either tangent to each 
other or they do not intersect. They are tangent if, and only if, be - ad = 
± 1. In particular, Ford circles of consecutive Farey fractions are tangent 
to each other. 

PROOF. The square of the distance D between centers is (see Figure 5.2) 

a 
b 

Figure 5.2 

whereas the square of the sum of their radii is 

c 
d 

( 1 1 )2 
(r + R)2 = 2b2 + 2d2 . 

The difference D 2 - (r + R)2 is equal to 

Moreover, equality holds if, and only if (ad - bc)2 = 1. 
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5.5: Ford circles 

Theorem 5.7. Let htfk1 < h/k < h2/k2 be three consecutive Farey fractions. 
The points of tangency of C(h, k) with C(h1, k1) and C(h2, k2) are the points 

h kl i 
!Xt(h, k) = k - k(k2 + k/) + k 2 + k/ 

and 
h k2 i 

rx. 2(h, k) = k + k(k2 + k/) + k 2 + k/" 

Moreover, the point of contact rx1(h, k) lies on the semicircle whose diameter 
is the interval [htfk 1, h/k]. 

PROOF. We refer to Figure 5.3. Write rx. 1 for rx. 1(h, k). The figure shows that 

IX.t = (~ - a) + {2~2 - b). 

Figure 5.3 

To determine a and b we refer to the similar right triangles and we get 

1 

k kl 

Similarly, we find 

1 1 

2fi- ""2k;2- k/ - k2 
-= 

1 1 1 - k 1 2 + k2 ' 

2P 2k2 + 2k 12 

b 

so 

so 

a = k(k2 + k/)" 

1 k/- p 
b = 2k2 p + kl2" 

These give the required formula for rx. 1, and by analogy we get the correspond­
ing formula for rx. 2 • 
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5: Rademacher's series for the partition function 

To obtain the last statement, it suffices to show that the angle() in Figure 
5.3 is n/2. For this it suffices to show that the imaginary part of rt 1(h, k) is 
the geometric mean of a and a', where 

a = k(k2 + k 1 2) 

(See Figure 5.4.) Now 

and ' h h1 1 a = - - - - a = - - a. 
k k1 kkl 

k1 ( k2 ) 1 
= e(k2 + k1 2) k1(k2 + k/) = (k2 + k/)2 ' 

and this completes the proof. 

a 

Figure 5.4 

5.6 Rademacher's path of integration 

D 

For each integer N we construct a path P(N) joining the points i and i + 1 
as follows. Consider the Ford circles for the Farey series F v· If h1/k 1 < h/k 
< h2/k2 are consecutive in FN, the points of tangency of C(/1 1, kd, C(h, k), 
and C(h2 , k2 ) divide C(h, k) into two arcs, an upper arc and a lower arc. 
P(N) is the union of the upper arcs so obtained. For the fractions 0/1 and 1/1 
we use only the part of the upper arcs lying above the unit interval [0, 1]. 

EXAMPLE. Figure 5.5 shows the path P(3). 

Because of Theorem 5. 7, the path P(N) always lies above the row of semi­
circles connecting adjacent Farey fractions in F N· 

The path P(N) is the contour used by Rademacher as a path of integration. 
It is convenient at this point to discuss the effect of a certain change of variable 
on each circle C(h, k). 

Theorem 5.8. The transformation 

. 2( h) z = -zk r- k 
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3 

I 
2 

5.6: Rademacher's path of integration 

2 
3 

i +I 

Figure 5.5 The Rademacher path P(3) 

maps the Ford circle C(h, k) in the r-plane onto a circle Kin the z-plane of 
radius -! about the point z = -! as center (see Figure 5.6). The points of 
contact rx1(h, k) and rxih, k) of Theorem 5.7 are mapped onto the points 

k 2 kk 
Zt(h,k) = k2 + k/ + i k2 + lk12 

and 

The upper arc joining rx 1(h, k) with rx 2(h, k) maps onto that arc of K which 
does not touch the imaginary z-axis. 

0 

z-plane 

Figure 5.6 
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5: Rademacher's series for the partition function 

PROOF. The translation r - (h/k) moves C(h, k) to the left a distance h/k, 
and thereby places its center at i/(2k2). Multiplication by - ik2 expands the 
radius to 1/2 and rotates the circle through rr/2 radians in the negative 
direction. The expressions for z 1 (h, k) and z z(h, k) follow at once. D 

Now we obtain estimates for the moduli of z 1 and z 2 . 

Theorem 5.9. For the points z 1 and z 2 of Theorem 5.8 we have 

k k 
lz1(h, k)l = J , lzz(h, k)l = 1 k2 + k12 -Jk2 + k22 

(10) 

Moreover, ifz is on the chord joining z 1 and z2 we have 

(11) 

if htfk 1 < h/k < h2/k 2 are consecutive in F N· The length of this chord does 

not exceed 2..jik/N. 

PROOF. For lz 1 12 we have 

k2 + k12. 

There is a similar formula for lz2 12 • This proves (10). To prove (11) we note 
that if z is on the chord, then I z I :::; max( lz 1 I, I z 2 1 ), so it suffices to prove that 

(12) 
..jik ..jik 

lz1 1 < J;l and lz2 1 < J;~· 

For this purpose we use the inequality relating the arithmetic mean and the 
root mean square: 

__ 1 < 1 k + k (k2 + k 2)1/2 
2 - 2 . 

This gives us 

(k2 + k 2)112 > k + k1 > N + 1 > !!_ 
1 - ..ji - ..ji ..ji' 

so (10) and (12) imply (11). The length of the chord is :::; lz 1 1 + lz2 1. D 

5.7 Rademacher's convergent series for p(n) 

Theorem 5.10. If n ~ 1 the partition function p(n) is represented by the 
convergent series 
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where 

5.7: Rademacher's convergent series for p(n) 

Ak(n) = L e"is(h,k)-2xinhfk. 
0 ~h< k 
(h,k)~ 1 

PROOF. We have 

(13) 1 f F(x) p(n) = -2 . ---..-=tT dx 
m eX 

where 
00 00 

F(x) = n (1 - xm)- 1 = L p(n)x"; 
m~1 n~o 

Cis any positively oriented closed curve surrounding x = 0 and lying inside 
the unit circle. The change of variable 

maps the unit disk I xI :::;; 1 onto an infinite vertical strip of width 1 in the 
r-plane, as shown in Figure 5.7. As x traverses counterclockwise a circle of 

lxl = 1 

x-plane 
0 

-r-plane 

Figure 5.7 

radius e- 2 " with center at x = 0, the point r varies from ito i + 1 along a 
horizontal segment. We replace this segment by the Rademacher path P(N) 
composed of the upper arcs of the Ford circles formed for the Farey series 
F N· Then (13) becomes 

i+ 1 

p(n) = f F(ez"i')e-2xinr dr = f F(e2"i')e-2"inr dr. 
i JP(N) 

In this discussion the integer n is kept fixed and the integer N will later be 
allowed to approach infinity. We can also write 

{(NJ kt1 o~~<k th.kl = b th,k) 
(h,k)~ 1 

where y(h, k) denotes the upper arc of the circle C(h, k), and Lh,k is an 
abbreviation for the double sum over h and k. 
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5: Rademacher's series for the partition function 

Now we make the change of variable 

0 2( h) z = -lk "[- k 
so that 

h iz 
"[ = k + k 2 ' 

Theorem 5.8 shows that this maps C(h, k) onto a circle K of radius! about 
z =!as center. The arc y(h, k) maps onto an arc joining the points z1(h, k) 
and zih, k) in Figure 5.6. We now have 

lzz(h, k) ( (2nih 2nz)) i . 2 p(n) = L F exp --- -2 2 e-2mnh/k e2n1tz/k dz 
h,k Zt(h,k) k k k 

= L ik-2e-21tinh/k rzz(h,k) e2n1tz/k2F(exp(2nih- 2~z)) dz. 
h,k Jzi(h,k) k k 

Now we use the transformation formula for F (Theorem 5.1) which states 
that 

(2)1/2 
( n nz ) F(x) = w(h, k) k exp 122 - 12k 2 F(x'), 

where 

( 2nih 2nz) 
x = exp -k- - k2 , , (2niH 2n) x = exp -k- - ~ , 

and 

w(h, k) = e"is(h,k), hH = -1 (mod k), (h, k) = 1. 

Denote the elementary factor zli 2 exp[1T/(12z)- nzj(12k 2 )] by lf\(z) and 
split the integral into two parts by writing 

F(x') = 1 + {F(x') - 1}. 

We then obtain 

p(n) = L ik- 512 w(h,k)e-21tinh/k(I 1(h,k) + I2(h,k)) 
h, k 

where 

lzz(h,k) 
I t(h, k) = 'I\(z)e2""z/k2 dz 

Zt(h, k) 

and 

lz,(h, k) { ( (2niH 2n)) } I 2(h, k) = 'I\(z) F exp -k- - - - 1 e2""z/k 2 dz. 
zi(h, k) Z 

We show next that I 2 is small for large N. The path of integration in the 
z-plane can be moved so that we integrate along the chord joining z 1 (h, k) 
and z2(h, k). (See Figure 5.8.) We have already estimated the length of this 
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5.7: Rademacher's convergent series for p(n) 

0 

K 

Figure 5.8 

chord; it does not exceed 2flk/N. On the chord itself we have lzl 
~ max{lz1l, lz21} < flk/N. Note also that the mapping w = 1/z maps 
the disk bounded by K onto the half-plane Re(w) ~ 1. Inside and on the 
circle K we have 0 < Re(z) ~ 1 and Re(1/z) ~ 1, while on K itself we have 
Re(1/z) = 1. 

Now we estimate the integrand on the chord. We have 

= lzl 112 exp{ 1~ ReG)- 1~2 Re(z)} 

X e2n~tRe(z)jk2 1m~l p(m)e2ltiHmfke- 2ltmjz I 

~ lzll/2 exp{~ Re(~)}e2n~t/k2 I p(m)e-2"mRe(l/z) 
12 Z m=l 

00 

< lzll/2e2"" L p(m)e-2"(m-(lf24))Re(l/z) 
m=l 

00 

~ lzllf2e2"" L p(m)e-2"(m-(l/24)) 
m=l 

00 

= lzll/2e2"" L p(m)e-2"124m-l)/24 
m=l 

oc 
< lzlli2e2"" L p(24m _ 1)e-2"(24m-l)/24 

m=l 
oc 

= lzll/2e2mr L p(24m- 1)y24m-l (where y = e-2,/24) 
m=l 
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5: Rademacher's series for the partition function 

where 

00 

c = e2"" .L p(24m - 1)y24m- 1. 
m=1 

The number c does not depend on z or on N. (It depends on n, but n is fixed 

in this discussion.) Since z is on the chord we have I z I < .J2 k/ N so the 
integrand is bounded by c21'4(k/N)1'2. The length of the path is less than 
2.j2k/N, so altogether we find 

II2(h,k)l < Ck312N-3t2 

for some constant C, and therefore 

I
L ik-512w(h,k)e-27tinhfkJ2(h,k)l < f L ck-1N-3f2 
h,k k= 1 O:s;h<k 

(h,k)= 1 

N 

~ cN-3/2 .L 1 = cN-1'2. 
k=1 

This means we can write 
N 

(14) p(n) = L L ik- 512w(h,k)e- 27tinhfkJ 1(h,k) + O(N- 1' 2 ). 

k=1 O:s;h<k 
(h,k)= 1 

Next we deal with I 1 (h, k). This is an integral joining z 1 (h, k) and z2(h, k) 
along an arc of the circle K in Figure 5.8. We introduce the entire circle K 
as path of integration and show that the error made is also O(N- 1'2). We have 

11(h,k) = r - rzt(h,k)- fo = r - }1- }2, 
JK(-) Jo z2(h,k) JK(-) 

where K(-) denotes that the integration is in the negative direction along K. 
To estimate I J 1 I we note that the length of the arc joining 0 to z 1 (h, k) is less 
than 

Since Re(1/z) = 1 and 0 < Re(z) ~ 1 on K the integrand has absolute value 

I 'I' (z)e2n7tzfk21 = e2n7tRe(z)fk21zl1/2 exp{~ Re(~)-~ Re(z)} 
k 12 z 12k2 

e2""21f4k112e"'12 
~ N112 

so that 

108 



5.7: Rademacher's convergent series for p(n) 

where C 1 is a constant. A similar estimate holds for I J 2 1 and, as before, 
this leads to an error term O(N- 112 ) in the formula for p(n). Hence (14) 
becomes 

p(n) = f L ik-5f2w(h,k)e-27tinhik r 'I\(z)e2nxz/k2 dz + O(N-112). 
k= I 0 s;h<k J K(-) 

(h,k)= 1 

Now we let N--+ oo to obtain 

where 

00 r { 1t 2nz ( 1 )} p(n) = ik~/k(n)k-512 JK(-t/2 exp 12~ + k'2 n- 24 dz, 

Ak(n) = L e"is(h,k)-27tinhfk. 
Os;h<k 
(h,k)= 1 

The integral can be evaluated in terms of Bessel functions. The change of 
variable 

gives us 

1 
w =-, 

z 
1 

dz =- 2 dw, 
w 

p(n) = ~ f Ak(n)k-5/2 (1+ooiw-5/2 exp{1tW + 2~ (n- ].__) !} dw. 
l k=1 J1-ooi 12 k 24 W 

Now put t = nw/12 and the formula becomes 

p(n) = 2nC~Y12 k~1 Ak(n)k- 512 2~i [_+:it- 512 exp{t + ::2 ( n- ; 4) ~} dt 

where c = n/12. Now on page 181 of Watson's treatise on Bessel functions 
[53] we find the formula 

J,(z) = 2z. t-•- 1et+(z2f4tldt (ifc > O,Re(v) > 0), e )' fc+ooi 

2m c-ooi 

where I.{z) = i-'J,(iz). Taking 

~ = {611::2 (n- ;4)r12 

and v = 3/2 we get 

( 
1 )-3/4 

( n)3/2 oo _ 52 n-
312 

n- 24 (n ~( 1 )) 
p(n) = (2n) 12 k~1 Ak(n)k I 6 3f4k 3/2 I 3/2 k V 3 \. n - 24. 

( 
1 )-3/4 

(2n) n- 24 oo -1 (n ~( 1 )) 
(24)3/4 k~/k(n)k /3/2 k '>/3 \. n- 24 . 
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5: Rademacher's series for the partition function 

But Bessel functions of half odd order can be reduced to elementary functions. 
In this case we have 

( ) _ ftz d (sinh z) 
/3/2 z - - . 

n dz z 

Introducing this in the previous formula we finally get Rademacher's 
formula, 

p(n) = - 1 I Ak(n)k 112 .!!_(sinh{~ J~ (n- ~)~· 0 
nJ2 k=l dn Jn- 1 

24 

Exercises for Chapter 5 

1. Two reduced fractionsaib andc/d are said to be similarly ordered if(c - a)(d - b) ;::; 0. 
Let a1jb 1 < a2/b2 < ···denote the Farey fractions in F •. 
(a) Prove that any two neighbors a;/b; and a;+ tfb;+ 1 are similarly ordered. 
(b) Prove also that any two second neighbors a;/b; and a;+ 2/b; + 2 are similarly ordered. 

Note: Erdos [8] has shown that there is an absolute constant c > 0 such that the 
kth neighbors a;/b; and ai+k/bi+k in F. are similarly ordered if 11 > ck. 

2. If a, b, c, dare positive integers such that ajb < cjd and if A and Jl are positive integers, 
prove that the fraction 

lies between ajb and cjd, and that (c - dO)j(Ob - a) = }./Jl. When A = Jl, (} is the 
mediant of ajb and cjd. 

3. If be - ad = 1 and n > max(b, d), prove that the terms of the Farey sequence F. 
between a/b and cjd are the fractions of the form (Aa + JlC)/(Ab + J.ld) for which A 
and Jl are positive relatively prime integers with Ab + Jld ~ n. Geometrically, each 
pair (A, Jl) is a lattice point (with coprime coordinates) in the triangle determined by 
the coordinate axes and the line bx + dy = n. Neville [29] has shown that the 
number of such lattice points is 

3 n2 

1!2 bd + O(n log n). 

This shows that for a given n, the number of Farey fractions between ajb and cjd is 
asymptotically proportional to 1/(bd), the length of the interval [ajb, cjd]. 

Exercises 4 through 8 relate Farey fractions to lattice points in the plane. 
In these exercises, n ;;::: 1 and T, denotes the set of lattice points (x, y) in the 
triangular region defined by the inequalities 

n+ 1 ~x+y~2n. 
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Exercises for Chapter 5 

Also, T,' denotes the set of lattice points (x, y) in T, with relatively prime 
coordinates. 

4. Prove that a/band cjd are consecutive fractions in the Farey sequence F. if, and only 
if, the lattice point (b, d) E T~. 

5. Prove that I(b.dle r;, 1/(bd) = 1. Hint: Theorem 5.5. 

6. Assign a weight f(x, y) to each lattice point (x, y) and let s. be the sum of all the 
weights in T,, 

s. = I f(x, y). 
(x,y)e Tn 

(a) By comparing the regions T,. and T,._ 1 for r ~ 2 show that 

r-1 r-1 

s, - s,_ 1 = J(r, rl + I {J(k, r) + J(r, k)} - L f(k, r - k), 
k=l k=l 

and deduce that 

n n r-1 n r-l 

s. = I J(r, r) + I I {J(k, r) + J(r, k)} - L L j(k, r - k). 
r=l r=2 k=1 r=2k=l 

Note: If f(x, y) = 0 whenever (x, y) > 1 this reduces to a formula of J. Lehner 
and M. Newman [25], 

n r-1 

(15) I J(x, y) = J(1, 1) + I I {J(k, r) + f(r, k) - f(k, r - k)}. 
(x,y)eT~ r=2 k=1 

(k,r)= I 

This relates a sum involving Farey fractions to one which does not. 

7. Let 

1 
s. = I . 

(b, d) e T~ bd(b + d) 

(a) Use Exercise 5 to show that 1/(2n - 1):::; s.:::; 1/(n + 1). 
(b) Choose f(x,.y) = 1/(xy(x + y)) in (15) and show that 

3 n r 1 
s. =-- 2 I I 2 • 

2 r=l k=l r(r+k) 
(k,r)= I 

When n -+ oo this gives a formula of Gupta [12], 

oo r 1 3 
I I 2 = -. 

r= I k= I r (r + k) 4 
(k,r)= I 

8. Exercise 7(a) shows that s.-+ 0 as n-+ rx;, This exercise outlines a proof of the 
asymptotic formula 

(16) _ 12 log 2 (log n) s.- 2 + 0 2 n n n 

obtained by Lehner and Newman in [25]. 
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5: Rademacher's series for the partition function 

Let 

so that 

(a) Show that 

and deduce that 

r 

A,= I 
k= 1 r2(r + k) 

(k,r)= 1 

I I /(d) ' 
k= 1 dJ(r,kl r (r + k) 

r> n 

A, = I I ---c;:-,fl_(r /_d-:-) 

dlr h = 1 r (h + d) 

cp(r) ( 1 ) A,= log 2 ~3 + 0 3 I jp(d)l . 
r r dlr 

(b) Show that I;= 1 Idlr jp(d)j = O(n log n) and deduce that 

1 (log n) I 3 I lfl(d)l = o -z . 
r> n r dlr n 

(c) Use the formula I,:;;" cp(r) = 3n 2 /n 2 + O(n logn)(proved in [4], Theorem 3.7)to 
deduce that 

(d) Use (a), (b), and (c) to deduce (16). 
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6.1 Introduction 

Modular forms with 
multiplicative coefficients 6 

The material in this chapter is motivated by properties shared by the discrimi­
nant ~(r) and the Eisenstein series 

1 
G2k(r) = L 2k' 

(m,n),C(O,O) (m + nr) 

where k is an integer, k ~ 2. All these functions satisfy the relation 

(1) ( ar +b) f cr + d = (cr + d)'f(r), 

where r is an integer and (: ~) is any element of the modular group r. 
The function ~ satisfies (1) with r = 12, and G2k satisfies (1) with r = 2k. 
Functions satisfying (1) together with some extra conditions concerning 
analyticity are called modular forms. (A precise definition is given in the 
next section.) 

Modular forms are periodic with period 1 and have Fourier expansions. 
For example, we have the Fourier expansion, 

co 

~(r) = (2n)12 L r(n)e 2"in', 
n=l 

where r(n) is Ramanujan's function, and 

2(2ni)2k co . 

G2k(r) = 2((2k) + (2k _ 1)! J1 0"2k- 1(n)e 2"m', 

where t1a{n) is the sum of the ath powers of the divisors of n. 
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6: Modular forms with multiplicative coefficients 

Both r(n) and tra(n) are multiplicative arithmetical functions; that is, we 
have 

(2) r(m)r(n) = r(mn) and 

They also satisfy the more general multiplicative relations 

r(m)r(n) = L d 11 r(~~) 
dj(m,n) 

(3) 

and 

(4) 

for all positive integers m and n. These reduce to (2) when (m, n) = 1. 
The striking resemblance between (3) and (4) suggests the problem of 

determining all modular forms whose Fourier coefficients satisfy a multi­
plicative property encompassing (3) and (4). The problem was solved by 
Heeke [16] in 1937 and his solution is discussed in this chapter. 

6.2 Modular forms of weight k 

In this discussion k denotes an integer (positive, negative, or zero), H denotes 
the upper half-plane, H = { r: Im(r) > 0}, and r denotes the modular group. 

Definition. A function f is said to be an entire modular form of weight k if it 
satisfies the following conditions: 

(a) f is analytic in the upper half-plane H. 

(b) f -- = (cr + dlf(r) whenever ( ar +b) (a 
cr + d c 

(c) The Fourier expansion off has the form 

00 

f(r) = L c(n)e2ninr. 
n=O 

Note. The Fourier expansion of a function of period 1 is its Laurent 
expansion near the origin x = 0, where x = e2";'. Condition (c) states that 
the Laurent expansion of an entire modular form contains no negative 
powers of x. In other words, an entire modular form is analytic everywhere 
in Hand at ioo. 

The constant term c(O) is called the value off at ioo, denoted by f(ioo ). 
If c(O) = 0 the function f is called a cusp form (" Spitzenform" in German), 
and the smallest r such that c(r) -1= 0 is called the order of the zero off at ioo. 
It should be noted that the discriminant Ll is a cusp form of weight 12 with 
a first order zero at ioo. Also, no Eisenstein series G2k vanishes at ioo. 
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6.3: The weight formula for zeros of an entire modular form 

Warning. Some authors refer to the weight k as the "dimension -k" 
or the "degree -k." Others write 2k where we have written k. 

In more general treatments a modular form is allowed to have poles in 
H or at ioo. This is why forms satisfying our conditions are called entire 
forms. The modular function J is an example of a nonentire modular form of 
weight 0 since it has a pole at ioo. Also, to encompass the Dedekind eta func­
tion there are extensions of the theory in which k is not restricted to integer 
values but may be any real number, and a factor e(a, b, c, d) of absolute 
value 1 is allowed in the functional equation (b). This chapter treats only 
entire forms of integer weight with multiplier e = 1. 

The zero function is a modular form of weight k for every k. A nonzero 
constant function is a modular form of weight k only if k = 0. An entire 
modular form of weight 0 is a modular function (as defined in Chapter 2) and 
since it is analytic everywhere in H, including the point ioo, it must be constant. 

Our first goal is to prove that nonconstant entire modular forms exist 
only if k is even and ~ 4. Moreover, they can all be expressed in terms of the 
Eisenstein series G4 and G6 . The proof is based on a formula relating the 
weight k with the number of zeros off in the closure of the fundamental 
region of the modular group. 

6.3 The weight formula for zeros of an entire 
modular form 

We recall that the fundamental region Rr has vertices at the points p, i, 
p + 1 and ioo. Iff has a zero of order rat a point p we writer = N(p). 

Theorem6.1. Let f be an entire modular form of weight k which is not identically 
zero, and assume f has N zeros in the closure of the fundamental region 
Rr, omitting the vertices. Then we have the formula 

(5) k = 12N + 6N(i) + 4N(p) + 12N(ioo ). 

PROOF. The method of proof is similar to that of Theorem 2.4 where we 
proved that a modular function has the same number of zeros as poles in 
the closure of Rr. Since f has no poles we can write 

N = _1 i f'(r) dr. 
2ni oR f(r) 

The integral is taken along the boundary of a region R formed by truncating 
the fundamental region by a horizontal line y = M with sufficiently large M. 
The path oR is along the edges of R with circular detours made around the 
vertices i, p and p + 1 and other zeros which might occur on the edges. By 
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6: Modular forms with multiplicative coefficients 

calculating the limiting value of the integral as M -+ oo and the circular 
detours shrink to their centers we find, as in the proof of Theorem 2.4, 

(6) 
k 1 1 

N =-- -N(i)- -N(p)- N(ioo) 
12 2 3 . 

The only essential difference between this result and the corresponding 
formula obtained in the proof of Theorem 2.4 is the appearance of the term 
k/12. This comes from the weight factor (cr + d)k in the functional equation 

f(A(r)) = (cr + dtf(r), 

where A(r) = (ar + b)/(cr + d). Differentiation of this equation gives us 

f'(A(r))A'(r) = (cr + dtf'(r).+ kc(cr + dt- 1 f(r) 

from which we find 

f'(A(r))A'(r) = f'(r) + ~. 
f(A(r)) f(r) CT + d 

Consequently, for any path y not passing through a zero we have 

_1 f f'(u) du = _1 f f'(r) dr + _1 f ~ dr. 
2ni A(y) f(u) 2ni Y f(r) 2ni Y cr + d 

Therefore the integrals along the arcs (2) and (3) in Figure 2.5 do not cancel 
as they did in the proof of Theorem 2.4 unless k = 0. Instead, they make a 
contribution whose limiting value is equal to 

-k fi dr -k -k (ni 2ni) k 
2ni P ~ = 2ni (log i -log p) = 2ni 2- 3 = 12' 

The rest of the proof is like that of Theorem 2.4 and we obtain (6), which 
implies (5). D 

From the weight formula (5) we obtain the following theorem. 

Theorem 6.2 

(a) The only entire modular forms of weight k = 0 are the constant 
functions. 

(b) Ifk is odd, ifk < 0, or ifk = 2, the only entire modular form of weight k 
is the zero function. 

(c) Everynonconstantentire modularform has weight k 2:: 4, where k is even. 
(d) The only entire cusp form of weight k < 12 is the zero function. 

PROOF. Part (a) was proved earlier. To prove (b), (c) and (d) we simply refer 
to the weight formula in (5). Since each integer N, N(i), N(p) and N(ioo) is 
nonnegative, k must be nonnegative and even, with k 2:: 4 if k =1= 0. Also, 
if k < 12 then N(ioo) = 0 so f is not a cusp form unless f = 0. D 
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6.4: Representation of entire forms in terms of G4 and G6 

6.4 Representation of entire forms in terms 
ofG4 and G6 

In Chapter 1 it was shown that every Eisenstein series Gk with k > 2 is a 
polynomial in G 4 and G 6 . This section shows that the same is true of every 
entire modular form. Since the discriminant A is a polynomial in G4 and 
G6, 

A= g2 3 - 27g3 2 = (60G4 ) 3 - 27(140G6)2, 

it suffices to show that all entire forms of weight k can be expressed in terms 
of Eisenstein series and powers of A. The proof repeatedly uses the fact that 
the productfg of two entire formsf and g of weights w1 and w2 , respectively, 
is another entire form of weight w1 + w2 , and the quotientf/g is an entire 
form of weight w1 - w2 if g has no zeros in H or at ioo. 

Notation. We denote by Mk the set of all entire modular forms of weight k. 

Theorem 6.3. Let f be an entire modular form of even weight k 2:: 0 and define 
G0(r) = 1 for all r. Then f can be expressed in one and only one way as a 
sum of the type 

(7) 
[k/12) 

f= L a,Gk-12rA', 
r=O 

k-12r,.2 

where the a, are complex numbers. The cusp forms of even weight k are 
those sums with a0 = 0. 

PRooF. If k < 12 there is at most one term in the sum and the theorem can 
be verified directly. Iff has weight k < 12 the weight formula (5) implies 
N = N(ioo) = 0 so the only possible zeros off are at the vertices p and i. 
For example, if k = 4 we have N(p) = 1 and N(i) = 0. Since G4 has this 
property,f/G4 is an entire modular form of weight 0 and therefore is constant, 
so f = a0 G4 . Similarly, we find f = a0 Gk if k = 6, 8 or 10. The theorem 
also holds trivially for k = 0 (since f is constant) and for k = 2 (since the 
sum is empty). Therefore we need only consider even k 2:: 12. 

We use induction on k together with the simple observation that every 
cusp form in M k can be written as a product Ah, where hEM k-!2. 

Assume the theorem has been proved for all entire forms of even weight 
<k. The form Gk has weight k and does not vanish at ioo. Hence if 
c = f(ioo)/Gk(ioo) the entire form f- cGk is a cusp form in Mk so 
f - cGk = Ah, where he Mk_ 12 . Applying the induction hypothesis to h 
we have 

[(k-12)/12] 

h = L b,Gk-12-12rA' = 
r=O 

k-12-12r,.2 

[k/12] 

L b,-1Gk-12rA'- 1· 
r= 1 

k- 12r,. 2 
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6: Modular forms with multiplicative coefficients 

Therefore f = cGk + fl.h is a sum of the type shown in (7). This proves, by 
induction, that every entire form of even weight k has at least one representa­
tion of the type in (7). To show there is at most one such representation we 
need only verify that the products Gk_ 12 ,fl.' are linearly independent. This 
follows easily from the fact that fl.(ioo) = 0 but G2,(ioo) # 0. Details are left 
as an exercise for the reader. D 

Since both fl. and G2 , can be expressed as polynomials in G4 and G6 , 

Theorem 6.3 also shows that f is a polynomial in G 4 and G 6 • The exact 
form of this polynomial is described in the next theorem. 

Theorem 6.4. Every entire modular form f of weight k is a polynomial in G4 

and G6 ofthe type 

(8) f= L Ca,bG4"Gl 
a,b 

where the ca. b are complex numbers and the sum is extended over all integers 
a ~ 0, b ~ 0 such that 4a + 6b = k. 

PROOF. If k is odd, k < 0 or k = 2 the sum is empty and f is 0. If k = 0, f is 
constant and the sum consists of only one term, c0 , 0 • If k = 4, 6, 8 or 10 
then each of the respective quotients f/G4 ,f/G6 ,f/G/ and f/(G4 G6 ) is an 
entire form of weight 0 and hence is constant. This proves (8) for k < 12 or 
k odd. To prove the result for even k ~ 12 we use induction on k. 

Assume the theorem has been proved for all entire forms of weight < k. 
Since k is even, k = 4m or k = 4m + 2 = 4(m- 1) + 6 for some integer 
m ~ 3. In either case there are nonnegative integers r and s such that 
k = 4r + 6s. The form g = G/G6 • has weight k and does not vanish at ioo. 
Hence if c = f(ioo)/g(ioo) the entire form f- cg is a cusp form in Mk so 
f- cg = fl.h where heMk-lz· By the induction hypothesis, h can be 
expressed as a sum as in (8), taken over all a ~ 0, b ~ 0 such that 4a + 6b = 
k - 12. Multiplication by fl. gives a sum of the same type with 4a + 6b = k. 
Hence f = cg + fl.h is also a sum of the required type and this proves the 
theorem. D 

6.5 The linear space Mk and the 
subspace Mk,o 

The results of the foregoing section can be described in another way. Let 
Mk denote the set of all entire forms of weight k. Then Mk is a linear space 
over the complex field (since Mk is closed under addition and under multi­
plication by complex scalars). Theorem 6.3 shows that M k is finite-dimen­
sional with a finite basis given by the set of products Gk_ 12,fl.' occurring 
in the sum (7). There are [k/12] + 1 terms in this sum if k ¢ 2 (mod 12), 
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6.6: Classification of entire forms in terms of their zeros 

and one less term if k = 2 (mod 12). Therefore the dimension of the space 
M k is given by the formulas 

(9) dim Mk =![~] 
[12] + 1 

if k = 2 (mod 12), 

if k ¢: 2 (mod 12). 

Another basis for Mk is the set of products G4aG6 b where a 2 0, b;;::: 0 and 
4a + 6b = k (see Exercise 6.12). 

The set of all cusp forms in M k is a linear subspace of M k which we denote 
by M k, 0 . The representation in Theorem 6.3 shows that 

(10) dim Mk,o =dim Mk- 1 

since the cusp forms are those sums in (7) with a0 = 0. 
We also note that if k ;;::: 12, f E Mk,o if and only if f = f!.h, where 

h E M k _ 12 . Therefore the linear transformation T : M k _ 12 -+ M k, 0 defined by 

T(h) = f!.h 

establishes an isomorphism between Mk, 0 and Mk_ 12 . Consequently, if 
k;;::: 12 we have 

(11) dim Mk,o =dim Mk.:_12· 

The two formulas (11) and (10) imply 

dim M k = 1 + dim M k- 12 

if k ;;::: 12. This equation, together with the fact that dim Mk = 1, 0, 1, 1, 1, 1 
when k = 0, 2, 4, 6, 8, 10, gives another proof of (9). 

EXAMPLES. Formula (9) shows that 

dim Mk = 1 if k = 4, 6, 8, 10, and 14. 

Corresponding basis elements are G4 , G6, G/, G4 G6, and G4 2G6. 
Formulas (11) and (9) together show that 

dim Mk.o = 1 if k = 12, 16, 18, 20, 22, and 26. 

Corresponding basis elements are fl., f!.G4 , f!.G6, f!.G/, f!.G4 G6, and f!.G/G6. 

6.6 Classification of entire forms in terms of 
their zeros 

The next theorem gives another way of expressing all entire forms in terms 
of G4 , G6 , fl. and Klein's modular invariant J. 

Theorem 6.5. Let f be an entire form of weight k and let z1, ... , zN denote the 
N zeros off in the closure of Rr (omitting the vertices) with zeros of order 
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6: Modular forms with multiplicative coefficients 

N(p ), N(i) and N(ioo) at the vertices. Then there is a constant c such that 

N 

(12) f(r:) = cG4(r:t<PlG6(r:t<il,;1(r:)N(iool,;\(r:t n {J(r:) - J(zk)}. 
k= 1 

PROOF. The product 
N 

g(r:) = n {J(r:) - J(zk)} 
k=1 

is a modular function with its only zeros in the closure of Rr at z1, •.• , zN 
and with a pole of order N at ioo. Since t:1 has a first-order zero at ioo, the 
product t:\Ng is an entire modular form of weight 12N which, in the closure 
of Rr, vanishes only at z1, •.• , zN. Therefore the product 

h = G4N(p)G6N(i),;1N(ioo),;1Ng 

has exactly the same zeros as fin the closure of Rr. Also, his an entire modular 
form having the same weight as f since 

k = 4N(p) + 6N(i) + 12N(ioo) + 12N. 

Therefore f/h is an entire form of weight 0 so f/h is constant. This proves (12). 
0 

6. 7 The Heeke operators Tn 

Heeke determined all entire forms with multiplicative coefficients by intro­
ducing a sequence of linear operators T,, n = 1, 2, ... , which map the linear 
space M k onto itself. Heeke's operators are defined as follows. 

Definition. For a fixed integer k and any n = 1, 2, ... , the operator T, is 
defined on M k by the equation 

(13) (T,f)(r:) = nk-1 L d-kdi1 !(nr: ~ bd)· 
din b=O d 

In the special case when n is prime, say n = p, the sum on d contains 
only two terms and the definition reduces to the formula 

(14) 

The sum on b is the operator encountered in Chapter 4. It maps functions 
automorphic under r onto functions automorphic under the congruence 
subgroup r o(p). 

We will show that T, maps each fin Mk onto another function in Mk. 
First we describe the action ofT, on the Fourier expansion off 
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6. 7: The Heeke operators T,. 

Theorem 6.6. Iff E Mk and has the Fourier expansion 
00 

f(r) = L c(m)e2"im', 
m=O 

then Tnf has the Fourier expansion 
00 

(15) (T,.J)(r) = I Yn(m)e2"im', 
m=O 

where 

(16) '\' k- 1 (mn) Yn(m) = L. d c (j2 . 
dl(n,m) 

PROOF. From the definition in (13) we find 

d-1 00 

(Tnf)(r) = nk-1 L: d-k I I c(m)e2ltim(n<+bd)/d2 

din b=O m=O 

= I I ~ c(m)elltimn•Jd2 _ L: ez,imb/d. 00 ( )k-1 1d-1 
m=Odln d db=O 

The sum on b is a geometric sum which is equal to d if dIm, and is 0 otherwise. 
Hence 

(T,J)(r) = I I ~ c(m)e2"imn<Jd2. 00 ( )k-1 
m=O dln,dlm d 

Writing m = qd we have 

(T,f)(r) = f L (~)k-1 c(qd)e2"iqm/d. 
q=Odln d 

In the sum on d we can replaced by n/d to obtain 

(Tnf)(r) = f I dk-1c(qn)e2"iqd<. 
q=Odln d 

If x = e2"i' the last sum contains powers of the form xqd. We collect those 
terms for which qd is constant, say qd = m. Then q = m/d and dIm so 

00 k-1 (mn) m (T, f)(r) = I I d c (j2 x , 
m=O dln,dlm 

which implies (16). D 

Our next task is to prove that Tn maps Mk into itself. For this purpose 
we note that the definition of T, f can be written in a slightly different form. 
We write n = ad and let 

ar + b 
Ar=-d-. 
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6: Modular forms with multiplicative coefficients 

Then (13) takes the form 

(17) (Tnf)(r)=nk- 1 I rkf(Ar)=~ I akf(Ar). 
a<:: l.ad=n n a<:: 1,ad=n 
O~b<d O~b<d 

The matrix ( ~ ~) which represents A has determinant ad = n. To deter­

mine the behavior of Tnf under transformations of the modular group r 
we need some properties of transformations with determinant n. These are 
described in the next section. 

6.8 Transformations of order n 

Let n be a fixed positive integer. A transformation of the form 

ar + b 
Ar=--d, 

CT + 
where a, b, c, d are integers with ad - be = n, is called a transformation of 
order n. It can be represented by the 2 x 2 matrix 

where, as usual, we identify each matrix with its negative. 
We denote by r(n) the set of all transformations of order n. The modular 

group r is r(l). 
Two transformations A1 and A 2 in r(n) are called equivalent, and we 

write A 1 ~ A 2 , if there is a transformation V in r such that 

A1 = VA 2 . 

The relation ~ is obviously reflexive, symmetric, and transitive, and hence 
is an equivalence relation. Consequently, the set r(n) can be partitioned 
into equivalence classes such that two elements of r(n) are in the same class 
if, and only if, they are equivalent. The next theorem describes a set of 
representatives. 

Theorem6.7. In every equivalence class of r(n) there is a representative of 
triangular form 

( a b) where d > 0. 
0 d ' 

PROOF. Let A = G ~) be an arbitrary element of r(n). If c = 0 there is 

nothing more to prove. If c # 0 we reduce the fraction - ajc to lowest terms. 
That is, we choose integers r and s such that s/r = -a/c and (r, s) = 1. 
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6.8: Transformations of order n 

Next we choose two integers p and q such that ps - qr = 1 and let 

Then VEr and 

VA=(: ~)(: ~) = (~:: :: ~:: ::). 
Since ra + sc = 0 and det(V A)= det V det A = n we see that VA E r(n) so 
VA "' A. Hence VA or its negative is the required representative. D 

Theorem 6.8. A complete system ~fnonequivalent elements in r(n) is given by 
the set ~f transformations of triangular form 

(18) A=(~ ~} 
where d runs through the positive divisors of n and, for each .fixed d, 
a = n/d, and b runs through a complete residue system modulo d. 

PROOF. Theorem 6.7 shows that every element in r(n) is equivalent to one 
of the transformations in (18). Therefore we need only show that two such 
transformations, say 

A = (a1 b1) 
1 0 dl 

and 

are equivalent if, and only if, 

(19) and 

If(19) holds then b2 = b1 + qd 1 for some integer q and we can take 

v = (~ i} 
Then V A1 = A 2 so A1 "'A 2 • 

Conversely, if A1 "'A2 there is an element 

v = (: ~) 
in r such that A 2 = V A1 . Therefore 

(20) (a2 b2) = (P q)(al ht) = (pal pb1 + qdl)· 
0 d2 \r s 0 d1 ra 1 rb1 + sd 1 

Equating entries we find ra 1 = 0 so r = 0 since a 1 # 0 because a 1d1 = n ~ 1. 
Now ps - qr = 1 sops = 1 hence both p and s are 1 or both are -1. We can 
assume p = s = 1 (otherwise replace V by - V). Equating the remaining 
entries in (20) we find a2 = a 1, d2 = d1, b2 = b1 + qd1, so b2 = b1 (mod dd. 
This completes the proof. D 
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6: Modular forms with multiplicative coefficients 

Note. The sum in (17) defining T,.f can now be written in the form 

1 
(T,f)('r:) =- L ak f(A•), 

n A 
(21) 

where A runs through a complete set of nonequivalent elements in r(n) of 
the form described in Theorem 6.8. The coefficient ak is the kth power of 
the entry in the first row and first column of A. 

Theorem 6.9. If AlE r(n) and vl E r, then there exist matrices A2 in r(n) 
and J.i in r such that 

(22) 

Moreover, if 

A;=(~ ~:) and 

for i = 1, 2, then we have 

(23) 

PROOF. Since det(A 1 Vd = det A1 det V1 = n, the matrix A1 V1 is in r(n) so, 
by Theorem 6.7, there exists A2 in r(n) and V2 in r such that (22) holds. To 
verify (23) we first note that A1 V1 has the form · 

and that 

Therefore (22) implies 

V2=A1VtA2- 1 =~(d:y1 d:bJ(~ -~:) 

Equating entries in the second row we find 

dld2"h d2 
Yz =--=-Yt 

n a 1 

and 

b2 = -d1y1b2 + d1b1az = _ b2 Yt + az b1 
n a1 a1 
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609: Behavior of T, f under the modular group 

since a 1d1 = no Hence 

a1Y2 = d2Y1 

and we obtain 

and 

a1(YzAzr + bz) = a1yzAzr + a1b2 

which proves (23)0 

6.9 Behavior of Tnfunder the modular group 

Theorem 6.10. If jE Mk and v = G ~) E r then 

(24) (T,.f)(V r) = (yr + Jt(T,. f)(r). 

PROOF. We use the representation in (21) to write 

0 

(a1 b1) 0 where A 1 = 0 d 
1 

and A 1 runs through a complete set of noneqmvalent 

elements in r(n). Replacing r by Vr we find 

1 
(T,.f)(Vr) =- L a/f(A 1 Vr). 

n A1 
(25) 

By Theorems 6. 7 and 6.9, there exist matrices 

and 

such that 

and 

Therefore 

a1kf(A 1 Vr) = a1kf(V2A 2r) = a/(y 2 Az r + bz)kf(A2 r) 

= a/(yr + b)k f(A 2 r) 

since f E Mko Now as A1 runs through a complete set of nonequivalent 
elements of r(n) so does A 2 0 Hence (25) becomes 

1 
(T,.f)(Vr) =- (yr + J)k I a/ f(A 2 r) = (yr + b)k(T,.f)(r)o 0 

n A2 
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6: Modular forms with multiplicative coefficients 

The next theorem shows that each Heeke operator T,. maps Mk into Mk 
and also maps Mk,o into Mk,o· 

Theorem 6.11. Iff E Mk then T,.f E Mk. Moreover, iff is a cusp form then 
T,. f is also a cusp form. 

PROOF. Iff E Mk the definition ofT,. shows that T,.f is analytic everywhere 
in H. Theorem 6.6 shows that T,.f has a Fourier expansion of the required 
form and that T,.f is analytic at ioo. And Theorem 6.10 shows that T,.f has 
the proper behavior under transformations of r. Finally, iff is a cusp form, 
the Fourier expansion in Theorem 6.6 shows that T,. f is also a cusp form. D 

6.10 Multiplicative property of Heeke 
operators 

This section shows that any two Heeke operators T,. and Tm defined on Mk 
commute with each other. This follows from a multiplicative property of the 
composition Tm T,.. First we treat the case in which m and n are relatively 
prime. 

Theorem 6.12. If (m, n) = 1 we have the composition property 

(26) 

PROOF. Iff E Mk we have 

1 
(T,.f)(r) =- L ak f(Ar), 

n a~ l,ad=n 
O:o;b<d 

where A = ( ~ ~). Applying Tm to each member we have 

1 1 
{Tm(T,.(f))} (r) = - L rxk- L ak f(BAr), 

mIX~ l,<Xcl=m n a~ 1, ad=n 
o:o;p<cl O:o;b<d 

where B = ( ~ ~). This can be written as 

(27) 
1 

{(Tm T,.)(f)} (r) =- L L (rxa)k f(Cr), 
mn <X~l,<Xcl=m a~l,ad=n 

0:5P<cl O:o;b<d 

where 

C = B = (rx /3) (a b) = (rxa rxb + /3d) 
A 0 b 0 d 0 db . 

As d and b run through the positive divisors of n and m, respectively, the 
product db runs through the positive divisors of mn since (m, n) = 1. The 
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6.10: Multiplicative property of Heeke operators 

linear combination r:x.b + {3d runs through a complete residue system 
mod dJ as b and {3 run through complete residue systems mod d and J, 
respectively. Therefore the matrix C runs through a complete set of non­
equivalent elements of r(mn) and we see that (27) implies (26). D 

The next theorem extends the composition property in (26) to arbitrary 
m and n. For convenience in notation we write T(n) in place ofT,. 

Theorem 6.13. Any two Heeke operators T(n) and T(m) defined on Mk commute 
with each other. Moreover, we have the composition formula 

(28) T(m)T(n) = L dk- 1 T(mn/d2 ). 

dl(m,n) 

PROOF. Commutativity follows from (28) since the right member is symmetric 
in m and n. If (m, n) = 1 formula (28) reduces to (26). Therefore, to prove 
(28) it suffices to treat the case when m and n are powers of the same prime p. 
First we consider the case m = p and n = p', where r ;;::: 1. In this case we 
are to prove that 

(29) 

We use the representation in (17) and note that the divisors of p' have the 
form p1 where 0 :::;:; t :::;:; r. Hence we have 

(30) {T(p')f}(-r) = p-r L p<r-t)kf(p'-tr t+ br). 
O:s;t:s;r p 

O:s;b,<p' 

By (14) we have 

{T(p)g}(-r) = pk-1g(pr) + p-/~1g(' +b). 
b=O p 

so when we apply T(p) to each member of (30) we find 

{T(p)T(p')f} (-r) = pk-1-r L p<r-t)k J(p'+ 1 -t~ + pbt) 
O:s;r:s;r P 

O:s;b,<p' 

+ p- 1- r L p<r- t)k L J P 0 +t + ~ + P . 
p-1 ( r-t b b t) 

O:s;r:s;r b=O p 
O:s;b,<p' 

In the second sum the linear combination b1 + bp1 runs through a complete 
residue system mod p1+ 1• Since r - t = (r + 1) - (t + 1) the second sum, 
together with the term t = 0 from the first sum, is equal to {T(p'+ 1)f} (-r). In 
the remaining terms we cancel a factor p in the argument of J, then transfer 
the factor pk to each summand to obtain 

{T(p)T(p')f}(-r) = {T(pr+1)f}(-r) + p-1-r L p<r+1-t)kf(pr-t~ ~ br). 
1 :s;r:s;r P 

O:s;b,<p' 
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6: Modular forms with multiplicative coefficients 

Dividing each b1 by p1- 1 we can write 

b, = q,pr-1 + r,, 

where 0 ::;; r, < p'- 1 and q, runs through a complete residue system mod p. 
Since f is periodic with period 1 we have 

( pr-tr: + b,) = (p'-'r: + r,) 
f t 1 f t-1 ' p p 

so as q, runs through a complete residue system mod peach term is repeated 
p times. Replacing the index t by t - 1 we see that the last sum is pk- 1 times 
the sum defining {T(p'- 1)/}(r:). This proves (29). 

Now we consider general powers of the same prime, say m = p• and 
n = p'. Without loss of generality we can assume that r ::;; s. We will use in­
duction on r to prove that 

(31) 

for all r and all s 2 r. When r = 1, (31) follows for all s 2 1 from (29). 
Therefore we assume that (31) holds for r and all smaller powers and all 
s 2 r, and prove it also holds for r + 1 and all s 2 r + 1. 

By (29) we have 

T(p)T(p')T(p•) = T(p'+ 1)T(p") + pk- 1 T(p'- 1)T(p'), 

and by the induction hypothesis we have 

r 

T(p)T(p')T(ps) = L pt(k-1)T(p}T(p'+s-2t). 
t=O 

Equating the two expressions, solving for T(p'+ 1 )T(p•) and using (29) in the 
sum on t we find 

r r 

T(p'+ 1 )T(p•) = L p'(k-1)T(pr+s+ 1- 21) + L p<t+ 1)(k- 1)T(pr+s-1-2t) 
t=O t=O 

By the induction hypothesis the last term cancels the second sum over t 
except for the term with t = r. Therefore 

, 
T(pr+1)T(p•) = LPt(k-1)T(p'+s+1-2t) + p(r+l)(k-l)T(ps-1-r) 

t=O 
r+ 1 

= L pt(k- 1)T(p'+ 1 +s- 2r). 
t=O 

This proves (31) by induction for all rand all s 2 r, and also completes the 
proof of (28). 0 
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6.11 : Eigenfunctions of Heeke operators 

6.11 Eigenfunctions of Heeke operators 

In Theorem 6.6 we proved that iff EM k and has the Fourier expansion 
00 

(32) f(r:) = L c(m)xm, 
m=O 

where x = e2"i', then T,.f has the Fourier expansion 
00 

(33) (T,.f)(r:) = L Yn(m)xm, 
m=O 

where 

(34) '\' k-l (mn) Yn(m) = L... d C d2 · 
dj(n,m) 

When m = 0 we have (n, 0) = n so the constant terms off and T,.f are 
related by the equation 

(35) Yn(O) = L dk- 1c(O) = ak_ 1(n)c(O) 
din 

for all n ~ 1. Similarly, when m = 1 we find 

(36) yn(l) = c(n) 

for all n ~ 1. 
The sum on the right of (34) resembles that which occurs in the multi­

plicative property of Ramanujan's function r:(n) and the divisor functions 
aa(n). These examples suggest we seek those formsffor which the transformed 
function T,f has Fourier coefficients 

(37) yim) = c(n)c(m) 

since this would imply the multiplicative property 

c(n)c(m) = L dk- 1 c(;~)· 
dj(n,m) 

The relation (37) is equivalent to the identity 

T,. f = c(n) f 

for all n ~ 1. A nonzero function f satisfying a relation of the form 

(38) T,.f = l(n)f 

for some complex scalar l(n) is called an eige'!function (or eige'!form) of the 
operator T,, and the scalar l(n) is called an eigenvalue of T,.. Iff is an 
eigenform so is cf for every c =F 0. 
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6: Modular forms with multiplicative coefficients 

EXAMPLES. If a linear operator T maps a 1-dimensional function space V 
into itself, then every nonzero function in Vis an eigenfunction ofT. Formula 
(9) shows that 

dim M k = 1 if k = 4, 6, 8, 10 and 14, 

so each Heeke operator Tn has eigenforms in M k for each of these values of k. 
For example, the respective Eisenstein series G4 , G6 , G8 , G10 and G14 are 
eigenforms for each T,. 

Similarly, formula (11) implies that 

dim Mk,o = 1 if k = 12, 16, 18, 20, 22 and 26, 

so each T, has eigenforms in M k, 0 for each of these values of k. The respective 
cusp forms .1, .1G4 , .1G6 , .1G8 , .1G10 and .1G14 are eigenforms for each T,. 

Iff is an eigenform for every Heeke operator T,, n ~ 1, then f is called a 
simultaneous eigeriform. All the examples just mentioned are simultaneous 
eigenforms. 

6.12 Properties of simultaneous eigenforms 

Theorem 6.14. Assume k is even, k ~ 4. If the space Mk contains a simultaneous 
eigenform f with Fourier expansion (32), then c(1) =I= 0. 

PROOF. The coefficient of x in the Fourier expansion of T,f is 'l'n(1) = c(n). 
Since f is a simultaneous eigenform this coefficient is also equal to A.(n)c(1), so 

c(n) = A.(n)c(1) 

for all n ~ 1. If c(1) = 0 then c(n) = 0 for all n ~ 1 and f(r) = c(O). But then 
c(O) = 0 since k ~ 4, hence f = 0, contradicting the definition of eigenform. 
This proves that c(1) =I= 0. 0 

An eigenform with c(1) = 1 is said to normalized. If Mk contains a simul­
taneous eigenform then it also contains a normalized eigenform since we 
can always make c(1) = 1 by multiplying f by a suitable nonzero constant. 

It is easy to characterize all cusp forms which are simultaneous eigenforms. 
Since the zero function is the only cusp form of weight < 12 we need consider 
only k ~ 12. 

Theorem 6.15. Assume f E M k, 0 where k is even, k ~ 12. Then f is a simul­
taneous normalized eigeriform if, and only if, the coefficients in the Fourier 
expansion (32) satisfy the multiplicative property 

c(m)c(n) = L dk-l c(;~) 
dl(n,m) 

(39) 

for all m ~ 1, n ~ 1, in which case the coefficient c(n) is an eigenvalue ofT,. 
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6.13: Examples of normalized simultaneous eigenforms 

PROOF. The equation T,J = A.(n)f is equivalent to the relation 

(40) yn(m) = A.(n)c(m) 

obtained by equating coefficients of xm in the corresponding Fourier expan­
sions. Since f is a cusp form so is T,J hence (40) is to hold for all m ~ 1 
and n ~ 1. Now yn(1) = c(n) so (40) implies A.(n) = c(n) if c(1) = 1, and 
hence Yn(m) = c(n)c(m). On the other hand, Equation (34) shows that (40) 
is equivalent to (39) if c(1) = 1. Therefore f is a normalized simultaneous 
eigenform if, and only if, (39) holds for all m ~ 1, n ~ 1. 0 

6.13 Examples of normalized simultaneous 
eigenforms 

The discriminant dis a cusp form with Fourier expansion 

00 

d(-r) = (2n)12 L -r(m)xm 
m=l 

where -r(l) = 1. Therefore (2n)- 12 d(-r) is a normalized eigenform for each 
T, with corresponding eigenvalue -r(n). This also proves that Ramanujan's 
function r(n) satisfies the multiplicative property in (3). 

The next theorem shows that the only simultaneous eigenforms in M Zk 

which are not cusp forms are constant multiples of the Eisenstein series G2k. 

Theorem 6.16. Assume that f EM zk, where k ~ 2, and that f is not a cusp 
form. Then f is a normalized simultaneous eigenform !f. and only if, 

(41) 
(2k- 1)! 

.f(r) = 2(2nifk Gzk(-r). 

PROOF. In the Fourier expansion (32) we have c(O) # 0 since f is not a cusp 
form. The relation 

(42) T,f = A.(n)f 

is equivalent to the relation 

(43) yn(m) = A.(n)c(m) 

obtained by equating coefficients of xm in the corresponding Fourier expan­
sions. When m = 0 this becomes 

Y n(O) = A.( n )c(O). 

On the other hand, (35) implies Yn(O) = a2k_ 1(n)c(O) since f EM Zk· But 
c(O) # 0, so Equation (42) holds if, and only if, 

A.(n) = a2k- 1(n). 
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Using this in (43) we find that 

Yn(m) = azk-l(n)c(m). 

When m = 1 this relation, together with (36), gives us 

c(n) = a 2k- 1(n)c(1). 

Therefore,/ is a normalized simultaneous eigenform in M lk if, and only if, 

c(n) = azk-t(n) 

for all n 2 1. Since the Eisenstein series G2k has the Fourier expansion 

2(2ni)2k oo 

Gzk(r) = 2((2k) + (2k _ 1)! m~la2k-l(m)xm, 

the function in (41) is normalized and its Fourier expansion is given by 

(44) 
(2k- 1)! 00 

f(r) = (2 Vk ((2k) + I a2k-l(m)xm. 
m m=l 

Note. Since 
k+ 1 (2n)2k 

((2k) = ( -1) 2(2k)! B2k 

where Bk is the kth Bernoulli number defined by 

X ~ Bk k 
----x--=-1 = L., -k I X ' e k=O · 

the constant term in (44) is equal to -B2k/(4k). (See [4], Theorem 12.17.) 
We can also write 

D 

Since the eigenvalue A.(n) in (42) is a 2k_ 1(n), Theorem 6.16 shows that the 
divisor functions aa(n) satisfy the multiplicative property in Equation (4) 
when r:x = 2k - 1. Actually, they satisfy (4) for all real or complex r:x, but 
aa(n) is the nth coefficient of an entire form only when rx is an odd integer 2 3. 

ExAMPLES. The problem of determining all entire noncusp forms whose 
coefficients satisfy the multiplicative property (39) has been completely 
settled by Theorem 6.16. For the cusp forms the problem has been reduced 
by Theorem 6.15 to that of determining simultaneous normalized eigenforms 
of even weight 2k 2 12. We have already noted that the function (2n) - 12A(r) 
is the only simultaneous normalized eigenform of weight 2k = 12. Also 
there is exactly one simultaneous normalized eigenform for each of the 
weights 

2k = 16, 18, 20, 22, and 26 
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6.14: Remarks on existence of simultaneous eigenforms in M lk. 0 

since dim M lk, 0 = 1 for these weights. The corresponding normalized 
eigenforms are given by 

(2 )-12A( )· 2k-12 t '\' () 1 '\' ( ) G ( ) 00 
"{ 2(2k - 12) 00 m} 

n Llt 2((2k-12) n';:/nx - Bzk-12 m';:/'zk-l3mx . 

We define r(O) = 0 and u2k_ 1(0) = - B2k/(4k). Then the coefficients c(n) of 
these eigenforms are given by the Cauchy product 

4k-24 n 
c(n) = - B L r(m)u2 k_ 13(n - m). 

2k-l2 m=O 

They satisfy the multiplicative property 

c(m)c(n) = L d2 k-l c(;:) 
dj(m,n) 

for all m ~ 1, n ~ 1. 

6.14 Remarks on existence of simultaneous 
eigenforms in M 2k,o 

Let K =dim M 2k,o where 2k ~ 12. Then we have 

K = ~[~~ J - 1 if 2k = 2 (mod 12) 

[~~ J if 2k ¥; 2 (mod 12). 

Let e(k) denote the number of linearly independent simultaneous eigenforms 
in M lk, 0 • Clearly, e(k) ~ K. We have shown that e(k) = 1 when K = 1. 
Heeke showed that e(k) = 2 when K = 2, and later Petersson [32] showed 
that e(k) = K in all cases. He did this by introducing an inner product 
(J, g) in M lk, 0 defined by the double integral 

(J, g) = f f f(r)g(r)v2k- 2 du dv 

Rr 

extended over the fundamental region Rr in the r = u + iv plane. Relative 
to the Petersson inner product the Heeke operators are Hermitian, that is, 
they satisfy the relation 

(T, J, g) = (J, T,g) 

for any two cusp forms in M lk, 0 . Therefore, by a well known theorem of 
linear algebra (see [2], Theorem 5.4) for each T, there exist K eigenforms 
which form an orthonormal basis for M lk, 0 • These need not be simultaneous 
eigenforms for all the T,. However, since the T, commute with each other, 
another theorem of linear algebra (see [10], Ch. IX, Sec. 15) shows that 
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6: Modular forms with multiplicative coefficients 

M 2 k, 0 has an orthonormal basis consisting of K simultaneous eigenforms. 
Each of these can be multiplied by a constant factor to get a new basis of 
simultaneous normalized eigenforms. (The new basis will be orthogonal 
but need not be orthonormal.) Since the T, are Hermitian, the corresponding 
eigenvalues are real. Details of the proofs of these statements can be found 
in references [32], [26], or [11]. 

6.15 Estimates for the Fourier coefficients of 
entire forms 

Assume f is an entire form with Fourier expansion 

00 

(45) f(r) = L c(n)x", 
n=O 

where x = e 2"it. Write 1: = u + iv so that x = e- 2""e2";". For fixed v > 0, 
as u varies from 0 to 1 the point x traces out a circle C(v) of radius e- 2"" 

with center at x = 0. By Cauchy's residue theorem we have 

1 f f(r) J1 . -n c(n) = -2 . ---;;-+! dx = f(u + w)x. du. 
7!:1 C(v) X 0 

(46) 

We shall use this integral representation to estimate the order of magnitude 
of I c(n) 1. First we consider cusp forms of weight 2k. 

Theorem 6.17. Iff E M 2 k,o we have 

c(n) = O(nk). 

PROOF. The series in (45) converges absolutely if I xI < 1. Since c(O) = 0 we 
can remove a factor x and write 

lf(r)l = lxll .. ~1c(n)x"- 1 1 ~ lxiJ
1
1c(n)llxl"- 1• 

If 1: is in Rr, the fundamental region of r, then 1: = u + iv with v ~ J312 
> 1/2, so lxl = e- 2 "" < e-". Hence 

lf(r)l ~A lxl = Ae- 2"" 

where 
00 

A= L lc(n)le-<n- 1>". 
n= 1 

This implies 

(47) 

Now define 

g(r) = -!-lr- il = v 
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iftEH. Then 

g(At) =let+ dl- 2g(r) 

if A = (: ~) E r, so gk(At) = let+ dl- 2kgk(r). Therefore the product 

<p(t) = lf(r)ll(t) = lf(t)lvk 

is invariant under the transformations of r. Moreover, cp is continuous 
in Rr, and (47) shows that cp(r)--+ 0 as v--+ + oo. Therefore <p is bounded 
in Rr and, since <pis invariant under r, cp is also bounded in H, say 

I cp(t)l ~ M 

for all t in H. Therefore 

lf(t)l ~ Mv-k 

for all t in H. Using this in ( 46) we find 

lc(n)l ~ f lf(u + iv)x-"ldu ~ Mv-klxl-n = Mv-ke- 2 ""v. 

This holds for all v > 0. When v = 1/n it gives us 

lc(n)l ~ Mnke- 2" = O(nk); 

Theorem 6.18. Iff EM Zk and f is not a cusp form, then 

(48) c(n) = O(n 2k- 1). 

0 

PROOF. Iff= G2k each coefficient c(n) is of the form IXO"zk- 1(n) where oc is 
independent of n. Hence 

Now 

O"zk-l(n) = I(S)2k-1 = n2k-1 2::-d2_; ___ 1 ~ n2k-1 I -d2_; ___ 1 = O(n2k-1), 
din din d= 1 

so (48) holds iff = Gzk· 
For a general noncusp form in M lk• let A. = f(ioo )/G2k(ioo ). Thenf - A.G 2k 

is a cusp form so 

f = A.Gzk + g 

where gEM zk. 0 . The Fourier coefficients off are the sum of those of A.G2k 
and g so they have order of magnitude 

0 
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6: Modular forms with multiplicative coefficients 

Note. For cusp forms, better estimates for the order of magnitude of the 
c(n) have been obtained by Kloosterman, Salie, Davenport, Rankin, and 
Selberg (see [46]). It has been shown that 

c(n) = O(nk-0/4)+c) 

for every e > 0, and it has been conjectured that the exponent can be further 
improved to k -! + e. For the discriminant L\, Ramanujan conjectured the 
sharper estimate 

I -r(p) I ::;;; 2p1112 

for primes p. This was recently proved by P. Deligne [7]. 

6.16 Modular forms and Dirichlet series 

Heeke found a remarkable connection between each modular form with 
Fourier series 

(49) 

and the Dirichlet series 

(50) 

00 

f('r:) = c(O) + L c(n)e2nint 
n= I 

( ) _ ~ c(n) 
cps-L....-. 

n= 1 n 

formed with the same coefficients (except for c(O)). Iff EM 2k then c(n) = 
O(nk) iff is a cusp form, and c(n) = O(n2k-t) iff is not a cusp form. Therefore, 
the Dirichlet series in (50) converges absolutely for u = Re(s) > k + 1 iff is 
a cusp form, and for u > 2k iff is not a cusp form. 

Theorem 6.l9.Ifthe coefficients c(n) sati~fy the multiplicative property 

c(m)c(n) = L d2k-tc(~~) 
dl(m,n) 

(51) 

the Dirichlet series will have an Euler product representation of the form 

(52) 
1 

cp(s) =I) 1 _ c(p)p-• + p2k-lp 2s' 

absolutely convergent with the Dirichlet series. 

PROOF. Since the coefficients are multiplicative we have (see [4], Theorem 
11.7) 

(53) 
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whenever the Dirichlet series converges absolutely. Now (51) implies 

c(p)c(pn) = c(pn+ 1) + p2k-1c(pn-1) 

for each prime p. Using this it is easy to verify the power series identity 

(1- c(p)x + p2k- 1x 2)(1 + J1c(pn)xn) = 1 

for alllxl < 1. Taking x = p-s, we find that (53) reduces to (52). 0 

ExAMPLE. For the Ramanujan function we have the Euler product represen­
tation 

f r( n! = n -:-----:-:----::---.--,-.....-
n;1 n p 1-r(p)p s+p11 2s 

for (J > 7 since r(n) = O(n6 ). 

Heeke also deduced the following analytic properties of cp(s). 

Theorem 6.20. Let cp(s) be the function defined for (J > k by the Dirichlet 
series (50) associated with a modular form f(r) in Mk having the Fourier 
series (49), where k is an even integer ~ 4. Then cp(s) can be continued 
analytically beyond the line (J = k with the following properties: 
(a) If c(O) = 0, cp(s) is an entire function of s. 
(b) If c(O) # 0, cp(s) is analytic for all s except for a simple pole at s = k 

with residue 

( -l)k12c(0)(2n)k 

r(k) 

(c) The function cp satisfies the functional equation 

PROOF. From the integral representation for r(s) we have 

if (J > 0. Therefore if (J > k we can multiply both members by c(n) and sum 
on n to obtain 

(2n)-sr(s)cp(s) = I' {f(iy) - c(O)}ys- 1 dy. 

137 



6: Modular forms with multiplicative coefficients 

Since .f is a modular form in Mk we have .f(i/y) = (iyt.f(iy) so 

(2n)-sr(s)q>(s) = f" {.f(iy) - c(O)}ys- 1 dy + f {(iy)-k.fG)- c(O)}ys- 1 dy 

= foo {.f(iy)- c(O)}ys-1 dy + i-k foo .f(iw)wk-s-1 dw - c(O) 
1 1 s 

= f" {.f(iy) - c(O)}ys- 1 dy 

+ ( -l)k/Z f'' {.f(iw)- c(O)}wk-s- 1 dw 

+ ( -1)kf2c(O) foo wk-s-1 dw - c(O) 
1 s 

= joo {.f(iy)- c(O)}(y• + ( -1t;zyk-•) dy 
Jl y 

( 1 ( -lt12 ) - c(O)- + --. 
s k- s 

Although this last relation was proved under the assumption that a > k, the 
right member is meaningful for all complex s. This gives the analytic continua­
tion of q>(s) beyond the line a = k and also verifies (a) and (b). Moreover, 
replacing s by k - s leaves the right member unchanged except for a factor 
( -l)k/Z so we also obtain (c). D 

Heeke also proved a converse to Theorem 6.20 to the effect that every 
Dirichlet series q> which satisfies a functional equation of the type in (c), 
together with some analytic and growth conditions, necessarily arises from 
a modular form in Mk. For details, see [15]. 

Exercises for Chapter 6 

Exercises 1 through 6 deal with arithmetical functions .f satisfying a relation 
of the form 

(54) .f(m).f(n) = L rx(d).f(~~) 
dl(m,n) 

for all positive integers m and n, where rx is a given completely multiplicative 
function (that is, rx(l) = 1 and rx(mn) = rx(m)rx(n) for all m and n). An arith­
metical function satisfying (54) will be called rx-multiplicative. We write 
.f = 0 if .f(n) = 0 for all n. 

1. Assume f is IX-multiplicative and .f i= 0. Prove that f(l) = 1. Also prove that cf is 
IX-multiplicative if, and only if, c = 0 or c = 1. 
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Exercises for Chapter 6 

2. If f and g are a-multiplicative, prove that f + g is a-multiplicative if, and only if, 
f = 0 or g = 0. 

3. Let / 1, ••• , I;. be k distinct nonzero a-multiplicative functions. If a linear combination 

i=l 

is also a-multiplicative, prove that: 
(a) The functions .f1 , ••• , .fk are linearly independent. 
(b) Either all the c; are 0 or else exactly one of the c; is 1 and the others are 0. Hence 

either f = 0 or f = /; for some i. In other words, linear combinations of a­
multiplicative functions are never a-multiplicative except for trivial cases. 

4. If .f is a-multiplicative, prove that 

a(n)f(m) = I Jl(d)f(mnd).f(~)· 
din 

5. If .f is multiplicative, prove that .f is a-multiplicative if, and only if, 

(55) 

for all primes p and all integers k ~ 1. 

6. The recursion relation (55) shows that .f(p") is a polynomial in .f(p), say 

f(p") = Q.(.f(p)). 

The sequence {Q.(x)} is determined by the relations 

Q1(x) = x, Qix) = x 2 - a(p), Q,+ 1(x) = xQ,(x)- a(p)Q,_ 1(x) for r ~ 2. 

Show that 
Q.(2a(p)1' 2x) = a(p)"'2 U .(x), 

where U .(x) is the Chebyshev polynomial of the second kind, defined by the relations 

U 1(x) = 2x, U 2(x) = 4x2 - 1, U,+ 1(x) = 2xU,(x)- U,_ 1(x) for r ~ 1. 

7. Let E2lc) = !G2lr)/((2k). If x = e2";' verify that the Fourier expansion of E2lc) 
has the following form fork = 2, 3, 4, 5, 6, and 7: 

00 

E4 (<) = 1 + 240 I a3(n)x", 
n=l 

00 

E6(<) = 1 - 504 I a 5(n)x", 
n= 1 

00 

E8(<) = 1 + 480 I ain)x", 
n= 1 

00 

E10(<) = 1 - 264 I a9(n)x", 
n=1 

65520 00 

En(<)= 1 + 69} .~1 a 11(n)x", 

00 

E1i<) = 1 - 24 I a13(n)x". 
n=l 

139 



6: Modular forms with multiplicative coefficients 

Derive each of the identities in Exercises 8, 9, and 10 by equating coefficients 
in appropriate identities involving modular forms. 

n-1 

8. u1(n) = u 3(n) + 120 L u 3(m)u 3(n- m). 
m=l 

n-1 

9. llu9 (n) = 21u5(n)- 10u3(n) + 5040 L u3(m)u5(n - m). 
m=l 

65 691 691 n- 1 

10. -r(n) = -7 u 11 (n) +- u 5(n)- - 3 L u 5(m)u 5(n - m). 
56 756 m=1 

Show that this identity implies Ramanujan's congruence 

-r(n) = u 11 (n) (mod 691). 

11. Prove that the products Gk_ 12,~' which occur in Theorem 6.3 are linearly inde­
pendent. 

12. Prove that the products G4"G/ are linearly independent, where a and bare non­
negative integers such that 4a + 6b = k. 

13. Show that the Dirichlet series associated with the normalized modular form 

(2k- 1)! Y(2k ~ ( ) 2nimt 
f(-r)= 2 ')2k ~ )+ L....u2k-1me 

( 7tl m=1 

is cp(s) = ((s)((s + 1 - 2k). 

14. A quadratic polynomial1 - Ax + Bx2 with real coefficients A and B can be factored 
as follows: 

1 - Ax + Bx2 = (1 - r 1x)(1 - r 2 x). 

Prove that r 1 = :x + i/1 and r 2 = y- i/1, where ex, {3, yare real and {3(1• - :x) = 0. 
Hence, if f3 # 0 the numbers r 1 and r2 are complex conjugates. 

Note. For the quadratic polynomial occurring in the proof of Theorem 
6.19 we have 

where 

and 

Petersson conjectured that r1 and r2 are always complex conjugates. This 
implies 

and 

When c(n) = -r(n) this is the Ramanujan conjecture. The Petersson conjecture 
was proved recently by Deligne [7]. 
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Exercises for Chapter 6 

15. This exercise outlines Riemann's derivation of the functional equation 

(56) n-•J2rG}(s) = n(•-IJ/2rC ~ s)w- s) 

from the functional equation (see Exercise 4.1) 

(57) .9( ~ 1) = (- ir)Ii2.9(r) 

satisfied by Jacobi's theta function 

"" .9(-r) = 1 + 2 I e"i"2
'. 

n=l 

(a) If u > 1 prove that 

n-sf2r(~)n-• = L"" e-nn2xxsf2-1 dx 

and use this to derive the representation 

n-•12rG)c(s) = L""I/J(x)x•l2- 1 dx, 

where 2!/l(x) = .9(x)-1. 
(b) Use (a) and (57) to obtain the representation 

n-•J2r(:)c(s) = __ 1_ + J""(x•f2-1 + x(I-•>12-I)!/J(x) dx 
2 s(s - 1) 1 

for u > 1. 
(c) Show that the equation in (b) gives the analytic continuation of C(s) beyond the 

line u = 1 and that it also implies the functional equation (56). 
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7 Kronecker's theorem 
with applications 

7.1 Approximating real numbers by rational 
numbers 

Every irrational number () can be approximated to any desired degree of 
accuracy by rational numbers. In fact, if we truncate the decimal expansion 
of () after n decimal places we obtain a rational number which differs from 
()by less than 10-". However, the truncated decimals might have very large 
denominators. For example, if 

() = n- 3 = 0.141592653 ... 

the first five decimal approximations are 0.1, 0.14, 0.141, 0.1415, 0.14159. 
Written in the form a/b, where a and b are relatively prime integers, these 
rational approximations become 

1 7 141 283 14159 
10' 50' 1000' 2000' 100,000" 

On the other hand, the fraction 1/7 = 0.142857 ... differs from() by less than 
2/1000 and is nearly as good as 141/1000 for approximating(), yet its denomi­
nator 7 is very small compared to 1000. 

This example suggests the following type of question: Given a real 
number (), is there a rational number h/k which is a good approximation to 
() but whose denominator k is not too large? 

This is, of course, a vague question because the terms "good approxima­
tion" and "not too large" are vague. Before we make the question more 
precise we formulate it in a slightly different way. If () - h/k is small, then 
(k() - h)/k is small. For this to be small without k being large the numerator 
k() - h should be small. Therefore, we can ask the following question: 
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7.2: Dirichlet's approximation theorem 

Given a real number() and given e > 0, are there integers hand k such that 
lk()- hi< e? 

The following theorem of Dirichlet answers this question in the affirma­
tive. 

7.2 Dirichlet's approximation theorem 

Theorem 7.1. Given any real() and any positive integer N, there exist integers 
h and k with 0 < k ::; N such that 

(1) 
1 

lk()- hi< N" 

PROOF. Let {x} = x - [x] denote the fractional part of x. Consider the 
N + 1 real numbers 

0, {()}, {2()}, ... , {N()}. 

All these numbers lie in the half open unit interval 0 :s; {m(J} < 1. Now 
divide the unit interval into N equal half-open subintervals of length 1/N. 
Then some subinterval must contain at least two of these fractional parts, 
say {a()} and {b()}, where 0 ::; a < b :s; N. Hence we can write 

(2) 
1 

I {b()} - {ae} I < N. 

But 

{b()} - {a()} = b() - [b()] - a() + [a()] = (b - a)() - ([b()] - [a()]). 

Therefore if we let 

k=b-a 

inequality (2) becomes 

and h = [b()] - [a()] 

1 
lk()- hi < N' with 0 < k ::; N. 

This proves the theorem. 0 

Note. Given e > 0 we can choose N > 1/e and (1) implies lk()- hi< e. 

The next theorem shows that we can choose h and k to be relatively 
prime. 

Theorem 7.2. Given any real() and any positive integer N, there exist relatively 
prime integers h and k with 0 < k ::; N such that 

1 
lk()- hi< N" 
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7: Kronecker's theorem with applications 

PROOF. By Theorem 7.1 there is a pair h', k' with 0 < k' ~ N satisfying 

(3) I h' I 1 ()- k < Nk'" 

Let d = (h', k'). If d = 1 there is nothing to prove. If d > 1 write h' = hd, 
k' = kd, where (h, k) = 1 and k < k' ~ N. Then 1/k' < 1/k and (3) becomes 

I()- ~I< :k, < ~"· 
from which we find lk8- hi < 1/N. 0 

Now we restate the result in a slightly weaker form which does not involve 
the integer N. 

Theorem 7.3. For every real 8 there exist integers h and k with k > 0 and 
(h, k) = 1 such that 

PROOF. In Theorem 7.2 we have 1/(Nk) ~ 1/k 2 because k ~ N. 0 

Theorem 7 .4. If 8 is real, let S( 8) denote the set of all ordered pairs of integers 
(h, k) with k > 0 and (h, k) = 1 such that 

I()- ~I < k~ · 
Then S(8) has the following properties: 

(a) S(8) is nonempty. 
(b) If8 is irrational, S(8) is an infinite set. 
(c) When S(8) is infinite it contains pairs (h, k) with k arbitrarily large. 
(d) If 8 is rational, S(8) is a finite set. 

PROOF. Part (a) is merely a restatement of Theorem 7.3. To prove (b), assume 
() is irrational and assume also that S(8) is finite. We shall obtain a contra­
diction. Let 

. le hi a= mtn --. 
(h,k)eS(IJ) k 

Since () is irrational, a is positive. Choose any integer N > 1/a, for example, 
N = 1 + [1/a]. Then 1/N < a. Applying Theorem 7.2 with this N we obtain 
a pair of integers hand k with (h, k) = 1 and 0 < k ~ N such that 

I()- ~I< _1 
k kN. 
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7.2: Dirichlet's approximation theorem 

Now 1/(kN) :::; 1jk2 so the pair (h, k) E S(8). But we also have 

_1_ < _.!:._ < tJ. so le - ~k I < rx, kN- N ' 

contradicting the definition of rx. This shows that S(8) cannot be finite if 8 is 
irrational. 

To prove (c) assume that all pairs (h, k) in S(8) have k :::; M for some M. 
We will show that this leads to a contradiction by showing that the number 
of choices for his also bounded. If (h, k) E S(8) we have 

1 
lk8- hi < k:::; 1, 

so 

I hI = I h - k8 + k8 I :::; I h - k8 I + I k8 I < 1 + Ike I :::; 1 + M I e 1. 
Therefore the number of choices for h is bounded, contradicting the fact that 
S( 8) is infinite. 

To prove (d), assume 8 is rational, say 8 = ajb, where (a, b) = 1 and b > 0. 
Then the pair (a, b) E S(8) because 8 - ajb = 0. Now we assume that S(8) 
is an infinite set and obtain a contradiction. If S(8) is infinite then by part (c) 
there is a pair (h, k) in S(8) with k > b. For this pair we have 

0 < I~- ~I<__!__ b k k2 ' 

from which we find 0 < I ak - bh I < bjk < 1. This is a contradiction because 
ak - bh is an integer. D 

Theorem 7.4 shows that a real number 8 is irrational if, and only if, 
there are infinitely many rational numbers h/k with (h, k) = 1 and k > 0 
such that 

le- ~~ < :z· 
This inequality can be improved. It is easy to show that the numerator 1 
can be replaced by 1 (see Exercise 7.4). Hurwitz replaced 1 by a smaller 
constant. He proved that 8 is irrational if, and only if, there exist infinitely 
many rational numbers h/k with (h, k) = 1 and k > 0 such that 

le -11 < flk 1 . 

Moreover, the result is false if 1/JS is replaced by any smaller constant. (See 
Exercise 7.5.) We shall not prove Hurwitz's theorem. Instead, we prove a 
theorem of Liouville which shows that the denominator P cannot be re­
placed by k3 or any higher power. 
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7: Kronecker's theorem with applications 

7.3 Liouville's approximation theorem 

Theorem 7 .5. Let () be a real algebraic number of degree n ~ 2. Then there is a 
positive constant C(()), depending only on e, such that for all integers h and 
k with k > 0 we have 

(4) 
I
()- ~I > C(()) 

k k" . 

PROOF. Since () is algebraic of degree n, () is a zero of some polynomial f(x) 
of degree n with integer coefficients, say 

n 

f(x) = L arxr, 
r=O 

where J(x) is irreducible over the rational field. Since f(x) is irreducible it 
has no rational roots so f(h/k) =F 0 for every rational h/k. 

Now we use the mean value theorem of differential calculus to write 

(5) ~G)= ~G)- J(()) = f'(~)G- ()). 

where~ lies between() and h/k. We will deduce (4) from (5) by getting an upper 
bound for If'(~) I and a lower bound for lf(h/k)l. We have 

where N is a nonzero integer. Therefore 

(6) 

which is the required lower bound. To get an upper bound for If'(~) I we let 

If d > 1 then (4) holds with C(()) = 1, so we can assume that d < 1. (We 
cannot have d = 1 since ()is irrational.) Since ~ lies between ()and h/k and 
d < 1 we have I ~ - ()I < 1 so 

1~1 = 1e + ~- e1::; 1e1 +I~- e1 < 1e1 + 1. 

Hence 

I J'(~) I ::; A( e) < 1 + A( e), 

where A(()) denote the maximum value of I f'(x) I in the interval I xI ::; I() I + 1. 
Using this upper bound for If'(~) I in (5) together with the lower bound in (6) 
we obtain (4) with C(()) = 1/(1 + A(())). D 
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7.3: Liouville's approximation theorem 

A real number which is not algebraic is called transcendental. A simple 
counting argument shows that transcendental numbers exist. In fact, the 
set of all real algebraic numbers is countable, but the set of all real numbers 
is uncountable, so the transcendental numbers not only exist but they form 
an uncountable set. 

It is usually difficult to show that some particular number such as e or n 
is transcendental. Liouville's theorem can be used to show that irrational 
numbers that are sufficiently well approximated by rationals are necessarily 
transcendental. Such numbers are called Liouville numbers and are defined 
as follows. 

Definition. A real number e is called a Liouville number if for every integer 
r ~ 1 there exist integers h, and k, with k, > 0 such that 

(7) 

Theorem 7.6. Every Liouville number is transcendental. 

PROOF. If a Liouville number e were algebraic of degree n it would satisfy 
both inequality (7) and 

for every r ~ 1, where C(O) is the constant in Theorem 7.5. Therefore 

C(O) 1 
0 < k" < k'' 

r r 

1 
or 0 < C(O) < k r-n· 

r 

The last inequality gives a contradiction if r is sufficiently large. D 

ExAMPLE. The number 
00 1 

e = I 1om' m=l 

is a Liouville number and hence is transcendental. In fact, for each r ~ 1 we 
can take k, = 10'1 and 

Then we have 

r 1 
h, = k, L 10m!' 

m=l 

h 00 1 1 00 1 
o < e- k, = I 1om'::;; 1o<r+l)! I 1om 

m=r+l m=O 

10/9 1 10/9 1 
--------<-- 10(r+ l)! - k: 10'1 k: 

so (7) is satisfied. 
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7: Kronecker's theorem with applications 

Note. The same argument shows that L:'= 1 am 1o-m! is transcendental if 
am = 0 or 1 and am = 1 for infinitely many m. 

We turn now to a generalization of Dirichlet's theorem due to Kronecker. 

7.4 Kronecker's approximation theorem: 
the one-dimensional case 

Dirichlet's theorem tells us that for any real 0 and every e > 0 there exist 
integers x and y, not both 0, such that 

lOx+ Yl <e. 

In other words, the linear form Ox + y can be made arbitrarily close to 0 by a 
suitable choice of integers x and y. If 0 is rational this is trivial because we 
can make Ox + y = 0, so the result is significant only if 0 is irrational. 
Kronecker proved a much stronger result. He showed that if 0 is irrational 
the linear form Ox + y can be made arbitrarily close to any prescribed real 
number IX. We prove this result first for IX in the unit interval. As in the proof 
of Dirichlet's theorem we make use of the fractional parts {nO} = nO - [nO]. 

Theorem 7.7. If 0 is a given irrational number the sequence of numbers {nO} 
is dense in the unit interval. That is, given any IX, 0 ::;;; IX ::;;; 1, and given any 
e > 0, there exists a positive integer k such that 

r {kO} - IX I < e. 

Hence, ifh = [kO] we have lkO- h- lXI <e. 

Note. This shows that the linear form Ox + y can be made arbitrarily 
close to IX by a suitable choice of integers x and y. 

PROOF. First we note that {nO} # {mO} if m # n because 0 is irrational. 
Also, there is no loss of generality if we assume 0 < 0 < 1 since nO = 
n[O] + n{O} and {nO} = {n{O}}. 

Let e > 0 be given and choose any IX, 0 ::;;; IX ::;;; 1. By Dirichlet's approxima­
tion theorem there exist integers h and k such that I kO - hI < e. Now 
either kO > h or kO < h. Suppose that kO > h, so that 0 < {kO} < e. (The 
argument is similar if kO < h.) Now consider the following subsequence of 
the given sequence {nO}: 

{kO}, {2k0},{3k0}, .... 

We will show that the early terms of this sequence are increasing. We have 

kO = [kO] + {kO}, so mkO = m[kO] + m{kO}. 

Hence 
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7.5: Extension of Kronecker's theorem to simultaneous approximation 

Now choose the largest integer N which satisfies {ke} < 1/N. Then we have 

1 1 
N + 1 < {ke} < N' 

Therefore {mke} = m{ke} form= 1, 2, ... , N, so theN numbers 

{ke}, {2ke}, ... , {Nke} 

form an increasing equally-spaced chain running from left to right in the 
interval (0, 1). The last member of this chain (by the definition of N) satisfies 
the inequality 

or 

N 
--1 < {Nke} < 1, 
N+ 

1 
1 - N + 1 < {Nke} < 1. 

Thus {Nke} differs from 1 by less than 1/(N + 1) < {ke} < e. Therefore the 
first N members of the subsequence {nke} subdivide the unit interval into 
subintervals of length <e. Since ex lies in one of these subintervals, the 
theorem is proved. 0 

The next theorem removes the restriction 0 s; ex s; 1. 

Theorem 7.8. Given any real ex, any irrational e. and any f. > 0, there exist 
integers h and k with k > 0 such that 

Ike - h - ex I < e. 

PROOF. Write ex = [ex] + {ex}. By Theorem 7.7 there exists k > 0 such that 
I {ke} - {ex} I < e. Hence 

lkO- [ke] -(ex- [cx])l < e 

or 

Ike- ([ke] - [ex])- cxl <e. 

Now take h = [ke] - [ex] to complete the proof. 0 

7.5 Extension of Kronecker's theorem to 
simultaneous approximation 

We turn now to a problem of simultaneous approximation. Given n irrational 
numbers el, e2, ... , en, and n real numbers IXto IX2, ... , 1Xn, and given e > 0, 
we seek integers h1, h2, ... , hn and k such that 

lkei- hi- cxd < e fori= 1, 2, ... , n. 
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7: Kronecker's theorem with applications 

It turns out that this problem cannot always be solved as stated. For example, 
suppose we start with two irrational numbers, say 01 and 201, and two real 
numbers IX1 and IX 2 , and suppose there exist integers h1, h2 and k such that 

lk01- h1- IX1I < e 

and 

12k(}1 - h2- IX2I <e. 

Multiply the first inequality by 2 and subtract from the second to obtain 

12h1 - h2 + 21X1 - IX2I < 3e. 

Since e, IX1 and IX 2 are arbitrary and h1, h2 are integers, this inequality cannot 
in general be satisfied. The difficulty with this example is that (} 1 and 2(} 1 are 
linearly dependent and we were able to eliminate 01 from the two inequalities. 
Kronecker showed that the problem of simultaneous approximation can 
always be solved if 01, ••. , (}n are linearly independent over the integers; 
that is, if 

n 

L ci(}i = 0 
i= 1 

with integer multipliers cl> ... , cn implies c1 = · · · = cn = 0. This restriction 
is compensated for, in part, by removing the restriction that the (}i be 
irrational. First we prove what appears to be a less general result. 

Theorem 7.9 (First form of Kronecker's theorem). If IX 1, .•• , 1Xn are arbitrary 
real numbers, if (}1> •.. , (}n are linearly independent real numbers, and if 
e > 0 is arbitrary, then there exists a real number t and integers h1, .•• , hn 
such that 

I tOi - hi - IXd < e for i = 1, 2, ... , n. 

Note. The theorem exhibits a real number t, whereas we asked for an 
integer k. Later we show that it is possible to replace t by an integer k, but 
in most applications of the theorem the real t suffices. 

The proof of Theorem 7.9 makes use of three lemmas. 

Lemma 1. Let { .iln} be a sequence of distinct real numbers. For each real t 
and arbitrary complex numbers c0 , .•. , eN define 

N 

f(t) = L c,eitA,. 
r=O 

Then for each k we have 

1 iT . ck = lim T f(t)e- 11 ;,k dt. 
T-+ oo 0 
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7.5: Extension of Kronecker's theorem to simultaneous approximation 

PROOF. The definition of f(t) gives us 
N 

f(t)e-itJ..k =I crei(J..,-J..k)t. 
r=O 

Hence 

IT f(t)e-itJ..k dt = I cr fTei(J..,-J..k)t dt + ck T, 
0 r=O 0 

r#<k 

from which we find 

Now let T --+ oo to obtain the lemma. 

Lemma 2. Ift is real, let 

n 

(8) F(t) = 1 + L e21ti(t8r-<Zr), 
r= 1 

where oc 1, ... , ocn and 01, ••. , On are arbitrary real numbers. Let 

L = sup IF(t)l. 
-oo<t<+oo 

Then the following two statements are equivalent: 

(a) For every e > 0 there exists a real t and integers h1, ... , hn such that 

ltOr- OCr- hrl < e forr = 1,2, ... ,n. 

(b) L = n + 1. 

0 

PROOF. The idea of the proof is fairly simple. Each term of the sum in (8) 
has absolute value 1 so IF(t)l ::;; n + 1. If(a) holds then each number tOr- ocr 
is nearly an integer hence each exponential in (8) is nearly 1 so I F(t) I is nearly 
n + 1. Conversely, if (b) holds then IF(t)l is nearly n + 1 for some thence 
every term in (8) must be nearly 1 since no term has absolute value greater 
than 1. Therefore each number tOr - ocr is nearly an integer so (a) holds. 
Now we transform this idea into a rigorous proof. 

First we show that (a) implies (b). If (a) holds take e = 1/(2nk), where 
k ~ 1, and let tk be the corresponding value of t given by (a). Then 
2n(tk0r - ocr) differs from an integer multiple of 2n by less than 1/k so 

1 
COS 2n(tk0r - ocr) ~ COS k' 

Hence 
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7: Kronecker's theorem with applications 

and therefore L ~ IF(tk)l ~ 1 + n cos(1/k). Letting k--+ oo we find L ~ n + 1. 
Since L ::; n + 1 this proves (b). 

Now we assume (a) is false and show that (b) is also false. If(a) is false there 
exists an 1: > 0 such that for all integers h 1, ... , hn and all real t there is a k, 
1 ::; k ::; n, such that 

(9) 
£ 

ltOk- rxk- hkl ~ 2rr. 

(We can also assume that 1:::; rr/4 because if(a) is false for 1: it is also false for 
every smaller~:.) Let x, =tO,- rx,- h,. Then (9) implies 12rrxkl ~ 1: so the 
point 1 + e11tix. lies on the circle of radius 1 about 1 but outside the shaded 
sector shown in Figure 7.1. 

so 

0 

Figure 7.1 

Now 11 + ei'l < 2 so 11 + ei'l = 2 - b for some b > 0. Hence 

11 + e 2"ix•1 :S: 11 + ei'l = 2- b, 

IF(t)l = 11 +,tle27tiXrl::; 11 + e27tiX·I +Jlle27tiXrl 

r¢k 

::; (2 - b) + (n - 1) = n + 1 - b. 

Since this is true for all t we must have L ::; n + 1 - b < n + 1, contra­
dicting (b). D 

Lemma 3. Let g = g(x1, ... , xn) be the polynomial inn variables given by 

g = 1 + xl + Xz + ... + Xn, 

and write 

(10) gp = 1 + " a X '' ••• X rn ~ r1, ... ,r11 1 n ' 
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7.5: Extension of Kronecker's theorem to simultaneous approximation 

where p is a positive integer. Then the coefficients a,,, ... ,r .. are positive 
integers such that 

(11) 1 + L a,,, ... ,r .. = (1 + n)P, 

and the number of terms in (10) is at most (p + 1)". 

PROOF. Since 1 + L a,,, ... ,r .. = gP(1, 1, ... , 1) = (1 + n)P this proves (11). 
Let 1 + N be the number of terms in (10). We shall prove that 

(12) 1 + N:::;; (p + 1)" 

by induction on n. For n = 1 we have 

(1 + X1)P = 1 + (nx1 + (~)x/ + .. · +x/ 

and the sum on the right has exactly p + 1 terms. Thus (12) holds for n = 1. 
Ifn > 1 we have 

gp = {(1 + X1 + ... + Xn-1) + Xn}P 

= (1 + x 1 + ... + Xn_ 1)P + (n(l + ... + Xn_ 1)p-1Xn + ... +X/, 

so if there are at most (p + 1 )"- 1 terms in each group on the right there will 
be at most (p + 1)" terms altogether. This proves (12) by induction. 0 

PROOF OF KRONECKER'S THEOREM. Choosing F(t) as in Lemma 2 we have 
n 

F(t) = 1 + L e2ni(t6,-a,). 

r= 1 

By Lemma 2, to prove Kronecker's theorem it suffices to prove that 

L = sup IF(t)l = n + 1. 
-co<t<+co 

The pth power of F(t) is a sum of the type discussed in Lemma 1, 

N 

(13) f(t) = P(t) = 1 + L c,eio.,, 
r= 1 

with A.0 = 1 and A., replaced by 2n(r101 + · · · + r"O") ifr ~ 1. The numbers 
A., are distinct because the Oi are linearly independent over the integers. The 
coefficients c, in (13) are the integers a,,, ... ,r .. of Lemma 3 multiplied by a 
factor of absolute value 1. Hence (11) implies 

N 

(14) 1 + L ic,l = 1 + Lar,, ... ,r,. = (1 + n)P. 
r=1 

By Lemma 1 we have 

(15) . 1 iT ·o, c, = hm - FP(t)e-· r dt. 
T-+oo T 0 
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7: Kronecker's theorem with applications 

Now IF(t)l ~ L so IFP(t)l ~ U for all t, hence 

~~ LT FP(t)e-it.<,dtl ~ ~ LTUdt = U. 

Hence (15) implies lc,l ~ U for each r, and (14) gives us 

(1 + n)P ~ (N + 1)U ~ (p + 1)"U 

by Lemma 3. Therefore 

from which we find 

log(n ~ 1) ~ ~ log(p + 1). 

Now let p ~ oo. The last inequality becomes log[(n + 1)/L] ~ 0, so L ~ 
n + 1. But L ~ n + 1 hence L = n + 1, and this proves Kronecker's 
theorem. 0 

The next version of Kronecker's theorem replaces the real number t by an 
integer k. 

Theorem 7.10 (Second form of Kronecker's theorem). If IX 1, •.. , 1Xn are 
arbitrary real numbers, if{}1, .•• , ()n, 1 are linearly independent real numbers, 
and if 8 > 0 is given, then there exists an integer k and integers m1, •. , mn 
such that 

lkO;- m;- oc;l < 8 fori= 1,2, ... ,n. 

PROOF. We apply the first form of Kronecker's theorem to the system 
oc1, ... , 1Xn, 0 and {(}1}, {(}2}, •.. , {(}"}, 1, with 8/2 instead of 8, where 8 < 1. 
Then there exists a real t and integers h1, ••• , hn+ 1 such that 

8 
It{(};} - h; - IX; I < 2 for i = 1, 2, ... , n 

and 

(16) 

The last inequality shows that t is nearly equal to the integer hn + 1• Take 
k = hn+ 1• Then (16) implies 
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7.6: Applications to the Riemann zeta function 

Hence, writing {0;} = 0; - [0;], we obtain 

lk(O;- [0;])- h;- ocd < e 

or, what is the same thing, 

lkO;- (h; + k[O;])- oc;l <e. 

Putting m; = h; + k[O;] we obtain the theorem. 0 

7.6 Applications to the Riemann zeta 
function 

With the help of Kronecker's theorem we can determine the least upper 
bound and greatest lower bound of I (( u + it) I on any fixed line u = constant, 
(J > 1. 

Definition. For fixed u, we define 

m(u) = infl((u + it) I and M(u) = supl((u + it)l, 
t t 

where the infimum and supremum are taken over all real t. 

Theorem 7.11. For each fixed u > 1 we have 

M(u) = ((u) and 
((2u) 

m(u) = ((u) . 

PRooF. For u > 1 we have l((u + it) I ~ ((u) so M(u) = ((u), the supremum 
being attained on the real axis. To obtain the result for m(u) we estimate the 
reciprocall1/((s)l. For u > 1 we have 

(17) 11 1- 0 11 -·I < 0 (1 + -a) - ((u) ((s) - P - p - P p - ((2u) · 

Hence l((s)l ~ ((2u)/((u) so m(u) ~ ((2u)g(u). 
Now we wish to prove the reverse inequality m(u) ~ ((2u)/((u). The idea 

is to show that the inequality 

11 - p-•1 ~ 1 + P-a 

used in (17) is very nearly an equality for certain values oft. Now 

1 _ p-• = 1 _ p-a-it = 1 _ p-ae-itlogp = 1 + p-aei(-tlogp-n), 

so we need to show that - t log p - 1t is nearly an even multiple of 2n for 
certain values oft. For this we invoke Kronecker's theorem. Of course, 
there are infinitely many terms in the Euler product for 1/((s) and we cannot 
expect to make - t log p - n nearly an even multiple of 2n for all primes p. 
But we will be able to do this for enough primes to obtain the desired 
inequality. 
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7: Kronecker's theorem with applications 

Choose any c, 0 < c < n/2, and choose any integer n ~ 1. We apply 
Kronecker's theorem to the numbers 

-1 
Ok=~logpk, k= 1,2, ... ,n, 

where p1 , ... , Pn are the first n primes. The 0; are linearly independent 
because 

n 

L a; log Pi = 0 implies log(pl a, ... Pn a") = 0 
i= 1 

so p1 a, · · · Pna" = 1 hence each a; = 0. We also take a 1 = a2 = · · · = an = l 
Then by Theorem 7.9 there is a real t and integers h1, .•. , hn such that 
I t()k - ak - hk I < c/(2n), which means 

(18) I - t log Pk - n - 2nhk I < c. 

For this t we have 

1 _ Pk -s = 1 _ Pk -ue-itlogpk = 1 + Pk -uei(-tlogpk-") 

= 1 + Pk -u cos( -t log Pk- n) + ipk -u sin( -t log Pk- n), 

so 
11- Pk-sl ~ 1 + Pk-ucos(-tlogpk- n). 

But (18) implies 

cos I-t log Pk- nl =cos I-t log Pk- n- 2nhkl >cos c, 

since the cosine function decreases in the interval [0, n/2]. Hence 

11- Pk-sl > 1 + Pk-ucosc. 

Now consider any partial product of the Euler product for 1/((s). For 
a given c and n there exists a real t (depending on c and on n) such that 

(19) \kOl (1- Pk-·)j = kQ111- Pk-·1 > kOl (1 + Pk-ucosc). 

Now 

1 
i((s)l k=l 

and hence, by the Cauchy condition for convergent products, there is an 
n0 such that n ~ n0 implies 

I J~L 11 - Pk- s I - 11 < c 

or 
co 

1 - c < fl 11 - Pk -sl < 1 + c. 
k=n+l 
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7. 7: Applications to periodic functions 

Using (19) with n ~ n0 we have 
1 n oo n 

IY( )I= n 11- Pk-si IT 11- Pk-si > (1- e) IT (1 + Pk-acose). 
'o S k=1 k=n+1 k=1 

This holds for n ~ n0 and a certain t depending on n and on e. Hence 
1 1 1 n 

-( ) = · f I(( . )I = sup I(( . )I ~ (1 -e) IT (1 + Pk -a cos e). m u m 1 u + zt r u + zt k = 1 

Letting n -+ oo we find 
1 00 

-( ) ~ (1 - e) IT (1 + Pk -a cos e). 
m u k= 1 

We will show in a moment that the last product converges uniformly for 
0 ::;; e ::;; n/2. Therefore we can let e -+ 0 and pass to the limit term by term 
to obtain 

1 oo -a ((u) 
m(u) ~ }]1 (

1 + Pk ) = ((2u) · 

This gives the desired inequality m(u) ::;; ((2u)/((u). 
To prove the uniform convergence of the product, we use the fact that 

a product IT (1 + fn(z)) converges uniformly on a set if, and only if, the 
series I J,(z) converges uniformly on this set. Therefore we consider the 
series I Pk -a cos e. But this is dominated by I Pk -a ::;; In -a = ((u) so the 
convergence is uniform in the interval 0 ::;; e ::;; n/2, and the proof is complete. 

0 

7. 7 Applications to periodic functions 
We say that n complex numbers w1, w2 , ••• , w" are linearly independent 
over the integers if no linear combination 

a1W1 + azWz + ... + an01n 

with integers coefficients is 0 except when a 1 = a2 = · · · = an = 0. Other­
wise the numbers w1, •• , w" are called linearly dependent over the integers. 

Elliptic functions are meromorphic functions with two linearly indepen­
dent periods. In this section we use Kronecker's theorem to show that there 
are no meromorphic functions with three linearly independent periods 
except for constant functions. 

Theorem 7.12. Let w1 and w2 be periods off such that the ratio w2/w 1 is 
real and irrational. 1hen f has arbitrarily small nonzero periods. That is, 
given e > 0 there is a period w such that 0 < I w I < e. 

PROOF. We apply Dirichlet's approximation theorem. Let (} = w2 /w1• 

Since (} is irrational, given any e > 0 there exist integers h and k with k > 0 
such that 

e 
lkO- hi< lw1 l. 
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7: Kronecker's theorem with applications 

Multiplying by I ro11 we find 

lkw2 - hro 1 1 <e. 

But w = kw2 - hw1 is a period off with lwl <e. Also, w # 0 since ro2 /ro1 
is irrational. 0 

Theorem 7.13. Iff has three periods w 1, m2 , w 3 which are linearly independent 
over the integers, then f has arbitrarily small nonzero periods. 

PROOF. Suppose first that ro2 /ro1 is real. If ro2 /ro1 is rational then ro1 and 
w2 are linearly dependent over the integers, hence ro1, m2 , w3 are also depen­
dent, contradicting the hypothesis. If ro2 /ro1 is irrational, thenfhas arbitrarily 
small nonzero periods by Theorem 7.12. 

Now suppose m2 /ro1 is not real. Geometrically, this means that ro1 and 
w2 are not collinear with the origin. Hence ro3 can be expressed as a linear 
combination of ro1 and ro2 with real coefficients, say 

w3 = otro1 + Pw2 , where ot and Pare real. 

Now we consider three cases: 

(a) Both ot and p rational. 
(b) One of ot, p rational, the other irrational. 
(c) Both ot and p irrational. 

Case (a) implies ro1, ro2 , w 3 are dependent over the integers, contradicting 
the hypothesis. 

For case (b), assume otis rational, say ot = a/b, and Pis irrational. Then 
we have 

so 

This gives us two periods bm3 - am1 and bw2 with irrational ratio, hence f 
has arbitrarily small periods. The same argument works, of course, if p is 
rational and ot is irrational. 

Now consider case (c), both ot and P irrational. Here we consider two 
subcases. 

(c1) Assume ot and P are linearly dependent over the integers. Then 
there exist integers a and b, not both zero, such that aot + bp = 0. By sym­
metry, we can assume that b # 0. Then P = -aot/b and 

so 

Again we have two periods bm3 and bm1 - am2 with irrational ratio, so f 
has arbitrarily small nonzero periods. 

(c2 ) Assume ot and pare linearly independent over the integers. Then by 
Kronecker's theorem, given any e > 0 there exist integers h1o h2 and k 
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Exercises for Chapter 7 

such that 

Multiply these inequalities by I w 1 I, I w 2 1, respectively, to get 

elw11 elw2l 
I kaw 1 - h 1 w 1 I < 1 I I I I , I k fJw 2 - h 2 w 2l < 1 I I r I + W1 + W2 + W1 + W2 

Since kw3 = kaw1 + k{Jw1 we find, by the triangle inequality, 

e(lw 1 1 + lw2l) 
lkw 3 - h1w1 - h2w 21 < 1 I I I I< e. + W1 + W2 

Thus kw3 - h1 w1 - h2 w2 is a nonzero period with modulus <e. D 

Note. In Chapter 1 we showed that a function with arbitrarily small 
nonzero periods is constant on every open connected subset in which it is 
analytic. Therefore, by Theorem 7.13, the only meromorphic functions 
with three independent periods are constant functions. 

Further applications of Kronecker's theorem are given in the next chapter. 

Exercises for Chapter 7 

1. Prove the following extension of Dirichlet's approximation theorem. 
Given n real numbers e1, ... , en and given an integer N ~ 1, there exist integers 

h1, ••. , hn and k, with 1 :<;:; k :<;:; Nn, such that 

1 
Ike; - h; I < N for i = 1, 2, ... , n. 

2. (a) Given n real numbers e,, ... , en, prove that there exist integers h,, ... , hn and 
k > 0 such that 

I h I 1 ei - i < k' + l/n fori = 1, 2, ... , n. 

(b) If at least one of the e; is irrational, prove that there is an infinite set of n-tuples 
(hdk, ... , hn/k) satisfying the inequalities in (a). 

3. This exercise gives another extension of Dirichlet's approximation theorem. Given 
m linear forms, 

i = 1,2, ... ,m, 

in n + m variables x 1, •.• , xn, y 1, ... , Ym• prove that for each integer N > 1 there 
exists integers x 1 , ... , xn, y 1, ... , Ym such that 

1 
I L; I < N for i = 1, 2, ... , m 
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7: Kronecker's theorem with applications 

and 0 <max{ lx 1 l, ... , lxnl} ::;; Nm1". Hint: Let Mj = ai 1x 1 + · · · + ajnXn and 
examine the points ({M tJ, ... , {Mm}) in the unit cube in m-space, where {MJ = 

Mi- [MJ. 

4. Let 8 be irrational, 0 < 8 < I. Then () lies between two consecutive Farey fractions, 
say 

{]_ < () < :. 
b d 

(a) Prove that either 0 - ajb < l/(2b 2 ) or cjd - () < l/(2d2 ). 

(b) Deduce that there exist infinitely many fractions hjk with (h, k) = I and k > 0 
such that 

l e-~i<-1. k 2k 2 

5. Let rx = (I + j5)j2. This exercise shows that the inequality 

(20) 

has only a finite number of solutions in integers hand k with k > 0 ifO < c < !jj5. 

(a) Let # = rx - j5 so that rx and f3 are roots of the equation x 2 - x - I = 0. 
Show that for any integers hand k with k > 0 we have 

and deduce that 

(b) If(20) has infinitely many solutions hjk with k > 0, say hdk 1 , h2 jk., ... , show that 

k"--> x; as n--> oc and use part (a) to prove that c ;::: ljj5. 

6. In Lemma 2, define 

L = lim sup I F(t) I instead of L = sup I F(t) 1. 
f--+ + OC' -oo<t<oo 

Prove that the equation L = n + I is equivalent to the following statement: For 
every e > 0 and every T > 0 there exists a real t > T and integers h 1, .•• , hn such that 
It();- h;- rx;l < e for every i = 1, 2, ... , n. 

7. Prove that the multiplier t in the first form of Kronecker's theorem can be taken 
positive and arbitrarily large. That is, under the hypotheses of Theorem 7.9, if T > 0 
is given there exists a real t > T satisfying the n inequalities It(); - h; - rx; I < e. 
Show also that the integer multiplier k in the second form of Kronecker's theorem 
can be taken positive and arbitrarily large. 
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General Dirichlet series and 
Bohr's equivalence theorem 

8.1 Introduction 

8 

This chapter treats a class of series, called general Dirichlet series, which 
includes both power series and ordinary Dirichlet series as special cases. 
Most of the chapter is devoted to a method developed by Harald Bohr [6] 
in 1919 for studying the set of values taken by Dirichlet series in a half-plane. 
Bohr introduced an equivalence relation among Dirichlet series and showed 
that equivalent Dirichlet series take the same set of values in certain half­
planes. The theory uses Kronecker's approximation theorem discussed in 
the previous chapter. At the end of the chapter applications are given to the 
Riemann zeta function and to Dirichlet L-functions. 

8.2 The half-plane of convergence of general 
Dirichlet series 

Definition. Let {A.(n)} be a strictly increasing sequence of real numbers such 
that A.(n) ~ + oo as n ~ oo. A series of the form 

C() 

L a(n)e-•.l.(n) 
n= 1 

is called a general Dirichlet series. The numbers A.(n) are called the 
exponents of the series, and the numbers a(n) are called its coefficients. 

As usual, we write s = a + it where a and t are real. 

Note. When A.(n) =log n then e-s.l.<n> = n-• and we obtain the ordinary 
Dirichlet series Ia(n)n-•. When A.(n) = n the series becomes a power series 
in x, where x = e-•. 
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8: General Dirichlet series and Bohr's equivalence theorem 

A general Dirichlet series is analogous to the Laplace transform of a 
function, J0 f(t)e-•t dt. As a matter of fact, both Dirichlet series and Laplace 
transforms are special cases of the Laplace-Stieltjes transform, J0e-•t drx(t). 
When rx(t) has a continuous derivative rx'(t) = f(t) this gives the Laplace 
transform off When rx is a step function with jump a(n) at the point A.(n) 
the integral becomes the general Dirichlet series L a(n)e-•.<<n>. Much of 
what we do here can be extended to Laplace-Stieltjes transforms, but we 
shall not deal with these generalizations. 

As is the case with ordinary Dirichlet series, each general Dirichlet 
series has associated with it an abscissa uc of convergence and an abscissa 
ua of absolute convergence. We could argue as in Chapter 11 of [4] to 
prove the existence of uc and ua. Instead we give a different method of proof 
which also expresses uc and ua in terms of the exponents A.(n) and the 
coefficients a(n). 

Theorem 8.1. Assume that the series L a(n)e-•.l.<n> converges for some s with 
positive real part, say for s = s0 with u0 > 0. Let 

L _ 1. logiLk=l a(k)l 
- tm sup ,( ) . 

n-+oo An 

Then L ~ u 0 . Moreover, the series converges in the half-plane u > L, and 
the convergence is uniform on every compact subset of the half-plane 
u > L. 

PROOF. First we prove that L ~ u 0 . Let A(n) denote the partial sums of the 
coefficients, 

n 

A(n) = L a(k). 
k= 1 

Note that A.(n) > 0 for all sufficiently large n. If we prove that for every 
e > 0 we have 

(1) logiA(n)l < (u0 + e)A.(n) 

for all sufficiently large n, then it follows that 

logiA(n)l 
A.(n) < u0 + e 

for these n, soL ~ u0 + e, hence L ~ u0 • Now relation (1) is equivalent to the 
inequality 

(2) IA(n)l < e<ao+t).l.(n). 

To prove (2) we introduce the partial sums 

n 

S(n) = L a(k)e-•o.l.(kl. 
k=l 
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8.2: The half-plane of convergence of general Dirichlet series 

The S(n) are bounded since the series Lk'= 1 a(k)e-•o.l.(k) converges. Suppose 
that I S(n) I < M for all n. To express A(n) in terms of the S(n) we use partial 
summation: 

n n 
A(n) = L a(k) = L a(k)e-•o.l.(k>e•o.l.(k) 

k=1 k=1 
n 

= L {S(k) - S(k - 1)}e•o.l.(kl, 
k= 1 

provided S(O) = 0. Thus 

n n-1 
A(n) = L S(k)e•o.l.(k) - L S(k)e•o.l.(k+ 1> 

k=1 k=1 
n-1 

= L S(k){e•o.l.(k) - e•o.l.(k+ 1)} + S(n)e•o.l.<n>. 
k= 1 

Hence 

n-1 
IA(n)l < M L le•o.l.(k) - e•o.l.(k+ 1)1 + Meao.l.(n). 

k= 1 

But 

n-1 n-1, f.l.(k+ 1) I n-1 f.l.(k+ 1) 
L I e•o.l.(k) - e•o.l.(k+ 1) I = L So e•ou du :::;; I So I L eaou du 

k= 1 k= 1 .l.(k) k= 1 .l.(k) 

= I so I f.l.<n>eaou du = ~ (eao.l.<n> _ eao.l.<1>) < ~ eao.l.<n> . 
.l.(1) Uo Uo 

Thus 

Now A.(n) -+ oo as n -+ oo so 

e£A<n> > M( 1 + 1;: 1) 

if n is sufficiently large. Hence for these n we have IA(n)l < e<ao+•>.l.<n>, which 
proves (2) and hence (1). This proves that L:::;; u0 • 

Now we prove that the series converges for all s with u > L. Consider 
any section of the series L a(n)e-•.l.<n>, say L~=a· We shall use the Cauchy 
convergence criterion to show that this section can be made small when 
a and bare sufficiently large. We estimate the size of such a section by using 
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8: General Dirichlet series and Bohr's equivalence theorem 

partial summation to compare it to the partial sums A(n) = L~= 1 a(k). We 
have 

b b 

L a(n)e-s..\(n) = L {A(n) - A(n - l)}e-s..l(n) 
n=a n=a 

b 

= L A(n){e-s).(n)- e-s..l(n+1)} + A(b)e-s,\(b+1) 
n=a 

- A(a- l)e-s..l(a). 

This relation holds for any choice of s, a and b. Now supposes is any complex 
number with (J > L. Lett: = t((J - L). Then t: > 0 and (J = L + 2s. By the 
definition of L, for this t: there is an integer N(s) such that for all n ~ N(s) 
we have 

logiA(n)l 
A.(n) < L + t:. 

We can also assume that A.(n) > 0 for n ~ N(s). Hence 

IA(n)l < e<L+e)..l(n) for all n ~ N(t:). 

If we choose b ~ a > N(t:) we get the estimate 

The last two terms are e-e..l(b+ 1> + e-e..l(a) since L + t:- (J = -t:. Now we 
estimate the sum by writing 

I f
,\(n+ 1) I f,\(n+ 1) 

le-s,\(n)- e-s,\(n+1)1 = -S e-SU du ::;; lsi e-GU du 
..l(n) ,\(n) 

so 

b b f,\(n+ 1) L e<L+e)..\(n)le-s,\(n)- e-s,\(n+1)1::;; lsi L e(L+e)..\(n) e-Gu du 
n=a n=a ..\(n) 

b f..\(n+ 1) b f,\(n+ 1) 

:S: lsi L e-"ue(L+e)u du = lsi L e-'" du 
n=a ,\(n) n=a ,\(n) 

f).(b+ 1) I I 
=lsi e-eu du = _!_ (e-e,\(a)- e-e..l(b+ 1>). 

,\(a) t; 

Thus we have 

It a(n)e-s..\(n)l:::;; ~ (e-e,\(a)- e-e,\(b+1)) + e-e..\(b+1) + e-e,\(a). 
n=a t; 
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Each term on the right tends to 0 as a-+ oo, so the Cauchy criterion shows 
that the series converges for all s with u > L. This completes the proof. 
Note also that this proves uniform convergence on any compact subset of 
the half-plane u > L. D 

Theorem 8.2. Assume the series l:a(n)e-•.l.<n> convergesfor somes with u > 0 
but diverges for all s with u < 0. Then the number 

L _ 1. logiL~=l a(k)l 
- 1m sup ,( ) 

n-+oo An 

is the abscissa of convergence of the series. In other words, the series 
converges for all s with u > L and diverges for all s with u < L. 

PROOF. We know from Theorem 8.1 that the series converges for all s with 
u > L and that L cannot be negative. Let S be the set of all u > 0 such that 
the series converges for some s with real part u. The set S is nonempty and 
bounded below. Let uc be the greatest lower bound of S. Then uc > 0, Each 
u inS satisfies L ~ u hence L ~ uc. If we had uc > L there would beau in 
the interval L < u < uc. For this u we would also have convergence for all 
s with real part u (by Theorem 8.1) contradicting the definition of uc. Hence 
uc = L. But the definition of uc shows that the series diverges for all s with 
0 ~ u < L. By hypothesis it also diverges for all s with u < 0. Hence it 
diverges for all s with u < L. This completes the proof. D 

As a corollary we have: 

Theorem 8.3. Assume the series L a(n)e-•.l.<n> converges absolutely for somes 
with u > 0 but diverges for all s with u < 0. Then the number 

_ 1. logL~= 1 Ia(k)l 
U0 - 1m sup ,( ) 

n--+oo Jl. n 

is the abscissa of absolute convergence of the series. 

PROOF. Let A be the abscissa of convergence of the series L ia(n)ie-•.l.<n>. 
Then, by Theorem 8.2, 

_ 1. log Lk=l la(k)l 
A - 1m sup ,( ) . 

n ....... oo Jl. n 

We wish to prove that L ia(n)ie-a.l.(n) converges if u >A and diverges if 
u < A. Clearly if u > A then the point s = u is within the half-plane of 
convergence ofl: la(n)le-s.l.(nl soL ia(n)ie-a.l.(nl converges. 

Now suppose L ia(n)ie-a.l.(nl converges for some u < A. Then the series 
L ia(n)i e-•.l.<n> converges absolutely for each s with real part u so, in particular 
it converges for all these s, contradicting the fact that A is the abscissa of 
convergence ofl: la(n)le-s.l.(n). D 
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8: General Dirichlet series and Bohr's equivalence theorem 

8.3 Bases for the sequence of exponents of a 
Dirichlet series 

The rest of this chapter is devoted to a detailed study of Harald Bohr's 
theory with applications to the Riemann zeta-function and Dirichlet's 
L-series. The first notion we need is that of a basis for the sequence of 
exponents of a Dirichlet series. 

Definition. Let A = {).(n)} be an infinite sequence of distinct real numbers. By 
a basis of the set A we shall mean a finite or countably infinite sequence 
B = {/i(n)} of real numbers satisfying the following three conditions: 

(a) The sequence B is linearly independent over the rationals. That is, 
for all m ~ 1, if 

with rational multipliers rk, then each rk = 0. 
(b) Each A.(n) is expressible as a finite linear combination of terms of B, 

say 
q(n) 

A.(n) = L rn,k/J(k) 
k= 1 

where the r n, k are rational and the number of summands q(n) depends 
on n. (By condition (a), if A.(n) ¥- 0 this representation is unique.) 

(c) Each /J(n) is expressible as a finite linear combination of terms of A, 
say 

m(n) 

fJ(n) = L tn,kA.(k) 
k= 1 

where the tn,k are rational and m(n) depends on n. 

EXAMPLE I. Let A be the set of all rational numbers. Then B = { 1} is a basis. 

EXAMPLE 2. Let A = {log n}. Then B = {log Pn} is a basis, where Pn is the 
nth prime. It is easy to verify properties (a), (b) and (c). For independence 
we note that 

q 

L rk 1ogpk = 0 implies r 1 = · · · = rq = 0. 
k=1 

To express each A.(n) in terms of the basis elements we factor nand compute 
log n as a linear combination of the logarithms of its prime factors. Property 
(c) is trivially satisfied since B is a subsequence of A. 
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8.4: Bohr matrices 

Theorem 8.4. Every sequence A has a subsequence which is a basis for A. 

PROOF. Construct a basis as follows. For the first basis element take A.(n 1), 

the first nonzero A. (either A.(1) or A.(2)), and call this /3(1). Now delete the 
remaining elements of A that are rational multiples of /3(1). If this exhausts 
all of A take B = {/3(1)}. If not, let A.(n2 ) denote the first remaining A., take 
{3(2) = A.(n 2 ), and strike out the remaining elements of A which are rational 
linear combinations of /3(1) and /3(2). Continue in this fashion to obtain a 
sequence B = (/3(1), /3(2), ... ) = (A.(nd, A.(n 2 ), ••• ). It is easy to verify that B 
is a basis for A. Property (a) holds by construction, since each f3 was chosen 
to be independent of the earlier elements. To verify (b) we note that every A. is 
either an element of B or a rational linear combination of a finite number of 
elements of B. Finally, (c) holds trivially since B is a subsequence of A. D 

Note. Every sequence A has infinitely many bases. 

8.4 Bohr matrices 

It is convenient to express these concepts in matrix notation. We display the 
sequences A and Bas column matrices, using an infinite column matrix for A 
and a finite or infinite column matrix for B, according as B is a finite or 
infinite sequence. 

We also consider finite or infinite square matrices R = (rii) with rational 
entries. If R is infinite we require that all but a finite number of entries in each 
row be zero. Such rational square matrices will be called Bohr matrices. 

We define matrix addition and multiplication of two infinite Bohr 
matrices as for finite matrices. Note that a sum or product of two Bohr 
matrices is another Bohr matrix. Also, the product RB of a Bohr matrix R 
with an infinite column matrix B is another infinite column matrix r. 
Moreover, we have the associative property (R 1R 2 )B = R 1(R 2 B) if R 1 

and R 2 are Bohr matrices and B is an infinite column matrix. 
In matrix notation, the definition of basis takes the following form. B is 

called a basis for A if it satisfies the following three conditions: 

(a) If RB = 0 for some Bohr matrix R, then R = 0. 
(b) There exists a Bohr matrix R such that A= RB. 
(c) There exists a Bohr matrix T such that B = T A. 

The relation between two bases B and r of the same sequence A can be 
expressed as follows: 

Theorem 8.5. If A has two bases B and r, then there exists a Bohr matrix 
A such that r = AB. 

PROOF. There exist Bohr matrices Rand T such that r = TA and A= RB. 
Hence r = T(RB) = (TR)B = AB where A= TR. D 
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8: General Dirichlet series and Bohr's equivalence theorem 

Theorem 8.6. Let B and r be two bases for A, and write r = AB, A = R 8 B, 
A= Rrr, where A, R 8 , Rr arq Bohr matrices. Then R 8 = RrA. 

Note. If we write A/B for R 8 , Ajr for Rr and r;B for A, this last equation 
states that 

PROOF. We have A= R 8 B and A= Rrr = RrAB. Hence R 8 B = RrAB, 
so (R 8 - RrA)B = 0. Since R 8 - RrA is a Bohr matrix and B is a basis, we 
must have R 8 - RrA = 0. 0 

8.5 The Bohr function associated with a 
Dirichlet series 

To every Dirichlet series f(s) = L:'= 1 a(n)e-•.l.(n) we associate a function 
F(z1, z 2 , ••• ) of countably many complex variables z1, z2 , ••• as follows. 
Let Z denote the column matrix with entries z1, z 2 , •••• Let B = {/J(n)} 
be a basis for the sequence A = {A.(n)} of exponents, and write A = RB, 
where R is a Bohr matrix. 

Definition. The Bohr function F(Z) = F(z 1, z2 , ••• ) associated with f(s), 
relative to the basis B, is the series 

00 

F(Z) = L a(n)e-<RZln, 
n=l 

where (RZ)n denotes the nth entry of the column matrix RZ. 

In other words, if 
q(n) 

A.(n) = L rn,kfl(k) 
k=l 

then 
00 

F(zl, Zz' .. . ) = L a(n)e-(rn,l:l +···+rn,q(n):q(n)l. 

n=l 

Note that the formal substitution Zm = sPm gives Z = sB, RZ = sRB = 
sA, so (RZ)n = sA.(n) and hence 

00 

F(sB) = L a(n)e-s.l.(n) = f(s). 
n=l 

In other words, the Dirichlet series f(s) arises from F(Z) by a special choice 
of the variables zb z 2 , •••• Therefore, if the Dirichlet series f(s) converges 
for s = a + it the associated Bohr series F(Z) also converges when Z = sB. 
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8.5: The Bohr function associated with a Dirichlet series 

Moreover, if the Dirichlet series f(s) converges absolutely for s = a + it 
then the Bohr series F(Z) converges absolutely for any choice of z1, z2 , ••• 

with Re Zn = af3(n) for all n. To see this we note that if Re zn = af3(n) then 
Re Z = aB so 

00 00 00 

L ia(n)e-<RZ)"I = L ia(n)ie-a(RB)" = L ia(n)le-aA(n). 
n;1 n; 1 n;1 

To emphasize the dependence of the Bohr function on the basis B we 
sometimes write A = R 8 B and 

00 

F B(Z) = L a(n)e-(RBZ>". 
n;l 

Bohr functions F 8 and F r corresponding to different bases are related by 
the following theorem. 

Theorem 8.7. Let B and r be two bases for A and write r = AB for some 
Bohr matrix A. Then 

F 8 (Z) = F r(AZ). 

PROOF. By Theorem 8.6 we have 

A= R8 B = Rrr, where R8 = RrA. 

Hence 

00 00 

F8(Z) = L a(n)e-<RBZ)., = L a(n)exp{ -(RrAZ)n} = Fr(AZ). D 
n;1 n;1 

Definition. Assume the Dirichlet series f(s) = L:;;o; 1 a(n)e- sA(n) converges 
absolutely for somes = a + it. We define U 1(a; B) to be the set of values 
taken on by the associated Bohr function, relative to the basis B, when 
Re Z = aB. Thus, 

U1(a;B) = {F(Z):ReZ = aB}. 

The next theorem shows that this set is independent of the basis B. 

Theorem 8.8. ~f B and r are two bases for A then U 1( a; B) = U i a; r). 

PROOF. Choose any value F 8(Z) in U 1(a; B), so that Re Z = a B. By Theorem 
8.7 we have F8(Z) = Fr(AZ), where r = AB. But 

ReAZ =ARe Z = AaB = aAB = ar 
so F 8(Z) E U 1(a; r). This proves U 1(a; B) ~ U 1(a; r), and a similar argument 
gives U 1(a; r) ~ U 1(a; B). D 
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8: General Dirichlet series and Bohr's equivalence theorem 

Note. Since U 1(a; B) is independent of the basis B we designate the set 
U 1(a; B) simply by U 1(a). 

8.6 The set of values taken by a Dirichlet 
seriesf(s) on a line u = u0 

This section relates the set U i a 0 ) with the set of values taken by the Dirichlet 
series f(s) on the line t1 = t10 • 

Definition. If the Dirichlet series f(s) = L:'= 1 a(n)e-•J.<n> converges absolutely 
for t1 = t10 we let 

V1(a0 ) = {f(a0 + it): - oo < t < + oo} 

denote the set of values taken by f(s) on the line t1 = a0 . 

Since f(s) can be obtained from its Bohr function F(Z) by putting Z = aB, 
it follows that V1(a0 ) £ U ia0 ). Now we prove an inclusion relation in the 
other direction. r 

Theorem 8.9. Assume a0 > 0'0 , where 0'0 is the abscissa of absolute convergence 
of a Dirichlet series f(s). Then the closure of V1(a0 ) contains U 1(a0 ). That 
is, we have 

V1(a0 ) £ U 1(a0 ) £ V1(a0 ), and hence U ft1 0 ) = Via0 ). 

PROOF. The closure V1(a0 ) is the set of adherent points of V1(a0 ). We are 
to prove that every point u in U ia0 ) is an adherent point of V1(a0 ). In 
other words, given u in U ia0 ) and given e > 0 we will prove that there exists 
a v in V1(a0 ) such that lu- vi <e. Since v = f(a0 +it) for some t, we are 
to prove that there exists a real t such that 

lf(ao +it)- ul <e. 

Since u E U ia0 ) we have u = F(z1, z2 , ••• ) where Zn = a0 f3(n) + iYn· Hence 

Z = a0 B + iY, RZ = a0 RB + iRY = a 0 A + iRY, 

so 

say. Therefore 
00 

u = I a(n)e-aoJ.<n>e-i~~". 
n= 1 

On the other hand, we have 
00 

f(ao +it)= L a(n)e-aoJ.(n)e-itJ.(nl, 
n= 1 
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8.6: The set of values taken by a Dirichlet series f(s) on a line u = u0 

hence 

00 

f(ao +it)- u =I a(n)e-ao.l.<n>(e-it.l.<n>- e-itJ"). 
n= 1 

The idea of the proof from here on is as follows: First we split the sum into 
two parts, I:= 1 + I:'= N + 1. We choose N so the second part I:'= N + 1 is 
small, say its absolute value is <!e. This is possible by absolute convergence. 
Then we show that the first part can be made small by choosing t properly. 
The idea is to choose t to make every exponential e- it.l.(n) very close to e- itJn 
simultaneously for every n = I, 2, ... , N. Then each factor e-ir.<<nl - e-il'n 
will be small, and since there are only N terms, the whole sum will be small. 

Now we discuss the details. For the given e, choose N so that 

I f a(n)e-ao.l.(n)(e-it.l.(n)- e-il'n)l < ~-
n=N+ 1 2 

Then we have 

lf(ao +it)- ul <I I a(n)e-ao.l.(nl(e-ir.l.(nl- e-i~'")l + ~. 
n= 1 2 

This holds for any choice oft. We wish to choose t to make the first sum 
<!e. Since I eir.l.(n> I = 1 we can rewrite the sum in question as follows: 

lnt1a(n)e-ao.l.(n)(e-it.l.(n)- e-ifJn)l = lnt1e-it.l.(n)a(n)e-ao.l.(n)(1- ei(t.l.h)-!Jnl)l 

N 
~ I la(n)le-ao.l.(n)lei(t.l.(n)-fJn)- 11. 

n= 1 

Let M = 1 + I:= 1 la(n)le-ao.l.<n>. For the given e there is a[)> 0 such 
that 

(3) leix- 11 < 2~ iflxl < J. 

Suppose we could choose a real t and integers k1 , ... , kN such that 

(4) tA.(n) - J.-ln = 2nkn + Xn 

where I xn I < J for n = 1, 2, ... , N. Then for this t we would have 

By (3), this would give us 

lei(t.l.(n)-tJnl- 11 < _e_ 
2M' 
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8: General Dirichlet series and Bohr's equivalence theorem 

and hence 
N . B N B I la(n)le-o-o.l.(n)le'(t.l.(n)-l'n)- 11 <- I la(n)le-o-o.l.(n) < -. 

n= 1 2M n= 1 2 

Thus, the proof will be complete if we can find t and integers kb ... , kN to 
satisfy (4). If the A.(n) were linearly independent over the integers we could 
apply Kronecker's theorem to A.(l), ... A.(N) and obtain (4). However the 
A.(n) are not necessarily independent so instead we apply Kronecker's 
theorem to the following system: 

where 

f) = {J(n) 
n 2nD' 

Yn 
an= 2nD' 

The {J(n) are the elements of the basis B used to define F(Z), and the Yn are 
the imaginary parts of the numbers zn which determine u. The integers Q and 
Dare determined as follows. We express A in terms of B by writing 

A.(n) = rn,1fJ(l) + · · · + rn,q(n)fJ(q(n)). 

Then Q is the largest of the integers q(l), ... , q(N), and Dis the least common 
multiple of the denominators of the rational numbers r;, j that arise from the 
A.(n) appearing in the sum. There are at most q(l) + · · · + q(N) such numbers 
r;, j· The numbers f)n are linearly independent over the integers because B 
is a basis. 

By Kronecker's theorem a real t and integers hb ... , hQ exist such that 

b 
itfJk- ak- hki < 2nDA' 

where 
N q(n) 

A= I L lrn,jl· 
n= 1 j= 1 

For this t we have 12nDtfJk- 2nDak- 2nDhki < b/A, or 

b 
it{J(k)- Yk- 2nDhki <A. 

Therefore t{J(k)- Yk = 2nDhk + bk> where lbkl < b/A. Now we can write 

q(n) q(n) 

tA.(n)- lln = t L rn,jfJU)- I rn,jYj 
j= 1 j= 1 

q(n) q(n) 

= L rn,j(t{J(j)- Yj) =I rn.PnDhj +b) 
j= 1 j= 1 

q(n) q(n) 

= 2n I hjDrn,j +I bjrn,j 
j= 1 j= 1 
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8. 7: Equivalence of general Dirichlet series 

where k" is an integer and lxnl < (b/A) L1~l1 lrn) <b. But this means we 
have found a real t and integers k1, ••• , kN to satisfy (4), so the proof is 
complete. D 

8. 7 Equivalence of general Dirichlet series 

Consider two general Dirichlet series with the same sequence of exponents 
i\, say 

00 00 

L a(n)e-•.l.<nl and L b(n)e-s.l.(n). 
n=l n=l 

Let B = {f3(n)} be a basis fori\ and write i\ = RB, where R is a Bohr matrix. 

Definition. We say the two series are equivalent, relative to the basis B, and 
we write 

ac oo L a(n)e-s.l.(n) "' L b(n)e-s.l.(n) 
n=l n=l 

if there exists a finite or infinite sequence of real numbers Y = {yn} such 
that 

b(n) = a(n)eix" 

where X = {xn} = R Y. 

In other words, if we write 
q(n) 

A(n) = L rn,kf3(k), 
k=! 

equivalence means that for some sequence {yn} we have 

( 
q(n) ) 

b(n) = a(n) exp iJ/n,kYk · 

Theorem 8.10. Two equivalent Dirichlet series have the same abscissa of 
absolute convergence. Moreover, the relation "'just defned is independent 
of the basis B. 

PROOF. Equivalence implies lb(n)l = la(n)l so the series have the same 
abscissa of absolute convergence. 

Now let B and r be two bases for A, and assume that two series are equiv­
alent with respect to B. We will show that they are also equivalent with 
respect tor. 

Write i\ = RBB. Then there is a sequence Y = {yn} such that b(n) = 
a(n)eix", where X = {xn} = RB Y. Now write i\ = Rrr. If we show that for 
some sequence V = {vn} we have X = Rr V then the two series will be 
equivalent relative to r. The sequence 

V= AY 
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8: General Dirichlet series and Bohr's equivalence theorem 

has this property, where A is the Bohr matrix such that r = AB. In fact, 
we have Rr V = RrAY = RB Y =X, since RrA = RB. This completes the 
~~ D 

Theorem 8.11. The relation "' defined in the foregoing definition is an equiv­
alence relation. That is, it is reflective, symmetric, and transitive. 

PROOF. Every series is equivalent to itself since we may take each Yn = 0. 
The corresponding x" will then be zero. 

If b(n) = a(n)eix" then a(n) = b(n)e- ix". Since X = RB Y we have -X = 
RB(- Y) so the relation is symmetric. 

To prove transitivity we may use the same basis throughout and assume 
that b(n) = a(n)eix", where X = RB Y for some Y, and that a(n) = c(n)ei"", 
where U = RB V for some V. Then b(n) = c(n)ei<x"+un) where 

X+ u = RB y + RB v = RB(Y + V). 

This completes the proof. 

8.8 Equivalence of ordinary Dirichlet series 
Theorem 8.12. Two ordinary Dirichlet series 

I a(~) 
n= 1 n 

and I b(~) 
n= I n 

D 

are equivalent if, and only({, there exists a completely multiplicative function 
f such that 

(a) b(n) = a(n)f(n) for all n ;;::: 1, and 
(b) lf(p)l = 1 whenever a(n) # 0 and pis a prime divisor ofn. 

PROOF. For ordinary Dirichlet series the sequence of exponents A = {.A.(n)} 
is {log n} and for a basis we may use the sequence B = {log Pn}, where Pn 
denotes the nth prime. In fact, if we use the prime-power decomposition 

(5) 
00 

n = TI Pkan,k 

k=l 

where each exponent an. k ;;::: 0, we he ''e 
w 

log n = L an,k log Pk, 
k=l 

so the integer powers may be used as entries in the Bohr matrix RB for which 
A = RBB. In the sum and product only a finite number of the an,k are 
nonzero. 

We note that, because of the fundamental theorem of arithmetic, the 
numbers an,k defined by (5) have the property 

(6) 
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8.8: Equivalence of ordinary Dirichlet series 

Now let A(s) = L a(n)n-•, B(s) = L: b(n)n-•. Suppose that A(s)- B(s). 
Then there exists a real sequence {yd such that 

(7) b(n) = a(n) exp{iJ
1 
an,kYk} 

where the integers an, k are determined by equation (5). Define a function f 
by the equation 

f(n) = exp{i I an,kYk}· 
k=l 

Property (6) implies that f(mn) = f(m)f(n) for all m and n, so f is completely 
multiplicative. Equation (7) states that b(n) = a(n)f(n), and the definition of 
f shows that I f(n)l = 1 for all n, so conditions (a) and (b) of the theorem are 
satisfied. 

Now we prove the converse. Assume there exists a completely multi­
plicative function f satisfying conditions (a) and (b). We must show that 
there is a real sequence {h} satisfying (7) for all n. First we consider those n 
for which a(n) = 0. Property (a) implies b(n) = 0, so equation (7) holds for 
such n since both sides are zero no matter how we choose the real numbers 
Yk· We shall now construct the sequence {yk} so that equation (7) also holds 
for those n for which a(n) =I= 0. 

Assume, then, that n is such that a(n) =1= 0. We use the prime-power 
decomposition (5) and the completely multiplicative property off to write 

00 

(8) f(n) = n g(n, k), 
k=l 

where 

g(n, k) = {f(pk)an,k if Pk In . 
1 otherwtse. 

Condition (b) implies that I f(pk)l = 1 for each prime divisor Pk ofn. Therefore 
for such primes we may write 

where Yk = argf(pk). The real numbers Yk have been defined for those k such 
that the prime Pk divides some n with a(n) =I= 0. For the remaining k (if any) 
we define Yk = 0. Thus, Yk is well-defined for every integer k 2:: 1 and we 
have 

g(n, k) = exp(ian,kYk) 

for every k 2:: 1. Equation (8) now becomes 

f(n) = expL~1an,kYk}-
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8: General Dirichlet series and Bohr's equivalence theorem 

This, together with property (a), shows that (7) holds for those n for which 
a(n) # 0. Thus, (7) holds for all n so A(s) ~ B(s). This completes the proof of 
the theorem. D 

8.9 Equality of the sets Uj(<J0 ) and Ug(<J0 ) for 
equivalent Dirichlet series 

Theorem8.13. Let f(s) and g(s) be equivalent general Dirichlet series, each of 
which converges absolutely for a = a 0 . Then 

UAa0 ) = Ug(a 0 ). 

PROOF. Let B = {,B(n)} be a basis for the sequence A of exponents. If 
f(s) = L a(n)e-s-<(n) and g(s) = L b(n)e-s.<(n) then there is a real sequence 
{yk} such that 

b(n) = a(n) exp{ -ik~rn,kYk} 
The Bohr series off and g are given by 

F(z 1, z2, .. . ) = n~l a(n) exp{- k~rn, kzk} 

and 

G(z 1, z2, .. . ) = n~l b(n) exp{- k~r n, kzk} 

Expressing the b(n) in terms of the a(n) we find 

G(z1, z2, .. . ) = J
1 
a(n) exp{- J>n,k(zk + ih)} = F(z 1 + iy 1, z2 + iy2, .. . ). 

Since the real part of zn + iyn is the real part of zn, both series take the same 
set of values on the lines xn = a0 ,8(n). Hence U ia0 ) = U9(a0 ), as asserted. 

8.10 The set of values taken by a Dirichlet 
series in a neighborhood of the 
line <J = <J0 

D 

Definition. Let f(s) be a general Dirichlet series which converges absolutely 
for a > aa. Given b > 0 and a0 such that a0 - b > aa, we define the 
set W1(a0 ; b) as follows: 

W1(a0 ;b) = {f(s):a0 - b <a< a0 + b, -oo < t < +oo}. 
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8.10: The set of values taken by a Dirichlet series in a neighborhood of the line u = u 0 

That is, W1(a0 ; b) is the set of values taken by f(s) in the strip 

O'o - b < a < O'o + b. 

Also, if a 0 > a a we define 

Wf(ao) = n WAao; b). 
O<c5<ao-aa 

Thus, W1(a0 ) is the intersection of the sets of values taken by f(s) in all 
such strips. 

It is clear that V1(a0 ) s;;; W1(a0 ) since every value taken by f(s) on the line 
a = a0 is also taken in every strip containing this line. Of course, it may 
happen that V1(a0 ) = WAa0 ) or that V1(a0 ) # WAa0 ). 

In general, we have: 

Theorem 8.14. V1(a0 ) s;;; WAa0 ) s;;; VAa0 ), hence V1(a0 ) = W1(a0 ). 

PROOF. We remark that this proof is entirely function-theoretic and has 
nothing to do with the concept of a basis. 

We are to prove that every point in WAa0 ) is in the closure of VAa0 ). 

We will show that if wE WAa0 ) then w is an adherent point of V1(a0 ). In 
fact, we will prove that 

n-+ oo 

for some real sequence {tn}. 
Since wE W1(a0 ) this means that wE W1(a0 ; b) for all b > 0 such that 

b < a0 - aa. In particular, wE W1(a0 ; 1/n) for all n;;::: n0 for some n0 • 

This means that for n ;;::: n0 we have w = f(sn) where Sn = an + itn and 
a0 - (1/n) < an < a0 + (1/n). Using the numbers tn so determined, consider 
the difference 

W - f(ao + itn) = f(an + itn) - f(a0 + itn) 

where n ;;::: n0 . We shall express this difference in terms of the derivative 
f'(s). Now just as in the case of ordinary Dirichlet series, the function f(s) 
defined by 

00 

f(s) = L a(n)e-s.l.(n) 
n= 1 

is analytic within its half-plane of absolute convergence. In fact in the proof 
of Theorem 8.1 we showed that the series converges uniformly on every 
compact subset of the half-plane a > ac. Therefore the sum is analytic in 
the half-plane a > ac. Moreover, we can calculate the derivative f'(s) by 
term-by-term differentiation, so 

00 

f'(s) = - L a(n)A.(n)e-•.l.<n>. 
n=l 
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8: General Dirichlet series and Bohr's equivalence theorem 

Hence if u ~ u0 then sis the half-plane of absolute convergence and we get 
00 00 

lf'(s)l ~ L la(n)IIA.(n)le-a.l.(n) = L la(n)le-ao'.l.(nliA.(n)le-<a-ao').l.(n) 
n= 1 

where ua < u0 ' < u0 • Now IA.(n)le-<a-ao'l.l.(nl--+ 0 as n--+ oo so, in particular, 
this factor is less than 1 for large enough n. Hence 

00 

lf'(s)l ~ L la(n)le-ao'.l.(n) · K 
n= 1 

for some K, which shows that I f'(s) I is uniformly bounded in the region 
u ~ u0'. Let u0 ' = u0 - 1/n0 and let M be an upper bound for lf'(s)l in the 
region u ~ u0 '. Then 

lw- f(u0 + itn)l = lf(un + itn)- f(uo + itn)l =I f~"f'(u + itn) dul 

M 
~Miun-uol~-

n 

if n ~ n0 . Hence limn-oo f(u0 + itn) = w, so w is an adherent point of 
~(u0). This completes the proof. D 

8.11 Bohr's equivalence theorem 

We have just shown that W1(u0 ) ~ Vj(u0 ). The next theorem shows that this 
inclusion is actually equality. 

Theorem 8.15. We have 

The proof of Theorem 8.15 is lengthy and appears in Section 8.12. In 
this section we show how Theorem 8.15leads to Bohr's equivalence theorem. 

Theorem 8.16 (Bohr's equivalence theorem). Let f and g be equivalent 
Dirichlet series with abscissa of absolute convergence ua. Then in any 
open half plane u > c 1 ~ ua the functions f(s) and g(s) take the same set 
of values. 

PRooF. Let Sj(u1) be the set of values taken by f(s) in the half-plane u > u1. 

Then 

S1(u1)= U V1(u0 ). 

ao>at 

Now we prove that 

S1(u 1)= U W1(uo). 
ao>a1 
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First of all, we have Sf(ad ~ Uao>a, Wf(a 0 ) because VAa0 ) ~ Wf(a0 ). To 
get inclusion in the other direction, assume wE Uao>a, Wf(a0 ). Then 
w E Wj( a 0 ) for some a 0 > a 1 . Hence w E Wf( a 0 ; b) for all b satisfying 
0 < b < a0 - aa. In other words, f(s) takes the value w in every strip 
a0 - b <a< a0 + b ifO < b < a0 - aa. In particular, when b = a0 - ab 
we have a0 - b = a 1 so f(s) = w for somes with a> a 1. Hence wE SAa1). 

This proves that Uao > ""' Wf( a 0 ) ~ S f(a 1 ), so the two sets are equal. Therefore, 
we also have 

Sg(a d = U ~(a o). 
ao>a1 

To prove Bohr's theorem it suffices to prove that 

Wf(a 0 ) = ~(a0) 

whenever f and g are equivalent. But f ~ g implies 

Vf(a0 ) = Ug(a0 ). 

Hence Uf(a0 ) = Vg(a0 ). But, in view ofTheorem 8.9, this means 

Vf(a0 ) = Vq(a0 ). 

But Theorem 8.15 states that Vf(a0 ) = Wf(a0 ) and Yg(a0 ) = ~(a0) so Bohr's 
equivalence theorem is a consequence of Theorem 8.15. D 

8.12 Proof of Theorem 8.15 
To complete the proof of Bohr's equivalence theorem we need to prove 
Theorem 8.15, which means we must establish the inclusion relation. 

(9) 

The proof of (9) makes use of two important theorems of analysis which we 
state as lemmas: 

Lemma 1 (Helly selection principle). Let {em. n} be a double sequence of real 
numbers which is bounded, say 

1em.nl <A for all m, n. 

Then there exists a subsequence of integers n1 < n2 < · · · with n, ~ oo 
as r ~ oo, and a sequence {e"} of real numbers such that for every 
m = 1, 2, ... , we have 

lim em,nr = em. 
r-oo 

Nate. The important point is that one subsequence {nd works for every m. 
To show the true import of the Lemma, let us see what we can deduce in a 
trivial fashion. Display the double sequence as an infinite matrix. Consider 
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8: General Dirichlet series and Bohr's equivalence theorem 

the first row: { e I, n} :'= J• This is a bounded infinite sequence so it has an 
accumulation point, say e1 • Hence there is a subsequence {nr} such that 
limr-"' et,nr = e1• Similarly, for the second row there is an accumulation 
point e2 and a subsequence n: such that limn-oo ez.nr' = e2 , and so on. The 
subsequence {n,'} needed for e2 may be quite different from that needed for 
e1 • Helly's principle says that one subsequence works simultaneously for all 
rows. 

PROOF OF LEMMA 1. Let e 1 be an accumulation point of the first row and 
suppose the subsequence {n,< 1 >} has the property that 

lim el,nr(l) = el. 
r-oo 

In the second row, consider only those entries e2 ,nro>. This is a bounded 
sequence which has a convergent subsequence with limit e2 , say. Thus, 

lim e2, nr(2) = e2 
r-oo 

where {n,f2>} is a subsequence of {nr<l)}. Repeat the process indefinitely. At 
the mth step we have a subsequence {nr<m>} which is a subsequence of all 
earlier subsequences and a number em such that 

lim em,nr(m) = em. 

Now define a sequence {nr} by the diagonal process: 

That is, n1 is the first integer used in the first row, n2 the second integer used 
in the second row, etc. Look at the mth row and consider the sequence 
{em,n)· We assert that 

Since nr = n,<'>, after the mth term in this row we haver > m so every integer 
n,<r> occurs in the subsequence n,<m>, so from this point on {nr} is a sub­
sequence of {n,<m)} hence em,nr----+ em, as asserted. 0 

Lemma 2 (Rouche's theorem). Given two functions f(z) and g(z) analytic 
inside and on a closed circular contour C. Assume 

lg(z)l < lf(z)l on C. 

Then f(z) and f(z) + g(z) have the same number of zeros inside C. 

PROOF OF LEMMA 2. Let m=inf{lf(z)l-lg(z)l:zEC}. Then m>O 
because C is compact and the difference I f(z) I - lg(z) I is a continuous 
function on C. Hence for all real t in the interval 0 ::::;; t ::::;; 1 we have 

lf(z) + tg(z)l ~ lf(z)l- ltg(z)l ~ lf(z)l- lg(z)l ~ m > 0. 
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8.12: Proof of Theorem 8.15 

If 0 s; t s; 1 define a number <p(t) by the equation 

( ) 1 [ f'(z) + tg'(z) d 
IP t = 2ni Jc f(z) + tg(z) z. 

This number <p(t) is an integer, the number of zeros minus the number of 
poles of the function f(z) + tg(z) inside C. But there are no poles, so <p(t) is 
the number of zeros of f(z) + tg(z) inside C. But <p(t) is a continuous function 
oft on [0, 1]. Since it is an integer, it is constant: <p(O) = <p(1). But <p(O) is the 
number of zeros of f(z), and <p(l) is the number of zeros of f(z) + g(z). This 
proves Rouche's theorem. 0 

PROOF OF RELATION (9). Vj(u0 ) ~ Wj(u0 ). Assume v E V1(u0 ). Then either 
v E V1(u0 ) or vis an accumulation point of V1(u0 ).If v E Vj(u0 ) then v E W1(u0 ) 

since VJ<u0 ) ~ WJ<u0 ). Hence we can assume that vis an accumulation point 
of V1(u0 ), and v ¢= V1(u0 ). This means there is a sequence {t"} of real numbers 
such that 

n-+oo 

We wish to prove that v e W1( u 0 ). This means we must show that v e W1( u 0 ; !5) 
for every t5 satisfying 0 < t5 < u0 - ua. In other words, if 0 < t5 < u0 - ua 
we must find an s = u + it in the strip 

u0 - t5 < u < u0 + t5 

such that f(s) = v. Therefore we are to exhibit an s in this strip such that 

f(s) = lim f(uo + itn). 
n-+ oo 

Let us examine the numbers f(u 0 + itm) for the given sequence {tn}. We 
have 

00 

f(uo + itm) = I a(n)e- .. o.l.<n>. e-ir~.l.<n>. 
n= 1 

The products tmA.(n) form a double sequence. There exists a double sequence 
of real numbers en, m such that 

en,m = tmA.(n) + 2nkm,n• with 0 s; en,m < 2n, 

where km,n is an integer. If we replace tmA.(n) by en,m in the series we don't 
alter the terms, hence 

00 

f(uo + itm) = I a(n)e- .. o.l.<n>e-i9".~. 
n=l 

By Lemma 1, there is a subsequence of integers {n,} and a sequence of real 
numbers {Om} such that 

(10) lim em,n, = em. 
, ... 00 
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8: General Dirichlet series and Bohr's equivalence theorem 

Use this sequence {8m} to form a new Dirichlet series 

00 

g(s) = L b(n)e-s).(n) 
n= 1 

where 

b(n) = a(n)e- ;o". 

This has the same abscissa of absolute convergence as f(s). Now consider 
the following sequence of functions: 

J,.(s) = f(s + it"J 

where {n,} is the subsequence for which (10) holds. We assert that 

(a) J,.(s)--+ g(s) uniformly in the strip a0 - b < a < a0 + b, hence, m 
particular, in the circular disk Is - a 0 I < b. 

(b) g(a0) = v. 
(c) There is a d, 0 < d < b, and an R such that j~(s) - v and g(s) - v have 

the same number of zeros in the open disk Is - a 0 I < d. 

If we prove (b) and (c) then fR(s) - v has at least one zero in the disk because 
g(a 0 ) = v. But fR(s) = f(s + it"R) and s + it"R is in the strip if sis in the disk, 
so this proves the theorem. Now we prove (a), (b) and (c). 

Proof of (a). We have 

IJ,.(s)- g(s)l = IJ1a(n)e-s).(n)(e-iO"·"r- e-;o")l 

oc 

s L la(n)le-u).(n)le-;o"·"r- e-;o"l 
n=1 

N 

s L la(n)le-(<ro-<l)).(n)le-iOn.nr- e-iO"I 
n= 1 

oc 

+ 2 L la(n)le-<uo-a)).(n). 
n=N+ 1 

Now if s > 0 is given there is a number N = N(s) such that 

oo e 
2 L la(n)le-<uo-a)).(n) < -, 

n=N+1 2 

because the series L:'= 1 la(n)le-<uo-a)J.(n) converges. In the finite sum L~= 1 
we use the inequality 
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8.12: Proof of Theorem 8.15 

to write 

le-iBn.n,- e-i8"1 < 18 - (J I 
- n, nr n • 

But if M(c5) = 1 + L:."'= 1 la(n)le-<uo-bl-'<nl, there is an integer r 0 = r 0(t:) 
such that for every n = 1, 2, ... , N we have 

Therefore, if r ;:::: r0 we have 

. t: N t: t: t: 
IJ/s)- g(s)l::; -- L la(n)le-<"o-b).<(n) +- <- +- = t:. 

2M(b)n=1 2 2 2 

Since r0 depends only on t: and on c5 this shows that f,.(s) -> g(s) uniformly 
in the strip tr 0 - b < tr < tr 0 + c5 as r -> oo. This proves (a). 

Proof of (b). We use (a) to write 

g(tr0 ) = limj~(tr0 ) = limf(tr0 + itn) = v. 

Proof of (c). Assume first that g is not constant. Since g(tr0 ) = v there is a 
positive d < b such that g(s) =f. v on the circle 

C = {s: Is- tr0 1 = d}. 

Let M be the minimum value of lg(s)- vI on C. Then M > 0. Now chooseR 
so large that I fR(s) - g(s) I < M on C. This is possible by uniform convergence 
of the sequence {JR(s)}, since the circle C lies within the strip I tr - tr0 I < b. 
Then on C we have 

lfR(s)- g(s)l < M::; lg(s)- vi. 

If G(s) = fR(s) - g(s) and F(s) = g(s) - v we have I G(s) I < I F(s) I on C with 
F(s), G(s) analytic inside C. Therefore, by Rouche's theorem the functions 
F(s) + G(s) and F(s) have the same number of zeros inside C. But F(s) + G(s) 
= fR(s) - v, so fR(s) - v has the same number of zeros inside Cas g(s) - v. 
Now g(tr0 ) = v so g(s)- v has at least one zero inside C. Hence j~(s) - v 
has at least one zero inside C. As noted earlier, this completes the proof if g 
is not constant. 

To complete the proof we must consider the possibility that g(s) is constant 
in the half-plane of absolute convergence. Then g'(s) = 0 for all sin this half­
plane, which means 

00 

g'(s) = - L A.(n)b(n)e-s.<(n) = 0. 
n= 1 

But as in the case of ordinary Dirichlet series, if a general Dirichlet series 
has the value 0 for a sequence of values of s with real parts tending to + oo 
then all the coefficients must be zero. (See [ 4], Theorem 11.3.) Hence 
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8: General Dirichlet series and Bohr's equivalence theorem 

A.(n)b(n) = 0 for all n ~ 1. Therefore b(n) = 0 with at most one exception, 
say b(n1), in which case A.(n 1) = 0. Therefore, since a(n) = b(n)ei6", we must 
have a(n) = 0 with at most one exception, say a(n 1), and then A.(nd = 0. 
Hencetheseriesfor f(s)consistsofonlyoneterm,f(s) = a(n 1)e-•J.<n•> = a(n1), 
so f(s) itself is constant. But in this case the theorem holds trivially. D 

8.13 Examples of equivalent Dirichlet series. 
Applications of Bohr's theorem to 
L-series 

Theorem 8.17. Let k ~ 1 be a given integer, and let X be any Dirichlet character 
modulo k. Let L:'= 1 a(n)n-• be any Dirichlet series whose coefficients 
have the following property: 

a(n) # 0 implies (n, k) = 1. 
Then 

I a(7) __, I a(n)~(n). 
n= 1 n n= 1 n 

PROOF. Since these are ordinary Dirichlet series we may use.Theorem 8.12 
to establish the equivalence. In this case we take f(n) = x(n). Then f is 
completely multiplicative and condition (a) is satisfied. Now we show that 
condition (b) is satisfied. We need to show that I f(p) I = 1 if a(n) # 0 and 
pIn. But a(n) # 0 implies (n, k) = 1. Since pIn we must have (p, k) = 1 so 
I f (p) I = I X(P) I = 1 since X is a character. Therefore the two series are 
equivalent. D 

Theorem 8.18. For a given modulus k, let ·x1, ••• , X<PCkl denote the Dirichlet 
characters modulo k. Then in any half-plane of the form a > a 1 ~ 1 the 
set of values taken by the Dirichlet L-series L(s, Xi) is independent of i. 

PROOF. Applying the previous theorem with a(n) = X1(n) we have 

f X1~n) __, I X1(n);(n) 
n= 1 n n= 1 n 

for every character x modulo k. Here we use the fact that x1(n) # 0 implies 
(n, k) = 1. Thus each L-series L(s, x) is equivalent to the particular L-series 
L(s, x1). Therefore, by Bohr's theorem, L(s, x) takes the same set of values as 
L(s, x1) in any open half-plane within the half-plane of absolute convergence. 

8.14 Applications of Bohr's theorem to the 
Riemann zeta function 

D 

Our applications to the Riemann zeta function require the following identity 
involving Liouville's function A.(n) which is defined by the relations 

A.(l) = 1, A.(p1at,,, Prar) = ( -l)at+···+ar. 
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8.14: Applications of Bohr's theorem to the Riemann zeta function 

The function ).(n) is completely multiplicative and we have (see [4], p. 231) 

I ).(n) = ((2s) if (J > 1 
n=1 ns ((s) . 

Theorem 8.19. Let ).(n) denote Liouville's function and let 

C(x) = L A(n). 
n:S:x n 

Then if (J > 1 we have 

((2s) = (oc C(x) dx. 
(s- 1K(s) ) 1 xs 

PROOF. By Abel's identity (Theorem 4.2 in [4]) we have 

L A(n) ~ = C(x) + s fx ~(t) dt. 
n:S; X n nS XS 1 (s+ 1 

Keep (J > 0 aad let x -> oo. Then 

so we find 

C(x) = o(_l_ L ~) = o(log x) = o(1) as x _.. oo, 
X 8 x(f n:S:x n x<T 

~ ).(n) -
L. s+ 1 - S 

n= 1 n 
fx C(t) 

S+T dt, for (J > 0. 
1 t 

Replacing s by s - 1 we get 

"" A(n) J"' C(t) L -s = (s- 1) - 8 dt for (J > 1. 
n= 1 n 1 t 

Since the series on the left has sum ((2s)/((s) the proof is complete. 0 

Now we prove a remarkable theorem discovered by P. Tunin [50] in 
1948 which gives a surprising connection between the Riemann hypothesis 
and the partial sums of the Riemann zeta function in the half-plane (J > 1. 

Theorem 8.20. Let 

n 1 
("(s) = k~1 fs· 

If there exists an n0 such that (n(s) =I= 0 for all n 2': n0 and all (J > 1, then 
((s) =I= 0 for (J > l 

PROOF. First we note that the two Dirichlet series Lk= 1 k-s and LZ= 1 A(k)k -s 
are equivalent because ). is completely multiplicative and has absolute 
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value I. Therefore, by Bohr's theorem, Us) # 0 for u > I implies that 
Lk=l A(k)k-s # 0 for u > 1. But for s real we have 

lim I Ak(~) = A(1) = 1. 
s-+ook=l 

Hence for all real s > 1 we must have Lk=t A(k)k-s > 0. Letting s--+ 1+ 
we find 

~ A(k) > O 
L.. if n 2 n0 • 

k=l k -

In other words, the function 

(11) C(x) = L A(n) 
nsx n 

is nonnegative for x 2 n0 • Now we use the identity of Theorem 8.19, 

((2s) = roo C(x) dx 
(s- 1K(s) ) 1 x• ' 

valid for u > 1. Note that the denominator (s - 1)C(s) is nonzero on the 
real axis s > f, and ((2s) is finite for real s > t. Therefore, by the integral 
analog of Landau's theorem (see Theorem 11.13 in [ 4]) the function on the 
left is analytic everywhere in the half-plane u > f. This implies that ((s) # 0 
for u > t, and the proof is complete. 0 

Turan's theorem assumes that the sum C(x) in (11) is nonnegative for all 
x 2 n0 • In 1958, Haselgrove [14] proved, by an ingenious use of machine 
computation, that C(x) is negative for infinitely many values of x. Therefore, 
Theorem 8.20 cannot be used to prove the Riemann hypothesis. Subse­
quently, Tunin [51] sharpened his theorem by replacing the hypothesis 
C(x) 2 0 by a weaker inequality that cannot be disproved by machine 
computation. 

Theorem 8.21 (Tunin). Let C(x) = Lnsx A(n)/n. rr there exist constants 
~ > 0, c > 0 and n0 such that 

(12) 
log" x 

C(x) > -c--
Jx 

for all x 2 n0 , then the Riemann hypothesis is true. 

PROOF. If e > 0 is given there exists an n1 2 n0 such that clog" x ::;:; x• for 
all x 2 n1 so (12) implies 

C(x) > -x•-1/2. 
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Let A(x) = C(x) + x'- 112, where £ is fixed and 0 < £ < t. Then A(x) > 0 
for all x ~ n1 . Also, for a > 1 we have 

Joo A(x) d - foo C(x) d foo e- s-1/2 d 
--X- --X+ X X 

1 x• 1 x• 1 

((2s) 1 = f( ) 
(s - 1)((s) + s - ! - £ s' 

say. Arguing as in the proof of Theorem 8.20, we find that the function f(s) 
is analytic on the real line s > ! + £. By Landau's theorem it follows that 
f(s) is analytic in the half-plane a > ! + £. This implies that ((s) i= 0 for 
a > t + £, hence ((s) i= 0 for a > ! since £ can be arbitrarily small. D 

Note. Since each function (.(s) is a Dirichlet series which does not vanish 
identically there exists a half-plane a > 1 + a. in which (.(s) never vanishes. 
(See [4], Theorem 11.4.) The exact value of a. is not yet known. In his 1948 
paper [50] Tunl.n proved that, for all sufficiently large n, (.(s) i= 0 in the 
half-plane a > 1 + 2(log log n)/log n, hence a. s 2(log log n)jlog n for large 
n. In the other direction, H. L. Montgomery has shown that there exists a 
constant c > 0 such that for all sufficiently large n, (.(s) has a zero in the half­
plane a > 1 + c(log log n)jlog n, hence a. ~ c(log log n)/log n for large n. 

The number 1 + a. is also equal to the abscissa of convergence of the 
Dirichlet series for the reciprocal 1/(.(s). If a > 1 + a. we can write 

1 - f ji.(k) 
(.(s)- k=1 ks' 

where Jl.(k) is the Dirichlet inverse of the function u.(k) given by 

{ 1 if k s n, 
u.(k) = 0 if k > n. 

The usual Mobius function Jl(k) is the limiting case of f..l.(k) as n--+ oo. 

Exercises for Chapter 8 

1. If I a(n)e -sA(nl has abscissa of convergence ac < 0, prove that 

. logiL~n a(k)l 
ac = hm sup , . 

n~ oo A(n) 

2. Let ac and a a denote the abscissae of convergence and absolute convergence of a 
Dirichlet series. Prove that 

. logn 
0 :s; a a- ac :s; hm sup l(n) . 

n~oo 

This gives 0 :s; a a - ac :s; 1 for ordinary Dirichlet series. 
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3. If log n/A.(n)----> 0 as n----> oo prove that 

. logla(n)l 
(Ja = (Jc = hm sup A.( . 

n-oc n) 

What does this imply about the radius of convergence of a power series? 

4. Let {A(n)} be a sequence of complex numbers. Let A denote the set of all points 
s = (J + it for which the series I a(n)e-sl(nl converges absolutely. Prove that A 
is convex. 

Exercises 5, 6. and 7 refer to the seriesf(s) = I:= 1 a(n)e-•.l.<nl with exponents 
and coefficients given as follows 

n 1 2 3 4 5 

A(n) -1- log 2 -1 -log 2 -1 +log 2 0 

a(n) 1 1 1 1 1 
8 2 4 -8 2 

n 6 7 8 9 10 

A(n) 1 -log 2 log 2 1 log 3 1 +log 2 

a(n) 1 1 1 3 1 
8 -4 2 -4 -8 

Also, a(n + 10) = -i 2-n and A(n + 10) = (n + 1) log 3 for n 2:: 1. 

5. Prove that (J• = -(log 2)/log 3. 

6. Show that the Bohr function corresponding to the basis B = (I, log 2, log 3) is 

1 - 2e-z3 

F(z" z 2 , z 3 ) = cos(izd- ti sin(iz1 )(! + cos(izd) + , 2- e z, 
if x 3 > -log 2, z1, z2 arbitrary. 

7. Determine the set Uj(O). Hint: The points -1, 1 + i, I - i are significant. 

8. Assume the Dirichlet seriesf(s) =I:'= I a(n)e-si.<nl converges absolutely for (J > (Ja· 
If (J > (J a prove that 

lim _!_ JT e;.<,+itlj((J +it) dt = {a(n) if A.= A.(n) 
r- + r 2T - T 0 ifA o;id(l), A.(2), .... 

9. Assume the series f(s) = I:= 1 a(n)e-sl<nl converges absolutely for (J > (Ja > 0. Let 
v(n) = e1<•l. 

(a) Prove that the series g(s) = I:'= 1 a(n)e-sv(nl converges absolutely if (J > 0. 
(b) If (J > (J a prove that 

r(s)f(s) = f" g(t)ts-l dt. 
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Exercises for Chapter 8 

This extends the classic formula for the Riemann zeta function, 

. f"' t'- 1 
r(s)~(s) = -,-- dt. 

0 e - I 

Hint: First show that f(s)e-s"-(nl = fo e-tv(nlts- 1 dt. 
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Supplement to Chapter 3 

Alternate proof of Dedekind's functional equation 

This supplement gives an alternate proof of Dedekind's functional equation 
as stated in Theorem 3.4: 

Theorem. If A = (: !) E rand c > 0, then for every Tin H we have 

(1) (aT + b) TJ CT + d = e(A){- i(CT + d)} 112TJ(T), 

where 

(2) e(A) = exp{1Ti(a1;cd- s(d, c))} 
and s(d, c) is a Dedekind sum. 

The alternate proof was suggested by Basil Gordon and is based on the fact 
that the modular group r has the two generators Tr = T + 1 and Sr = 
-llr. In Theorem 2.1 we showed that every A in f can be expressed in 
the form 

A = T"1ST"2S · · · ST"r, 

where the n, are integers. But T = ST- 1 ST- 1 S, so every element of r also 
has the form ST"' 1S • • • ST"'k for some choice of integers m1 , ••• , mk. The 
idea of the proof is to show that if the functional equation (1) holds for a 

particular transformation A = (: !) in r with c > 0 and with e(A) as 

specified in (2), then it also holds for the products AT"' and AS for every 
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integer m. (See Lemma 3 below.) In Theorem 3.1 we proved that it holds 
for S. Therefore, because every element of f has the form STm 1S · · · STmk, 
it follows that the functional equation (1) holds for every A with c > 0. 

The argument is divided into three lemmas that show that the general 
functional equation is a consequence of the special case in Theorem 3.1 
together with three basic properties of Dedekind sums derived in Sections 
3. 7 and 3.8. The first two lemmas relate s(A) with s(ATm) and s(AS), where 
T and S are the generators of the modular group. 

Lemma I. If A = (; !) E f and c > 0, then for every integer m we 

have 

PROOF. We have AT'" = (a b)(1 m) (a am + b) so 
c dO 1 -c cm+d' 

s(ATm) = exp{ 7Ti( a + ~;:. + d - s(cm + d, c))}. 

But s(cm + d, c) = s(d, c) by Theorem 3.5(a), and hence, we obtain 
Lemma 1. 0 

Lemma 2. If A (; !) E f and c > 0, then we have 

{ 
e -?Ti14s(A) if d > 0, 

s(AS) = e"'/4e(A) if d < 0. 

PROOF. We have 

AS= (a b)(o -1) = (b -a). 
c d 1 0 d -c 

If d > 0, we represent the transformation AS by the matrix 

AS=(! -a), 
-c 

but if d < 0, then - d > 0 and we use the representation AS 

( -b a). 
-d c 

For d > 0, we have 

(3) e(AS) = exp{7Ti(b1~/- s(-c,d))} 

= exp{ 7Ti(b1~/ + s(c, d))} 
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Supplement to Chapter 3 

because s(- c, d) = - s(c, d) by Theorem 3.5(a). The reciprocity law for 
Dedekind sums implies 

c d 1 I 
s(c, d) + s(d, c) = 12d + 12c - 4 + 12cd" 

We replace the numerator in the last fraction by ad - be and rearrange 
terms to obtain 

b-e a+d 1 
12d + s(c, d) = 12C - s(d, c) - 4. 

Using this in (3), we find e(AS) = e-1Til4e(A). 

( -b 
If d < 0, we use the representation AS = -d ~) to obtain 

(4) 

In this case, - d > 0 and we use the reciprocity law in the form 

c d 1 ad-be 
s(c, -d) + s( -d, c) = -12d- 12c - 4- 12cd · 

Rearrange terms and use s( -d, c) = -s(d, c) to obtain 

-b + c a+ d 1 
_ 12d - s(c, -d)= 12C- s(d, c)+ 4. 

Using this in (4), we find that e(AS) 
of Lemma 2. 

e1T;14e(A). This completes the proof 
0 

Lemma 3. If Dedekind' s functional equation 

(5) 

is satisfied for some A = (; !) in r with c > 0 and e(A) given by (2), 

then it is also satisfied for ATm and for AS. That is, (5) implies 

(6) 

and 

(7) 71(AST) = e(AS){- i(dT - cW'2'1/(T) if d > 0, 

whereas 

(8) '1/(AST) = e(AS){- i(- dT + c)}112'1/(T) if d < 0. 
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PROOF. Replace T by T'"T in (5) to obtain 

'Y/(ATmT) = s(A){- i(cTmT + d)} 112'Y/(TmT) 
= e(A){- i(CT + me + d)} 112e1Timll 2'Y/(T). 

Using Lemma 2 we obtain (6). 
Now replace T by ST in (5) to get 

'Y/(AST) = e(A){- i(cST + d)} 112'Y/(ST). 

Using Theorem 3.1 we can write this as 

(9) 'Y/(AST) = t:(A){- i(cST + dW'2 {- iTf12'Y/(T). 

If d > 0, we write 

C dT- C 
eST+ d = -- + d = --· 

T T ' 

hence, 

-i(dT- c) 
-i(cST +d)= . e-1Ti12 , 

-IT 

and therefore, {- i(cST + d)} 112 {- iTr'2 = e -"'14{- i(dT - c)}112 • Using this 
in (9) together with Lemma 3, we obtain (7). 

If d < 0, we write 

C -dT + C 
eST + d = -- + d = ---

T -T 

so that in this case we have 

- i(- dT + c) 1Ti12 
-i(cST +d)= -iT e 

and therefore, {- i(cST + d)} 1' 2 {- iT} 112 = e1Ti14{- i(- dT + c)f'2 • Using 
this in (9) together with Lemma 3, we obtain (8). 0 

Remark on the root of unity s(A) 

Dedekind's functional equation (1), with an unspecified 24th root of unity 
s(A), follows immediately by extracting 24th roots in thp functional equation 
for d(T). Much of the effort in this theory is directed at showing that the 
root of unity s(A) has the form given in (2). It is of interest to note that a 
simple argument due to Dedekind gives the following theorem: 

Theorem. If (1) holds whenever A = (~ ~) E f and c ¥ 0, then 

s(A) = exp{ 1ri( a 1;c d- f(d, c))} 
for some rational number f(d, c) depending only on d and c. 
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PROOF. Let 

aT+ b 
AT=--­

CT + d 
and 

a'T + b' 
A'T = CT + d 

be two transformations in r having the same denominator CT + d. Then 

ad-bc=l and a'd - b'c = 1, 

so both pairs a, b and a', b' are solutions of the linear Diophantine equation 

xd - yc = 1. 

Consequently, there is an integer n such that 

a' = a + nc, b' = b + nd. 

Hence, 

A'T =(a+ nc)T + (b + nd) =aT+ b + n =AT+ n. 
CT+d CT+d 

Therefore, we have 

71(A'T) = 71(AT + n) = e1Tin11271(AT) = e1Tin112B(A){ -i(CT + d)f'271(T), 

because of (1). On the other hand, (1) also gives us 

71(A'T) = e(A'){ -i(CT + d)}11271(T). 

Comparing the two expressions for 71(A'T), we find e(A') 
n = (a' - a)lc, so 

(7Ti(a' - a)) 
e(A') = exp 12c e(A), 

or 

7TIQ I 7TlQ ( . ') ( . ) exp - 12c e(A) = exp - 12c e(A). 

e1Tin112e(A). But 

This shows that the product exp( -7~;)e(A) depends only on c and d. There­

fore, the same is true for the product 

( 7Ti(a +d)) 
exp IZc e(A). 

This complex number has absolute value I and can be written as 

( 7Ti(a +d)) 
exp - IZc e(A) = exp( -7Tif(d, c)) 
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for some real number f(d, c) depending only on c and d. Hence, 

Because e24 = 1, it follows that 12cf(d, c) is an integer, so f(d, c) 1s a 
rational number. D 
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