## 

$$
A=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$



$$
\begin{aligned}
\operatorname{det}(A-B) & =\operatorname{det}\left(A-A^{\prime}\right) \\
& =\operatorname{det} A\left(I-A^{\prime}\right) \\
& =\operatorname{det} A \cdot \operatorname{det}\left(I-A^{\top}\right) \\
& =\operatorname{det}\left(Y-A^{\prime}\right) \\
& =\operatorname{det}(I-A) \\
& =(-I)^{\prime} \operatorname{det}(A-I) .
\end{aligned}
$$

Deduce finally thet det $(A-1)=0$.


Burn, R. P.
گروْها، راهى به هندسه / ر. ب. با برن؛ ترجمه ابوالقاسم لاله. ـ تهران: شركت انتشارات علمى و فرهنگی، IrV9،
ISBN 964-445-250-X
 فهرستنويسى براساس اطلاعات فيبا.



Irva

كروهها، راهى به هندسه
نويسنده : ر. ب. برن

مترجم : ابوالقاسم لاله
آمادهسازى و چاپ : شركت انتشارات علمى و فرهنگى
حق چاب محفوظ است.


## شركت انتشارات علمى و فر هنگى

O اداره فروش و فروشكاه مركزى : خبابان افريفا، جهارراه حقانى (جهان كودك)، كو جئكمان،

 GY9AY\&V :

 تلفن: G. IfYAT_ $9 \cdot$ ITOTI


ريششکفتار

1
وتوابع 1 .......................................................

$r$
Y
توابع هوشا . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
تركيب توابع


V
توابع يك به يك
$\qquad$ توابع وارون بستار
v شركتيذيرى
كروه متقارن
خلاصئ مطالب . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11
جوابهاى نصل




$$
111
$$

جوابهاى نصل

هيئتها و فضاهاى بردارى
هضو هوئتها . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ifo خلاصهٔ مطالبlfsيادداشت تاريخىIfAجوابهاى نصل 11تبديلهاى خطى
laf خلاصهٔ مطالبlofيادداشت تاريخى100جوابهاى فصل


| 197 | همريختيها | 18 |
| :---: | :---: | :---: |
| 1911. | هسته يك هـريختى . . . . . . . . |  |
| 199 | گروههاى خارج |  |
| Yoo | هيئت |  |
| rol | دو گروه خارج تسمهای خاص |  |
| ror | خلاصه مطالب |  |
| ror | يادداشت تاريخى . . . . . |  |
| rop | جوابهاى نصل |  |
| $r \circ V$ | هزدوج بودن | IV |
| $r \circ \wedge$ | نقاط ثابت اعضاى مزدوج . . . . . . |  |
| YOq | ردههاى مزدوجى |  |
|  | زيرگروههاى نرمال و ردهههاى |  |
| Yl | حاصركارّضربهاى مستيم |  |
| YI | مركزسازها |  |
| YIr | زيركروههاهاى نرمالى |  |
| YIr. | زيرگروهاهاى |  |
| YIF |  |  |
| YIF. | خود ريختيها . . . . . |  |
| Yıs. | خلاصه مطالب . . |  |
| YiV | يادداشت تاريخى . . . . |  |
| rin. | جوابهاى نصل . . . IV |  |
| rro | كروههاى كسرى خطى | 11 |
|  | جايخشتهاى نضاهاى يك بُعىى . . . . . |  |
|  | همريختى |  |
| rra. | گروه خارج قستها |  |
|  | گروه خطى |  |

يازده

خاصوء مطالب ................................................. .
يادداشت تاريخى .
$\qquad$
rrq
جهارگانها و دورانها
rrq جمع ماتريسها
rfo $\qquad$ جبر جهارگانها
$\qquad$
$\qquad$
$\qquad$
Yfy $\qquad$ جوابهاى فصل 19
rpq
گروههاى مستوى
گروه انتقال . .
rfq $\qquad$
ro. $\qquad$ جند تبديل مستوى خاص
ros $\qquad$ گروههاى مستوى
rol $\qquad$ خطها در يك نضاى بردارى
ror $\qquad$ ناورداهاى گروههای مستوى
ror. $\qquad$ مرتبه گروههاى مستوى
ror $\qquad$ خلاصهُ مطالب
rof $\qquad$ يادداشت تاريخى
ros $\qquad$ جوابهاى نصل
roq گروههاى متعامد

ref $\qquad$ گروه متعامد
$\qquad$
res $\qquad$ زيرگروههاى متناهى


ris
كتابشناسى
riq
وازْنامه (فارسى ـ انگليسى)
rrq
وازهنامه (انگليسى - فارسى)

از دكتر آلن بيردون' به خاطر مشاركت در طرّ درس خار خاصى كه اين كتاب به عنوان مرجع


 باشد به عهدهٔ من است.

الج هالج هورتون كيمبريج جولاى 19AF
ر. ب. برن

1) Alan Beardon
2) Bob Hall
3) P. Neumann
4) B. L. Van der Waerden

## بيشگفتار

اين كتاب حاوى يكى درس معدماتى در نظريه گروهها با حفظ دتت مرسوم است. سه وجه تمايز در ارائه مطلب وجود دين دارد.


 به همراه دارد.




 بعية اصلها در مضمون بحثهاى آنها ـ گروههاى متناى ما روى گروههاى مجرد در نصل 9 شروع میى دنود.


1) E. Galois
2) Jordan
3) F. Klein
4) Lectures on the Icosahedron




 مى آورد.
معلومــات رياضــى كه براى اين درس لازم است دانستن رياضيات دبيرستانى استـ.













 در مطالعات بيشتر به وجود مى آرورد.
5) Pathway to Number Theory

طى ترن نوزدهم نظرية گروهها به بررسى جايگّتها و جايگزينها مىيردراخت. معمولاً





 رابطه با آن با مشكل رو به روست مى روتواند از نصل r بر شروع كند به شرطى كه نتايج سؤالهاى آخر نصل اول را بيذيرد.


 خودشان به عنوان اعضاى گروه در نظر گر ترفته نـى نشوند. مطالعةُ همزمان: نصل r كتاب گرين.'

نمودار
اعداد $=N$
=


$$
f=\{(1, a),(\curlyvee, a),(\Gamma, b),(\digamma, c),(\Delta, c)\}
$$

= اعداد $=N$
=L

$\begin{aligned} \vdash g & =a \\ r g & =a \\ r g & =a \\ \vdash g & =b \\ \Delta g & =b\end{aligned}$

$$
g=\{(1, a),(\curlyvee, a),(\digamma, a),(\digamma, b),(\Delta, b)\}
$$

位 $L=\{a, b, c\}$,
از N به L هستند.

$$
f: N \rightarrow L, \quad g: N \rightarrow L
$$

مثالى از $N \rightarrow L$ كه تابع نيست


مثالى از $N \rightarrow L$ كه تابع نيست


ا. با استفاده از نمودارهاى قبل و ضابطههاى آنها جملة زير را كامل كنيد. يك تابع $f: N \rightarrow L$ وتتى تعريف مىشود كه بهازاى هر عضو n $n$ از مجموعه . $\cdot$. .
Y. با استفاده از نمودارهاى قبل و ضابطههاى آنها جملةُ زير را كامل كنيد.
 ر را نمايش مىدهد. هر عضو $N \times L \times L$
 . . $n \rightarrow L$
r. r. كدام يك از ضابطههاى زير يك تابع از اعداد حقيقى

$$
x \mapsto x^{r} \text { (یی) }
$$

$$
x^{r} \mapsto x(د)
$$

$$
x \mapsto \frac{1}{x}(س)
$$

$$
x \mapsto \sin x(\geqslant)
$$

$$
\text { - } x \mapsto \tan x \text { (بنج) }
$$

$$
\text { F. اگر } A=\{\circ, 1 \text { جند تابع متفارت A } A \rightarrow A \text { وجود دارد؟ }
$$

## توابع يك به يك

ه. نمودارهاى توابع

$$
\begin{aligned}
x & \mapsto x^{r} \text { دو ( }
\end{aligned}
$$

$$
\begin{aligned}
& \text { آيا } \\
& \text { آيا }
\end{aligned}
$$

گروهها، راهى به هندسه
$\alpha: x \mapsto x^{r}$ اين تمايز ما را به مغهوم يك به يك بودن تعريف مىشود مى رساند. تابع

$$
\text { ¢. غرض كنيد } A=\{I, r, r, \digamma\}
$$

يك) نمودار يك تابع يك به يك
دو) نمودار يك تابع $A \rightarrow A$ ك $A$ كه يك به يك نيست را نمايش دهيد.
سه) جند تابع $A \rightarrow A$ وجود دارد؟
Y مرض كنيد N مجموعهُ اعداد طبيعى نوودار تابع يك است؟
^. دربارة سطرهاى نمودار يك تابع در صورتى كه بدانيم تابع يك به يك است چهـ مىتوانيم بگوييم؟

توابع يوشا
9. نمودارهاى توابع 9 ،

$$
\begin{gathered}
\text {, } \alpha: x \mapsto e^{x}(\text { دو } 1 \text { د } \beta: x \mapsto x+1
\end{gathered}
$$

آيا هميشه مىتوانيم يك عدد حقيقى x $x$ بيابيم كه بهازاى هر عدد حقيقى $y$ داشته باشيم

$$
؟ x \alpha=y
$$

آيا هميشه مىتوانيم يك عدد حقيقى x $x$ بيابيم كه به ازاى هر عدد حقيقى y داشته باشيم

$$
؟ x \beta=y
$$

 -1. فرض كنيد
دو) يك) يوشاستا نيست.

Il الـ جزئى از نمودار تابع N


را نمايش دهيد. آيا اين تابع يك بـ يك است؟ آيا اين تابع بوشاست؟

Y I . در بارة سطرهاى نمودار يك تابع يوشا جه مىتوان كفت؟ . $A=\{I, \Gamma, r,\lceil \}$ \} آيا مىتوانيد يك تابع $A \rightarrow A$ بسازيد كه يك به يك است اما با بوشا نيست؟ آيا مىتوانيد يك تابع $A \rightarrow A$ بسازيد كه بوشاست اما يك به يك يك نيست؟
 آيا مىتوانيد يك تابع N $\rightarrow$ Nبسازيد كه بوشا باشا
 يوشا باشد و هر تابع يوشاى $A \rightarrow A$ يك $A \rightarrow$ به يك باشد. حدس خري ^ 1 و
 و همدامنة آنها مجموعه متناهى يكسانى است كار مىكنيم در واقع توابع يك به يك، بير يوشا و دوسويى قابل تميز نيستند. צ1٪. مثالهايى از توابع يك) يك به يك و بوشا هستند (دوسوييها)،
 سه) يوشا هستند اما يك به يك يك نيستند، جها الن يك به يك هستند و و نه بوشا.
 مجموعه $A$ جه مى توان گفت؟

تركيب توابع ^1^. اگر

$$
\alpha: x \mapsto r x, \beta: x \mapsto x+1
$$

تعريف مىشوند آنگاه

$$
x \stackrel{\alpha}{\mapsto} r x \stackrel{\beta}{\mapsto} r x+1
$$

$$
\text { اين مغهوم را به صورت } 1 \text { ( } x \text { ) } \alpha \beta=(r x) \beta=r x+\text { مى }
$$

با استفاده از همين تعريف


 .


佔 $\alpha \beta$
 $\alpha \beta: A \rightarrow C$ 有 جه مىتوان گفت؟
 يك به يك است.
آيا مىتوانيد تابعى ماند
يك) $\beta \alpha$ تابع همانى $\beta$ تائى

( تحـت تابع هـانـى روى يــى مجمـوعـه هـر نقطه بـه خـود نگـاشته مـى شــود.)
توابع وارون

 تابع $\beta$ يك واون راست $\alpha$ نام دارد. بنابراين توابع يك به يك وارنهای رانی راست دارند.

هץ. جه شرط صورىيى \&ץ. اگر F غ نر $\alpha \beta: A \rightarrow C$
 بوناستا
يى) آيا مى توانيد تابعى ماند دو) آيا میتوانيد تابعى ماند آيا ماند باشد؟

 باشد.
تابع $\beta$ يك وارين حب $\alpha$ نام دارد. بنابراين توابع يوشا وارونهاى حب دارند.
 ديگر جايگشتهاى A بنويسيد. براى هر دوسويى يك وارين ارون جب بيابيد. براى هر دوسويى يك واريى درين راست بيابيد.
-「. به ازاى هر تابع دوسويى
 ثابت كنيد يا

اين گونه دوسوييها وارنهاى دوطرنه دارند.

## بستار


مىتوان گفت؟
شركتذپییى


استفاده از تعريف سؤال 19 نشان دهيد به ازاى هر نتطة $x$ از

$$
(x)[(\alpha \beta) \gamma]=(x)[\alpha(\beta \gamma)],
$$

 تضيـه (

دارد.
 $\alpha[\beta(\gamma \delta)]=[(\alpha \beta) \gamma] \delta$ ريم $\delta: D \rightarrow E, \gamma: C \rightarrow D ، \beta: B \rightarrow C$

گروه متقارن

زير را توجيه كنيد.

 سه) تابع






## خلاصهُ مطالب

تعريف سؤال

تعريف تابع $\alpha: A \rightarrow B$ يك به يك است اگر به ازای هر $\alpha$ ار سؤرال


 سؤال 19 تعريف مىشود.

تضؤلـ Fr تركيب دو تابع يك به يك تركيبذذير، تابعى يك به يك است.
تضوال تضيه $\quad$ تر تابع يك به يك وارنى راست دارد.
تضئ سؤال

تضؤل PA هر تالبع بوشا واونى جب دارد.


تضيه تركيب توابع شركتذير است. سؤال

مجموعن دوسوييهاى از يكى مجموعه به خودش تحت عمل تركيب يك گروه



گروهها، راهى به هندسه

## يادداشت تاريخى


 فرانسوى ترن بيستم، ن. بورباكى r، است.

[^0] يكتاى $n f=l$ و「. با دتيقأ يك عضو ( $\frac{1}{\hat{r}} \pi$ r. (يى) بله، (دو) نگارة يكتايى ندارد، (سه) 0 نگاره ندارد، (جهار) بله، (ينج
;گاره ندارد.
Fأ. جهار.
$$
x^{r}=y^{r} \Rightarrow x= \pm y \quad . x^{r}=y^{r} \Rightarrow x=y
$$
. 9

## ${ }^{\prime \prime}{ }^{*}(\mathrm{~m})$


(د)
(ي)

.V
^. ه. هر سطر حداكثر يك عضو دارد.




گروهها، راهى به هندسه

I I . بوشاست، اما يك به يك نيست. IY ا هر سطر حداقل يك عضو دارد.
.
.V بله در سؤال . IF
بله در سؤال II.
A . 10 بايد متناهى باشد. دراين حالت تعداد اعضا در نمودار برابر با تعداد سطرهاست. اين شرط كه هر سطر دست كم شامل يك عضو است هم ارز با اين شرط است كه هر سطر حداكثر شامل يك عضو است.

$$
\begin{aligned}
& \text { ، } x \mapsto x^{r}-x\left(\text { ) ، } x \rightarrow e^{x} \text { (ده) ، } x \mapsto x+1\right. \text {. } \\
& \text {. } x \mapsto \sin x \quad \text { (حها })
\end{aligned}
$$

A .IV
 از جبردانها ترجيح داده مىشود. آن مزيتهاى هندسى در جبر ماتريسها

. Yo


$$
\alpha x=\alpha y \Rightarrow x=y . Y \mid
$$

 يك به يک است. لذا $\alpha \beta$ يك به يك است.
r


$$
\text { ازای r, } a=1, r \text { تعريف مىكنيم } b \beta=1 \text {. } 1 \text {. } a \alpha) \beta=a=1
$$

 . $b \beta=a_{\} \in A$ تعريف مى ، $b \neq \alpha a ، a$
 צץ. به ازاى




 ( (Y, Y, ) ( ) (


 ا;إى عضو يكتايى مانند

$$
\text { . } a \alpha \beta=a \text { a } b \beta=a
$$


.rr

$$
x[(\alpha \beta) \gamma]=[x(\alpha \beta)] \gamma=[(x \alpha) \beta] \gamma=(x \alpha)(\beta \gamma)=x[\alpha(\beta \gamma)]
$$

rr.



سؤال •r.r.

## جايكشتهاى يك مجموعهُ متناهى

مطالعئ همزمان: بخشهاى

 نودار بيكانى
$\beta$

را میتوانيم با

با استفاده از اين نماد گذارى شش شض

(به ازای هر مجموعن A) يك دوسويى A $A \rightarrow A$ غالباً يك جايگشت $A$ نام داري ارد.

1) Fraleigh

گروهها، راهى به هندسه

 كنيم توصيفى هندسى از اعضاى يك انعكاس مثلث و جايگشت مىيابد. مشابههاى هندسى جايگشتهاى ديگر


نمادگذازى دورى

 كه با توصيفى ساده از




 (DIYYF)


F

گرجه اين نمادگذارى تنها نوع نسبتاً خاصى از جايگشت را توصيف مىكند اما مفهوم رسانايى و فشردگى آن در بيشتر جهارجوبهاى كلى مفيد هستند.

$$
\begin{aligned}
& \text { \& }
\end{aligned}
$$

 و به ازای هر عدد صحيح و مثبت مى موانيم ثابت كنيم مى موانيم ثابت كنيم
 استفاده از اين تعريفهاى اضانى به از ازاى هر عدد和 ( $\left.\alpha^{n}\right)^{m}=\alpha^{n m}, \alpha^{n+m}=\alpha^{n} . \alpha^{m}$ مىتوانيد ثابت كنيد A. اگر

$$
\begin{aligned}
& \backslash, \backslash \alpha, \backslash \alpha^{r}, \mid \alpha^{r}, \ldots \\
& r, r \alpha, r \alpha^{r}, r \alpha^{r}, \ldots \\
& r, r \alpha, r \alpha^{r}, r \alpha^{r}, \ldots \\
& \boldsymbol{\psi}, \boldsymbol{\psi} \alpha, \boldsymbol{\Psi} \alpha^{r}, \boldsymbol{\psi}^{\boldsymbol{r}}, \ldots \\
& \Delta, \Delta \alpha, \Delta \alpha^{r}, \Delta \alpha^{r}, \cdots
\end{aligned}
$$

را نمايش دهيد و

$$
\alpha=(\backslash a b)(r c)=(r d e)(\Delta f)=(r p)(\backslash q r)
$$

دو جايگثبت دورى (IYF) ( ) (Y0) مجزا نام دارند زيرا رتم مشتركى ندارند. 9. جايگشتهاى

گروهها، راهى به هندسه

$$
\left(\begin{array}{lllllll}
1 & r & r & f & 0 & \& & \gamma \\
\gamma & \& & 1 & r & r & f & \Delta
\end{array}\right)(\Delta) \quad\left(\begin{array}{lllll}
1 & r & r & f & \Delta \\
r & f & \Delta & 1 & r
\end{array}\right)(\Omega)
$$

(سه) ( مجزا بنويسيد.
-1. شش عضو دورى (I) غالباً از نمايش جايگشت $\alpha$ به صورت حاصلضربى از جايگشتهاى دورى حذن مىشود.

 حاصلضربهايى از جايگشتهاى دورى مجزا بنويسيد.



$$
\begin{aligned}
& \text { T } \\
& ؟(I Y)(\Gamma F)=(Y F)(I Y) \text { LT.IF }
\end{aligned}
$$

اگر به ازای هر $i$ يا هر

$$
\left(a_{\backslash} a_{r} \cdots a_{r}\right)\left(b_{\backslash} b_{r} \cdots b_{s}\right)=\left(b_{\backslash} b_{r} \cdots b_{s}\right)\left(a_{\backslash} a_{r} \cdots a_{r}\right)
$$

ويزگيى را كه در اينجا بهدست آورديم معولاً با اين عبارت توصيف مىشود كه جايگشتهاى دورى مجزا تعويض پذيرند.
يك جايگشت دورى ( جايگشتهاى دورى با طول جايگشتهاى دورى با طول
 ال. برای اثبات اين كه هر جايگشت در جايخشتهاى دورى مجزا نوشت يى جايگشت دلخواه سعى مىكنيم يكى از جايگشتهايى كه تشكيل دهنده $\alpha$ است را با توجه به دنبالئ

19 جايگشتهاى يكى مجموعةُ متناهى

$$
\backslash, \backslash \alpha, \backslash \alpha^{r}, \backslash \alpha^{r} \ldots
$$



 قبل دنباله و درواقع
 نتيجدگيرى كنيد اين دنباله دتيقاً m ر رتم دارد و اين m رقم دائماً در ترتيبى يكسان تكرار مىشوند. اين m رتم يكى از دورهاى جايگشتى $\alpha$ را تشكيل مىدهند.


צ1٪. تدم بعدى، اثبات اين مطلب است كه به ازاى هر



$$
\begin{aligned}
& a, a \alpha, a \alpha^{\curlyvee}, \cdots \\
& b, b \alpha, b \alpha^{r}, \ldots
\end{aligned}
$$

را در نظر بگيريد. نرض كنيد اين دنبالهها مجزا نيستند و بخصوص
 دنبالةُ دوم شناسايى كنيد. Y Y از جايگشتهاى دورى مجزاست.
^. . حاصلضر بهای زير را به صورت جايخشتهاى دورى بنويسيد:

$$
(I Y)(I Y),(I Y)(I F)(I F),(I F)(I F)(I F)(I Q),(I F)(I F)(I F)
$$

$\cdots(\mid n)$.

19 ا ه هر يک از جايخشتهاى زير را به صورت حاصلضربى از ترانهشها بنويسيد:

 حاصلضربى از ترانهشها نوشت؟ آيا مىتوانيد جايگشت همانى را اين گونه بنويسيد؟



سؤالهاى زير به اين نتيجه منجر مىشوند كه يك جايگشت، حاصلضرب تعدادى زوج ترانهش است يا حاصلضرب تعدادى فرد ترانهش است اما نه هر دو.
 rr
 ها بنويسيد.
 (جايگشتهاى تك عضوى نيز محاسبه مىشوند) و $\tau$ ترانهشى در

يا حاصلضربى از $c+1$ يا 1 ا 1 جايگشت دورى مجزا است.


 به صورت جايگشتهاى دورى مجزا نوشته شود برطبت اين كه $n+m$ نوج يا فرد است تعداد جايخشتهاى دورى مجزا زوج يا فرد است.



 جايگشت فـرد ا - اسـت. ثابـت كنيـد اگـر با (نشان $\beta$ )× (نشان $\alpha$ ).
F. F. اعضاى گروه توليد شده به وسيله (1 Y F F © ) را بنويسيد و نشان هر عضو
 ثابت كنيد حاصلضرب دو عضو $A_{n}$ عضوى از $A_{n}$ است.
در حالت مجموعههاى متناهى جايگشتها مطلب فوت براى تضمين برقرارى خهار


هr. اعضای
צץ. مجموعه جايخشتهاى فرد
 اعضاى $A_{n}$ برابر با تعداد اعضاى ${ }_{\text {ا }}^{\text {است. }}$
v.r. آيا
$\left(\begin{array}{lllll}1 & r & r & F & \Delta \\ Y & r & \varepsilon & 1 & \Delta \\ Y\end{array}\right)=(r F)(Y \Delta)(Y r)(I Y)(\Delta \varepsilon)(Y r)(Y \Delta)(r F)(Y r)$

گروهها، راهى به هندسه


زيرگروههای


 ^٪. اعضايى از صورت f مجموعه را با qج. اعضايى از از اين سه نهرست مجموعههاى

$$
\left\{\alpha\left|\alpha \in S_{r},\right| \alpha=1\right\},\left\{\alpha \mid \alpha \in S_{r}, r \alpha=r\right\},\left\{\alpha \mid \alpha \in S_{r}, r \alpha=r\right\}
$$

را تشكيل مىدهند. آيا هر يك از اين مجموعهها جهار ويزگى يك گروه را جنان كه در
سؤال


$$
T=\left\{\alpha \mid \alpha \in S_{A}, a \alpha=a\right\}
$$

آيا T در جهار ويزگى يك گروه صدق مىكند؟ نتيجه مىگيريم كه T يكى زير گروه SA


 اعضباى مجموعه

$$
\left\{\alpha \mid \alpha \in S_{\uparrow}, r \alpha=r, \digamma \alpha=\digamma\right\} .
$$


 بَ

 جور كنيد؟ צף. اعضايى از

 راكه متناظر با اين اعضاى نهرست شده اين اعضاى اط
 دادن مجموعة

$$
\left\{\alpha \mid \alpha \in S_{\mathrm{r}}, B \alpha=B\right\} .
$$



$$
T=\left\{\alpha \mid \alpha \in S_{A}, B \alpha=B\right\}
$$

آيا T در جهار شرط گروه صدت مىكند؟ انتظار داريم T $T$ يك گروه باشد، زيرگروهى از

گروهها، راهى به هندسه

نتيجه حفظ نمىكند. همهٔ اعضاى يك گروه تشكيل مىدهند؟
SY F F Fq كه در سؤال FA به دست میى آيند تقارنهاى هندسى مربع نام دارند، آنها را بيابيد. -ه. اگر \}
به
位 $x_{1} x_{r}+x_{r} x_{F}$ اه. كدام يك از اعضاى


$$
\left(x_{\curlyvee}-x_{r}\right)\left(x_{\curlyvee}-x_{r}\right)\left(x_{r}-x_{r}\right)=\left(x_{\backslash_{\alpha}}-x_{r \alpha}\right)\left(x_{\backslash \alpha}-x_{r_{\alpha}}\right)\left(x_{r \alpha}-x_{r_{\alpha}}\right)
$$

را برقرار كنند؟

نسبت غير توانقى

بيابيد كه





خلاصئ مطالب
تعريف $A \rightarrow A$ يك دوس جايكشت $A$ نام دارد.
 سؤال

هر جايگشت يك مجموعة متناهى را مىتوان به صورت حاصلضربى از سؤال IV جايگشتهاى دورى مجزا وششت.

هر جايگشت يك مجموعه متناهى را مىتوان به صورت حاصلضربى از را را

 حاصلضربى از تعداد فرد ترانهش نوشت.

تعريف جو جايگشتى راكه بتوان به صورت حاصلضر بـى از تعدادى نرج ترانهش نوشت
 از تعدادى فرد ترانهش نوشت يك جايگشت غرد نام دارد.

تعريف سؤال Y $\quad$ نوشت برابر است با

تعريف مجموعه جايگشتهاى نوج ${ }^{\text {F }}$ با $S_{n}$ نمايش داده مىشود و گروه متناوب سؤال KF نام دارد.



گروهها، راهى به هندسه

يادداشت تاريخىى


 $\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$ دترمينانها كار میکرد نشان يك جايگشت را با استفاده از تابع تعريف كرد. نمادگذارى جايگشتهاى دورى و اصطلاح ترانهش از جمله كارهاى كوشى است و نيز وى در سال IA | بين جايگشتهاى نوج 'و نرد تمايز گذاشت به همان طريقى
 سال IArD تشخيص داد كه پايدارسازها زير گروههايى را به دست میذهند.
. انعكاس هستد ( $\left(\begin{array}{lll}1 & r & r \\ r & 1 & r\end{array}\right),\left(\begin{array}{lll}1 & r & r \\ r & r & 1\end{array}\right) \cdot r$

$$
\begin{aligned}
& \alpha \alpha^{r}=\left(\begin{array}{lllll}
1 & r & r & r & 0 \\
r & \Delta & 1 & r & r
\end{array}\right), \alpha^{r}=\left(\begin{array}{lllll}
1 & r & r & r & 0 \\
r & r & \Delta & 1 & r
\end{array}\right) \cdot r \\
& , \alpha^{s}=\alpha \\
& ، \alpha^{\Delta}=I \quad, \alpha^{\mu}=\left(\begin{array}{lllll}
1 & r & r & r & \Delta \\
0 & 1 & r & r & r
\end{array}\right)
\end{aligned}
$$

$$
1 \alpha^{i}=1, r, r, r, \Delta, 1, r, \cdots, i=0,1, r, \cdots \text { بـ, }
$$

$$
r \alpha^{i}=r, r, r, \Delta, 1, r, r, \cdots,
$$

$$
r \alpha^{i}=r, r, \Delta, \, r, r, r, \cdots .
$$

$$
\begin{array}{r}
. e=r, d=1, c=\uparrow \cdot b=\Delta, a=r . \Delta \\
. c=\uparrow \cdot b=r, a=0 . q
\end{array}
$$

$$
(\alpha \alpha \cdots \alpha)(\alpha \alpha \cdots \alpha)=(\alpha \alpha \cdots \alpha)(\alpha \alpha \cdots \alpha)
$$

n مرتبه m مرتبه m مرتبه

$$
. \alpha=(I F Y)(Y \Delta)=(Y F I)(\Delta Y)=(Y \Delta)(I Y F) . \Lambda
$$


(I)(Y)(r), (IYY),(IYY),(I)(YY),(IY)(Y),(IY)(r).10


گروهها، راهى به هندسه

. If

. $\alpha^{m+i}=\mid \alpha^{i}$ بنابراين $\left|\alpha^{m}=\left|,|\alpha, \cdots,| \alpha^{m-1}\right.\right.$

I\& بنابه سؤال ID هر رقم در يك جايگشت دورى قرار دارد. بنابه سؤال IV جايگشتهاى دورى يكسان يا مجزا
. (IYY..nn)، (IYYFD)،(IYYF)، (IYY).IA

$$
(Y F)(Y \&)(Y \wedge),(I F)(\backslash \Delta)(I V)(1 q),(1 Y)(r F)(r \Delta)(\& V)(\& \wedge)(\& q) .19
$$

$$
(r r)(r F),(1 q 0)(Y q)(r \wedge F)(Y)=(1 q)(\backslash \Delta)(r q)(r \wedge)(r F)
$$


سؤال IA هر جايگشت دورى حاصلضربی از ترانهشهاست.

צ צ. فرض كنيد (ab) دارند و شبيه سوال در جايگشتهای دورى متفاوتى.با $\alpha$ قرار دارند و مانند سوال دورى در $\alpha \tau$ برابر با 1 د 1 است.


$$
\begin{aligned}
& (I Y)(I Y)=(Y r)(Y \backslash)=(r \mid)(Y Y)=(I Y)(I Y)(I Y)(I Y) \cdot Y \mid \\
& \text {-(IYMFD)(8VAQ). FY } \\
& \cdot\left(a_{1} \cdots a_{r}\right)\left(b_{1} \cdots b_{s}\right) . Y r \\
& \text { (IYMFDEVA). YF } \\
& \text {. }\left(a_{1} a_{r} \cdots a_{r} b_{\backslash} b_{r} \cdots b_{s}\right) . r \Delta
\end{aligned}
$$

$$
\begin{aligned}
& a \alpha^{m}=a \text { اگر } . a \alpha^{i-j+k}=b \alpha^{k}, a \alpha^{i-j}=b \text {. اء } \\
& \text {. } b \alpha^{j-i+m}=a \text { ا }
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{r}=(\text { IrD })(\text { YFF }), \alpha^{r}=(\text { IF })(Y \Delta)(\text { Y\& }), \alpha^{F}=(\backslash \Delta Y)(Y \& F), \\
& \alpha^{\circ}=(1 Я \Delta F Y Y)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (IFY), (IYF), (IFY), (YYF), (YFY), (IYYF), (IFYY), (IYYF), (IFYY), } \\
& \text { (IYFY), (IYFY), (IY)(YF), (IY)(YF), (IF)(YY). }
\end{aligned}
$$

جايگشتهاى يك مجموعd متناهى
نوج يا فرد است نوج يا فرد باشد آنگاه بنابه سؤال
 نرج يا فرد باشد نرج يا فرد است
YA


$$
\begin{aligned}
& \operatorname{sgn}(\backslash Y \Psi Y)=\operatorname{sgn}(\backslash Y)(\backslash Y)(\backslash Y)=(-1)^{r}=-1 . \\
& \operatorname{sgn}(\backslash Y \Psi \nmid O)=\operatorname{sgn}(\backslash Y)(\backslash Y)(\backslash Y)(\backslash \Delta)=(-1)^{\digamma}=+1 \\
& \cdot \operatorname{sgn}(\backslash Y \cdots n)=\operatorname{sgn}(\backslash Y)(\backslash \Psi) \cdots(\backslash n)=(-1)^{n-1}
\end{aligned}
$$

اM. I+ برای همانى، Y- دورها و جفتهاى ترانهشها. I- براى ترانهشها و Fدورها.
 .(IGOFYY) , (IF)(rD)(rg)
r

هr. r- دور و سه جفت ترانهش.
\& צ.

 باr
( F

ra. بلa.
$a I=a . a \alpha \beta=a$ هميشه برقرار $a \beta=a, a \alpha=a . f \circ$

$$
\text { است و اگر بنابراين } a \alpha \alpha^{-1}=a \alpha^{-1} ، a \alpha=a \alpha^{-1}=a .
$$ .F| F| بايدارساز

گروهها، راهى به هندسه
. FY

.

FF FF . FF بله، مانند سوال F0 استدلال كنيد.
. $\mathrm{F} D$

و نيمدور.
(FY
 -0. همان مجموعة سؤال FA.
\ه. تنها (I)، (I
. (IF)(YY)،(IY)(YF)،(IY)(YF)،(I).(I)
ror هri هr

## كروههاى جايكشتهاى $\mathbb{R}$ و $\mathbb{C}$

## طولباييهاى صفحه





 نقاط صفحن اتليدسى معمولأ با جفتهاى مرتب (x,y) از اع اعداد حقيقىى نمايش داده مىشوند. هرگاه اين جفتهاى مرتب با جـع به صورت

$$
\left(x_{\curlyvee}, y_{\curlyvee}\right)+\left(x_{\mathrm{r}}, y_{\mathrm{r}}\right)=\left(x_{1}+x_{\mathrm{r}}, y_{\curlyvee}+y_{\mathrm{r}}\right)
$$

و با ضرب به صورت

$$
\left(x_{\checkmark}, y_{\backslash}\right) \bullet\left(x_{\curlyvee}, y_{r}\right)=\left(x_{\backslash} x_{\curlyvee}-y_{\backslash} y_{r}, x_{1} y_{r}+x_{\curlyvee} y_{\backslash}\right)
$$

مجهز شدند جبر اين جفتهاى مرتب دتيقاً همان جبر اعدادى به صورت $x+i y$ است كه أ C $=\{x+i y \mid x, y \in \mathbb{R}\}$ كه مجموعة نقاط يك صفحه مدل هندسى آن است است.
 ارائه دهيم. اما اعضايى از اين گروهها وجود دارند كه به سادگى مىتوان آنها

گروهها، راهى به هندسه

را به صورت جبرى توصيف كرد و در نتيجه مىتوانيم زير گروههايى را مشخص كنيم كه
 اين نصل را به زيرگروهى از
 فاصلة a $a \alpha$ تا b $\alpha$ برابر با فاصلهُ $a$ تا $b$ باشد. * هرگاه دامنه و همدامنه يك تابع، هندسى باشند تابع را مىتوان يك تبديل تلقى كرد.

 لاكورده و مك ميلان ${ }^{\text { }}$

خط حقيقى
هرگاه مجموعة A نامتناهى است نمادگذارى دورى را كه در فصل 「 توسعه داديم
 $A=\mathbb{R}$ ببينيم. اما با اينحال مىتوانيم زيرگروههاى ويرگى خاص يا ساختار را حفظ مىكنند بيابيم.
ا. تابع
 ازاى هر دو عدد حقيقى x
 اگر

$$
T=\left\{\alpha \mid \alpha \in S_{\mathbb{R}}, x-y=x \alpha-y \alpha\right\}
$$

آيا T بايد زيرگروهى از $S_{\mathbb{R}}$ باشد؟ يعنى آيا $T$ بايد در شرايط سوال I I 1 صدت كند؟ اگر

1) Ledermann
2) Knopp
3) Pedoe
4) Martin
5) Lockwood
6) Macmillan
 هر انتقال $\mathbb{R}$ به اين صورت است. r. تابع
 كنيد به ازاى هر دو عدد حقيقى
 از $\mathbb{R}$ از قدرمطلق طولها را حفظ مىكنند. مجموعة همئ تبديلهايى كه تدرمطلق طوريله


$$
M=\left\{\alpha\left|\alpha \in S_{\mathbb{R}},|x-y|=|x \alpha-y \alpha|\right\}\right.
$$


 آنگاه $x \alpha$, , $\alpha$ حه هستند؟ اگر

 انتقال است يا يك نيمدور.

 $\alpha$ 仿 $\alpha: x \mapsto a x+b$
 و , نسبت طولها روى خط حقيقى را حفظ مىكند مجموعهٔ تبديلهاى مستوى يا تشابههاى خط حقيقى نام دارد. اگر
$A=\left\{\alpha \mid \alpha \in S_{\mathbb{R}}, \frac{x-y}{x-z}=\frac{x \alpha-y \alpha}{x \alpha-z \alpha}, x, y, z, z\right.$ به ازاى اعداد حقيقى متماي $\}$
 ا $\backslash \alpha=a+b,{ }^{\circ} \alpha=b, \alpha \in A$ گ

گروهها، راهى به هندسه

 F. . $\alpha: x \mapsto a x+b$
质 را ارائه دهيد. اين اعضا بزرگسازيهايى با مركز ه نام دارندا
 ساختار جمع را حفظ مىكند تبديلهاى خطى Q هستند و همجموعهاى به صورت

$$
L=\left\{\alpha \mid \alpha \in S_{\mathbb{Q}},(x+y) \alpha=x \alpha+y \alpha\right\}
$$

را تشكيل مىدهند. آيا L زيرگروهى از اگر $\alpha \in L$ ثابت كنيد:

- $\alpha=\circ$ (يى)
(
بهعلاوه نشان دهيد اگر نتيجهگيرى كنيد به ازاى هر عدد گوياى x، x، $x \alpha=a x$.

 هندسى ما را از سؤال rı V. اگر نگاشت ع C به كار میگيريم محور $x$ محور حتيقى و محور $y$ محور موهومى نام دارد. قدر مطلق


 ^. اگر | اگ解 $\sin \theta=y /|z|, \cos \theta=x /|z|$
ro
كروههاى جايگشتهاى

$$
\begin{aligned}
& \text { ، } \theta=\arg z \text { تعريف مىكنيم به نحوى كه اگر، argz } \\
& z=|z| .(\cos \theta+i \sin \theta)
\end{aligned}
$$

ثابت كنيد
9. 9

مسّضص كنيد.
(ه ا ا آيا هر عدد مختلط بهطور يكتا توسط تدر مطلق و شناسه خود مشخص مى ششود؟


را بابيد.
$\bar{z}=x-i y$ Y , برابر با $i$ برابر عددى حقيقى است (موهومى محض) و $z-\bar{z}$ $\overline{z+w}=\bar{z}+\bar{w}$ از وبا استفاده از نگاشت $\overline{\text { و }}$ اين مطلب را نشان دهيد. همجنين ثابت كنيد

طولیاييها يا تقارنهاى صفحه




 $\mathbb{R}^{r}$ را با يك حالت خاص شروع مىكنيم. $\alpha$ ار نمايش دهيد. به ازاى هر دو نتطه $z$ و $w$ از صفحه مقادير از
 V



$$
T=\left\{\alpha \mid \alpha \in S_{\mathbb{C}}, z-w=z \alpha-w \alpha\right\}
$$

گروهها، راهى به هندسه

آيا T بايد زيرگروهى از $T$ C
 ها . نگاشت يك دوران به اندازف $\theta$ حول مركز • استا بران دورانهاى حول • طولياييهاى صفحه هستند. \&1. اگر

$$
E=\left\{\alpha\left|\alpha \in S_{\mathbb{C}},|z-w|=|z \alpha-w \alpha|\right\}\right.
$$

آيا E زيرگروهى از CS است؟ آيا E شامل گروه انتقال است؟ E گروه طولِييها يا گروه اتليدسى
 $z \mapsto \bar{z}$ نتطه و نگارة آن را تحت $\alpha$ در رابطه با خط نتاط ثابت توصيف كنيد. تبا يك بازتاب نسبت به محور حقيقى نام دارد. بازتاب طولباييهايى هستند كه نقاط ه و ا ا را ثابت نگاه مىدارارند. در سؤال بعد بررسى مى وكينيم اين دو تنها طولباييهايى با اين ويزگى هستند


 ممكن $z$ جه هستند؟ نتيجوگيرى كنيد كه هر نقطه محور حقيقى توسط $\alpha$ ثابت نگاه داشت
 بنابراين w $w$ رى عمودمنصف z $z=$ و $\bar{z}$ قرار دارد و $w$ حقيقى است. نتيجهگيرى كنيد به ازاى
همه

9 19. حال از همه معلوماتمان دربارة طولباييهاى ثابت نگاه دارندهٔ ه و ا (سؤال 1^) و طولباييهاى ثابت نگاه دارندةٌ (سؤال (10) استفاده مىكنيم تا طولباييهاى ثابت نگاه دارندة • را كاملاُ مشخص كنيم

 , $\alpha: z \mapsto e^{i \theta} \bar{z}$ ي $\alpha: z \mapsto e^{i \theta} z$ هم ا را ثابت نگاه مى دارد و نتيجهگيرى كنيد كاري


 عدد مختلط re را تحت $\alpha$ بيابيد و يک نقطه و نگاره آن را تحت $\alpha$ در در رابطه با خط نتاط ثابت $\alpha$ توصيف كنيد.
هرگاه يك طولِيى يك خط نقاط ثابت داشته باشد كه عمودمنصف خط واصل هر نتطة ديگر و نگارهاش است، يك بازتاب (تقارن) نام دارد. خط نقاط ثابت، محور بازتاب نام دارد. ${ }^{\text { }}$ حيست؟
 از مركز دوران بنويسيد. رابطة بين زاوية دوران و زاوية دحورها حيست؟ حا حاصلضرب اين

دو بازتاب با ترتيب مخالف با آنجه

 مىكنيم. اگر $\alpha$ يك طولبايى دلخواه باشد كه سوال 19 نشان دهيد كه

$$
. \alpha: z \mapsto e^{i \theta} \bar{z}+c \backslash \alpha: z \mapsto e^{i \theta} z+c
$$

rr. حال انواع طولباييهاى بددست آمده از سؤال منظور از طوليايى $\alpha$ شريا $\alpha: z \mapsto e^{i \theta} z+c$ شروع مىكنيم. هرگاه اگر اين معادله را از نظر هندسى بررسى كنيد و تبديل $\alpha$ ر را توصيف كنيد. سوال , ور

تركيب دو دوران را از نظر هندسى توصيف كنيد و تعيين كنيد جه وتت اين تركيب
يك انتقال است.
 به $C A$ را با $\beta$ ر و بازتاب نسبت به $A B$ را با $\gamma$ نمايش مىدهيم. با استفاده از ايده

گروهها، راهى به هندسه

سؤال ا ت تبديلهای $\gamma \alpha$ ر را به طور هندسى توصيف كنيد. با استفاده از معادلهَ حكم آخر سوال $(\beta \gamma)(\gamma \alpha)=\beta \alpha$
عجالتاً اين مطلب بررسى ما از تبديل


$$
\alpha: z \mapsto e^{i \theta} \bar{z}+c \text { \& }
$$

(يك) اگر $\alpha$ يك نتطهُ ثابت داشته باشد ثابت كنيد كه
(دو) اگر ْ


$$
\left(\frac{1}{\gamma} c+r e^{\frac{1}{\gamma} i \theta}\right) \alpha=\frac{1}{\gamma} c+r e^{\frac{1}{\gamma} i \theta}
$$

(حهار) اگر

$$
\text { z } \underset{\text { دارد. }}{ }
$$

 بريد و ثابت كنيد يا $\alpha$ همانى است يا يك بازتاب است كه محور آن خط نقاط ثابت است. ری. YA تبديل يك انتقال، يك دوران يا يک بازتاب است؟ آيا يك خط از صفحه وجود دارد كه توسط اين تبديل بروى خود نگاشته مىشود؟ آيا تنها يک جنين خطى وجود دارد؟ اگر倍 $\alpha: z \mapsto \bar{z}+1$ با $\alpha$ برابر باشد؟ نقاط ثابت $\alpha \tau^{-1}$ جه هستند؟ $\alpha \tau^{-1}$ چه نوع طولإيى است؟ درباره

مكان هندسى وسط z و $z \alpha$ جه مى $z \mapsto \bar{z}$ Y Y 9 تعويضخذيرند (سؤال YQ.\& را ببينيد).。

باشد يك لغزه نام دارد. فرض كنيد
(يك) ثابت كنيد ${ }^{r}{ }^{r}$ يك انتقال است
(دو) اگر $\tau$
(سه) ثابت كنيد مرتبه $\alpha \tau^{-1}$ برابر با


$$
. \tau \varrho=\varrho \tau
$$

(ينج) ثابت كنيد اگر A يك نتطهُ ثابت $\varrho$ است، آنگاه Ar نيز نتطهُ ثابت $\varrho$ است و يك لغزه است.
 كنيد $\tau$ و $\varrho$ به نحو يكتا توسط $\alpha$ تعريف مى شوند.






rr. اگر



$$
\arg \frac{z-w}{z-t}=\arg \frac{z \alpha-w \alpha}{z \alpha-t \alpha} .
$$

هץ. اگر \& \&. اگر. اگر

$$
\arg \frac{z-w}{z-t}=r_{\pi}-\arg \frac{z \alpha-w \alpha}{z \alpha-t \alpha} .
$$

ry. با استفاده از نمادكذارى سؤال 19 تعريف مىكنيم

$$
D=\left\{\alpha \mid \alpha \in E, \arg \frac{z-w}{z-t}=\arg \frac{z \alpha-w \alpha}{z \alpha-t \alpha}\right\} .
$$

آيا D زيرگروهى از E است؟ اعضاى D را مشخص كنيد. D بهعنوان گروه طولباييهاى مستقيم صفحه شناخته مىشود. حه حكمى دربارء حاصلضرب يك دوران و يك انتقال

مىتوانيد بكنيد؟
^^. اگر مىشود. انواع طولماييهاى متقابل صفحه را توصيف كنيد و ثابت كنيد حاصلضرب هر در طولبايى متقابل، مستقيم است.

گروههای دورى و دو وجهى
$z \mapsto e^{i \theta} z$ در سوال 19 ديديم كه ايدارساز • درگروه اقليدسى از دورانهاى به صور و بازتابهايى به صورت

متناهى مهم را بررسى مىكنيم.
qr. به ازای حه مقاديرى از

همd .Fo .fo


دورى ${ }^{\text {L است. }}$
 را بروى خود بنگارند. گروهى كه به اين صورت تشكيل مىشود مثالى از گروه دو وجهى

است $D_{r}$


$$
\text { داريم } e^{i \theta}=w^{r} ᄂ e^{i \theta}=w^{r} \backslash e^{i \theta}=w
$$

$\left\{\, w, w^{r}\right\}$ \} $\}$ را بروى خود مىنگارند بيابيد. گروهى كه به اين صورت تشكيل مىشود مثالى از گروه دورى Cr ${ }^{\text {است. }}$
 را بروى خود مىنگارند. گروهى كه به اين صورت تشكيل مى شود مثالى از گروه دو رجهى
 سؤال r. r. را ببينيد.

\&F. Fمه طولباييهای مستقيم را بيابيد كه نتطه • را ثابت نگاه دارند ر مجموعن بروى خود بنگارند. گروهى كه به اين صورت تشكيل مىشود مثالى از

گروه دورى CF است.
 مـجـموعـن تشكيل مى شود مـثالى از گروه دو وجهى ${ }^{\text {F }}$ استى


تشابهها
هر طولبايى يك مثلث را به مثلنى همنهشت مىنگارد و به عكس اگر دو مثلث همنهشت هستند يك طوليايى وجود دارد كه يكى را بروى ديگرى مىنگارد. اگر حالا از
 به مثلتى متشابه مىنگارد. جنين تبديلى را يك تشابه مىناميم و متذكر مىشويم كه اگر

 توصيف كنيد.
 مختلط متمايز

$$
\frac{z-w}{z-t}=\frac{z \alpha-w \alpha}{z \alpha-t \alpha}
$$

حنين عضوى از S ${ }_{\text {ی }}^{\text {يك تشابه مستقيم نام دارد. }}$ -ه. اگر

$$
S=\left\{\alpha \mid \alpha \in S_{\mathbb{C}}, \frac{z-w}{z-t}=\frac{z \alpha-w \alpha}{z \alpha-t \alpha}\right\}
$$

آيا S زيرگروهى از ${ }^{\text {از }}$ است؟
$\alpha$ يك تشابه مستقيم است.
اه. تبديل
دوران $z \mapsto i z$ است.

گروهها، راهى به هندسه

هرگاه بزرگسازى و دوران مركز يكسانى دارند، جنين تبديلى يك تنشابه مارييجى نام دارد. اگر Y rه. اگر ا يا竍 $\alpha: z \mapsto a z+c$
 مستقيم را نام ببريد و از نظر جبرى آنها را از هم تميز دهيد.

تبديلهايى از نوع $z \mapsto a \bar{z}+c$ تشابههاى متقابل نام دارند و به همراه تشابههاى مستقْم مجموعهٔ تشابههاى صفحه كامل مى شود.

گروههاى تراياى تبديلها
 حركت دادن نقاط يا حرنهاى مربوط توسط تبديلهاى گروه مورد بحث بـ به كار مى مرود.

 انتقالهايى هستند كه $a$


 بريد. اگر موفق شويد مىتوانيم بكوييم گروه تشابههاى مستقيم روى نقاط صفحه تراياى دوكانه است.
צه. ثابت كنيد گروه انتقال روى نقاط صفحه تراياى دوگانه نيست.

(يى) تراياست؟
(دو) تراياى دوگانه است؟

(يک) تراياست؟
(دو) تراياى درگانه است؟


 واقع اعضاى $\alpha$ از $\operatorname{low}$ كه $S_{\text {كه }}$ به ازاى عدد حقيقى $\arg (z-w)=\arg (z \alpha-w \alpha)$ r申॰ $r$ همخى به صورت $z \mapsto r z+c$ مىدهند. آيا اين گروه انبساط روى نقاط صفحه (يك) تراياست؟ (دو) تراياى دوگانه است؟

خلاصهُ مطالب

تعريف سؤال 1

تعريف سؤال
 سؤال

تعريف اعضاى ناصله نگهدار سؤال 18

تضيه همه طولياييهاى صفحه يا به صورت $z \mapsto e^{i \theta} z+c$ هستند كه طولاييهاى


طوللايياى مستقيم يا انتقالها هستند يا دورانها.
 سؤالهاى $\Delta \circ$ ifq

تعريف $\quad$ ت


تعريف



تعريف گروه انبساط صفـحه اتليدسى متشكل از اعضاى سؤال $\quad$ هو $\quad$ است كه $r$ يك عدد حفيتى غير صفر است.

## يادداشت تاريخى

 $(\cos \theta+i \sin \theta)^{n}=$ ور $i \sin \theta=e^{i \theta}$ $\cos n \theta+i \sin n \theta$



 ارائه دادند و اولين تعريف صورى به صورت توسيعى جبرى از اعداد حقيقى به ا.ل.
7) Cotes
8) De Moivre
9) C. Wessel
10) C.F. Gauss
11) J.R.Argand 12) W.R. Hamilton

كوشى (IAFV) متعلق است. استفاده از اعداد مختلط در توصيف تبديلهاى صفحه از
 طولباييها ارتباط نداشت.


 مطـر شده بودند.

## جوابهای نصل

1. اگر ای $x \alpha \beta-y \alpha \beta=x \alpha-y \alpha=x-y$ است. $T$ يك زيرگروها است. اگر
 بنابراين
r
استدلال كنيد.
r استدلال كنيد. اگر

$$
\text { . } \alpha^{-1}: x \mapsto \frac{x}{a}-\frac{b}{a} \text { بنابراين } x=\left(x^{\prime}-b\right) / a . 千
$$

$$
. x \mapsto a x . \Delta
$$

f. اگر
9. اگر آi
$. z=\cos \theta+i \sin \theta$
ها.
$. e^{i \theta} . e^{i \phi}=e^{i(\theta+\phi)}$ ، 1 ل
ي $z \mapsto \bar{z} \cdot|\bar{z}|=\sqrt{x^{r}+y^{r}}=|z| ، z-\bar{z}=r i y ، z+\bar{z}=\mathrm{r} x . \mid r$ بازتاب نسبت به محور حقيقى و نگارة متوازى الاضلاع ه، متـوازى الاضــلاع اسـت جنــان كه $\overline{z w}=\bar{z} \bar{w}$ ثابـت كنيـي

$$
. z \alpha-w \alpha=z-w . \mid r
$$





FV
كروههاى جايگشتهاى $\mathbb{R}$

. $T . z \alpha-w \alpha=(z+c)-(w+c)=z-w . \mid f$ سؤال $ا$ استدلال كنيد. . 10

$$
|z \alpha-w \alpha|=\left|e^{i \theta} z-e^{i \theta} w\right|=\left|e^{i \theta}(z-w)\right|=\left|e^{i \theta}\right| \cdot|z-w|=|z-w|
$$

 بنابراين نقاط محور حقيقى ثابت باتى مىمانند. $x+i y=x-i y \Leftrightarrow y=$. . IV اگر $z \alpha \neq z$ آنگاه محور حقيقى عمودمنصف $z z \alpha$ است.
 نگاشته مى شود. اگر $z$ نتطهُ اشتراك دو دايره باشد $z \alpha$ نيزيك نتطة اشتراك اين دايرههاست. خط واصل مركزها (محور حقيقى) عمودمنصف وتر مشترك است. بنابراين $z \alpha=z$ يا
 ثابت است.
19. اگر •

 آن توسط خط نقاط ثابت نصف مىشوند.

,

$$
\cdot \cdot \alpha \tau^{-1}=c \tau^{-1}=\cdot \cdot Y Y
$$

 هرگاه
$\alpha \beta: z \mapsto e^{i(\theta+\phi)} z+c e^{i \phi}+d . \alpha^{-1}: z \mapsto z e^{-i \theta}-c e^{-i \theta}$ زاريí $\theta$ است دورانى به زاويه $\theta+\phi$ است مگر اين كه $\theta+\phi=0$ كه در اين حالت $\theta \alpha$ يك انتقال






$$
. \alpha^{r}=1 \Leftrightarrow e^{i \theta} \bar{c}+c=\text { ०. Y }
$$

\&ץ. (يك) اگر $w$ يك نتطه ثابت $\alpha$ است،

$$
w=e^{i \theta} \bar{w}+c
$$

بنابراين

$$
\bar{w}=\bar{e}^{i \theta}\left(e^{i \theta} \bar{w}+c\right)+\bar{c}=\bar{w}+\bar{e}^{i \theta} c+\bar{c} .
$$

$$
e^{-i \theta} c+\bar{c}={ }^{\circ}
$$

(در)



(YV
 مى شود.克 $(z+z \alpha)=\frac{1}{\mathrm{r}}(z+\bar{z}+1) ، z \alpha=\bar{z}+1$

 مختلط c عددى حقيقى است و انتقال موازى با هحور باز انتاب است. - •r. (يك) اگر $\alpha$ يك بازتاب نيست بنا به سوال

$$
\begin{aligned}
& \text {. } \alpha^{\mu}: z \mapsto e^{i \theta} \bar{c}+c \\
& . \tau: z \mapsto z+\frac{1}{\gamma}\left(e^{i \theta} \bar{c}+c\right)(د)
\end{aligned}
$$

$$
\begin{equation*}
\tau \alpha=\alpha \tau \Rightarrow \alpha \tau^{-1}=\tau^{-1} \alpha \Rightarrow\left(\alpha \tau^{-1}\right)^{\gamma}=\alpha \tau^{-1} \alpha \tau^{-1}=\alpha^{\gamma} \tau^{-r}=1 \tag{سه}
\end{equation*}
$$

گروهها، راهى به هندسه

$$
\begin{aligned}
& \text { (جهارا ( } \tau \alpha=\alpha \tau \text { جايگزين كنيد. } \alpha=\varrho \tau \\
& . A \varrho=A \Rightarrow A \varrho \tau=A \tau \Rightarrow A \tau \varrho=A \tau \text { ( }
\end{aligned}
$$



$$
. \varrho=\alpha \tau^{-1},
$$

اس. (يک) انتقالها و لغزهها.
(دو) دورانها.
(سه) بازتابها و همانى.

rr.


01
كروههای جايكشتهای $\mathbb{R}$

$$
\begin{aligned}
\cdot \frac{z \alpha-w \alpha}{z \alpha-t \alpha} & =\frac{z-w}{z-t} \cdot r f \\
\cdot \operatorname{Argz}=Y \pi & -\arg \bar{z} \cdot r \Delta \\
\cdot \frac{z \alpha-w \alpha}{z \alpha-t \alpha} & =\frac{\bar{z}-\bar{w}}{\bar{z}-\bar{t}} \cdot r q
\end{aligned}
$$

 زيرگروه D متشكل از دورانها و انتقالهاست．آن دورانى با همان زاويه است．


$$
\begin{aligned}
& \text { q. } \\
& . z \mapsto-z, z \mapsto z . \mathrm{F}^{\circ} \\
& . z \mapsto-\bar{z}, z \mapsto \bar{z}, z \mapsto-z ، z \mapsto z . \mid \mathrm{Fl} \\
& . \theta=\frac{r \pi}{r}, \frac{\mathrm{r} \pi}{r}, \cdot . w^{r}=1 ، w^{r}=-\frac{1}{r}-\frac{1}{r} i \sqrt{r} . \mathrm{Fr} \\
& . z \mapsto w^{r} z, z \mapsto w z, z \mapsto z . \uparrow r \\
& . z \mapsto w^{\curlyvee} \bar{z}, z \mapsto w \bar{z}, z \mapsto \bar{z}, z \mapsto w^{\gamma} z ، z \mapsto w z, z \mapsto z . \uparrow 户 \\
& . \theta=\frac{1}{p} \pi, \pi, \frac{r}{\gamma} \pi, \cdot . \mathrm{FD} \\
& . z \mapsto-i z, z \mapsto-z ، z \mapsto i z ، z \mapsto z . f \& \\
& . z \mapsto \pm i \bar{z}, z \mapsto \pm \bar{z}, z \mapsto \pm i z, z \mapsto \pm z \text {. } \mathcal{F} V
\end{aligned}
$$




伍 $\alpha z=i z-\frac{r}{\Delta}-\frac{1}{\Delta} i$
 است．
．تبديل $\alpha=a p+c \Leftrightarrow p=\frac{c}{1-a} . \Delta r$ يك دوران و يك بزرگسازى با مركز $a=1$ است $a=1$ يك انتقال را به دست مىدهد． $a=e^{i \theta}$

$$
. \sigma=\alpha^{-1} \gamma!\gamma: z \mapsto(d-c) z+c!\alpha: z \mapsto(b-a) z+a . \Delta \Delta
$$

گروهها، راهى به هندسه
\&ه. يك انتقال با نگاره مبدأ بهطور يكتا تعريف مىشود.
هV

(دها (يك) بله، (دو) بله.
(يك)
(يك) ترايا، زيرا آن شامل گروه انتقال است.
(دو) با يك انبساط نـىتوان















[^1]مططالعٔ همزمان：نصلهاى r، \＆، و ه كتاب ناب؛ نصل 9 كتاب بهدوئه؛ نصلهاى ا ر
r كتاب نورد＇．

## $\mathbb{R} \cup\{\infty\}$ خط كامل شده


1）Ford

[^2]
#### Abstract

號



-號
[
[號

$$
0
$$

$$
\beta
$$

$$
\dot{G}
$$

■
-


#### Abstract

^[ $\square$ ] $$
a
$$


[^4]
 $\pi$ تصوير از $N$ نام دارد. r. اگ,
 به كار بريد.

\[

$$
\begin{aligned}
& \text { ץ. اگر زارية }
\end{aligned}
$$
\]

 شوند و نتـاط \}


 م نشاندار مىكنيـم با استفاده از توصيـف جبرى توصيف كنيد.
9. تحت دورانى بادساعتگرد به اندازء $\alpha$ حول مركز $\tan \theta$ را در سؤال ه نشاندار كرده بود نتطهاى است كه

خواهد كرد. از اين تضيه اقليدس استفاده كنيد كه زاويهُ مركزى دايره دو برابر زاويهاى با رأس بر محيط و مقابل به همان توس است. نتيجهگيرى كنيد كه به ازاى همه نقاط دايره به جز نتطةُ

$$
x \mapsto \frac{x+a}{1-x a}
$$

 تحت اين دوران است؟ آيا مىتوانيد اين نقاط را از عبارت جبرى

$$
\frac{x+a}{1-x a}
$$

تشخيص دهيد؟ (تصور اين كه وقتى x بزرگ مىشود چه اتفاقى براى اين عبارت مىافتد


 ( $\tan \theta \mapsto-\tan (\theta-\alpha)$ سؤال $\&$ ارائه دهيد. نگاره و پيشنگاره $\infty$ ه براى اين تبديل حيست؟


$$
\frac{a x+b}{c x+a}=\frac{a}{c}
$$

فرض كنيد آنگاه يك عدد حفيقى يكتاى x وجود دارد كه

$$
\frac{a x+b}{c x+d}=r
$$

كدام عدد حقيقى x تحت تبديل

$$
x \mapsto \frac{a x+b}{c x+d}
$$

نگارloى حقيقى ندارد؟ اگر تابع

$$
x \mapsto \frac{a x+b}{c x+d}
$$

در

$$
\begin{aligned}
& \text { १. اگر } a d-b c \neq 0, c=0 \text { بررسى كنيد. } a d \\
& x \mapsto \frac{a x+b}{c x+d}
\end{aligned}
$$

يك تبديل مستوى از نگاره و ييشنگار: $\infty$ چجيست؟ -1. بررسى كنيد

$$
\begin{aligned}
& \frac{a x+b}{c x+d}=\frac{a y+b}{c y+d} \Leftrightarrow(a d-b c) \\
& ن \\
& x \mapsto \frac{a x+b}{c x+d} \\
& \text { بوب } \\
& \text { بی } \\
& x \mapsto c x+d, \\
& x \mapsto \frac{1}{x}, \\
& x \mapsto \frac{b c-a d}{c} x,
\end{aligned}
$$

است. اگر • c آنگاه حاضلضرب توابع

$$
x \mapsto x+a / c
$$

را محاسبه كنيد و نتيجوگيرى كنيد

$$
x \mapsto \frac{a x+b}{c x+d}
$$

## نسبت غير توافقى

 روى خط تصويرى حغظ مىكند و از اين رو يى گروه تشكيل مىدهند. 11.1.

$$
\begin{gathered}
\alpha: x \mapsto \frac{a x+b}{c x+d}, a d-b c \neq 0, \\
t, z ، y ، x \text { برسیى كنيد به ازاى اعداد حقيقى متمايز } \\
\frac{z-x}{z-y} / \frac{t-x}{t-y}=\frac{z \alpha-x \alpha}{z \alpha-y \alpha} / \frac{t \alpha-x \alpha}{t \alpha-y \alpha}
\end{gathered}
$$



$$
\frac{z-x}{z-y} / \frac{t-x}{t-y}
$$

نسبت غيرتوافقى $R(x, y ; z, t)$ تعريف مىشود و اگر علاوه بر اين تعريف كنيم

$$
\begin{aligned}
& R(\infty, y ; z, t)=\frac{t-y}{z-y} \quad, \quad R(x, \infty ; z, t)=\frac{z-x}{t-x} \\
& R(x, y ; \infty, t)=\frac{t-y}{t-x} \quad, \quad R(x, y ; z, \infty)=\frac{z-x}{z-y},
\end{aligned}
$$

مجموعه
$T=\left\{\alpha \mid \alpha \in S_{\mathrm{R} \cup\{\infty\}}, R(x, y ; z, t)=R(x \alpha, y \alpha ; z \alpha, t \alpha)\right\}$.
 اگر ادر

$$
R(x, \circ ; 1, \infty)=R\left(x \alpha, a_{1} ; a_{r}, a_{r}\right) .
$$

$$
x \alpha=\frac{a_{r}\left(a_{r}-a_{1}\right) x+a_{1}\left(a_{r}-a_{r}\right)}{\left(a_{r}-a_{1}\right) x+\left(a_{r}-a_{r}\right)} .
$$

گروهها، راهى به هندسه

گروه تبديلهاى حانظ نسبت غير توافقى خط كامل شده گروه تصويرى روى خط نام دارد. نصل \^ را ببينيد. خط كامل شده به خط تصويرى نيز موسوم است. ترايايى سdگانه

 و ${ }^{\prime} a_{\wedge} \gamma=b_{\}$, $\infty \beta=b_{r}, \backslash \beta=b_{r}$

$$
a_{r} \gamma=b_{r}, a_{r} \gamma=b_{r}
$$

اين ويزگى گروه تصويرى روى خط حقيقى را ترايايى سهگانه مىسازد. تبديل موبيوس، صفحهُ موبيوس ٪ا . تا اينجا در اين نصل با اعداد حقيقى كاركردهايم. اگر a، b، c و d اعداد مختلط هستند و

$$
z \mapsto \frac{a z+b}{c z+d}
$$

يك دو سويى از $\mathbb{C} \cup\{\infty$ به خودش است آنگاه اين دو سويى يك تبديل موبيوس نام دارد. گاهى مجموعة $\mathbb{C} \cup\{\infty$ خط تصويرى مختلط ناميده مىشود اما عموماً به آن صنحة موبيوس مى ثمويند. اگر

$$
z \mapsto \frac{a z+b}{c z+d}
$$

 بيابيد.


$$
\begin{aligned}
& z \mapsto c z+d, \\
& z \mapsto y / z \\
& z \mapsto \frac{b c-a d}{c} z, \\
& z \mapsto z+a / c
\end{aligned}
$$

از صفحةٔ موبيوس را بيابيد. كدام يك از اين جهار تبديل لزوماً موبيوس است. شرط الوا لازم و كافى براى اين كه حاصلضرب آنها يك تبديل موبيوس باشد حيست؟ هرگاه حاصلضرب مزبور يك تبديل موبيوس باشد تبديل اول و سوم و چهارم را به صورت تبديلهايى از صفحه گاوس يا نمودار آرگان توصيف كنيد.
 سوال I I تعريف شود آيا هر تبديل موبيوس حافظ نسبت غير توافقى است؟ \&1. با استدلالى شبيه سؤال \I النشان دهيد هر تبديل حافظ نسبت غير توافقى از © $\cup$ يى تبديل موبيوس است $\cup \infty\}$
گروه تبديلهاى حانظ نسبت غير توافقى صفحئ موبيوس، گروه موبيوس نام دارد.


آيا گروه موبيوس روى صفحئ موبيوس ترايايى سهگانه است؟

در سوالهای IV_Ir ديديم جگونه جبر اعداد حقيقى سؤالهای Ir_A را میتوان به جبر اعداد مختلط توسيع كرد حال توسيع هندسى متناظر از بُعد يك را به بُعد دو مطرح مىكنيم.
1^. اگر تصوير مطرح در سوال ا را با قرار دادن شكل مزبور در فضاى سه بُعدى و و




اين واقعيت كه تبديلهاى موبيوس نسبتهاى غير توافقى مختلط را حفظ مىكند براى

گروهها، راهى به هندسه

نگارههاى خطهاى مستقيم و دايرهها نتايج جالب هندسى دارد. 19. به ازاى هر عدد حقيقى 1 نشان دهيد

$$
\left|\frac{1}{r}-\frac{1}{1+i y}\right|=\frac{1}{r}
$$

$z \mapsto \frac{1}{z}$ نگارة خط مستقيم $\{z \mid z=1+i y, y \in \mathbb{R}\}$ حيست؟ نگارة دايرة - • با استفاده از سؤال r.

$$
\arg \frac{z-w}{z-t}
$$

را به ازاى اعداد مختلط z، $w$, $t$ متناظر با رأسهاى يك مثلث در صفحهٔ كاوس بر حسب زاويههاى zw $z t$ نسبت به محور حقيقى توصيف كنيد. اگر

$$
\arg \frac{z-w}{z-t}=\arg \frac{c-w}{c-t}
$$

دربارة حهار نقطة z، $z$ ، $x$ و $w$ حه مىتوان گفت؟ نسبتهاى غير توافنى را مىتوان براى مشخص كردن نقاط همدايره و همخط بهكار برد. اY. اگر

$$
\arg \frac{z-w}{z-t} / \frac{c-w}{c-t}
$$

קيست و اين مقدار دربارة عدد مختلط

$$
\frac{z-w}{z-t} / \frac{c-w}{c-t}
$$

حه نتيجهاى مىدهد؟


$$
\arg \frac{z-w}{z-t} / \frac{c-w}{c-t}
$$



$$
\text { چیی؟؟ } \arg R(w, t ; z, \infty), \arg R(w, t ; \infty, c) ، \arg R(w, \infty ; z, c)
$$

 از $\{c \mid \arg R(w, t ; z, c)=\bullet$ از $\pi\}$
(يك) هرگاه $w, t, z \in \mathbb{C}$ ور رأسهاى يك مثلث در صفحة گارس را را نمايش دهند،
 را نيز هرگاه يكى از نقاط هوك هץ. نگارههاى مسكن يك دايره در صفحة كارس تحت يك تبايل ماري موبيوس جه

هستد؟
צY. نگارههاى ممكن يك خط مستقيم با $\infty$ ت تحت يك تبديل موبيوس جه هستند؟ (YY. دو خط مستقيم در صفحه مفروضاند آيا مىتوان يك تبديل موبيوس يافت كه
يكى را به ديگرى بنگارد؟
 موبيوس يانت كه دايره را بروى خط با مه بنگارد؟ (ترايايى سه كانه را بـ كار بريد.)

تبديل

نگارة دايرة
نگارة خط گذرنده از مبدأ

مجموعة ار r r دايره هستند كه در A متقاطعاند آنگاه AP.AQ = AR.AS، ثابت كنيد خط واصل • به
 متقاطع ناميده مىشوند. از اين رو تحت $z \mapsto \frac{1}{z}$ است 'C جه ويرگيهایى دارد؟

گرورهها، راهى به هندسه


اr اr. اگر يك دايرة كمانى از C باشد كه از O مى $O$ ا ثابت كنيد
$O A . O B=a^{r}$,
 rr. اگر
 هستند؟ نگارة دايرة $\sum$ تحت تبديل $z \mapsto \frac{1}{2}$ جيست؟
z انعكاس
براى بررسى ويرگيهاى حانظ زارية解 $z \mapsto \frac{1}{z}$ مىكنيم.


 هץ. اگر نودار سؤال ا را در فضاى سه بعُدى حول محور ON دوران دهيم به نحوى

كه دايره به تطر ON يك كره را توليد كند و مماس در نتطن O $O$ يك صفحئ مماس را


 N

 \&r. با در نظر گرفتن حاصلضرب (تركيب) تبديلهاى
 مشخص كنيد. اين تبديل انعكاس در دايرة أ = = اz| $1 \mid$ نام دارد.

^r. فرض كنيد C دايرهاى است كه از مبداً نمىگذرد و P نتطهاى روى آن است. فرض كنيد









 .F0. دربارة محفوظ ماندن زاريمهاى تقاطع دايرهها تحت انعكاس
(يك) هرگاه يك يا هر دو ‘دايره' يك خط مستتيم است.
(دو) هرگاه دايرهها در • •متقاطع هستند.
 برابر با زاوية تقاطع نگارة آنها تحت انع أنعاس

 با اين مطلب بررسى ما دربارة ويزگيهاى هندسى كه توري توسط تبديلهاى موبيوس حفظ مى شوند كامل مىشود.

$$
\begin{aligned}
& \text { پايدارسازها } \\
& \text { بّأ. در گروه موبيوس } \\
& \text { (يك) بايدارساز هـ، اهر } \\
& \text { (دو) بإيدارسار ه ه ا } \\
& \text { (سه) بايدارساز ا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ينج) بايدارساز ا و إ } \\
& \text { (شش) إيدارساز ه و و ا }
\end{aligned}
$$

وFF

 را به سه نگارة مغروض مىنگارد. اگى

$$
\frac{z-a}{z-b} \cdot \frac{c-b}{c-a}=\frac{z^{\prime}-a^{\prime}}{z^{\prime}-b^{\prime}} \cdot \frac{c^{\prime}-b^{\prime}}{c^{\prime}-a^{\prime}}
$$

نگارههاى a، b و c جه هستند؟ \&F. يك شرط جبرى لازم و كانى روى a، b، c و d بيابيد كه

$$
z \mapsto \frac{a z+b}{c z+d}
$$

FV

## زيرگروه ثابت نگاه دارندهُ نيمصفحهُ باللا



$$
z \mapsto \frac{a z+b}{c z+d}
$$


 اگر a، b، c، و d اعداد حقيقى هستند آنگاه ثابت كنيد

$$
\operatorname{Im}\left(\frac{a z+b}{c z+a}\right)=\frac{\operatorname{Im}(z) \cdot(a d-b c)}{|c z+d|^{r}}
$$

 مىتوان به صورت

$$
z \mapsto \frac{a z+b}{c z+d}
$$

 داشتن نيمصفحه ثابت نگاه داشتن مرز آن را نتيجه مىدهد.

## زيرگروه ثابت نگاه دارندهٔ دايره واحد

 $|z|=1$ = 1 را بروى خودش بنگارد دربارئ يك دايرة كذرنده از نتيجهگيرى كنيد

 به صورت $z \mapsto e^{i \theta} z$ باشدر

$$
z \mapsto \frac{a z+b}{c z+d}
$$

دايرة واحد 1 = $1|z|$ را به خودش بنگارد با استفاده از سؤال •ه ثابت كنيد به ازاى همئ اعداد دختلط

$$
\frac{b z+a}{d z+c}=\frac{\bar{c} z+\bar{d}}{\bar{a} z+\bar{b}}
$$

, $a / \bar{d}=b / \bar{c}=c / \bar{b}=d / \bar{a}$ برار دادن مeادير ْ، نتيجهگيرى كنيد به ازاى عددى مانند $\theta$ داريم $\theta$ داريم مناسب نشان دهيد هر تبديل ثابت نگاه دارندة دايرة واحد 1 اري

$$
z \mapsto \frac{a z+b}{\bar{b} z+\bar{a}}
$$

نوشت و هر تبديل به اين صورت دايرة واحد را ثابت نگاه مىدارد. هr


خلاصهُ مطالب
تعريف مجورعة $\mathbb{C} U\{\infty\}$ صفحه: موبيوس نام دارد.
سؤال 1
يك تبديل موبيوس تبديلى از صفحة موبيوس به صورت

$$
z \mapsto \frac{a z+b}{c z+d}
$$

است كه
اين صورت


$$
\frac{z_{r}-z_{1}}{z_{r}-z_{r}} / \frac{z_{\mathrm{F}}-z_{1}}{z_{\mathrm{F}}-z_{\gamma}}
$$

است با توجيه مناسب هرگاه يك نتطه م است.

تضيه گوره تروه موبيوس گروه كامل تبديلهاى حافظ نسبت غيرتوافقى صفحئ موبيوس
سؤالهاى است.
18,10

تضيه $\quad$ يك تبديل موبيوس بهطور يكتا توسط نگارههاى سه نقطه مشخص مىشود.
سؤالهاى
fo، IV
جهار نتطهُ صفحة موبيوس همدايره يا همخط است اگر و تنها اگر نسبت سؤالهاى غير توافنى آنها حقيقى باشد. PFETI

مجموعهُ دايرهها و خطها توسط يك تبديل موبيوس به خودشان نگاشته سؤالهاى مى شوند اگر قرارداد افزودن م ر را به هر خط بيذيريم. re.ro

تعريف اگر ON تطر كره

 سؤال צץ دايرة واحد 1 =

اگر دو نتطه توسط انعكاس در دايرة واحد مبادله شوند آنگاه هر دايره گذرنده سؤالهاى از آن دو نتطه توسط اين انعكاس بروى خودش نگاشته مىشود. rV، rF
$z \mapsto \frac{1}{\bar{z}}$ (تدرمطلق) زاوية بين دو دايره برابر با زاويئ بين نگارههاى آنها تحت)
تضيه سؤالهای pIErq

است.

زاويء بين دو دايره برابر است با زاوية بين نگارههاى آنها تحت هر تبديل
سؤال FY موبيوس.

زيرگروهى ازگروه موبيوس كه نيمصفحهُ بالا را ثابت نگاه مىدارد شامل همئ سؤال FV تبديلهاى به صورت

$$
z \mapsto \frac{a z+b}{c z+d}
$$


اينها.

زيرگروهى ازگروه موبيوس كه درون قرص واحد را ثابت نگاه مىدارد شامل
سؤال

$$
\begin{aligned}
& z \mapsto \frac{a z+b}{\bar{b} z+\bar{a}} \\
& \text { است كه }
\end{aligned}
$$

يادداشت تاريخنى اولين استفاده از معادله

$$
z^{\prime}=\frac{a z+b}{c z+d}
$$

 انزود تا
 را بررسى كرد. اولين كاربرد اعداد مختلط در توصيف تبديلهاى تصويرى توسط فون اشتوت ${ }^{\text {( ( } 1 \wedge \Delta 8) ~ ا ن ج ا م ~ گ ر ف ت . ~}$
2) von Staudt

مطالعهُ منظم تبدلهاى حفظ كندة دايره با استفاده از روشهاى تركيبى توسط ا.ن. موبيوس و تبديل

$$
z \mapsto \frac{a z+b}{c z+d}
$$

به ن. كلاين (lavه) و ويكران تعلن دارد.
 در نشانگذارى نتاط كره با
 بحث ترار داده است.
 مستیيم صنحه نالتليدسى است كه خطهاى اين اين صفحه نيمدايرهوهاى با با مركز واقع بر خر خط حقيتى اختيار مىشوند. زيرگروهى از'گروه موبيوس كه درون دايرأ واحد را را ثابت نگاه


 ف. كلاين (l\9Y) تعلت دارد.

[^5]
# جوابهای نصل ا. $\pi$ يك دوسويى است. $. O N A=N A B=N O B . r$ <br> $\tan \theta . r$ 

$. O A^{\prime} . O B^{\prime}=1, O B^{\prime}=\cot \theta$ بنابراين $O N B=\frac{1}{\frac{1}{r} \pi-O N A . F}$ . $x \mapsto \frac{1}{x}$.
 $x \mapsto \frac{x+a}{1-x a}$

$$
\frac{1}{a} \mapsto \infty \mapsto-\frac{1}{a}
$$

ع $\tan \theta \mapsto-\tan (\theta-\alpha)$.V
$x \mapsto \frac{a-x}{1+a x}$
$-\frac{1}{a} \mapsto \infty \mapsto-\frac{1}{a}$
$. c(a x+b)=a(c x+d) \Leftrightarrow a d-b c=\cdot . \wedge$
$x=\frac{d r-b}{-c r+a}$
 .$\infty \mapsto \infty .9$
-1. به شرطى كه 1 . 1 .

لذا يك تبديل از

$$
x \mapsto \frac{a x+b}{c x+d}
$$

$$
z \mapsto \frac{b c-a d}{c} z
$$

كه مستلزم •
تبديلهاى اول و سوم تشابههاى مستقيم هستند و جهارمى يك انتقال است. ها الـ بله.


19 ال دايره بم مركز

تدها


$$
\begin{array}{r}
\text { r.r. • ی يا } \pi . ~
\end{array}
$$

(دو) خط گذرنده از z، t و w و نتطهُ م.

هr. جون تبديلهاى موبيوس نسبت غير توان توانتى حقيقى را حغظ مىكند بنابراين نگارة يك دايره يا يكى دايره يا يك خط با

צY.


است. هر طولبايى مستتيم يك تبديل موبيوس استي.
 آنگاه بنا به سؤالهاى c $c \mapsto c^{\prime}$

$$
\begin{aligned}
& . \gamma=\alpha^{-1} \beta . I r \\
& . \infty \mapsto \infty \text { (يك) } \cdot 1 r \\
& .-d / c \mapsto \infty \mapsto a / c(د)
\end{aligned}
$$

گروهها، راهى به هندسه


$$
. \mathbb{R}-\{\circ\} \mapsto \mathbb{R}-\{\circ\}
$$

خط مزبور نسبت به محور حقيقى منعكس مىشود اما نه نقطهاى.


 rr.

زگاشته مىشود.

$$
. r e^{i \theta} \cdot \overline{s e^{i \theta}}=1 . r s=1 . \theta=\phi . r f
$$


عمل مىكند.
צ צ. ( E. PV ^ ^r. هر دايره گذرنده از P و تحت $S \cap C \mapsto S \cap C^{\prime}$ ت حون $S \cap C \cap C^{\prime}$ يك نeطه تنها است بنابراين $S$ يك نتطه است. ( Yq

زاوية بين
 (دو) نگارة دايره موازى با مهاس در • است.

 زاوية تقاطع را حنظ مىكند و حاصلضرب (تركيب) آنها

$$
z \mapsto \frac{a z+b}{c z+d}
$$

$$
\begin{aligned}
، z \mapsto a z+ & b(ی) \cdot f r \\
، z & \mapsto \frac{a z}{c z+d}(د)
\end{aligned}
$$

$$
\begin{aligned}
& ، z \mapsto \frac{a z+c+d-a}{c z+d} \text { (س) } \\
& ، z \mapsto a z \text { (حها } \\
& ، z \mapsto a z+1-a(\text { ينج) } \\
& . z \mapsto \frac{a z}{c z+a-c}(ش)
\end{aligned}
$$

مجموعة همة تبديلهاى با صورت داده شده در هر حالت پايدارساز را تشكيل مىدهند. اگر $z$ يك نتطه ثابت است، FF

$$
z=\frac{a z+b}{c z+d}
$$

$c=0$ بنابراين آنگاه $\infty$,



$$
. c \mapsto c^{\prime} ، b \mapsto b^{\prime} ، a \mapsto a^{\prime}
$$

\&
 ثابت نگاه نمىدارد. $\infty \mapsto a_{r} ، 1 \mapsto a_{r} \times 0 \mapsto a_{1}$ اFA كه بنا به سؤالهاى II II Im $(z)>0$ 0 تتيجه دهد $z \mapsto \frac{a z+b}{c z+d}$.fq

$$
. \operatorname{Im}\left(\frac{a z+b}{c z+d}\right)>
$$

-ه. ©، دايرة گذرنده از $w$ و $w$ هر هر داير: گذرنده از ، $\gamma: z \mapsto \frac{1}{\bar{z}}$. $. w \alpha \gamma=w \gamma \alpha$
. $\infty$.

$$
\therefore \mapsto e^{i \theta}, \infty \mapsto \infty ،^{\bullet} \mapsto \cdot
$$

گروهها، راهى بد هندسه


$$
\begin{aligned}
& \cdot \frac{d}{\bar{a}}=e^{i \theta} \text { بنابراين } \\
& \text { حال } \frac{a z+b}{c z+d}=\frac{a z+b}{\bar{b} e^{i \theta} z+\bar{a} e^{i \theta}}
\end{aligned}
$$

صورت و مخرج را در

$$
.\left|\frac{b}{\bar{a}}\right|<1 \Leftrightarrow|b|<|\bar{a}| \Leftrightarrow a \bar{a}-b \bar{b}>\bullet . \circ \mapsto \frac{b}{\bar{a}} . \Delta r
$$

اگر $w$ نتطهاى درنى است آنگاه يك دايرة گذرنده از


## اجسام فضايى


 گروهها به ترتيب گروههاى جها






 rivi \Y Y


 شود آنگاه طرحى كه بدين نحو تشكيل مىشود شبكة جسم نضايي نام دارد. با بررسى

1) Coxeter
2) Steinhaus
3) Hilbert
4) Cohn-Vossen

گروهها، راهى به هندسه

شبكههاى ممكن مشخص كنيد آيا مىتوان يك جسم نضايى منتظم ساخت كه هئ
 مشترك باشند.
اجسام نضايى منتظم با وجههاى مثلث متساوىالاضلاع بسازيد كه با با توجه به ملاحظات نظرى امكان بذيراند. (جهار وجهى، هشت وجهى و بيست وجهى.


 (مكعب)
r. بررسى كنيد آيا مىتوان يى جندوجهى منتظم ساخت كه همن وجههاى آن
 يك جسم نضايى منتظم بسازيد كه با توجه به ملاحظات نظرى امكانيذير است (دوازده وجهى.) F. F. بررسى كنيد آيا مىتوان يى جسم نضايى منتظم ساخت كه وجههاى آن شش

ضلعى منتظم باشند.
ه. اگر وسط وجههاى (يک) يك جهار وجهى، (دو) يك مكعب،

(جها) يك دوازده وجهى' (يكي،


 نشان دهيد تعداد تتارنهاى دورانى يك جهار وجها

 از تشكيل مىدهدند؟ A. با استغاده از نشانگذارى سؤال V تقارنهاى بازتابى جهار وجهى را توصيف كنيد.

آيا غير از دورانها و بازتابها اعضاى ديخرى از تناظر يابند؟
Q. جند تقارن دورانى مكعب يك رأس را ثابت نگاه مىدارند و نيز با شمارش تعداد
 با شمارش تقارنهاى دورانى ثابت نگاه دارنده يى وجه و تعداد نگارههانى يك وجه همان عدد بد دست مىآيد؟
-ا. تقارنهاى دورانى مكعب را با نشان،كذارى جفتهاى رأسهاى متقابل مكعب (يا تطرهاى مكعب) با اعداد ( تقارن دورانى دارد؟ YF

 زاويءّ دوران متناظر را به دست آّريد

 شمارش تعداد نگارههاى متمايز آن رأس تحت گروه تقارنهاى دورانى بيست ورانی ورانیى نشان
 دارندة يک وجه و تعداد نگارههاى متفاوت يك وجه همان عدن عدد به دست مى آيد؟


 گروه تشكيل مىدهند؟


گروهها، راهى به هندسه
10. دربارء تقارنهاى دورانى يک دوازده وجهى جه مىتوانيد بگوييد.

اين وافعيت كه مجموعههاى متناهى دورانهايى كه بررسى كردهايم يك گروه تشاي تشكيل


 با يكديگر زاريه́


 كنيـد $\alpha$ بازتاب نسـبـت بـ صنـحـئ 1 ر ر $\gamma$ بازتاب نسبت به صنحـئ $O A B A$ ( $\gamma \alpha)(\alpha \beta)=\gamma \beta$


خلاصهٔ مطالب
ينج جسنم نضايى منتظم وجود دارند.
سؤالهاى
 سؤالهاى تقارنهاى يك جهار وجهى منتظم برابر با A , $\vee$

S\& Sوره تقارنهاى دورانى يك مكعب يا يك هشت وجهى منظظم برابر با سؤالهاى است. 11.1。

گروه تقارنهاى دورانى يى بيست وجهى منتظم يا يك دوازده وجهى منتظم

## يادداشت تاريخى







 درسهايى دربارة بيست وجهى (lAAF) به تفصيل شرع داده است.
5) Euclid Book XIII
6) Euclid $X I V$ and $X V$
7) J.F.C. Hessel
8) A.Bravais

گروهها، راهى به هندسه
جوابهای فصل ه


$$
\begin{aligned}
& . n=r, \digamma, \Delta \Longleftarrow n \cdot 90^{\circ}<r 9_{0}{ }^{\circ} \\
& . n=r \Longleftarrow n \cdot 90^{\circ}<r 9_{0} \cdot . r \\
& . n=r \Longleftarrow n \cdot 1 \cdot \wedge<r 0_{0}^{\circ} . r
\end{aligned}
$$


ه. (يک) جهار وجهى،
(دو) هشت وجهى، (مكا
(سه) مكعب،

(ينج) دوازده وجهى


$$
\text { r. } \ddagger=1 \text { دوران در كل. }
$$

. $A_{\mathrm{F}} . \mathrm{V}$




$$
\text { دارد. F. } \% \text { = FF. }
$$

-1.
 Y I . هر تقارن دورانى يك مكعب تقارن دورانى هشت وجهى محاطى آن آن است و به عكس.
 يك وجه را يايدار نگاه مى دارند. هر وجه م (IDYFY)،(IFFYD)،(IFYDY)(IYOFF)،(IDFYY), (IYYFD): $\pm Y Y^{\circ}$. IF : $\pm$ IFF• (ITOFY) (IYFOY) (IOFYF) (IFYYO) (IFOYY) (IFYOF) (IYYOF) (IFOFY) (IYYFD) (IDFYY) (IDFYY) (IFYDY) (ITOYF) (IUFYOY) (IYOFY) (IOYFY)


 $O A C, O B C$ و $O B$ زارية بين صفحههان $O B C$, $O B C$, $O A B$ نصف زاوية دوران حول OC OC است.

MATH75.IR
$\qquad$
كروههاى مجرد

 و هندسه ندارد و لزومى ندارد اعضاى گروه

 به دست آوريم. برخى از نتايج فورى اصول گروره در سؤالهاى هـا


هر گروهى را كه تاكنون در نظر گرفتهايم زيرگروهى ازيك گروه متقارن بوده است. حالا
 نه صرفاً تركيب توابع، شوند كه جهار شرط بستار يعنى اگر

$$
\text { شركتِّيرى يعنى اگر a,b, } c \in G \text { آنگاه (b.c).b =a.b).c a). }
$$


 كه درگروههاى متقاس روى آنها تأكيد كرديم را بررقار مىكنند.

ا. جند مجموعه از اعداد را نام ببريد كه تحت عمل دوتايى جمع برطبق تعريف بالا گروه تشكيل دهند.
Y. جند مجموعه از اعداد را نام ببريد كه تحت عمل دوتايى ضرب برطبت تعريف بالا گروه تشكيل دهند.
r. به ازای چه اعدادى

شما در سؤال 1 تحت عمل تفريق گروه تشكيل مىدهند؟
F
در سؤال Y تحت عمل تقسيم گروه تشكيل مىدهند؟ ه. اگر e f e اعضاى
 \& ع. اگر a a $a^{r}$ با هر وارون راست است و از اين رو وارن عضو a يكتاست.



^. نشان دهيد هرگروه (.
 نتيجهگيـرى كنيـد نـادرسـت اسـتـ.

زيرگروهها
 باشد آنگاه $H$ يى زيرگروه $G$ نام دارد. هرگاه $G \neq H$ آنگاه $H$ يك زيرگروه سره نام دارد. كوحكترين زيرگروه شامل يك عضو مفروض $a$ با

 مغهوم مرتبة يك عضو را به دست مـىدهند. براى هر عضو a مرتبة آن كوحكترين عدد

صحيح مثبت $n$ است كه $a^{n}=e$.
•.



 زيرگروهى از $H \cup K$ ץا . اگر گروه ( $)$ اعضايى از $\mathbb{R}$ مطمئناً به $H$ تعلق دارند؟ آيا اعداد صحيح به H تعلق دارند؟ (با توجه به اين سؤال ( $\mathbb{Z},+$ ) زيرگروه ( $\mathbb{Z}$ ) توليد شده به وسيلهُ ا ناميده مىشود و برحسب

 مطمئناً در H هستند؟ (زيرگروه توليد شده به وسيله بر اعداد صحيح نوج است.) (اگ اگر 10 وسيله جايگشتهاى رأسهاى آن باشد رأسها بنويسيد و آنها را به صورت هندسى به عنوان تقارنهاى مربع توصيف كنيد. اين
 توليد شده به وسيلهُ $\alpha$ حيست؟ به ترتيب زيرگروه . $<1>,<\beta \alpha^{r}>،<\beta \alpha^{r}>$ ، $<\beta \alpha>$

伍 $\alpha^{r}=I$ .


گروهها، راهى بد هندسه
توان مثبت n براى ${ }^{\text {H }}$ را بيابيد كه از
 كه باوسيلة (IYY) توليد مىشود جيست؟


گروههاى دورى: گروههاى توليد شده به وسيلهُ يى عضو


 يك زيرگروه G است. آيا هر زيركروه G كه شارئ

در بر گيرد؟ ماند قبل اين زيرگروه را با \gg ا -Y. يكى زيرگروه بهصورت >

يك عضو به يك زيرگروه دورى دري موسوم است


 وجود دارند؟ مرتبه هر يك از از اين اعضا جيست
 وجود دارند؟ مرتبهُ هر يك از ازين اعضا جريا جيست؟
 آيا همة اين زيرگرورهها دورى هستند؟

 گفت؟ צז. گروه (



G هرگاه G يك گروه دورى نامتناهى است ثابت كنيد هر زيرگروه G دورى است. .YV
 $n$

 نماى مثبت باشد. ثابت كنـيد اگر k يك عدد صحـيـع مـثبت كوجكتر از است آنگاه هيج عضوبه صورت $H=<g^{a} \gg g^{l a+k}$ نمىتواند در $H$ باشد. نتيجه بخير

گروههاى توليد شده به وسيله دو اگر يى گروه شامل اعضاى a $b$, باشد آنگاه به روشنى شامل است. در ارتباظ با رابطهُ بين اعضاى a $a$, ${ }^{\text {اع }}$ جه اعضاى ديگرى را بايد داشته باشد.
 نمايش داده مىشود. مثلاً سادهترين رابطه بين a و b هرگاه آنها جايگشتهاى دورى هر مجزا


 an $b=b a^{n}$

|  | $a^{i} \quad b a^{l}$ |
| :---: | :--- | :--- |
| $a^{m}$ |  |
| $b a^{n}$ |  |

ثابت كنيد مجموعة $\left\{a^{n}, b a^{n} \mid n \in \mathbb{Z}\right\}$ بسته است و آنگاه اثبات زيرگروه بودن آن را كامل كنيد.

(نيازى به استقرا نيست تنها لازم است سؤال بهعلاوه هزگاه عضو b مرتبه r داشته باشد با يُر كردن جدول ضر

گروهها، راهى به هندسه

|  | $a^{i}$ | $b a^{j}$ | $b^{r} a^{k}$ |
| ---: | :--- | :--- | :--- |
| $a^{l}$ |  |  |  |
| $b a^{m}$ |  |  |  |
| $b^{r} a^{n}$ |  |  |  |

ثابت كنيد مجموعة


 نتيجه بگيريد


صحيح
(MF

צץ. هرگاه (
 عامل مشترك m $n$ و برابر با $k$ باشد مرتبة $a b$ جيست؟


 (آبلى نام دارد.

گروههای دو وجهى
$a b=b a^{-1}$ رابطهُ ديگرى كه ممكن است بين دو عضو $a$ و $b$ از يك گروه برترار باشي




 كنيد > > $a, b$ >
 كنيد
 با اين جايگشتها را نام بريريد. $a b=b a^{-1}$ ر أץ ثابت كنيد $a^{n} b=b a^{-n}$ كنيد $b a^{\dagger} b=a^{-r}$ در نتيجه به ازاى هر عدد صحيح n تعييم دهيد. با يُر كردن جدول ضا

|  | $a^{k}$ | $b a^{l}$ |
| :---: | :---: | :---: |
| $a^{m}$ |  |  |
| $b a^{n}$ |  |  |

ثابت كنيد مجموعة بودن آن را كامل كنيد.
 توليد مى شود. ثابت كنيد $G$ شامل $a b=b a^{-1}$




## گروههاى توليد شده بهوسيلهُ مجموعههایى بزرگتر

 با نوشتن

گروهها، راهى به هندسه
 مىكن. \&F. جايگشت (
(IFV
 را مى تاتوان به صورت حاصلضر با را توليد مىكنند.
 مىتوان يك دوران را به صورت حاصلضا كه هر تبديل به صورت كه هر تبديل به صورت مجموعه بازتابها گروه اقليدسى را توليد مىكند.
 كنيد كه حاصلضرب هر حهار بازتاب يا يا حاصلضربا
 برابر با يك بازتاب تنها يا حاصلضرب سه بازتاب است.

يكر يختى
جه وتت مىتوانيم بگوييم دو گروه يكساناند؟ در برخى حالتها بررسى اين مطلب


 حالا اين نوع امكان را بررسى مىكنيم.


تقارنهاى آن زيرگروهى از



دوباره هر يک از اعضاى اين گروه هندسى را مىتوان به صورت يك طوللايى در يا يك نگاشت از جفتهاى دختصات (x,y) نوشت. سؤال FI. را بينيد.

اه. گروه تقارنهای يك مثلث متساوىالاضلاع rD
(يك) يك زيرگروه r
 اضلاع مثلث نمايش دهيد.
دو فهرست از اعضاى اين گروهها ارائه دهيد كه به سادگى اعضاى دو گروه را با هم جور كند.
(اگر يك تناظر يك به يك از اعضاى گروه G با اعضاى گروه 'G




$$
. G \cong G^{\prime}
$$

 جدولهاى ضرب را بيابيد و بگوئيد براى يكريختى بين اين دو گروه، حگگه اعضا بايد تناظر يابند.
rهr. با استفاده از اين قرارداد كه حاصلضرب ab در سطرى قرار مىگيرد كه a سمت چی و b در بالاى آن باشد عمل دوتايى روى يک مجموعهٔ متناهى را مىتوان به وسيلهُ يك جدول ضرب نمايش داد.

|  | $b$ |
| :--- | ---: |
| $a$ | $a b$ |

برای جدولى كه در زير ارائه مىشود بگوييد چخگونه عضو همانى را خواهيد يافت. ويزگى بستارى .را بررسى كنيد و يك واون برا براى هر عضو بيابيد.

$$
\begin{array}{c|cccc} 
& a & b & c & d \\
\hline a & a & b & c & d \\
b & b & a & d & c \\
c & c & d & a & b \\
d & d & c & b & a
\end{array}
$$

با استفاده از سؤال شيّ دهيد جرا اعضاى يك سطر (يا يك ستون) جدول يك گروه بايد متفارت باشند.
ئ

 يك يكريختى با گروه نمايش داده شده در سؤال rيره نشان دهد.

|  | $p$ | $I$ | $q$ | $r$ |
| :---: | :---: | :---: | :---: | :---: |
| $p$ | $I$ | $p$ | $r$ | $q$ |
| $I$ | $p$ | $I$ | $q$ | $r$ |
| $q$ | $r$ | $q$ | $I$ | $p$ |
| $r$ | $q$ | $r$ | $p$ | $I$ |


|  | $I$ | $l$ | $m$ | $n$ |
| :---: | :---: | :---: | :---: | :---: |
| $I$ | $I$ | $l$ | $m$ | $n$ |
| $l$ | $l$ | $m$ | $n$ | $I$ |
| $m$ | $m$ | $n$ | $I$ | $l$ |
| $n$ | $n$ | $I$ | $l$ | $n$ |

هاه جدول كيلى

| 0 | 1 | $r$ | $r$ |
| :---: | :---: | :---: | :---: |
| 1 | 1 | $r$ | $r$ |
| $r$ | $r$ | $r$ | 1 |
| $r$ | $r$ | 1 | $r$ |

 كنيد G تحت عمل تناظر (I است. توابع ا
$a \mapsto[x \mapsto x . a]$ \&\& هرای هر يک ازگروههاى با جدول كيلى

|  | 1 | $r$ | $r$ | $r$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $r$ | $r$ | $r$ |
| $r$ | $r$ | $r$ | $r$ | 1 |
| $r$ | $r$ | $r$ | 1 | $r$ |
| $r$ | $r$ | 1 | $r$ | $r$ |


|  | 1 | $r$ | $r$ | $r$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | $r$ | $r$ | $r$ |
| $r$ | $r$ | 1 | $r$ | $r$ |
| $r$ | $r$ | $r$ | 1 | $r$ |
| $r$ | $r$ | $r$ | $r$ | 1 |

جهار جايگشت I تناظر $a \mapsto[x \mapsto x . a$ در هر حالت يك يكريختى است؟ . برای هر گروه (. . هV از $S_{G}$ را تشكيل مىدهندر دهيد اين زيرگروه $S_{G}$ با (G, ${ }^{\text {( }) ~ \text { يكريخت است. }}$

 ه^ه
 -\%. يكريخت است.
اء. درگروه موبيوس با استفاده از اين واقعيت كه بايدارساز م گروه تشا

 ( $\mathbb{R},+$ )

گروهها، راهى به هندسه
rو. اگر يی گروه دورى شامل n عضو متمايز باشد دربارة مرتبهٔ يكى از مولدهاى آن جه مىتوان گفت؟


 צף. هرگاه همانى 'G است ثابت كنيد Y Y
 8^. هرگاه '




خلاصdٔ مطالب
مجموعهاى مانند G كه يك عمل دوتايى (پ.) روى آن تعريف شده تعريف است يك گروه نام دارد هرگا

$$
\text { (يك) به ازاى هم؛ a.b } b \in G ، a, b \in G \text { (بستار)، }
$$




$$
\text { (همانى)، a.e =e } a=a
$$

(جها) به ازای هر a

$$
\text { a. } a^{-1}=a^{-1} \cdot a=e
$$

عضو همانى در هر گروه يكتاست. عضو واون هر هر عضو گروه يكتاست. سؤالهاى جوابهاى $x$ در معادلههاى $x . a=b, a . x=b$ يكتا هستند. V.f.0
 سؤال 10

باشـد آنگـاه H يك زيرگروه G نام دارد.

اشتراك دو زيرگروه يك زيرگروه است.
 سؤال نمايش داده مىشود و زيرگروه توليد شده به وسيلة h $h$ نام دارد.

تعريف سؤال Yo مىشود.

هر زيرگرهه يك گروه دورى، دورى است.
سؤالهاى
rA.rV

تعريف


تعريف هرگاه $\alpha$ ه $\alpha$ يك دو سويى گروههـا باشد و به ازاى هر سؤال (a.b) $\alpha=(a \alpha) .(b \alpha) ، a, b \in G$ ( مىشوند و $\alpha$ يك يكريختى نام دارد.

اگر


 (IAAY)













1) C. Jordan
2) A. Cayley
3) W. Dyck
4) H.Weber
5) Disquisitiones Arithmeticae
6) A.N.Whitehead
7) B.Russell

## جوابهای فصل

© $\mathbb{C}, \mathbb{R} \mathbb{Q}, \mathbb{Z} .1$

$$
\mathbb{C}-\{\circ\}, \mathbb{R}-\{\circ\}, \mathbb{Q}-\{\circ\} \cdot \boldsymbol{r}
$$

. $c=0$. بنابراين مجموعة تك عضوى $a-(b-c) \neq(a-b)-c . r$ تها گروه تحت عمل تفريق است $\{0\}$
( $a /(b / c) \neq(a / b) / c$ مگر اين كه 1 . . $\mathrm{C}= \pm$

$$
\begin{array}{r}
e=e \cdot f=f . \Delta \\
. a^{l}=a^{l}\left(a . a^{r}\right)=\left(a^{l} . a\right) a^{r}=a^{r} .9 \\
a x=b \Rightarrow a^{-1}(a x)=a^{-1} b \Rightarrow x=\left(a^{-1}\right) b \cdot a\left(a^{-1} b\right)=. Y \\
b \cdot\left(a^{-1} b\right)^{-1}=a .
\end{array}
$$

بنابراين يى جنين عضوى وجود دارد. $e . e=e$. 1

$$
a \cdot a=a \Rightarrow a^{-1}(a \cdot a)=a^{-1} a \Rightarrow a=e
$$

. $b^{-1} a^{-1}(a b)\left(b^{-1} a^{-1}\right)=\left[(a b) b^{-1}\right] a^{-1}=a a^{-1}=e .9$
يكتاى -1• (


 r . $ا$ آنها
 . $\left\{I, \alpha, \alpha^{\varphi}, \alpha^{r}\right\}$
$.\langle\beta\rangle=\left\{I, \beta, \beta^{r}\right\} \cdot r .1 я$ (IV | \^. مرتبهُ I
信

گروهها، راهی به هندسه

 ． $. a b=g^{n+m}=g^{m+n}=b a$ آنگا $b=g^{m}, a=g^{n}$ اگץ

基
 ，
 دارد．سیس شبيه سؤال
 نظر است．اگ， $r=s$ （ $g^{l a}$ Ma

$$
a^{n+1} b=\left(a^{n} \cdot a\right) b=a^{n}(a b)=a^{n}(b a)=\left(a^{n} b\right) a=\left(b a^{n}\right) a=b a^{n+1}
$$

مثلاً و وارن $b a^{n}$ برابر $b a^{-n}$ است．


$$
(a b)^{n+1}=(a b)^{n}(a b)=a^{n} b^{n}(a b)=a^{n} a b^{n} b
$$

$$
\begin{aligned}
& \text {.9.MF } \\
& \text { هr. } \\
& \text { عr. } \\
& . m n / k . r \vee \\
& . b=(I Y)(\text { \&VAQ。) } \cdot a=(1 Y)(Y F \Delta) . Y \wedge \\
& . b a^{n} b=a^{-n} \text { به همين نحو } \cdot b a^{r} b=b a a b=b a b b a b=a^{-1} \cdot a^{-1} \cdot \mathrm{FY} \\
& . G=\left\{a^{i},\left.b a^{j}\right|^{\circ} \leq i, j<n\right\} . \operatorname{Fr}
\end{aligned}
$$

$$
(I F Y)=(I Y)(I Y),(I Y Y)=(I Y)(I T) ،(I)=(I Y)(I Y) \cdot F F
$$

( مجاور را مى تازوان يا به صورت يك


 Fq. سؤال FY.r را برال بينيد.

(I)
(1) $\quad z \mapsto z \quad(z, y) \mapsto(x, y)$
(IY)( $(Y)$
(IT) $z \mapsto \bar{z} \quad(x, y) \mapsto(x,-y)$
(IY)(YY) (YY) $\quad z \mapsto-\bar{z} \quad(x, y) \mapsto(-x, y)$
(IY)(YY) (IT)(YY) $\quad z \mapsto-z \quad(x, y) \mapsto(-x,-y)$

. $(\backslash Y \Psi) \leftrightarrow(a c e)(b d f),(r \Psi) \leftrightarrow(a f)(b e)(c d)$ ( $. a^{\gamma} \leftrightarrow \alpha^{\gamma}, a \leftrightarrow \alpha, e \leftrightarrow I . \Delta r$
 . $\{I, p, q, r\}$. $\Delta F$
供 $x \mapsto x \cdot Y . \Delta \Delta$


گروهها، راهى به هندسه

كـه يـك يكريختــى اسـت.

$$
. x y \mapsto \log x y=\log x+\log y . \& ץ
$$

F\&. هر يك مرتبه n دارد.

$$
. a^{i} \leftrightarrow b^{i} . g 千
$$


(a.e) $\alpha=(e . a) \alpha=a \alpha$ بذا $a . e=e . a=a . q$
( $e \alpha, a \alpha \cdot e \alpha=e \alpha \cdot a \alpha=a \alpha$
( $\left.g . g^{-1}\right) \alpha=\left(g^{-1} . g\right) \alpha=e \alpha$ بنابراين $g . g^{-1}=g^{-1} . g=e .9 V$

$$
\text { همانى } g \alpha \cdot g^{-1} \alpha=g^{-1} \alpha \cdot g \alpha=e \alpha=
$$

.8^
اما اعضاى با مرتبه يكسان تحت يك يكريختى بايد با هم جور شوند. .99

F Y 1 تعداد اعضاى از مرتبة
V 1 مكعب مستطيل
pr P 1 P
rol

$$
D_{\mu}
$$

بنابراين هيج يكريختىيى امكان ندارد، زيرا اعضاى با مرتبه يكسان بنا به سؤال \&^ بايد جور شوند.

## v

## انعكاسهاى صفحهُ موبيوس و تصوير گنجنگاشتى

در اين نصل يك مثال از يك گروه توليد شده به وسيلة همة انعكاسها را را كهروه موبيوس


 دارد كه تابع همانى تنها تابع


 يكريختى حفظ ساختار هندسى است.
 هيلبرت وكوهن - وسن؛ صفحههاى


انعكاس




1) Forder 2) Yaglom 3) Hille

گروهها، راهى به هندسه

با جيست؟ (سوال
r. اگر
 آيا هر دايره گذرنده از $A \neq B$

 هرگاه $\alpha$ يى تبديل موبيوس باشد دربارة بگويد؟ هرگاه F F صفحه موبيوس كه هر جفت نقاط منعكس و نيز ه ا را با مركز $\sum$ ر مبادله مىكند تعريف مىكنيم. در حالتى كه $\sum$ دايرة ا نقاط ثابت يك انعكاس نسبت به $\sum$ چه هستند؟ ه. هرگاه دايرة S بر $\sum$ عمود باشد نگارئ S تحت انعكاس نسبت به \&. هرگاه L تطرى از $\sum$ باشد نگاره $L$ تحت انعكاس نسبت به
 . $z^{\prime}=\left(a^{\gamma} / r\right) e^{i \theta}$ آنگار $z=r e^{i \theta}$ MF.F 1. هركاه دو دايره مركز يكسان و شعاعهاى متمايز a و b داشته باشند مركز را بهعنوان
 هندسى از تبديل مركب ارائه دهيد. 9. ثابت كنيد هر تشابه مستقيم را مىتوان به صورت حاصلضرب دو بازتاب و دو انعكاس نوشت. • سؤال F.Y) استاز استفاده كرده و ثابت كنيد هر تبديل موبيوس حاصلضر بیى از جمعاً تعدادى نوج بازتاب و انعكاس است. II. تشابهها و شباهتهاى هندسى بين يك بازتاب و يكى انعكاس نسبت به يكـ دايره را توصيف كنيد. هرگاه اصطلاح (انعكاس نسبت به خط مستقيم) را به معناى بازتاب به كاربريم چگونه گروه تبديلهاى صفحةٌ موبيوس توليد شده به وسيلة انعكاسها به موبيوس مربوط مىشود.

Y ا . هركاه
 به اين دايره به صورت از a، b، c و $a$ اين ابنعكاس را مىتوان به صورت

$$
z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d}
$$

با $a d-b c \neq 0$ نوشت.
Y Y . نشان دهيد حاصلضرب دو انعكاس يك تبديل موبيوس است. . دربارة يك تبديل كه حاصلضربى از تعدادى نوج انعكاس است جه مىتوان . If

كفت؟
10. صورت كلى جبرى هر تبديلى را كه مىتوان به صورت حاصلضربى از تعدادى

فرد انعكاس نوشت ارائه كنيد.
عا. آيا هر تبديل در گروه توليد شده به وسيلهُ انعكاسها بايد يا يك تبديل موبيوس يا حاصلضربى از يك تبديل موبيوس و يك بازتاب باشد و از اين رو مجموعهُ خطها و دايرههاى صفحئ موبيوس را حفظ مىكند؟ هر جنين تبديلى يك تبديل مستدير نام دارد و


را ثابت نمىكنيم.
 را تحت يك انعكاس نسبت به دايرهاى به مركز N و شعاع NO را بيابيد. 1^. هرگاه A $A$ و نقاط روى محيط يك دايرi $\sum$ باشند نگارئ خط $A B$ تحت انعكاس نسبت به $\sum$ خريست؟
19. هرگاة
 منعكس B نسبت به $\sum$ است. نشان دهيد 'B روى دايرئ به قطر $O A^{\prime}$ د $O$ قرار دارد. منعكس l نسبت به $\sum$ خيست؟

تصوير گنجنگاشتى سؤالهاى •YA_Y نشان مىددهند كه نگارة يكى دايره تحت تصوير گنجنگاشتى يا يى

گروهها، راهى به هندسه

دايره يا يك خط مستقيم است. روش اثبات در نظر گرفتن تصوير گنجنگاشتى به صورت جزئى از يك انعكاس سهبُعدى است .Y. هر هرگاه

 مبادله مىشود، با استفاده از سؤال IV نگارة يك صفحهئ مماس بر نسبت به $\sum$ بيابيد.


 را تحت انعكاس نسبت به يك كره بيابيد.
 P , ماهيت

$$
\begin{aligned}
& \text { ، } O P>a \text { (يك) } \\
& ، O P=a \text { (ب) } \\
& \text { (سه) }
\end{aligned}
$$

هY. آيا هر دايرئ روى يك كره معطع يك صفحه با آن كره است؟
 سبس نگارة يك دايره را تحت تصوير گنجنگاشتى بيابيد.


گنجنگاشتى را بيابيد.
 بررسى اين كه تحت تصوير گنجنگاشتى دايرها ها بروى دايرهما يا خطا خطهاى مستقيم
 كردن زاويههاى تقاطع را بايد ثابت كنيم. استفاده از يك كرئ شفاف يا سيمى مىتواند مفيد
99. هرگاه دو خط مستقيم در صفحه يكديگر را در نقطهُ P تطع كنند و گنجنگاشتى P باشد دربارئ خههاى روى كره كه بروى دو خط مستيتيم مفروض نگاشته مىشوند جه مى توان گفت؟ اگر دو خم هموار يكديگر را در نتطئ P تطع كنتد آنگاه زاويهٔ بين خمها زاويهُ بين مماسهاى بر خمها در P تعريف مى مشود.

 فرض كنيد NS قطر يك كرة
 و فرض كنيد l خطى در صفحهٔ صفحه گنجنگاشتى دايره C ریى $C$ است چرا $n$ بايد بر $C$ مماس باشد؟


П $\prod_{N}$ د.


گروهها، راهى به هندسه

هرگاه خطهاى


نگاشته مىشود؟
بنا به سؤال ا



 تحت تصوير گنجنگاشتى جه مى متوان گفت؟
 به ترتيب نگارهماى " دربارة دايرههاى گذرنده از دربارة دايرههاى گذرنده از

 كه روى يى كرة $\sum$ خرار دارد جند خط گذرنده از P وجود دارند كه در P بر كرئ مماساند و بر S عمودند؟ هr. هركاه
 دايرة S را تطع كند. نتطة V V رأس مخروط مماس بر $S$ كا نام دارد.

 ديگرى بايد در صفحئ دايرة C $C$ قرار گيرد. ry
 ^r. هرگاه دايرة 'S در در صفحه، تصوير گنجنگاشتى دايرة


 از كره حول يك تطر تناظر مىیابد جه مىتوان گفت؟

كره́ ريمان
حالا فرض مىكنيم ON قطر كره $\sum$ برابر با واحد باشد ر صفحئ مماس در
 مىكيمه، در واقع نگارههاى نقاط كره تحت تصور
 شده را كرْ ريمان مىىناميم. اFI. بررسى كنيد يكى بازتابكرة ريمان نسبت به صفحئ تطرى عمود بر ON نگاشت

$$
z \mapsto \frac{1}{\bar{z}}
$$

جr种. .FF
 \&F. هركا.

$$
\alpha: z \mapsto \frac{a z+b}{c z+d}
$$

 و نتيجهيرى كنيد

$$
c \bar{c}\left(\frac{b c-a d}{b c}\right)=a \bar{a}+c \bar{c}
$$

$$
b \bar{b}\left(\frac{b c-a d}{b c}\right)=b \bar{b}+d \bar{d}
$$

با در نظر گرفتن نگارههاى ا و اـ ثابت كنيد $a \bar{a}+c \bar{c}=b \bar{b}+d \bar{d}$ و


گروهها، راهى به هندسه

\[

\]

با ضرب صورت و مخرج در يك عدد مناسب نشان دهيد هر دوران كرئ ريمان به صورت

$$
z \mapsto \frac{a z+b}{-\bar{b} z+\bar{a}}
$$

است.


$$
\alpha: z \mapsto \frac{a z+b}{-\bar{b} z+\bar{a}}
$$

(يك) ثابت كنيد نگارء يك جفت از نقاط متناظر روى كره ريمان تحت $\alpha$ يك جفت نتطهُ متقاطر است، يعنى $\alpha$ تطرها را را حغظ
 عظيمه تحت $\alpha$ دايرهاى عظيمه است (سه) با استفاده از سؤال شار FF.F ثاببت كنيد $\alpha$ يك جفت نقاط متقاطر مثلاً C، D را ثابت نگاه مىدارد.


 (شش) نگارة دايرة (ينج) تحت يك دوران

 حالت (ينج) يكى است (هشت) فرض كنيد $P$ و $Q$ دو نتطه دلخواه روى كرء ريمان باشند كه متقاطر نيستند و
 عظيمه و زاريهها تحت $\alpha$ مثلث كروى 1 كـرير
 نحوى كه $\alpha$ روى كر: ريمان به صورت يك طولبايى عمل مى

انعكاسهاى صفحةٔ موبيوس وُ تصوير گنجنگاشتى
 يكريختى بين تبديلهاى مستدير صفحةٔ موبيوس وتبديلهاى حافظ دايرها ازكره رابه دست دهد.

خلاصئ مطالب

 همجنين O $O$, 0 نقاط منعكس هستند.

دو نقطهُ متمايز B , A نسبت به يك دايرة


تعريف سؤال F F منعكس نسبت به دايرf مفروض و نيز. مركز دايره و ه ر را مبادله مىكند.

تضوال تضيه $\quad$ تر تبديل موبيوس حاصلضربى از تعدادى زوج انعكاس است.
تضيه تروه توليد شده به وسيله انعكاسها، مجموعه دايرهها و خطها را بروى مجموعهٔ سؤال 18 دايرهها و خطها مىنگارد.

مجموعهُ دايرههاى روى كره تحت تصوير گنجنگاشتى بروى مجموعئ دايرهها سؤال PA , خطهاى صفحأ موبيوس نگاشته مىشود.

تحت تصوير گنجنگاشتى زارية بين دو خم حفظ مىشود. سؤال

يك تصوير مخروطى روى كره با انعكاسى از صفحه تحت تصوير گنجنگاشتى سؤال 1 ت تاظر مىيابد.

گروهها، راهى به هندسه
يادداشت تاريخى
بررسى ا.ن. موبيوس دربارئ تبديلهاى توليد شده به وسيله انعكاسها (


 بررسى قرار داد.

## جوابهای فصل .$a^{r} .1$

Y．

 باشد عمودمنصف A $A \alpha B \alpha$ است． F．

 ．
9 9解 $z \mapsto e^{i \theta} z+b$ حاصلضرب $z \mapsto r z$

 II．هر دو مرتبه
 حاصلضرب تعدادى نوج انعكاس گروه موبيوس را به دست مى دهدهد． $. d=-\bar{s}, c=1 \quad b=R^{r}-s \bar{s}, a=s . \mid Y$ rir

$$
\alpha: z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d} \quad, \beta: z \mapsto \frac{A \bar{z}+B}{C \bar{z}+D}
$$

$$
\begin{aligned}
& \text { 的 } \alpha \beta \text { را محاسبه كنيد. } \\
& \text { أ أ آن درگروه موبيوس است } \\
& . a d-b c \neq \cdot \varphi \quad \text { } z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d} .1 \Delta \\
& \text {.18. }
\end{aligned}
$$

．بنابراين $\operatorname{c}$ ، $A \leftrightarrow A^{\prime} . N A^{\prime}=O N \sec \theta ، N A=O N \cos \theta$ ． $1 \gamma$ در O نگاشته نمى $O$ ．


گروهها، راهى به هندسه
19. دايره گذرنده از $A A^{\prime} B$ عمود بر $\sum$ است و لذا $O B$ را در 'B قطع مىكند. منعكس l دايرٔ به تطر 'OA است. Y. اY. كره به تطر NO است.



صفحه است.

$$
\begin{aligned}
& \text {. } \sum \cap \Pi=\phi ، O P>a \cdot \text {. } \\
& \text { (دو) هرگاه } \sum \cap \Pi=\{\text { (ديا } \\
& \text { (سه) هركاه }
\end{aligned}
$$

 صفحئ مماس است؛ بنا به سؤال كره و صفحهٔ مماس در يك دايره متقاطعاند.
rV


的

 خواهد شد و n خط l $l$ را قطع خواهد كرد.
$l_{\text {l }}$ ارو , rr
 .ry. تنها يكى.


$$
O V=\frac{a^{r}}{\sqrt{a^{r}-b^{r}}}
$$

צץ. آنها در صفحةٔ C ترار دارند و عمود بر S هستند، لذا آنها از رأس مخروط مماس
بر S مىگذرند.
 مخروط مماس بر S است. بنابراين رأس مخروط روى AB ترار دارد. ^r.
4.ra. مخروط مماس به استوانئ مماس مبدّل مىشود. تصوير موازى. يعنى بازتاب نسبت به صفحهٔ دايرة عظيمه.
 از اين بازتابها با انعكاسى نسبت به صفحه تناظر مىيابـد دو انعكاس تناظر ميايابد.
دو سF
Fr. Fr. در رأسهاى يك مكعب مستطيل. - $\frac{1}{z} \cdot F F$

F0. FP جون تطرها به تطرها نگاشته مىشوند.

$$
. \alpha \mapsto \sigma \alpha \sigma^{-1} . \upharpoonright \wedge
$$

## رابطههاى همارزى

اين نصل كار غريزى راكه هر فرد در مورد دستهبندى كردن مجموعهاى از اشياء به اقسام

 نوع را گردآورى كنيم مجموعةٌ مزبور را يك ردة همارزى مىناميم.

مطالعة همزمان: نصل r كتاب گرين.


 آيا تعامد دايرهها رابطهاى متقارن است؟ است
آيا تقسيمذيرى اعداد طبيعى رابطهاى متقارن است؟
「. هر هركاه مى رابطهاى ترايا مىشودا اما تعامد انـا
آيا تعامد دايرهها رابطهاى ترايا است؟
آيا تقسيمبذير اعداد طبيعى رابطهاى ترايا است؟
 شود كه

يك انراز P مىناميم. سه نتيجه زير را بررسى كنيد.
 (دو) اگر ( جزئى از P واقع است كه $x$ اسرار دارد. (سه) اگر اري ار
 است.



 و به ازاى هر $a \in P$ تعريف كنيم

$$
R_{a}=\{x \mid x R a, x \in P\},
$$

(دو) اگر


اين مجموعهها ردههاى همارزى P تحت رابطه همارزى R $R$ نام دارند.

 و سبس درايههاى جدول (نماد ل آيا اعضا با هم رابطه دارند يا ندارند. لذا
. $a R b$ نشان مىدهد كه $\frac{a}{b} \sqrt{ }$

در هر يك از رابطههاى زير روى مجموعة متقاسن يا تراياست؟ و در صورتى كه آن يى رابطهُ همارزى است ردههاى همارازى را بهدست آوريد

$$
\begin{array}{c|cccc|cccc|cccc|ccc} 
& a & b & c & & a & b & c & & a & b & c & & a & b & c \\
\hline a & \times & \times & \times & & a & \sqrt{ } & \sqrt{ } & \sqrt{ } & & a & \sqrt{ } & \sqrt{ } & \sqrt{ } & & a \\
& \sqrt{ } & \times & \times \\
b & \times & \sqrt{ } & \sqrt{ } & & b & \sqrt{ } & \times & \times & & b & \times & \sqrt{ } & \sqrt{ } & & b \\
c & \times & \sqrt{ } & \times \\
c & \times & \sqrt{ } & \sqrt{ } & & c & \sqrt{ } & \times & \times & & c & \times & \times & \sqrt{ } & & c \\
\times & \times & \sqrt{ }
\end{array}
$$

دو جدول ديگر براى همين مجموعه بهدست آوريد كه هر يك رابطهاى همارزى تعريف كند و در هر حالت ردههایى همارزیى را تعيين كنيد. \&. مشهورترين رابطهُ همارزى رابطهُ برابرى (=) روى يكى مجموعه است. ردهمهاى همارزى در اين حالت جه هستند؟






$$
a \equiv b(\bmod \Upsilon)
$$


هرگاه |
(يك) بررسى كنيد R $R$ يك رابطه همارزيى است،


 اين گروه رابطةٔ R را روى نقاط صفحه به وسيلة
$A \mu=B ، \mu \in M$. هرگاه به ازاى عضوى مانند ARB
تعريف مىكنيم.
(يك) ثابت كنيد R يك رابطه همارزى است.

 M.
-1. هرگاه G گروه تقارنهاى يك ينج ضلعى منتظم باشد با كشيدن يك ينج ضلعى نگارههاى مسكن يك رأس را تحت ده عضو اين گروه مشخص كنيد. اين نگارهها مدار يك رأس را تشكيل مىدهند آند
ننطهٔ ديگرى از ینج ضلعى مانند P را در نظر بگيريد و نگارههاى اين نقطه تحت ده ده عضو G را بهدست آوريد. اين نقاط مدار نتطهُ P تحت G ار ار ششكيل مىدهند. II. هرگاه G گروه دلخواهى از جايگشتهای يك مجموعه A $A$ باشد و رابطة R $R$ روى

A را به وسيلة
، $a \alpha=b ، \alpha \in G$ هرگاه به ازاى عضوى مانند aRb
تعريف كنيم ثابت كنيد R يك رابطة همارزى روى A است. ردههاى همارزى A تحت R مدارهاى G نام دارند. هرگاه G تنها يك مدار داشته باشد G ترايا ناميده مىشود (سؤال هF.Y).



نمايش دهيد.
هرگاه G گروه انتقالهاى صفحهٔ اقليدسى به موازات محور اعداد حقيقى باشد مدارهاى G را در يك نمودار نمايش دهيده
 و نه وسط يك يال باشد سبس همه نقاط هممدار با آن تحت گروه تقارنهاى دورانى حهار وجهى را بيابيد.
طول يك مدار تعداد نقاط آن است. طول مدارى كه يك رأس متعلق به آن است حيست؟ طول مدارى كه وسط يك يال متعلق به آن است حيست؟
\&ا. اسكلت دو جهار وجهى راكه در يك وجه مشتركند در نظر بغيريد. مدارهايىى كه رأسها تحت تقارنهاى دورانى شكل مز بور به آن تعلت دارند بيابيد.

## خلاصهُ مطالب

تعريف

 يك رابطه روى مجموعة A $A$ كه بازتابى، متقارن و تراياست يى راري رابطء هم ارزى نام دارد.

 نام دارند و اينها A را الراز مىكنند.

اگر G يك گروه جايگشت روى يك مجموعهُ S $S$ باشد و يك رابطهُ R روى
演 $a \alpha=b$ مدارهاى G نام دارند.

## يادذاشت تاريخى




 توصيف مطلب حاصل كار ا. ن. ويتهد و ب. راسل (1910) است.

1) Disquisitiones Arithmeticae

جوابهای فصل
ا. تعامد متقارن است اما تقسيمذذيرى نه. Y. Y. تقسيمذيرى تراياست اما تعامد نه. .
. متقارن $a R c \Leftarrow c R a$ بنابراين $c \in R_{a} \cap R_{b}$ (دور


$$
R_{a} \subseteq R_{b}
$$

(سه) هر a در






. $B \nu=C, A \mu=B$
(دو) دايرة به مركز م
(سه) دايرههايى به مركز هر ه

Ir I I
FIF خطهاى گذرنده از • بدون درنظر گرنتن ••
خطهاى موازی با محور حقيقى . If

نتطهُ وسط طولى برابر با $\&$ دارد.


## 9

## هممجموعهها




 به شرطى كه گروه متناهى باشد.
 اــه نصل \& كتاب گرين؛ بخش

 سهردة به دست آمده ردههاى باتيمانذه به ييمانذ " به صورت $a \equiv b($ mod $)$ نوشته میشود.

 ردة به دست آمده ردههاى باقيمانده به بيمانهُ n $n$ نام دارند و معمولاً $a R b$ در اين حالت بهصورت $a \equiv b($ modn $a$ نوشته مى $A$ بشود.


[^6] ردههاى همارزیى را بيابيد.
 تع $x y^{-1} \in H$ همارزى است. در اينجا ردههاى همارزى هممجموعه يا به عبارت دتيقتر هممجموعههاى راست در G نام دارند. ه. با با نمادگذارى سؤال f نشان دهيد اگر xRa آنگاه بهازاى عضوى مانند
داريم ha = x.

 H برابراند.
 Y. هرگاه D گروه طولباييهاى مستقيم صفحة اتليدسى و T $T$ گروه انتقال باشد اعضاى

 اعضاى واقع در يك هممجموعه راست T $T$ در $\Delta$ ر را تو اتصيف كنيد.

 متناهى بايد تعداد يكسانى عضو داشته باشند؟

| $h_{\curlyvee}$ | $h_{1} a$ | $h_{\curlyvee} b$ |  |
| ---: | ---: | ---: | :--- |
| $h_{\curlyvee}$ | $h_{\curlyvee} a$ | $h_{\curlyvee} b$ |  |
| $h_{\curlyvee}$ | $h_{\curlyvee} a$ | $h_{\curlyvee} b$ |  |
| $\vdots$ | $\vdots$ | $\vdots$ |  |
| $h_{n}$ | $h_{n} a$ | $h_{n} b$ |  |

-1. هرگاه G يك گروه متناهى با يك زيرگروه H باشد با استفاده از اين واتعيت كه

هممجموعدهاى راست H گروه G را افراز مىكند (سوال F.^ ) نشان دهيد | H | عاملى ار | $\mid$ | است. (تضيهُ لاگرانز)
عدد | $\mid$ | مرتبه گروه G و عدد | $H$ | $\mid$ مرتبه زيرگروه $H$ نام دارد.



 بررسى كنيد همء امكانها لزوماً اتفاق نمىافنتئند. (فعالً مرتبهُ اعضا را مورد توجه قرار دهيد بعدأ زيركروههاى ممكن را بررسى خواهيم كرد.)

 مى شود. شاخص H در G را در حالتهاى زير بيابيد.

$$
\begin{aligned}
& \text {. } H=<a^{r}>, G=<a>=C_{\varepsilon} \text { (یی) } \\
& H=<a^{r}>, G=<a>=C_{\varphi}(\mathrm{s}) \\
& . H=A_{r}, G=S_{r}(س)
\end{aligned}
$$

 ار تقارنهاى ينجضلعى را بر حسب جايگشتى از اين رأسها بنويسيد. اعضاى اين گروه تقارن

 با استفاده از سؤال Y Y Y ز زيرمجموعه نگاشت ا

 ريرمجموعة اعضاى نگاشت تحت اين گروه به زيرگروه بإيدارساز 1 مربوط مى
 از تقارنهاى دورانى حهار وجهى را بر حسب جايگشتى از اين رأسها بنويسيد. اعضاى

گروهها، راهى به هندسه
 آنهايى كه

 آنگاه

 بيابيد.





زيرمجموعه را ارائه دهيد؛
(سه) هرگاه دو عضو $\alpha$ هر $\beta$ از $G$ تحت اين تابع نگار: يكسانى داشته باشند دربارئ عضو شريا $\alpha \beta^{-1}$ جى مىتوانيد بغوييد؟
هرگاه ${ }^{\text {, }}$ زيرگروه $G$ را نمايش دهد كه $ا$ را بايدار مىسازد ثابت كنيد تابع

$$
G_{\backslash} \alpha \mapsto \backslash \alpha
$$

با دامنة هممجموعههاى راست \G و بُرد مدار $\$ خوش تعريف و يك به به يك است.
 كه شامل ا است به كار بريد.

 نتيجه سؤال \^\ را بررسى كنيد.

(در) (دی) يك ريه، رأس،
(سه) يك يال را مشخص كنيد.
 را برای توصيف اعضاى واقع در يك هممجموعة راست اين پايدارساز به كار بريد.

 ردههاى همارزى را تحت اين رابطه هم
 مانند $x=a h ، h \in H R a ، h \in H$. بهعكس ثابت كنيد به ازاى هر هرگاه $H=\left\{h_{\backslash}, h_{\boldsymbol{r}}, \cdots, h_{n}\right.$ ردأ همارزى شامل $a$ را نمايش دهيد. معمولاً اين ردi همازرى با aH نمايش داده مىشود.




جب استفاده كنيم؟
צז. آيا شاخص H $H$ در $G$ برابر با تعداد هممجموعههاى چب $H$ است.
 $\{e, b\},\left\{e, a^{r}\right\}$ مجموعههاى حب و همه هممجموعههای راست هر يك از زيرگروههای را بيابيد.


; زمال هستند؟


$$
. a \in a H, a \in H a
$$

هرگاه H يك زيرگروه نرمال از يك گروه $G$ باشد ثابت كنيد به ازاى هر

$$
. a H=H a
$$

هرگاه H يك زيرگروه غيرنرمال از يک گروه G $G$ باشد ثابت كنيد به ازاى عضوى مانند هريف خود از يى زيرگروه نرمال را بررسى كنيد. $H a \neq a H ، a \in G$
 دورانهاى با مركز • باشد، بررسى كنيد آيا T $T$ يا زيرگروههاى نرمال D هستند؟ تنها يافتن

يك $\alpha$ براى نشان دادن R $R \neq \alpha R$ كافى است اما خلاف آن به ازاى همí طولباييهاى مستقيم $\alpha$ بايد برترار باشد.



يُر كنيد $\left\{e, a^{r}\right\}$

|  | $e$ | $a^{r}$ | $a$ | $a^{r}$ | $b$ | $b a^{r}$ | $b a$ | $b a^{r}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| $e$ |  |  |  |  |  |  |  |  |
| $a^{r}$ |  |  |  |  |  |  |  |  |
| $a$ |  |  |  |  |  |  |  |  |
| $a^{r}$ |  |  |  |  |  |  |  |  |
| $b$ |  |  |  |  |  |  |  |  |
| $b a^{r}$ |  |  |  |  |  |  |  |  |
| $b a$ |  |  |  |  |  |  |  |  |
| $b a^{r}$ |  |  |  |  |  |  |  |  |



$$
H K=\{h k \mid h \in H, k \in K\}
$$


 $. H a . H b=H a b$

خلاصdٔ مطالب
تعريف اگر H يك زيرگروهازگروه G باشد آنگاه رابطة R تعريف شده روى G به وسيلة سؤال هممجموعههاىراست H نام دارند.

هر هممجموعه راست ازيك زيرگروه Ha به صورت

 تضيهُ لاكانز.
 سؤالهاى باشد آنگاه تعداد هممجموعهدهاى راست برابر با تا تعداد هممجموعهوهاى جب「£, I٪


مدار ا وجود دارد.
 سؤال YY به وسيلa هم مجموعههاى جب H نام دارند.

تعريف اگَ N زيرگروهى از يك گروه G است كه هر هممجموعه جب آن يك سؤال YV هممجموعة راست است آنگاه N يكى زيرگروه نزمال G نام دارد.

تعريف اگץ B $A$ ز زيرمجموعههاى يك گروه G هستند آنگا. سو سوال

$$
A B=\{a b \mid a \in A, b \in B\} .
$$

اگر N يك زيرگروه نرمال از يك گروه G است آنگا. سوال سو

$$
(N a)(N b)=N(a b) .
$$













 ا. ميلرَ در د 191 ابداع شدر
3) P. Abbati 4) G. A. Miller

## جوابهای نصل 9

$. r n+r R r . r n+\backslash R \backslash . r n R \circ .1$


$. a R c \Leftarrow b R c, a R b$ بنابراين $(a-b)+(b-c) \in\langle n\rangle$ . $\left\{a^{r}, a^{0}\right\},\left\{a, a^{\dagger}\right\},\left\{e, a^{r}\right\} . r$
. $F$
$e \in H \Rightarrow x x^{-1} \in H \Rightarrow x R x$.
$x y^{-1} \in H \Rightarrow\left(x y^{-1}\right)^{-1} \in H \Rightarrow y x^{-1} \in H$.
لذا $x R y$ نتيجه مىهد $y R x$.

$$
x y^{-1} \in H, y z^{-1} \in H \Rightarrow\left(x y^{-1}\right)\left(y z^{-1}\right) \in H \Rightarrow x z^{-1} \in H
$$

$$
\text { لذا } H=R_{e} \cdot x R z R z y \text {, }
$$

$$
x R a \Rightarrow x a^{-1} \in H \Rightarrow x a^{-1}=h \Rightarrow x=h a
$$

צ. بنا به سؤال ه، $x=h a \Leftarrow x \in R_{a}$ • همحنين . $x \in R_{a} \Leftarrow x R a \Leftarrow x a^{-1} \in H \Leftarrow x=h a$ $h \mapsto h a$ تعريف شده به وسيلهٔ $H \rightarrow R_{a}$ نگاشت $R_{a}=\left\{h_{\wedge} a, h_{\curlyvee} a, \cdots, h_{n} a\right\}$ يك دوسويى است.

 از همه نيمدورهاست. كلاً همه دورانهاى با زاويه يكسان در يك هـ هم دارند.

مىدهند.
II.
 مىتوانند اين مرتبه ها را داشته باشند. همة اعضاى AF مرتبه Y

، $r$ (<br>، $r\left({ }^{\prime}\right)$<br>.r (ده)<br>r $r$ ( $r$ (<br>(ينج)<br><br>: (IY)(YO)(ITYFO)<br>: (IF)(FO)(ITOYF)<br>:(IF)(YY)(IFYOK)<br>(ID)(YF) ( (IOFYY)

 نتطة مدار با يك هممجموعه جور مى مشود.




$$
G_{\backslash} \alpha=G_{\backslash} \beta \Leftrightarrow \backslash \alpha=\backslash \beta \text {. }
$$

1^. طول مدار = شاخص بايدارساز.
19. مدار
 مدار
$\{(1),(I Y)(Y Y)(\Delta Y \&),(\Delta \& Y),(I T)(Y Y),(\Delta Y \mathcal{)}),(I Y)(Y Y)(\Delta \& Y)\}$

rr. استدلالى شبيه سؤال

$$
\begin{aligned}
& \text { (دو) طول مدار \&، مرتبه بايدارساز }
\end{aligned}
$$

$$
\cdot a H=\left\{a h_{1}, a h_{r}, a h_{r}, \cdots, a h_{n}\right\} \cdot \Gamma r
$$

טז. צז. بله.



$$
\left\{a^{r}, a^{r} b=b a\right\}
$$



$$
\cdot\left\{a^{r}, b a^{r}=a b\right\}
$$

( $H$ نرمال است هممجموعג جب $a H \cdot a=e . a=a . e$. YA



-
ץץ


$$
\text { . } x=\left(h, h_{r}\right) a b \in H a b \text { و بنابراين } a h_{r}=h_{r} a
$$

در اين نصل رششى ساده از ساختن يك گرره جديد از دوگرره مفروض را معرفى مىكنيم
 نصل بعد مى الشد كه ساختن گروههاى بردارهاست. سؤال 11 تضيئ كليدى براى تجزيه را رارائه مىدهد.

مطالعهٔ همزمان : بخش ^ 1 كتاب فرالى.
 متشكل از جهار عضو ( همi حاصلضر بهاى مnكن اين اعضا را تحت عمل تعريف شده به وسيلئ

$$
\left(b_{1}, c_{1}\right)\left(b_{r}, c_{r}\right)=\left(b_{1}, b_{r}, c_{1}, c_{r}\right)
$$

نمايش دهيد. آيا جدول حاصل، يك گروه يكريخت با با اين طرين حاصلضرب مستيم
 ( $B$, $C_{r}=\{e, a\}$有 $C_{r} \times C_{r} \times C_{r}$
r. شبيه سؤال r دورى است.

F اين گروه دورى است؟
ه. تعرينى صورى از حاصلضرب مستقيم دو گروه (.
كه سؤالهاى F-I را تعميم دهد. بررسى كنيد تعريغتان حتماً يى گروه ارائه مىدهد. ؟. هرگاه A گروه ضر بی اعداد حقيتى (. ,

با استغاده از نمادكذارى سوال $\&$ آيا عمل تعريف شده با

$$
(a, b)(c, d)=(a c, b c+d)
$$

ر را يك گروه مىسازد؟ يك حاصلضرب مستفيم مىسازد؟ $A \times B$
A. A. يك زيرگروه از حاصلضرب مستقيم A×B بيابيد كه با A و با زيرگروهى يكريخت

با B يكريخت باشد.
. 1 همانى گروه (. سطرها و ستونهاى آرايش زير را توصيف كنيد.

$$
\begin{aligned}
& \left(a_{F}, b_{1}\right) \quad\left(a_{\varphi}, b_{Y}\right) \quad\left(a_{\mu}, b_{Y}\right) \quad\left(a_{F}, b_{\varphi}\right) \quad\left(a_{\varphi}, b_{0}\right) \quad\left(a_{\varphi}, b_{\varphi}\right) \\
& \left(a_{r}, b_{1}\right) \quad\left(a_{r}, b_{r}\right) \quad\left(a_{r}, b_{r}\right) \quad\left(a_{r}, b_{r}\right) \quad\left(a_{r}, b_{\Delta}\right) \quad\left(a_{r}, b_{r}\right) \\
& \begin{array}{llllll}
\left(a_{Y}, b_{1}\right) & \left(a_{Y}, b_{Y}\right) & \left(a_{Y}, b_{r}\right) & \left(a_{Y}, b_{Y}\right) & \left(a_{Y}, b_{\Delta}\right) & \left(a_{Y}, b_{\varphi}\right)
\end{array} \\
& \left(a_{1}, b_{1}\right) \quad\left(a_{1}, b_{Y}\right) \quad\left(a_{1}, b_{r}\right) \quad\left(a_{1}, b_{Y}\right) \quad\left(a_{1}, b_{0}\right) \quad\left(a_{1}, b_{\varphi}\right)
\end{aligned}
$$

-ا. نشـــان دهيــد گـــروه (DF)




$$
\text { - دوا به ازاى } a b=b a ، b \in B, a \in A
$$

ثابت كنيد $G$ با حاصلضرب مستقيم $A \times B$ يكريخت است.




 نمايش دميد.
 متابل را با ها ها به صورت جايگشتهاى وجها
 10. يك دوسويى از

 بردارها به مجموع مستقيم $\mathbb{R} \oplus \mathbb{R}$ دوسوم است.

خلاصهُ مطالب
 سؤال ه دكارتى A×B $A$ تحت عمل تعريف شده به وسيلة $\left(a_{1}, b_{1}\right)\left(a_{r}, b_{r}\right)=\left(a_{1} \circ a_{r}, b_{1} \circ b_{r}\right)$

حاصلضرب مستيم گروهماى A $A$ و $B$ نام دارد.
 و يك زيركروه نرمال يكريخت با B است.




## يادداشت تاريخى





 كانتورّ در اواخر قرن نوز نودهم است


 شدهاند.

[^7]جوابهاع نصل

$$
\begin{array}{llll}
(e, e) & (e, a) & (a, e) & (a, a) .1 \\
(e, a) & (e, e) & (a, a) & (a, e) \\
(a, e) & (a, a) & (e, e) & (e, a) \\
(a, a) & (a, e) & (e, a) & (e, e)
\end{array}
$$

Y ب.


است.
F F. سه عضو مرتبه
 عمل تعريف شده به وسيله
 است. واون (a,b) برابر با (ac $)$ ( $a^{-1}, b^{-1}$ است. $\cdot(a c, b+d) . q$


 9. سطرهاى هم 9 . $A \times\{e\}$


$$
\text { با }\left(a_{r}, b_{r}\right) \mapsto a_{r} b_{r}\left(a_{1}, b_{1}\right) \mapsto a_{1} b_{1} .11
$$

. $b_{1}=b_{r}, a_{1}=a_{r} \Leftarrow a_{1} b_{1}=a_{r} b_{r}$ (يراين
 ك $A \times B=C_{r} \times C_{r} .1 r$

$$
\cdot\left(a_{1}, b_{\curlyvee}, c_{\uparrow}\right)\left(a_{r}, b_{r}, c_{r}\right)=\left(a_{\backslash} a_{r}, b_{\backslash} b_{r}, c_{\backslash} c_{r}\right) \cdot I r
$$





## ${ }^{11}$

## هينُتها و فضاهاى بردارى

اصطلاح (هينت)" يك ساختار جبرى را بهطور مجرد توصيف مىكند كه در آن عملهاى +ـ،
 از يى هيئت F براى ساختن حاصلضربهايى مانند $F$ به كار روند اين گونه حاصلضربهاى دكارتى، نضاهاء) بردارى نام دارند هرگاه با يك عمل مناسب از اعضا و با يك غمل ضرب اسكالر (يعنى اعضاى يك هيئت) تجهيز شوند.

 آنگاه گروه G تعويضبذير يا آبلى نام دارد.

 همراه با توانين توزيعيذيرى
 صحيح (. . (Z,+ ) يك هيئت تشكيل نمىدهند.؟ (


گروهها، راهى به هندسه

| + | 0 | 1 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 |

يك هيئت تشكيل مىدهند؟ اين مجموعه با عملهاى ارائه شده r. آيا مجموعه

| + | 0 | 1 | $r$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | $r$ |
| 1 | 1 | $r$ | 0 |
| $r$ | $r$ | 0 | 1 |


| $\circ$ | $\circ$ | 1 | $r$ |
| :--- | :--- | :--- | :--- |
| 0 | $\circ$ | 0 | 0 |
| 1 | $\circ$ | 1 | $r$ |
| $r$ | $\circ$ | $r$ | 1 |

يك هيْت تشكيل مىدهند؟ اين مجموعه با عملهاى ارائه شده r توزيعيذيرى $a(b+c)=a b+a c$ به ازای $a \neq a$ هم ارز با اين ادعا است كه نگاشت

$$
\text { يك } x \mapsto a x
$$



$$
\begin{aligned}
a \cdot \circ+a \cdot b & =a \cdot(\cdot+b) \\
& =a \cdot \circ
\end{aligned}
$$

و
 باشد، مراحل زير را توجيه كنيد

$$
\begin{aligned}
a . b+a .(-b) & =a \cdot(b+(-b)) \\
& =a \cdot \circ \\
& =\circ
\end{aligned}
$$

a. , $(-b)=-(a . b)$ تتيجهگيرى كنيد \&. با استفاده از نمادگذارى سؤال ه ثابت كنيد

V $a, b \neq 0$ اعضاى يك هيئت باشند با در نظر گرفتن گروه ضربى ثابت كنيد • $a b \neq$ سبس ريك هيئت نيست. ^. غرض كنيد (. (


$$
. b^{r}=a,
$$


 تشكيل دهيد.
9. تابعى يك به يك از ضرب مستقيم

$$
(a, b) \mapsto a+b \sqrt{r}
$$

اراثه مىشود. مجموعة نگارهها تحت اين نگاشت با $\mathbb{Q}[\sqrt{\text { ( }}$ نمايش داده مىشود.
 هرى ( $a$ $(\mathbb{Q}[\sqrt{\Gamma}],+,$. -ا. هرگاه (.

 عمل يك هيئت نيست براى اين منظور با استفاده از سؤال V اعضاى غير صفرى بيابيد كه حاصلضرب آنها برابر با (•, (®) است.

نضاهای بردارى
Fl.اگ
به صورت

$$
\left(a_{1}, a_{Y}, \cdots, a_{n}\right)+\left(b_{1}, b_{Y}, \cdots, b_{n}\right)=\left(a_{1}+b_{Y}, a_{Y}+b_{Y}, \cdots, a_{n}+b_{n}\right)
$$

تعريف مىشود. نشان دهيد F F تحت عمل جمعبردارى يك گروه است.

 جـع بردارى زيرگروه هستند؟

$$
\begin{aligned}
& ،\left\{\left(x,{ }^{\circ}\right) \mid x \in F\right\} \text { ( } \\
& \text { • }\{(x, 1) \mid x \in F\}(\text { دو) } \\
& \text { ، }\{(x,\ulcorner x) \mid x \in F\} \text { (س) } \\
& \text { • }\{(x, y) \mid x+y=\circ\}(\text { ( } 2 \text { ) } \\
& \text { • }\{(x, y) \mid r x+r y=0\}(\text { ( } \\
& \text {. }\{(x, y) \mid x+y=1\} \text { (شن) }
\end{aligned}
$$

(「

$$
\begin{aligned}
& y=0 \text { (یی) } \\
& y=1 \text { (د) } \\
& \cdot r x+r y=\bullet\left({ }^{2}\right) \\
& \text { • } r x+r y=1(\underset{\sim}{\prime}) \\
& \left.\cdot(x, y) \in \mathbb{Z}^{\gamma}\right)
\end{aligned}
$$

كدام يك از اين مجموعهها زيرگروهى از
كه زيرگروه نيستند كدام يك هم يمجموعه زيرگريروهى از If ارائه مىدهند؟

$$
\begin{aligned}
& \text { ، }(x, y) \mapsto(\ulcorner x,\ulcorner y)(\text { ( } \\
& \text { ، }(x, y) \mapsto(y, x) \text { (د) } \\
& \text { - }(x, y) \mapsto(x+1, y)(\text { س }) \\
& \text { - }(x, y) \mapsto\left(x^{r}, y\right)(\text { ( }) \\
& ،(x, y) \mapsto(r x, r y)\left(\begin{array}{l}
\text { (ينج) }
\end{array}\right. \\
& \text { ، }(x, y) \mapsto(\upharpoonright x, r y)+(y, x)(ش) \\
& \text { ، }(x, y) \mapsto(x, x) \text { (هفت) (هغ) }
\end{aligned}
$$


 كرو آبلى تشكيل مىدهد. اگر فرض
 عملهاى جمعبردارى و ضرب اسكالر نضاى بردارى (Vn كنيد.
، $1 \mathrm{v}=\mathrm{v}$ (يك) به ازاى همه
(دو) اگر ه عضو همانى گروه


$$
\begin{aligned}
& \text { ، }(a b) \mathbf{v}=a(b \mathbf{v}) \text { (ينج) } \\
& \text {. }(a+b) \mathbf{v}=a \mathbf{v}+b \mathbf{v} \text { (شش) } \\
& . a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}\left({ }_{\mathrm{H}}\right. \text { ) }
\end{aligned}
$$


 ار موارد زير زيرفضاى VY (

، $\mathbb{Z}^{r}$ (ی)

$$
\begin{array}{r}
\cdot\{(x, x) \mid x \in \mathbb{R}\}(د) \\
\cdot\left\{\left({ }^{\circ}, x\right) \mid x \in \mathbb{R}\right\}(\text { (حه) }) \\
\cdot\{(x, y) \mid a x+b y=1\}(\text { حها) }
\end{array}
$$

حرا بررسى بسته بودن تحت عمل جمع بردارى و ضرب اسكالر كافى است؟


$$
\begin{array}{r}
،\{(x, y, z) \mid a x+b y+c x=\circ\} \text { (یک) } \\
\cdot\{(x, y, z) \mid a x+b y+c z=1\}(د و) \\
\quad\{(x, y, x) \mid a x=b y=c z\} \text { (سه) }
\end{array}
$$

$\{a V \mid a \in F\}$ \} بردار مفروضى از $\mathbf{~ v}$ v باشد ثابت كنيد مجموعه يك زيرفضا تشكيل مىدهد. اين زيرفضا زيرخضاى توليد شده به وسيلة v v نام دارد و
 اسكالر يك بردار غير صفر يك زيرضضاى يك بُعدى نام دارد.

 Vr
 زيرفضاى يك بُعدى يكتا قرار دارد؟

وّدّز واقع (up(u)=Sp(vi.

Y

 . هرگاه . YF

$$
l_{1}(a, b)+m_{\backslash}(c, d)=(1, \circ)
$$

و اسکالرهای

$$
\begin{aligned}
l_{r}(a, b)+ & m_{r}(c, d)=(\bullet, 1) \\
& . S p((a, b),(c, d))=V_{r}(F) \text { نتيجهگيرى كنيد }
\end{aligned}
$$


 (دو) هرگاه (
 ( انجام دهيد. لذا $(l, m)=(c,-a)(l, m)=(d,-b)$

$$
\text { اسكالر (a,b) الاست و ) } S p((a, b),(c, d))=S p((a, b) \text {. }
$$

צץ. هرگاه

 مىشود.


 . $\operatorname{Sp}(\mathbf{u}, \mathbf{v})$


 YQ. آيـا بـه ازاى همـهُ معاديـر

طلاصله مطالب
( $F,+$, .) سوال (دو) (. (
(سه) به ازاى همه مقادير

$$
.(a+b) . c=a . c+b . c, a .(b+c)=a . b+a . c ، a, b, c \in F
$$

حاصلضرب دكارتى $F^{n}=F \times F \times \cdots \times F$ يك نضاى بردارى سوال زير تجهيز شود: (يك) عمل جـع بردارى كه با

$$
\left(x_{1}, x_{r}, \cdots, x_{n}\right)+\left(y_{\backslash}, y_{r}, \cdots, y_{n}\right)=\left(x_{1}+y_{\curlyvee}, x_{r}+y_{r}, \cdots, x_{n}+y_{n}\right.
$$

تعريف مىشود
(دو) عمل ضرب اسكالر كه حاصلضرب اعضاى يك هيئت (يك اسكالر) و يك بردار است كه با

$$
a\left(x_{\curlyvee}, x_{r}, \cdots, x_{n}\right)=\left(a x_{\imath}, a x_{r}, \cdots, a x_{n}\right)
$$

## تعريف مىشود.

تعريف اگر يك زيرمجوعه از سؤال 18 تحت عمل ضرب اسكالر بسته باشد آنگاه يك زيرنضا تشكيل مىدهري

تعريف زيرمجوعوعهاى از
 يك بعدى نام دارد.
$\{a \mathbf{u}+b \mathbf{v} \mid a, b \in F\}$ تعريف سؤال
مى نود.
 سـؤالـهــاى $a d-b c \neq$ ra, rf

تعريف وتى


## يادداشت تاريخى


 $\mathbb{Z}_{p}$ حقيقى آشنا بود. هييت اعداد مختلط در ترن
 , $\mathbb{Z}_{p}$
 يكريختى به نحو مؤرى تعريف مجرد يك هيئت را فرض مى بيريرد. نظريه توسيعهاى جبرى

[^8]
##  تضية آخر فرما توسعه يانت.

4) E.E. Kummer 5) J.W. R. Dedekind

گروهها، راهى به هندسه
جوابهاى نصل 11

r
r. $Y(b+c)=Y b+Y c$ c $a(b+c)=a b+a c$ بديهى است. بنابراين تنها $a=1$ بايد بررسى شود. $b \mapsto Y b$ دو مولد ( $b$ ( $\mathbb{Z}_{r},+$ را جور مىكند
 ^. برابر با

$$
.1+1=0 \Rightarrow a(1+1)=\bullet \text { ) }
$$

$$
\text { . } \cdot \frac{1}{a+b \sqrt{r}}=a-b \sqrt{r} /\left(a^{r}-r b^{r}\right) .9
$$

$$
\left.\cdot\left(x,^{\circ}\right)(\bullet, y)=(\bullet, \circ) .\right)^{\circ}
$$

I! عضو همانی (
 بودن تحت عمل ضرب اسكالر از سؤال 10 (ینج) نتيجه مى شود.
.r.
 $S p(\mathbf{v}) \subseteq S p(\mathbf{u})$ بنابراين $b \mathbf{v}=\left(b a^{-1}\right) \mathbf{u}, \mathbf{v}=a^{-1} \mathbf{u}$

$$
\begin{aligned}
& \left.\left\{\left({ }^{\circ},{ }^{\circ}\right),(1, r),(r, I)\right\},\left\{\left({ }^{\circ},{ }^{\circ}\right),\left({ }^{\circ}, I\right),\left({ }^{\circ}, r\right)\right\},\left\{\left({ }^{\circ},{ }^{\circ}\right),\left(1,{ }^{\circ}\right),\left(r,{ }^{\circ}\right)\right\} . r\right) \\
& \cdot\left\{\left({ }^{\circ},{ }^{\circ}\right),(1, I),(r, r)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 19 } 9 \\
& .\left({ }^{\circ}, x\right)=x\left({ }^{\circ}, 1\right) \text { ) }(x, x)=x(1,1)
\end{aligned}
$$

$$
\begin{aligned}
& .\left(-a_{1},-a_{r}, \cdots,-a_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Iv = -v. } 19 \text { v = o . } \\
& \text { (يك) و (سه). IV }
\end{aligned}
$$

Y Y. بنا به سوال \} 1 0 (شش) تحت عمل جمع بردارى بسته است. بنا به سؤالهاى (منت) و (بنج) تحت عمل ضرب اسكالر بسته است.

$$
\begin{array}{r}
l_{\varphi}=-c /(a d-b c), m_{1}=-b /(a d-b c), l_{1}=d /(a d-b c) . \mu 千 \\
. m_{r}=a /(a d-b c) \\
(x, y)=x(\, \circ)+y(\cdot, \)
\end{array}
$$

צ६.
, rV
 يا اين كه $\operatorname{Sp}(\mathbf{u}, \mathbf{v}, \mathbf{w}$ حداكثر يک بُعدى است. اگر اولى غير صفر باشد آنگاه

$$
S p(\mathbf{u}, \mathbf{v})=V_{\mathrm{r}}(F)=S p(\mathbf{u}, \mathbf{v}, \mathbf{w})
$$


 لذا لذابه سوال 11.10 ( (دو) بديهى است.

غير صنر باشد، مثلأ است از

## ir

## تبديلهاى خطى

يك تبديل خطى يك تابع حفظ كننده ساختار از يك نضاى بردارى به نضاى بردارى




 آنگا آن را مى توان با ضرب به وسيلة يكى ماتريس $m \times n \times$ يكتا نمايش داد



مطالعةٔ هنزمان : بخش 1 نصل 1 كتاب بيركف و مك لين.
 به ازاى همi
r. بـ يك تابع معنا كه اگر مبن $a \in F$ را حفظ مىكند يك تبذيل خطى از $a(F)$ نام دارد. نگارئ بردار صفر تحت يك تبديل خطى دلخواه جيست؟
r. نشان دهيد مجموعة نگارهها تحت يك تبديل خطى، يك زيرنضا از همدامنه

تشكيل مىدهد. اين زيرفضا نضاى نگارهّ تبديل نام دارد. F. F. نشان دهيد مجموعة بردارهاى دامنه كه نگاره آنها تحت يى تبديل خطى بردار صفر است زير نضايى از دامنه است. اين زيرفضا هستهُ تبديل نام دارد. ه. نشان دهيد نگارة يك زيرنضاى بردارى يك بُعدى از يك دامرامنه تحت يك تبديل
 يا $\alpha:(1, \circ) \mapsto(a, b)$ \&
 استفاده از $\left(x,{ }^{\circ}\right)+\left({ }^{\circ}, y\right)=(x, y)$ نگار: $)(x, y)$ تحت $\alpha$ را بيابيد. عبارت تراردادى براى اين مطلب

$$
\alpha:(x, y) \mapsto(x, y)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

است. بررسى كنيد هر تبديل به اين صورت يك تبديل خطى است. V

$$
\alpha:(x, y) \mapsto(x, y)\left(\begin{array}{cc}
1 & 1 \\
-1 & r
\end{array}\right)
$$

با استفاده از كاغذى مربعى نگارههاى نتاط A. هرگاه OABC نگارههاى اين خهار نتطه تحت يى تبديل خطى



$$
\alpha:(x, y) \mapsto x q+y b
$$

(x,y) $\binom{a}{b}$ نيز نوشته مى شورد. $x a+y b$

$$
\alpha:(x, y, z) \mapsto(x, y, z)\left(\begin{array}{ll}
a & b \\
c & d \\
p & q
\end{array}\right)
$$


 ببطور تراردادى مىنويسيم

$$
\alpha:(x, y) \mapsto(x, y)\left(\begin{array}{lll}
a & b & c \\
p & q & r
\end{array}\right) .
$$

م

أرايش مستطيلى بالا حاصلضربى از يك برداير سطرى (يك m ـ تايى ) و ويك ماتريس مىكند. حاصلضرب يك m ـ تايى و يكى ماتريس $m \times n \times$ را

$$
\begin{aligned}
& (1, \bullet, \cdots, \circ) \mapsto\left(a_{11}, a_{1 \mathrm{r}}, \cdots, a_{\backslash n}\right) \\
& \left({ }^{\circ}, 1,{ }^{\circ}, \cdots,{ }^{\circ}\right) \mapsto\left(a_{r 1}, a_{r r}, \cdots, a_{\gamma_{n}}\right) \\
& (\circ, \circ \cdots, \circ, 1) \mapsto\left(a_{m l}, a_{m \vee}, \cdots, a_{m n}\right)
\end{aligned}
$$

گروهها، راهى به هندسه
r| . آيا هر تبديل از نوع نمايش داده شده در سوالهاى I Y بايد تبديلى خطى باشد؟
خلاصهُ مطالب

يكى تابع $\alpha: V_{m}(F) \rightarrow V_{n}(F)$ يى تبديل خطى ناميده مىشود هرگاه تعريف
 سؤال

$$
\text { باشيم }(\lambda \mathbf{u}) \alpha=\lambda(\mathbf{u} \alpha), \mathbf{v}) \alpha=\mathbf{u} \alpha+\mathbf{v} \alpha .
$$

نضاى نگاره يى تبديل خطى زيرغضايى از همدامنه تبديل است.

هستهٌ يك تبديل خطى (زيرمجموعهُ نگاشته شده به بردار صفر) زيرفضايى سؤال F از دامنه است.

هر تبديل خطى سؤال IF بردارهای پاية (
 ثايه سطرهاى ماتريس A هستند.

يادداشت تاريختى
تبديلهاى خطى ابتدا به عنوان » جايگزينهاه بررسى شدند و در خلال قرن نوزدهم روى فرمهاى درجهٌ دوم در نظريه اعداد به كار برده شدند. جايگزينى (ax+by, $c x+d y$ (
 مزيت توجه به اين جايگزينها در اين بود كه دو فرم مزبور مقادير روى يک مجموعه از الِ معادير صحيح مىگيرند. نمادگذارى ماتريس به وسيلة ا. كيلى ( 1 ( 1 ) ضمن به جايگزينها در عبارتهاى چند جملهاى همگخ n متغيره به كار رفت كه غرمهاى درجه دوم لاگرانز و گاوس يك حالت خاص آن بودند.

IF جوابهاى نصل (در)
I. (یِك)، (دو)، (ينج)، (شش)، (هنت)، (هشت).

است.


ضرب اسكالر بسته است و نگارهها يك زيرنضا تشكيل مىدهند.

$$
\begin{aligned}
& . a v \mapsto \mathbf{a o}=\mathbf{o}, \mathbf{u} \mapsto \mathbf{0} \Rightarrow \mathbf{v}+\mathbf{u} \mapsto \mathbf{o}+\mathbf{o}=\mathbf{0}, \mathbf{v} \mapsto \mathbf{0} . f
\end{aligned}
$$

$$
\begin{aligned}
& \alpha:(x, y) \mapsto(x a+y c, x b+y d)
\end{aligned}
$$


مجموعهاى از نتاط هnخط. r.

## ir

## كروه خطى عام GL(Y,F)

اين نصل به آن تبديلهاى خطى مییردازد كه جايخشتهاى يك نضاى بردارى دوبُعىی هستند كه گاهى مىدهد. وتتى $V_{\text {( }}^{\text {( }}$ مورد بحث است نمودارها ايدههاى ما را به خوبى نمايش مىدهند و گستر: كاملى از زبان هندسى در دسترس ماست.


## تبديلهاى تكين و ناتكين

ينج سوال اول اين فصل مشخص مىكنـد حه وقت تبديل

$$
(x, y) \mapsto(x, y)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

به گروه نصل تنها به مجموعه تبديلهاى خطى ناتكين مى يردازد كه گروه خطى عام را تشكيل مىدهد.
 با رأسهاى اين سه نعطه و (a+c, b+d) را بيابيد.

1) Burn

گروهها، راهى به هندسه

Y نگارة مربع واحد با رأسهای (


 نگارههای بردارهای (人 يك بهيك نيست.
مeدار ad - bc دترمينان ماتزيس نام دارد. هرگاه دترمينان يك ماتريس برابر با باشد ماتريس و تبديل خطى مربوط تكين نام دارند.


 و نتيجه بگيريد $\alpha$ نگاشتى يک به يك است. ه. با استفاده از سؤالهاى


گروه تبديلهاى ناتكين
در سوالهاى \&_ اF ضرب ماتريس حنان تعريف مىشود كه با تركيب تبديلهاى خطى سازگار باشد و از آنجا گروه تبديلهاى ناتكين مشخص مى شود. يكريختى بين ماتريسها و تبديلهاى خطى چنان بخوبى در زبان رياضيات عادى به كار مىروند كه غالباً اين دو به نحو بسيار مفيدى با هم اشتباه گرفته مىشوند. \&. اگر ماتريس
 آنگاه تبديل خطى مركب $\alpha \beta$ با $\alpha$ با با تبديل خطى $\alpha \beta$ را بيابيد. اين ماتريس، ماتزيس حاصلضرب $A P$ تعريف مىشود.
V. هرگاه I ماتريس $I$.

توصيف مىكنيد؟
A. هرگاه $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ يكى ماتريس ناتكين با دترمينان $A$ باشد حاصلضرب $(x, y) \mapsto(x, y) A$ را بيابيد. نتيجهگيرى كنيد تبديل خطى $\left(\begin{array}{cc}d / \Delta & -b / \Delta \\ -c / \Delta & a / \Delta\end{array}\right)$ بارد وارنى دارد كه يك تبديل خطى است.

1. هرگاه $A$ و $A$ ماتريسهاى

$$
\cdot \operatorname{det}(A B)=(\operatorname{det} A) \cdot(\operatorname{det} B)
$$

-1. هرگاه $A$ يك ماتريس
داشته باشد ثابت كنيد دترمينانA مخالف صفر است.


 عمل ضرب ماتريس يك گروه تشكيل مىدهد. r|. اگر V يك نضاى بردارى و $\alpha: V \rightarrow V$ تبديلى خطى باشی نيز هست آنگاه $\alpha$ يى تبديل خطى ناتكين از $V$ لا $V$ نام دارد. آيا تبديلهاى خطى ناتكين از بايد زيرگروهى از $V$ V (If ماتريسهاى ناتكين Y نمايش داده مى شود و گروه خطى عام

مركز گروه خطى عام
 مىشوند و يك زيرگروه تشكيل مىدهند.


گروهها، راهى به هندسه

Vr (R) ويك ماتريس اسكالر نام دارد. تحت يكريختى سؤال أ كدام تبديلهاى خطى از با ماتريسهاى اسكالر تناظر مىيابند؟
\& غا. فرض كنيد $a=d$ هرگاه $A K=K$ هابت كنيد $A=0, a=d$ ثابت كنيد $A J=J A$




 زيرگروهى از $G$ تشكيل مىدهدهدر اين زيرگروه، مركز $G$ نام دارد. 19. مركزهاى

در سوالهاى V
 تيجيها با محورى مغروض ارائه مى شود.
 ( تناظر مىيابد. اين تبديل يى تيجى روى محور $x$ نام دارد. يى قيجى از ( محورى از نقاط ثابت دارد و هر نفطهُ خارج اين خط به موازات اين خط حركت داده مىشود. Yا.Y. خط نقاط ثابتُ قيجى

$$
(x, y) \mapsto(x, y)\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)
$$

$|9|$
كروه خطى عام (Y, FL

$$
\begin{aligned}
\cdot a \neq \circ \circlearrowleft(x, y) & \mapsto(x, y)+y\left(a,^{\circ}\right)(\text { ( }) ~
\end{aligned}
$$

$. c a+d b=0$. بردار $\quad$ ( $a, b) \delta(x, y) \mapsto(x, y)+(c x+d y)(a, b)$ (سفرنيست $)$ rr. هرگاه $f(\mathbf{v})$ ، v $\mapsto \mathbf{v}+f(\mathbf{v}) \mathbf{~}$
 هرگاه كلى است. نشان دهيد هر يك از قيحيهاى سؤال rr را میتوان با يا يافتن تابع f و بردار ثابت a در هر حالت به صورت ارائه شده در اين سؤال نوشت. (. MF مىدهند كه با (F,+) يكريخت است.

زL(Y,F


 צY. هرگاه هيئت اعداد حقيقى با يك هيئت دلخواه جايگزين شود نقاط ثابت و

 هعنوان زيرخضاهاى يـ بُعدى تلقى مىشوند)؟ (.YV نتاط ثابت و خطهاى ثابت متناظر گروه تبديلهاى خطى VY ( اين گونه ماتريسها، ماتريسهاى تطرى نام دارند.

 YQ توصيف خود از نقاط ثابت و خطهاى ثابت سؤال YV را حنان تعديل كنيد كه رى هر هيئت دلخواه معتبر باشد.

گروهها، راهى به هندسه
-r. نشان دهيد ماتريسهاى ازنوع گروه تشكيل مىدهند. خطهاى ثابت و خانوادههاى خطهاى ثابت متناظر گروه تبديلهاى خطى VY (促 را بيابيد. اين گونه ماتريسها، ماتر يسهاى (بايين) مثلثى نام دارند. اr. هرگاه اعداد حقيقى با يك هيئت دلخواه جايگز ينرين شود خطهاى ثابت سؤرال「.



 (

گروه متعامد
 اما در اينجا به سادگى رشى برایى تعريف زيرگروهى از $\operatorname{~از~}$ با همة آنهايى كه تا كنون به كار بردهايم كاملاً تفارت دارد.
 مىكنيم. ثابت كنيد

$$
(A B)^{T}=B^{T} A^{T}
$$

 را تشكيل مىدهند. اين زيرگروه به گروه متعامد موسوم است. $، a^{r}+b^{r}=c^{r}+d^{r}=1$ ثـابـت كـنـيـد اگـر $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ $. a d-b c= \pm 1, a c+b d=a b+c d=\circ$ $a=\cos \theta$ ه هr. هرگاه $a(\Gamma, \mathbb{R})$ باشد
 متعامد را نمايش دهيد.

تعريف تبديل خطى v v از v از $\operatorname{det} A=0$ سؤال

يك تبديل خطى تكين از
 سؤال

هر تبديل خطى ناتكين نگاشتى دوسويى است.
 تعر يف



تعريف تبديلهاى خطى ناتكين
سؤالهاى مىدهند.
IF, Ir

گروه ( سؤال IF يكريخت است.

مجموعة اعضاى يك گروه كه با هر عضو آن گروه تعويضيذيراند مركز گروه
سؤال \^

گروهها، راهى به هندسه

نام دارد.

مركز يک گروه يى زيرگروه تشكيل مىدهد.

تضيه
سؤال 1^

يك ماتريس مربعى يك ماتريس اسكالر ناميده مىشود هرگاه همهٔ درآيه هاى سؤال 1 ا تطر اصلى يكسان باشند و بقية درآيه ها صفر باشند.

مركز گروه خطى عام زير مجموعهُ ماتريسهاى اسكالر است.

تضيه
سؤال 18

تعريف هرگاه تنها درآيههاى غيرصفر در يک ماتريس مربعى روى تطر اصلى قرار سؤال YV گیرند ماتريس تطرى ناميده مى شود.

تعريف $A^{T}$ ترانهاده يک ماتريس $A$ با تعويض سطرها و ستونهاى $A$ به دست سؤال

قضيه
سؤال FF عاماست كه گروه متعامد نام دارد.

يادداشت تاريخىى
حنان كه در شروع نصل اY گفتيم در ابتدا تبديلهاى خطى بدون استفاده از ماتريسها به صورت جايگزينهاى به كار رفته در فرمهاى درجهُ دوم مطرح شدند. گاوس در
 را بهكار میبرد، زيرا مبيين $A x^{r}+r B x y+C y^{r}$ در $B^{r}-A C$ براى خرم درجه در مجذور دترمينان تبديل جايگزينى ضرب مى شورد. استفاده از آرايش مستطيلى براى يك ماتريس به كيلى برمىگردد، وى در متالهاى
 ور
2) Disquistiones Arithmeticae

## گروه خطى عام دوبُعلى روى

 عام $n$ بُعىى روى ور اين موارد گالوا و ثوردان ماتريسها را بـ كار نبردند.كروهها، راهى به هندسه
جوابهای نصل Ir
.$|a d-b c| .1$
$.|a d-b c| . r$

$$
. S p\left(\left(1,{ }^{\bullet}\right),\left({ }^{\bullet}, \\right)\right) \rightarrow S p((a, b),(c, d)) . r
$$


يا $\operatorname{Sp}$ يك بُعدى است.

اگر $a d-b c=0$ آنگاه $\alpha$ نه يوشاست و نه يك به يك است.

$$
\left(\begin{array}{l}
a p+b r \\
a q+b s \\
c p+d r \\
c q+d s
\end{array}\right) \cdot q
$$

. V
. . .
9. بنا به سؤال 9.

$$
\begin{aligned}
& (a p+b r)(c q+d s)-(c p+d r)(a q+b s)=a p d s+b r c q-c p b s \\
& -d r a q=(a d-b c)(p s-r q)
\end{aligned}
$$

. $\operatorname{det} A \neq 0$ 0 $\operatorname{det} A \cdot \operatorname{det} A^{-1}=1$ نتابراينه مىدهد $A \cdot A^{-1}=1$. 1 •

 تبديلى خطى است. واون تبذيل خطى دوسويى تبديلى خطى الـى است. . If
. IV
 است، سؤال 9.1 ب را ببينيد.
 اY. محور $y$.

ISV
GL(Y,F) Fروه خطى عام

$$
. y=0 \text { (يك). } \cdot \text { rr }
$$

$. x=\bullet(\mathrm{g})$
. $S p((a, b))$ (سه)
.YY

$$
\mathbf{u}+f(\mathbf{u}) \mathbf{a}+\mathbf{v}+f(\mathbf{v}) \mathbf{a}=\mathbf{u}+\mathbf{v}+f(\mathbf{u}+\mathbf{v}) \mathbf{a} \Rightarrow
$$

$$
f(\mathbf{u}+\mathbf{v})=f(\mathbf{u})+f(\mathbf{v})
$$

$$
k(\mathbf{v}+f(\mathbf{v}) \mathbf{a})=k \mathbf{v}+f(k \mathbf{v}) \mathbf{a} \Rightarrow k f(\mathbf{v})=f(k \mathbf{v})
$$

$$
\begin{array}{r}
. f(x, y)=y, ~ a=\left(a,^{\bullet}\right)(\text { (د) } \\
\cdot f(x, y)=x, a=(\bullet, b)(د و) \\
. f(x, y)=c x+d y, ~ a=(a, b)(\text { ده) }
\end{array}
$$

( $\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right) \mapsto a$. . $F$
V V. محور y نتطهاى ثابت نگاه داشته مىشود. خطهاى موازى با محور x ثابت نگاه داشته مىشوند اما نه نتطهاى. \& צ. ثابت نگاه داشته مىشوند اما نه نتطهاى. . $y$ و $x$ تنها محورهای . FV

$$
\left(\begin{array}{ll}
a & \cdot \\
\cdot & b
\end{array}\right) \mapsto(a, b) \cdot . Y \wedge
$$

 - . يك خط موازی نگاشته مىشود. اז. به (
r r. | ماتريسهاى اسكالر | تطرى

 بنابراين زيرمجموعه بسته است. است. 1 در نتيجه 1 det $A=\operatorname{det} A^{T}, \operatorname{det}\left(A \cdot A^{T}\right)=\operatorname{det} A= \pm$ بقية معادلهها از
. $\sin (\phi \pm \theta)=0$. ${ }^{\circ} a c+b d=0 ، c^{r}=\sin ^{r} \phi \cdot b^{r}=\sin ^{r} \theta \cdot r \Delta$佂 $\theta= \pm \phi+\pi . b c=\cos ^{r} \theta-1=-\sin ^{r} \theta$ نتيجه مىدهد $\theta= \pm \phi$ ميدهد $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right),\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$

## is

## Vi

راريمها، ناصلهها، مساحتها و حجمها در
 دترمينان يك ماتريس ويزيهاى دترمينانهاى

مطالعة همزمان : بخش 9 از نصل V Vتاب بيركف ومكلين؛ نصل r ا كتاب ماكسول.'

## حاصلضر بهایى اسكالر


فرمول كسيوس ثابت كنيد

$$
\begin{aligned}
& \cos a o b=\frac{a_{1} b_{1}+a_{r} b_{r}+a_{r} b_{r}}{\sqrt{\left(a_{1}^{\zeta}+a_{\varphi}^{r}+a_{r}^{r}\right)\left(b_{1}^{r}+b_{r}^{r}+b_{r}^{r}\right)}}
\end{aligned}
$$

r. با استغاده از نمادگذارى سؤال 1 هرگار نتاط a، o، و ب ا را توصيف كنيد.

1) Maxwell

گروهها، راهى به هندسه


$$
\text { , را } \mathbf{b}=\left(b_{1}, b_{r}, b_{r}\right) \text {, }
$$

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{r} b_{r}+a_{r} b_{r}
$$

تعريف مىكنيم. با استفاده از حاصلضرب اسكالر عبارتى براى طول oa در حالت
 a.b =| a | | | b | $\cos \mathbf{a o b}$ داريم FF. بـ ازای بردار ثابتى ماند a

$$
\mathbf{v} \mapsto \mathbf{v . a}
$$

از از
 (يك) هسته اين تبديل را بيابيد.

حاصلضر بهاى بردارى


$$
\begin{array}{r}
ب ا V_{r}(F), د \mathbf{b}=\left(b_{1}, b_{r}, b_{r}\right) \\
\mathbf{a} \times \mathbf{b}=\left(\operatorname{det}\left(\begin{array}{ll}
a_{r} & a_{r} \\
b_{r} & b_{r}
\end{array}\right), \operatorname{det}\left(\begin{array}{ll}
a_{r} & a_{1} \\
b_{r} & b_{1}
\end{array}\right), \operatorname{det}\left(\begin{array}{ll}
a_{1} & a_{r} \\
b_{1} & b_{r}
\end{array}\right)\right)
\end{array}
$$

居
 \&. بازازى بردار ثابتى ماند a $a$ تبديل

$$
\alpha: \mathbf{v} \mapsto \mathbf{v} \times \mathbf{a}
$$

از تبديلى خطى است.

 هرگا.
 ( $\mathbf{b} .(\mathbf{a} \times \mathbf{b})$, a. $(\mathbf{a} \times \mathbf{b}) . V$

تبديل

$$
\mathbf{v} \mapsto \mathbf{v} \cdot(\mathbf{a} \times \mathbf{b})
$$

ترار دارد. دربارة سوهاى خطهاى واصل مبدأ به a


$$
\cdot(\mathbf{l} \mathbf{a}+m \mathbf{b}+n \mathbf{c}) \cdot(\mathbf{b} \times \mathbf{c})=l \mathbf{a} .(\mathbf{b} \times \mathbf{c})
$$

A. تبديل

$$
v \mapsto a .(v \times c)
$$

از از

 9. تبديل

$$
\mathbf{v} \mapsto \mathbf{a} .(\mathbf{b} \times v)
$$

از


$$
\mathbf{a} .[\mathbf{b} \times(l \mathbf{a}+m \mathbf{b}+n \mathbf{c})]=n \mathbf{a} .(\mathbf{b} \times \mathbf{c})
$$

دترمينانها -1. تا آخر اين نصل A ماتريس

گروهها، راهى به هندسه

$$
\left(\begin{array}{lll}
a_{1} & a_{r} & a_{r} \\
b_{1} & b_{r} & b_{r} \\
c_{1} & c_{r} & c_{r}
\end{array}\right)
$$

با سطرهاى c ، ، ، است. گاهى A را به صورت

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

 ابتدا با استفاده از سؤال 0 نشان دهيد مساحت
 عمود بر صفحن متوازیالاضلاع است. آنگاه حجم را با ضرب اين الا مسال

 a.(b×c)

I I. با استفاده از سؤالهاى

$$
\text { , را بيابيد: }\left(\begin{array}{lll}
1 & r & r \\
r & \Delta & q \\
1 & r & r
\end{array}\right),\left(\begin{array}{lll}
l & r & r \\
r & f & q \\
r & \wedge & q
\end{array}\right),\left(\begin{array}{lll}
1 & r & r \\
r & \Delta & q \\
0 & r & q
\end{array}\right)
$$



 ( $\left.\begin{array}{lll}1 & r & r \\ i & j & k\end{array}\right)$ و مجموعهاى كه يك ضريب مننى مىدهد نام بريد.


 ها

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
\text { ( }
\end{array}\right) \\
\left(\begin{array}{lll}
1 & r & r \\
r & r & 0 \\
0 & 1 & r
\end{array}\right) \\
\left(\begin{array}{ccc}
r & -1 & 0 \\
1 & r & 1 \\
-1 & 0 & r
\end{array}\right)\left(\begin{array}{ll}
(س)
\end{array}\right.
\end{gathered}
$$

را بيابيد و در هر حالت نتيجه را بررسى كنيد.
 v هر دو وارونذيرند. v هر
( $\left.a_{1}, b_{1}, c_{1}\right) \cdot\left(a_{r} b_{r} c_{r}\right) \times\left(a_{r} b_{r}, c_{r}\right) . \mid V$ ( $A B)^{T}=B^{T} A^{T} \operatorname{det} A=\operatorname{det} A^{T}$
 1^. هرگاه $U$ ماتريس

$$
\left(\begin{array}{lll}
u_{1} & u_{r} & u_{r} \\
v_{1} & v_{r} & v_{r} \\
w_{1} & w_{r} & w_{r}
\end{array}\right)
$$

باشد كه بردارهاى w , v , u whهاى آن هستند بررسى كنيد سطرهاى ماتريس $w_{\backslash} \mathbf{a}+w_{r} \mathbf{b}+w_{r} \mathbf{c}, v_{\backslash} \mathbf{a}+v_{r} \mathbf{b}+v_{r} \mathbf{c} ، u_{\backslash} \mathbf{a}+u_{\mathrm{r}} \mathbf{b}+u_{\mathrm{r}} \mathbf{c} ، U A+ح^{2}$


$$
\begin{aligned}
& u_{\backslash} \mathbf{a} \cdot\left[v_{r} \mathbf{b} \times w_{r} \mathbf{c}+v_{r} \mathbf{c} \times w_{r} \mathbf{b}\right] \\
+ & u_{r} \mathbf{b} \cdot\left[v_{\backslash} \mathbf{a} \times w_{r} \mathbf{c}+v_{r} \mathbf{c} \times w_{\backslash} \mathbf{a}\right] \\
+ & u_{r} \mathbf{c} \cdot\left[v_{\backslash} \mathbf{a} \times w_{r} \mathbf{b}+v_{r} \mathbf{b} \times w_{\backslash \mathbf{a}}\right]
\end{aligned}
$$



$$
\begin{aligned}
u_{\backslash \mathbf{a}} \cdot\left[\left(v_{r} w_{r}-v_{r} w_{r}\right) \mathbf{b} \times \mathbf{c}\right]+u_{r} \mathbf{b} \cdot[ & \left.\left(v_{r} w_{\uparrow}-v_{\backslash} w_{r}\right) \mathbf{c} \times \mathbf{a}\right] \\
& +u_{r} \mathbf{c} \cdot\left[\left(v_{\backslash} w_{r}-v_{r} w_{\backslash}\right) \mathbf{a} \times \mathbf{b}\right]
\end{aligned}
$$



$$
[\mathbf{u} . \mathbf{v} \times \mathbf{w}][\mathbf{a} . \mathbf{b} \times \mathbf{c}]=\operatorname{det} U . \operatorname{det} A
$$



تبديلهاى تكين و ناتكين
r دارند. با استفاده از سوالهای
 ناتكين r × $\times$ تحت عمل ضرب ماتريس نيز يك گروه تشكيل .مىدهند و اين دو گروه يكريخت هستند. بهطور مجرد هر يك از اين دو گروه، گروه خطى عام $\operatorname{~یخ~}$ دارد.
 حرا ( $S p(\mathbf{a}, \mathbf{b}, \mathbf{c})$ فضای نگارة $\alpha$ است؟ هرگاه A تكين باشد ثابت كنيد


همه (Fr



VY. FV
$\qquad$

به صورت

$$
(x, y, z) \mapsto(x, y, z)+(p x+q y+r z)(a, b, c)
$$

است و شرط ديگرى كه لازم است را بيان كنيد. نشان هر فيجى در دوبُعدى از نقاط ثابت دارد.
 ريرنضاى دوبُعدى، مرتبة گروه ماتريس بايين مثلثى و مرتبه گروه كامل در را مشخص كنيد.

خلاصهُ مطالب




$$
\mathbf{a} \times \mathbf{b}=\left(a_{r} b_{r}-a_{r} b_{r}, a_{r} b_{1}-a_{1} b_{r}, a_{1} b_{r}-a_{r} b_{1}\right)
$$







سؤالهاى rra

نام دارند هرگاه• $\operatorname{det} A \neq 0$. $\operatorname{det} A=$ نكين نام دارند هرگاه

تضيه تبديلهاى خطى ناتكين
 بهطور مجرد هر يك از اين دو گروه به گروه خطى عام است.

يادداشت تاريخى

 هاميلتون (IAFY) در دسترس ترارگرايته بودند تسهيل كند.



 شد.
2) J. w.Gibbs 3) G. w. Leibniz

$$
\mathbf{a b}^{r}=\mathbf{o a ^ { r }}+\mathbf{o b} b^{r}-r o a . o b \cos \mathbf{a o b} .1
$$





$$
(x, y, z) \mapsto(x, y, z)\left(\begin{array}{ccc}
\circ & -a_{r} & a_{r} \\
a_{r} & \circ & -a_{1} \\
-a_{r} & a_{1} & \circ
\end{array}\right) \cdot \varepsilon
$$

a. $(\mathbf{a} \times \mathbf{b})=\mathbf{b} .(\mathbf{a} \times \mathbf{b})=$. $V$



$$
(l \mathbf{a}+m \mathbf{b}+n \mathbf{c})(\mathbf{b} \times \mathbf{c})=l \mathbf{a} .(\mathbf{b} \times \mathbf{c})+m \mathbf{b} .(\mathbf{b} \times \mathbf{c})+n \mathbf{c} .(\mathbf{b} \times c)
$$

$$
V_{1}(F)=F \text { را تركيب كنيد. همدامنة v v.a = a.v , v } \mapsto \mathbf{v} \times \mathbf{c} . \wedge
$$

است. بنابه سؤال a ، د در هسته ترار دارد. بنابه سؤال \& c c در هسته ترار دارد.

•l. سوال ه ها را به كار بريد. اگر سه يال اصلى هم صفحه باشند حجم متوازیالسطوح برابر با صغر است.
a. $(\mathbf{b} \times \mathbf{c})=a_{\Lambda}\left(b_{r} c_{r}-b_{r} c_{r}\right)+a_{r}\left(b_{r} c_{\uparrow}-b_{1} c_{r}\right)+$

$$
a_{r}\left(b_{1} c_{Y}-b_{Y} c_{\uparrow}\right)
$$

r| . جايگشتهاى زوج ضريب مثبت و جايگشتهاى فرد ضريب منفى دارند.

$$
\begin{aligned}
& \mathbf{a . b} \times \mathbf{c}=\mathbf{b} . \mathbf{c} \times \mathbf{a}=\mathbf{c . a} \times \mathbf{b}=-\mathbf{a} . \mathbf{c} \times \mathbf{b}=-\mathbf{b} . \mathbf{c} \times \mathbf{a} \\
& =-\mathbf{c .} . \mathbf{b} \times \mathbf{a} .
\end{aligned}
$$

$$
\begin{aligned}
& .(\mathbf{a} . \mathbf{b} \times \mathbf{c}) I . I f \\
& \left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 0 \\
0 & 1 & -1
\end{array}\right)(\underset{1}{ }) .10 \\
& \left(\begin{array}{ccc}
\frac{r}{r} & -\frac{1}{r} & -\frac{1}{p} \\
-1 & \frac{1}{r} & \frac{r}{r} \\
\frac{1}{r} & -\frac{1}{p} & -\frac{1}{r}
\end{array}\right) \text { (دو) } \\
& \frac{1}{18}\left(\begin{array}{ccc}
q & r & -1 \\
-r & 9 & -r \\
r & 1 & 0
\end{array}\right) \text { (س) } \\
& A\left(\frac{1}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}\right) B=I \text { آگik } \mathbf{a} \cdot \mathbf{b} \times \mathbf{c} \neq 0 \text {. } 1 \text {. }
\end{aligned}
$$

اجزاء را با بسط سنوال I I IV

$$
B^{T} A=I,\left(A^{T} B\right) T=I^{T} \text { بنابراين } A^{T} B=I
$$

. $\operatorname{det} A \neq{ }^{\circ}$ بنابراين $\operatorname{det} A . \operatorname{det} A^{-1}=1$ آنگاه $A A^{-1}=I$. rr


( $\left.{ }^{\circ},{ }^{\circ}, 1\right) \alpha=\mathbf{c},\left(\circ, 1,{ }^{\circ}\right) \alpha=b,\left(1,{ }^{\circ},{ }^{\circ}\right) \alpha=\mathbf{a} \cdot$ ro . $\mathbf{a} \Leftarrow \operatorname{det} A=\circ .(x, y, z) \alpha=x \mathbf{a}+y \mathbf{b}+z \mathbf{c}$

بنا b $\times$ c = o در هسته هستند. همه فضا برابر هسته است تنها اگر c b b ، به سوال $\&$ اين زمانى اتفات مىانتد كه (a,

$$
S p(\mathbf{a}, \mathbf{b}, \mathbf{c})=S p(\mathbf{a}, \mathbf{c}) \downharpoonright S p(\mathbf{a}, \mathbf{b}, \mathbf{c})=S p(\mathbf{a}, \mathbf{b})
$$

 B ساخته شـده مـطابت سؤال If نتتيجـه مسدهـد $B$ If $A^{T}$ = مـاتريس صـفر.

 در د آنگاه هر بردار عمود بر آن در هسته است.


$$
\text { (i) ترانهادة آنها تضمين شود. }\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

. هر نقطه روى $p a+q b+r c=0$. . 1 ^

$$
\text { V.\&.F = } 18 \wedge, \wedge, F, 1 . r q
$$

## 10

## بردارهاى ويزٔه و مقادير ويزه



 ويرْ تبديل و عوامل اسكالر مربوط به آنها معادير ويرْة مربوط نام دارند.

ا. تحت تبديل خطى

$$
\alpha:(x, y) \mapsto(x, y)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

از

$$
\begin{aligned}
& \text { هستد هركاه (يك) ( } \\
& \text { r. تحت تبديل خطى }
\end{aligned}
$$

$$
\alpha:(x, y) \mapsto(x, y)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

از
r. تحت تبديل خطى

$$
\alpha:(x, y) \mapsto(x, y)\left(\begin{array}{ll}
r & \circ \\
\circ & r
\end{array}\right)
$$

از


F هرگاه F ه ه اگر v




باشد؟


$$
(x, y) \mapsto(x, y)\left(\begin{array}{ll}
r & 1 \\
r & r
\end{array}\right)
$$

نمايش دهيد و آنگاه نگارههاى نقاط (
بردارهاى ويرةٔ تبديل هستند و در اين صورت مقادير ويرة́ آنها چه هستند؟ ^. هرگاه $\alpha$ يك تبليل خطى از صفر در هستة $\alpha$ يك بردار ويزة $\alpha$ است. 9. هرگاه ( $1,0 \times$ ) يك بردار ويزء:

$$
\alpha:(x, y) \mapsto(x, y)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

باشد دربارة́ b جه مىتوان گفت؟

هرگاه ( $)$ هرگاه (1, © ( مىتوان گفت؟ در اين صورت چگونه تبديل $\alpha$ را از نظر هندسى توصيف مىكنيد؟ هرگاه $b=c=0$, $a=d$ بردارهاى ويزه $\alpha=c$ جه هستند؟


 يكسان داشته باشند دربارة بردارهاى $\operatorname{sic}$ (u, vp

معادلهُ مشخصه


$$
\mathbf{v} \mapsto \mathbf{v}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

, u داراى معدار ويرة

$$
\mathbf{v} \mapsto \mathbf{v}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)
$$



$$
\text { تكين است. }\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)
$$

 و ماتريس $)$ با حل معادلaهاى مشخصه تبديلهاى

$$
،(x, y) \mapsto(x, y)\left(\begin{array}{ll}
r & 1 \\
r & r
\end{array}\right)()
$$

گروهها، راهى به هندسه

$$
\begin{aligned}
& (x, y) \mapsto(x, y)\left(\begin{array}{ll}
\perp & F \\
1 &
\end{array}\right)(د) \\
& \cdot(x, y) \mapsto(x, y)\left(\begin{array}{cc}
F & Y \\
-1 & 1
\end{array}\right)(س) \\
& \cdot(x, y) \mapsto(x, y)\left(\begin{array}{cc}
Y & 1 \\
-1 & 0
\end{array}\right)(\underset{\sim}{\prime}) \\
& ،(x, y) \mapsto(x, y)\left(\begin{array}{ll}
1 & Y \\
Y & 千
\end{array}\right)\left(\begin{array}{ll}
\text { (ينج) }
\end{array}\right.
\end{aligned}
$$

(شش)
 معذار ويزة F بيابيد. به ممين نحو بردارهاى ويزه اين تبديل را با معدار ويزء ا بيابيد.
 \&1. . بردارهاى ويزه́ تبديل

$$
(x, y) \mapsto(x, y)\left(\begin{array}{ll}
a & \bullet \\
\bullet & b
\end{array}\right)
$$

را به شرط $a \neq b$ بيابيد.


$$
\left(\begin{array}{lll}
a_{1} & a_{r} & a_{r} \\
b_{1} & b_{r} & b_{r} \\
c_{1} & c_{r} & c_{r}
\end{array}\right)
$$

v يك بردار ويزه با مقدار ويزه $\lambda$ داشته باشد آنگاه ماتريس

$$
\left(\begin{array}{ccc}
a_{1}-\lambda & a_{r} & a_{r} \\
b_{1} & b_{r}-\lambda & b_{r} \\
c_{1} & c_{r} & c_{r}-\lambda
\end{array}\right)
$$

تكين است.
$\operatorname{det}(A-\lambda I)=\odot$ نمايش داده مىشود و معادلة $A-\lambda I I$ والباً اين ماتريس بار
^عادله مشخصه تبديل v 1A. با حل معادلة مشخصه، معادير ويزه و بردارهاى ويزٔ تبديل v

$$
A=\left(\begin{array}{ccc}
r & 1 & 1 \\
-r & 1 & r \\
r & 1 & -1
\end{array}\right)
$$

ماتر يسهاى متشابه
v 19 . 19 . با مقدار ويزة $\lambda$ باشد، فرض كنيد $U$ يك ماتريس $n \times n=\mathrm{v} U^{-1}$ باشد و نگارة w را تحت تبديلهاى

$$
\mathbf{v} \mapsto \mathbf{v} U ، \mathbf{v} \mapsto \mathbf{v} U A, \mathbf{v} \mapsto \mathbf{v} U A U^{-1}
$$



 به ترتيب با معادير ويزة


$$
\mathbf{v} \mapsto \mathbf{v} U A U^{-1}
$$

گروهها، راهى به هندسه
بيابيد و نتيجه بگيريد

$$
U A U^{-1}=\left(\begin{array}{cc}
\lambda_{1} & \circ \\
\bullet & \lambda_{r}
\end{array}\right)
$$

IT. با استغاده از سؤال 10 ماتريس U را جنان بيابيد كه

$$
U\left(\begin{array}{cc}
r & r \\
-1 & 1
\end{array}\right) U^{-1}=\left(\begin{array}{ll}
r & 0 \\
\cdot & r
\end{array}\right)
$$

نتيجة خود را بررسى كنيد. Y Y. يك ماتريس U و يكى ماتريس تطرى D جنان بيابيد كه

$$
U\left(\begin{array}{cc}
-\Delta & r \\
-r \wedge & 10
\end{array}\right) U^{-1}=D
$$

نشـان دهيـد دو ماتريـس تطـرى متمـايـز مشكـن D بـراى انتخابهـاى مناسـب وجود دارند.


 را $U A U^{-1}$ مشخـص كنيـد.
 ويزة آن به ترتيب با معدارهاى ويزة

$$
U A=\left(\begin{array}{ccc}
\lambda_{1} & \circ & \circ \\
\bullet & \lambda_{r} & \circ \\
\bullet & \bullet & \lambda_{r}
\end{array}\right) U
$$

خواه U ناتكين باشد يا نباشذ.

بردارهاى ويزه و مقادير ويزه

هY. آيا بيشتر از يك ماتريس U وجود دارد كه در شرايط سوال YF صـ צץ. ماتريسهاى A $A$ و $A$ متشابه نام دارند هرگاه به ازای ماتريسى مانند $M$ داشته

$$
\text { باشيم B= } M^{-1} A M .
$$

نشان دهيد تشابه يك رابطه همارزى در مجموعهُ ماتريسهاى n $n$ ر روى يك
هيئت مفروض است.
با استفاده از سوال 9 النشان دهيد ماتريسهاى متشابه مقادير ويزٔ يكسان دارند.

利 $d_{1}-b_{1} c_{1}=a_{r} d_{r}-b_{r} c_{r}$ متشابه دترمينان يكسان دارند ارائه كنيد.


$$
\begin{aligned}
& \text { ، } \mathbf{v}=(\bullet, 1) \mathbf{u}=(1, \circ)(\mathbf{~ ( ~}) \\
& \mathbf{v}=\left({ }^{\circ},{ }^{\circ}\right) \mathbf{u}=(1, I)(د) \\
& \mathbf{v}=(-\boldsymbol{r}, \boldsymbol{r}) \mathbf{u}=(1,-r)(\mathbf{~}) \\
& . v=(1, r) ، u=(1, r)(ج ه)
\end{aligned}
$$

هرگاه
مىدهند.
YQ. هرگاه $\alpha$ تبديلى خطى از


$$
\text { آنگاه } \lambda=\mu .
$$



 اr. هرگاه تبديل خطى V

استفاده از سوال مr هr هr با مقادير ويزة

$$
\text { . } \lambda=\mu \mathrm{l} \nu=\lambda ا \nu=\mu \mathrm{l}
$$

 دارد ثايهاى برای لزوماً بايهاى از (Fr

 v v=( $\mathrm{r}, \mathrm{r}$ )

$$
\begin{aligned}
& \text { ، } \mathbf{w}=\left({ }^{\circ}, 1\right), \mathbf{u}=\left(1,{ }^{\circ}\right)(\mathbf{~}) \\
& ، \mathbf{w}=(1, r), \mathbf{u}=(1, r)(\mathbf{~}) \\
& . \mathbf{w}=(1,-1), \mathbf{u}=(1,1)(س)
\end{aligned}
$$


 . $\mathbf{w} A=r \mathbf{u}+s \mathbf{w}, \mathbf{u} A=p \mathbf{u}+q \mathbf{w}$

$$
\binom{\mathbf{u}}{\mathbf{w}} A=\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)\binom{\mathbf{u}}{\mathbf{w}}
$$

به نحوى كه

$$
\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)=\binom{\mathbf{u}}{\mathbf{w}} A\binom{\mathbf{u}}{\mathbf{w}}^{-1}
$$

به علاوه هرگاه بردار xu + $x \mathbf{w}$ را با [x,y] نمايش دهيم نشان دهيد

$$
\alpha:[x, y] \mapsto[x, y]\left(\begin{array}{cc}
p & q \\
r & s
\end{array}\right)
$$

بـه نحوى كـه ماتريسهـاى متشابه نسبت به پايههاى متفاوت تبديل يكسانى را نمايش مىدهند.
 ويزٔ با مقدار ويزٔ ال دارد و مقادير ويزه́ ديگرى ندارد.
 ^rı. هرگاه v قيجى وى مساحتهاى VY q৭. تبديلى خطى

$$
(x, y) \mapsto(x, y)+(c x+d y)(a, b)
$$

را با استناده از يك ماتريس بنويسد. بررسى كنيد شرط جبرى براى قيجى بودن اين تبديل اين است كه معادل丈 مشخصه ماتريس مربوط برابر با ما
 دهيد A را میتوان به صورت $-a^{r}-b c=0$ رئر (يى) هرگاه b= نشان دهيد اين ماتريس مطابق سوال همانى است. (دو) هرگاه

$$
(x, y) \mapsto(x, y)+\left(\frac{b x-a y}{b}\right)(a, b)
$$

است.

سؤالهاى Y كه مـانى نيستند و معادله مشخصه و
 يكتا به صورت
 يكتا به صورت
 در GL(Y,F) يك زيرگروه است. اين زيرگروه، گروه خطى خاص SL(Y,F) نام دارد.
 تيجيها اين گروه را توليد مىكند؟
$S L(Y, F)$ هاF $S$ Fl مشان دهيد ماتريس $A S^{-1}$ ماتريس يى قيحى. يا همانى است. با استفاده از سوال نشان دهيد اگر $b \neq 0$ آنگاه يا $A$ ماتريس يك تيجى يا حاصلضرب دو تيجى است.



است.
.fV. هرگا.

$$
\alpha:(x, y) \mapsto(x, y)\left(\begin{array}{ll}
a & \circ \\
\circ & \frac{1}{a}
\end{array}\right)
$$

, $a \neq 0,-1$,

$$
(x, y) \mapsto(x, y)+\frac{a-1}{a+1}(x-y)(1,1)
$$

$$
(x, y) \mapsto(x, y)+\frac{a-1}{a+1}(x+a y)(1,-1 / a)
$$

است.
سوالهاى FD حاصلضرب دو تيتى يا نيمدور (

خلاصهُ مطالب

هركاه $\alpha: V \mapsto V$ يك تبديل خطى از يك نضاى بردارى V باشد ر ا تعريف
 سؤال هـ

v تعريف $\operatorname{det}(A-\lambda I)=0$ معادله ويزهّ ماتريس $A$ و تبديل سؤالهاى نام دارد. IV IV

تبديل خطى vけvA يك بردار ويزٔ با مقدار ويزٔ $\lambda$ دارد اگر و تنها اگر

$$
\operatorname{det}(A-\lambda I)=0 \quad \text { سؤالهاى }
$$

IV,Ir

اگر u يك بردار ويزٔ تبديل خطى v با معدار ويزٔ $\lambda$ باشد
 vا با معدار ويرة $\lambda$ است. $\mathbf{~ ا س ن ~}$
 سؤالهاى MAM


دو ماتريس A و $A$ را متشابه گويند هرگاه يك ماتريس M وجود داشتهباشد، تعريف سؤال

ماتريسهاى متشابـه متاديـر ويزة برابر و معادلة ويزةٔ برابر و دترمينـان بـرابـر

تضيه
 ry res

ماتريسهاى متنابه نسبت به يايههاى متفاوت تبديل يكسانى را نمايش سوال هن

مىدهند.

تضيه
سؤالهاى Fo, rq
تعريف $G L(Y, F)$ متشكل از ماتريسهایى با دترمينان ا گروه خطى سؤال

تضيه
سؤالهاى
FV,FE, FD

يادداشت تاريختى
استفاده از بردارهاى ويزه و مقادير ويزه ابتدا در مطالعة فرمهاى درجهء دوم مطرح شدند. مسئله بر سر يافتن دورانى بود كه منحنى $a x^{r}+r h x y+b y^{r}=c$ رارهي منحنى به صورت $A x^{r}+B y^{r}=C$ تبديل كند. روش به اين صورت است كه عبارت
 , B مقادير ويرة ماتريس باشند آنگاه ماتريس با سطرهاى a ماتريس دوران مورد نظر است. در واقع در تاش

 كتاب ز. سالمان' (1^099) مطرح شدهاند هر حند كه زبان بيان آنها جديد نيست. يادداشت ا.كيلى دربارة ماتريسها (1^09) حاوى اين نتيجه است كه يك ماتريس Y X Y

1) G. Salmon

جوابهای نصل 10
I. (يك) بله، (دو) بله، (سه) نه.

 .v يك مضرب اسكالر از = v $\alpha$. . F

ه.
(1)

.
. $c=$. . $. b=0$. 9
است و هر بردار يك بردار ويزه است.

$$
\begin{aligned}
& \mathbf{v} \alpha=\lambda \mathbf{v} \Rightarrow(k \mathbf{v}) \alpha=k(\mathbf{v} \alpha)=k(\lambda \mathbf{v})=\lambda(k \mathbf{v}) .1 \circ \\
& , \mathbf{u} \alpha=\lambda \mathbf{u} . \ \ \\
& \mathbf{v} \alpha=\lambda \mathbf{v} \Rightarrow(a \mathbf{u}+b \mathbf{v}) \alpha=a(\lambda \mathbf{u})+b(\lambda \mathbf{v})=\lambda(a \mathbf{u}+b \mathbf{v}) . \\
& . \mathbf{u}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\mathbf{u}\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right) \text { در هسته است، زيرا } \mathbf{~ u} . \mid Y \\
& \text { I If (يك) . IT } \\
& \text { (دو) r ا I } \\
& \text { r r r } \\
& \text { ، (جهار) } \\
& \text { (ينج) ه، ه، } \\
& \text { (شش) (ش) }
\end{aligned}
$$

( If




مeدار ويرة ${ }^{\text {r دارد. }}$

$$
\cdot\left(\mathbf{u} U^{-1}\right) U A=\mathbf{u} A=\lambda \mathbf{u}!\left(\mathbf{u} U^{-1}\right) U=\mathbf{u} .19
$$

گروهها، راهى به هندسه

$$
\begin{aligned}
& . W U A U^{-1}=\lambda W{ }_{1}\left(\mathbf{u} U^{-1}\right) U A U^{-1}=\lambda \mathbf{u} U^{-1} \\
& (1, \cdot) U A U^{-1}=\mathbf{u}_{1} A U^{-1}=\lambda_{1} \mathbf{u}_{1} U^{-1}=\lambda_{1}\left(1,{ }^{\circ}\right) \cdot \mathrm{r}^{0}
\end{aligned}
$$

$U=\left(\begin{array}{ll}a & r a \\ b & b\end{array}\right)$. نيز $\left.U=\left(\begin{array}{ll}1 & r \\ 1 & 1\end{array}\right) . r \right\rvert\,$

$$
\begin{aligned}
U=\left(\begin{array}{cc}
r & -r \\
-r & 1
\end{array}\right) \cdot \mathrm{D}=\left(\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right) \quad \text { برای } U & =\left(\begin{array}{cc}
-r & 1 \\
r & -r
\end{array}\right) \cdot r r \\
& \cdot D=\left(\begin{array}{cc}
r & 0 \\
0 & r
\end{array}\right) .\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{r} & 0 \\
0 & 0 & \lambda_{r}
\end{array}\right) \cdot r
\end{aligned}
$$


 $\dot{C}=N^{-1} B N ، B=M^{-1} A M$ لذا متقاسناست. برای $A=\left(M^{-1}\right)^{-1} B M^{-1}$ داريم $C=(M N)^{-1} A(M N)$ لذا ترايايى است. $C$ با
FY يكان $\lambda^{\text {ي }}$
 شده است.

$$
\begin{aligned}
& \operatorname{det}\left(M^{-1} A M\right)=\operatorname{det} M^{-1} \cdot \operatorname{det} A \cdot \operatorname{det} M=\operatorname{det} A \cdot \operatorname{det} M^{-1} \cdot \operatorname{det} M \\
& =\operatorname{det} A \cdot \operatorname{det} M^{-1} M \text {. } \\
& \text {.rA. (يك) و (جهار). }
\end{aligned}
$$

-r. هرگا. را مجاز مىدارد.

اr. دو بردار ويره يك بايه تشكيل مىدهند. اينها را به عنوان سطرهاى U به كار



$$
\text { بنابراين } \lambda=\mu=\nu, b(\mu-\nu)=\bullet, a(\lambda-\nu)={ }^{\circ} . \lambda=
$$

rr. هرگا. $A=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)$ مر دو بردار بايه بردارهاى ويزه هستند. هرگا.

$$
A=\left(\begin{array}{ll}
\lambda & 0 \\
1 & \lambda
\end{array}\right)
$$

$$
[x, y]=[r,-1](د)
$$

$$
[x, y]=\left[\frac{0}{\gamma},-\frac{1}{\gamma}\right](س)
$$

.ro

$$
\alpha:\left[{ }^{\circ}, \\right] \rightarrow[r, s] \cdot \mathbf{w}=\left[{ }^{\circ}, \\right] \cdot \alpha:\left[1,{ }^{\circ}\right] \rightarrow[p, q], \mathbf{u}=\left[1,{ }^{\bullet}\right]
$$



.rv. بنابه سؤال \&r، • =
r^.

$$
\text { qr. }\left(\begin{array}{cc}
1+a c & b c \\
a d & 1+b d
\end{array}\right) \text { سوال rו. rץ را ببينيد. }
$$



$$
\begin{aligned}
& . r=(a s-1) / b ، s=r-a \Leftarrow a s-b r=1 ، a+s=r . F \mid \\
& . q=(p d-1) / c, p=r-d \Leftarrow p d-q c=1 ، p+d=r . Y r
\end{aligned}
$$

.fF


# 19 

## همربختيها




俍 يك حاصلضرب برابر است با حاصلضرب نغارهها.


 كفت؟

B
 r بr را ببينيد).
ץ




كروهها، راهى به هندسه
V. . هرگا. GL(Y,F) قلمرو تابع
$A \mapsto \operatorname{det} A$
باشد مجموعن نگارهها جيست؟

 هرگاه $A \mapsto \operatorname{det} A$ يك همريختى گروه $A L(Y, F)$ باشد عمل را در گروه نگاره مشخص كنيد.
9. عدد حفيتى | $a$ | عامل متياس تشابه $z \mapsto a z+b \mapsto$ نام دارد. آيا تابعى كه هر
 مستقيم بروى گروه ضربى اعداد حتيقى مثبت است؟
 , $H$, $\alpha$ : $G \rightarrow H$
 فرستاده مى اشوند.

 Ir. آيا هر تبديل خطى از يك نضاى بردارى يك همريختى گروه است؟

هستهُ يك همر يختى




 هر عضو آن بد عضو همانى H نگاشته شود هسته $\alpha$ نام دارد زيرگروهى از G است.
 عضو هم مجموعة Kg و هر عضو هم مجموعة و و نگارة يكسانى دارد.

H $H$ ر داشته باشند ثابت كنيد آنها به هم مجموعة جب يكسانى از هستئ $\alpha$ ه و نيز هم مجموعة راست يكسانى در هسته $\alpha$ تعلق دارند.

^1. ثابت كنيد هسته يك همريختى گروه $\alpha: G \rightarrow H$ يك زيرگروه نرمال از تشكيل مىدهد.
 در G باشد دربارة هم مجموعهماى هسته و لذا در بارة تابع $\alpha$ جه میتوان گفت؟
گروههاى خارج تسـتها

 گروه خارج تستها نام دارد و با G/N نمايش داده مى


 r. تضيه: اصلى هـريختيهاى گروه . . هرگاه


$$
\begin{aligned}
& \text { (ئر } \\
& \text { (يك) خوشتعريف است، } \\
& \text { (دو) يك به يك است، } \\
& \text { (سه) يوشاست، }
\end{aligned}
$$

گروهها، راهى به هندسه
(جهار) حفظ كندة ساختار است، يعنى

$$
g_{1} \alpha \cdot g_{r} \alpha \mapsto K g_{1} \cdot K g_{r}
$$

و بنابراين ثابت مىكند كه هرنگارء همريخت يك گروه با يك گروه خارج تسمتها يكريخت است.
 مىتوان به يافتن همة زيرگروههاى نرمال و سبس ساختن گروههاى خارج تسمتهاى متناظر تحويل كرد.

 يكريخت است؟


$$
\text { ، } S_{n} \text { (يك) }
$$

$$
\text { ، } D_{n} \text { (دو) }
$$

(سه) گروه تشابههاى صنای صنحة اقليدسى،
(جها) گروه طولباييهاى صفحة اتليدسى ارائه دهيد.
\& \& داريم ab=ba آيا هر زيرگروه بايد نرمال باشد.

با $\alpha: \mathbb{Z} \mapsto G$ با

$$
\alpha: r \mapsto g^{r}
$$

تعريف شود آيا $\alpha$ يك هريختى گروه (Z, (Z) است؟
 كنيد.



اT.
 . $\mathbb{Z} \rightarrow G$
اس. زيرگروه ( گروه خارج تسمتهاى $\mathbb{Z}$ را $\mathbb{Z} / n \mathbb{Z}$ ابا اعضاى n $n \mathbb{Z}$ rr. جون روى اعداد صحيح يك ضرب سازگار روى هم مجموعههاى $n \mathbb{Z}$ القا مىكند به نحوى كه

$$
\text { ( } \left.\mathbb{Z}_{n},+, \cdot\right) \text { ويزگيهاى زير را دارد: }
$$

( $\mathbb{Z}_{n},+$ )
( $\mathbb{Z}_{n}$, ( بسته، شركتذير و تعويضيذير است و داراى عضو همانى است.

$$
(a+b) . c=a . c+b . c \quad, a .(b+c)=a . b+a . c
$$

با استفاده از سوال V. 11 ثابت كنيد اگر n عددى مركب باشد، آنگاه
يك هيئت نيست.
ץr. يى جدول كيلى براى (• مجموعه تحت عمل ضرب بسته است. با برهان خلف استدلال كنيد. چرا همئ درايههاى يك سطر از جدول كيلى، مانند استدلال كنيد. جند درائه متفاوت وجود دارند؟ آيا ا بايد يكى از درايهها باشد؟ هركاه
 يك گروه است و لذا (
 اعضاى اين گروه ثابت كنيد اگر $x$ مضرهى از از نتيجه بگيريد به ازاى همةٔ اعداد صحيح $x$ داريم (بيمانه $x$ )

دو گروه خارج قسمتهای خاص هr. گروه جمعى Q/Z آن گروهى نامتناهى است كه مرتبه هر عضو آن متناهى است.

گروهها، راهى بد هندسه

عץ. هرگا. D گروه طولبانييهاى مستقيم صفحة اتليدسى و T $T$ گروه انتقالها باشد
ثابت كنيد D/T با گروه ضربى اعداد مختلط با تدر مطلق 1 يكريخت است.
خلاصهُ مطالب
 سؤالهاى نام دارد.

تحت يك همريختى گروه، نگار: عضو همانى، همانى است و نگارهـهاى هر هر سؤالهاى عضو و وارون آن يك عضو و وارن آن مىباشد و نگارة يك زيرگروه يك -11، الـيرگروه است.

تعريف زير مجموعة همُ اعضاى دامنه كه نگارة آنها تحت يك همريختى گروه عضو سؤال 10 همانى است هسته هريختى نام دارد.

تضيه $\quad$ هسته يك هريختى گروه يك زيرگروه نرمال دامنه است. سؤال 11

اگر G يك گروه و N يك گروه نرمال G باشد آنگاه هم مجموعههاى سؤال $N$ تح تحت ضرب زيرمجموعدها يك گروه موسوم به گروه خارج تسمتهاى G/N تشكيل مىدهند.

 سؤال

يادداشت تاريخى


آن در نوشتههاى رياضى وارد شده است. ا. گالوا زيرگروههاى نرمال و گروههاى خارج
 صريح همريختيها و هستههاى آنها با ا.كابلى' شروع شد (IAVA).

گروهها، راهى به هندسه
جوابهای فصل 18

$$
\begin{aligned}
& . \operatorname{det} A=\operatorname{det} S \cdot \operatorname{det} B=\operatorname{det} B, \operatorname{det} S=1 \delta A=S B .1 \\
& \operatorname{det} S=1 \delta A B^{-1}=S \Leftarrow \operatorname{det} A B^{-1}=1 \Leftarrow \operatorname{det} A=\operatorname{det} B . r \\
& \text { r = r. تعداد هم مبحوعهها = تعداد مeادير متمايز دترمينان } \\
& \left|S L\left(r, \mathbb{Z}_{r}\right)\right|=\left|G L\left(r, \mathbb{Z}_{r}\right)\right| / r=r \Psi \\
& \frac{Y F \cdot Y_{0}}{F}=1 Y_{0} \cdot F . F
\end{aligned}
$$

. $\operatorname{det} A^{-1} B=1 \Leftarrow \operatorname{det} A=\operatorname{det} B . \Delta$
\&. هم مجموعههاى حب و راست زيرمجموعههايى با دترمينان برابر هستند. بله.

$$
. F-\{0\} . V
$$

ـ ـ ـرب
9




$$
. S L(r, F) . I r
$$

If

$$
g_{\curlyvee} \alpha=e \alpha \Rightarrow g_{\imath} \alpha \cdot g_{\curlyvee} \alpha=e \alpha \cdot e \alpha \Rightarrow\left(g_{,} g_{\curlyvee}\right) \alpha=e \alpha \cdot{ }_{{ }^{\prime}} g_{\backslash} \alpha=e \alpha \cdot \backslash \Delta
$$

$$
\begin{aligned}
& \left(g k_{\curlyvee}\right) \alpha=g \alpha . k_{\curlyvee} a=g \alpha,\left(k_{\backslash} g\right) \alpha=k_{\imath} \alpha \cdot g \alpha=g \alpha .1 я \\
& g_{\backslash} \alpha=g_{r} \alpha \Rightarrow\left(g_{\backslash} \alpha\right)\left(g_{r} \alpha\right)^{-1}=e \alpha \Rightarrow\left(g_{\wedge} g_{r}^{-1}\right) \alpha=e \alpha \text {. } \downarrow \vee \\
& \Rightarrow g_{\wedge} g_{r}^{-1} \in \text { هسته } \\
& \text { ( } \left.g_{\}^{-1} g_{r}\right) \alpha=e \alpha \Rightarrow g_{1}^{-1} g_{r} \in \text { همحنین، هسته }
\end{aligned}
$$

$\Longleftrightarrow g_{1} g_{r}^{-1} \in$ د $g_{r} g_{1} .11$的 $g_{\} \Longleftrightarrow g_{\wedge} g_{r}^{-1} \in g_{1} \alpha=g_{r} \alpha$ 19 ا هر هم مجموعه تك عضوى است و همريختى مزبور نگاشتى يک به يک است. لذا همريختى مزبور يكريختى نام دارد.
-Y. تعريف، بسته بودن را نتيجه مىدهد. عضو همانى N است. Na $N$ واون $N a$
است.
. 11

$$
\begin{array}{ccrc}
\left\{e, a^{r}\right\} & ,\left\{a, a^{r}\right\} & ,\left\{b, b a^{r}\right\} & ,\left\{b a, b a^{r}\right\} \\
\left\{a, a^{r}\right\} & ,\left\{e, a^{r}\right\} & \left\{b a, b a^{r}\right\} & \left\{b, b a^{r}\right\} \\
\left\{b, b a^{r}\right\} & \left\{b a, b a^{r}\right\} & \left\{e, a^{r}\right\} & \left\{a, a^{r}\right\} \\
\left\{b a, b a^{r}\right\} & \left\{b, b a^{r}\right\} & \left\{a, a^{r}\right\} & \left\{e, a^{r}\right\}
\end{array}
$$


r. (یک) و (دو)

$$
g_{1} \alpha=g_{r} \alpha \Longleftrightarrow\left(g_{\wedge} g_{r}^{-1}\right) \alpha=e \alpha \Longleftrightarrow g_{\wedge} g_{r}^{-1} \in K \Longleftrightarrow K g_{\}=K g_{r}
$$


باشند. گروه خارج تسمتها

$$
\text { ، } A_{n} \text { (يكى. . }
$$

$$
\text { ، } C_{n}(د)
$$

(سه) تشابههاى مستقيم،

\&

$$
\begin{array}{r}
. g^{m+n}=g^{m} \cdot g^{n} . \mathrm{YY} \\
\{0, \pm r, \pm q, \cdots\} . \mathrm{YA} \\
. g^{a}=g^{b} . \mathrm{Yq}
\end{array}
$$



$$
. l \mapsto g
$$

اس. اعضاى Z $\mathbb{Z}_{n}$

كروهها، راهى به هندسه
 صغر
 سره ندارد. (بيمانه متغاوت براى ا 1 - $p$ دراية متناوت، لذا همة آنها شامل 1 هستند. استدلال بسته بودن و


 (
 צז. هرگاه

يكريختى را نشان مىدهد.

هر رابطـن هـمارزیى راهـى بـراى در انـزوا تــرار دادن نــوع بخصوصـى از يكسانـى



 زيرگروهـــاى نرمـال هستـــد.
 جايگشتهاى دورى تك بنويسيد.
r.
 دورى بنويسيـــد
 r. نگارة مجموعi

$$
\{(1),(I r Y),(I r Y),(r r),(I r),(I r)\}
$$

را تحت نگاشت داده شده به وسيلة

$$
\gamma \mapsto(\text { IFMY) } \gamma(I Y \Psi Y)
$$

نمايش دهيـــ. مجـــوعــن اصلـى را و نگــارة مجموعـه را بـه صـورت زيـر

گروهها، راهى به هندسه

مجموعههايـى از

نقاط ثابت اعضاى مزدوج
 نتيجه مىدهد ه. هرگاه $\alpha$ دورانى از صفحه و $\beta$ ط طولايیى دلخواهى از صفحه باشد با استفاده از سؤال \& نشان دهيد كه طولبايى است. \&. هرگاه $\beta^{-1} \alpha \beta$ بازتابى از صفتحه و $\beta$ طولبايى دلخواهى باشد، دربارة نقاط ثابت چه مىتوان گفت؟ V. هرگاه $\tau$ انتقالى از صفحه و $\beta$ ط طولبايى دلخواهى باشد $\beta^{-1} \tau \beta$ حند نقطه ثابت دارد؟ $\tau$ به صورت حاصلضرب دو بازتاب نوشت و نتيجه بخيريد
 نشان دهيد هر عضو مجموعهُ است. توضيِ دهيد. \& باشد كه $x=g^{-1} y g$ ر گروه اقليدسى صفحه دربارة طولباييهايى كه با (يى) (دو) يك دوران،
(سه) يك انتقال، (حرال
(حهار) يك لغزه مزدوج هستند چه مىتوان گفت؟
-ا. نگاشت از اعضاى گروه به ازاى هر $a \in D_{\text {F }}$

$$
g \mapsto a^{-1} g a
$$

داده مىشود نمايش دهيد. هرگاه D $g \mapsto b^{-1} g b$ آنها را تحت اين نگاشت نام ببريد. همحتنين نگاشت از

داده مىشـــود نمايـش دهيـد و طوليـاييهـاى متناظـر و نگــارههـاى آنهـا را نيـز نــام
ببـريــــ

ردههای مزدوجى
II. آيا يى عضو غير همانى در يى گروه، اصلاً مىتواند با عضو همانى مزدوج

باشد؟
 حتماً مرتبة يكسان دارند؟
 ردههاى مزدوجى نام دارند.

 عضوى است. بهازاى همd أ با استفاده از سؤال 1 ا جستجو را كامل كنيد. ها اگر اعضاى يك گروه بهردهُ مزدوجى تى عضو تعلق داشته باشد دربارئ رابطة آن با اعضاى ديگر گروه چه مى
 را آ. آا اعضاى مركز يك گروه حتماً به ردههاى مزدوجى تعلق دارند؟ آيا اين ويزگى، آنها را مشخص مىكند؟
 باشد آنگاه آن عضو در مركز گروه ترار دارد.


 دور است؟ آيا هر Y ( $\alpha^{-1}$ مشخص كنيد آيا هـر عضـو


گروهها، راهى به هندسه
 rY.

 توليـد مىكنــد.

زيرگروههاى نرمال و ردههای مزدوجى

 آنگاه به ازای همí
 ثابت كنيد نرمال G است.
 گروه G نرمال است اگر و تنها اگر به ازاى همة
 مـزدوجـى اســتـ
 ) زيرگروههاى نرمال
جه گروهمايى مىتوانند نگارههاى همريّ
 از سؤالهاى (دو) حاصلضرب (adcb)(adbc)(abdc)) را به صورت يك جايگشت دورى تک


$$
\text { آنگاه } N=S_{\text {F }}
$$




نرمال است.
(جهار) يك زيرگروه نرمال مرتبْ $\ddagger$ ( (بنج) جه گروههايى نگارههاى همريخت

حاصلضر بهای مستقيم



ثابـت كنيـد $h k=k h$.

نرمال $G$ باشند.

گـروه در (•

$$
\begin{aligned}
& H=\{1, \vee\}, K=\{1,10\} \text { (يك) } \\
& \text {, } K=\{\backslash, \backslash \Delta\}, H=\{\, r, q, \mid \\
}(د) \\
& . K=\{\, \Delta, q, I r\}^{\circ}, H=\{\, r, q, I \\
} \text { (سه) } \\
& \text { آيا }
\end{aligned}
$$

 با استفاده از سؤالهاى •11.1 يكريخت است.
rr. نشان دهيد گروه G سوال ا
يكريخت است.

## مركزسازها


 تعويضضـذير است

گروهها، راهى به هندسه

|  | $e$ | $a$ | $a^{r}$ | $a^{r}$ | $b$ | $b a$ | $b a^{r}$ | $b a^{r}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $e$ | $e$ | $a$ | $a^{r}$ | $a^{r}$ | $b$ | $b a$ | $b a^{r}$ | $b a^{r}$ |
| $a$ | $a$ | $a^{r}$ | $a^{r}$ | $e$ | $b a^{r}$ | $b$ | $b a$ | $b a^{r}$ |
| $a^{r}$ | $a^{r}$ | $a^{r}$ | $e$ | $a$ | $b a^{r}$ | $b a^{r}$ | $b a$ | $b a^{r}$ |
| $a^{r}$ | $a^{r}$ | $e$ | $a$ | $a^{r}$ | $b a$ | $b a^{r}$ | $b a^{r}$ | $b$ |
| $b$ | $b$ | $b a$ | $b a^{r}$ | $b a^{r}$ | $e$ | $a$ | $a^{r}$ | $a^{r}$ |
| $b a$ | $b a$ | $b a^{r}$ | $b a^{r}$ | $b$ | $a^{r}$ | $e$ | $a$ | $a^{r}$ |
| $b a^{r}$ | $b a^{r}$ | $b a^{r}$ | $b$ | $b a$ | $a^{r}$ | $a^{r}$ | $e$ | $a$ |
| $b a^{r}$ | $b a^{r}$ | $b$ | $b a$ | $b a^{r}$ | $a$ | $a^{r}$ | $a^{r}$ | $e$ |

هr. هرگاه g عضو مفرضیى از يك گرره G باشد ثابت كنيد مركزساز و، و ولزورماً زيرگروهى از G است.
 اعضا مقايسه كنيد (سوال (If ).


 نتيجه بگيريد يك دوسويى خوش تعريف

$$
C_{a} x \mapsto x^{-1} a x
$$


 ثابت كنيد اندازة يك ردة مزدوجى مرتبة G را تقسيم مىكند.

 وجود دارد؟ با استفاده از سؤال






 هـن AF . عكس تضيí لاگرانز نادرست است.)

زيرگروههای نرمال

 كنيد ${ }^{\text {r }}$ دورها يك ردة مزدوجي تك در


 A Fr. يك جايگشتهاى فرد را ارائه مىدهندر دري (FF . $N=A_{\Delta}$ ريرور
 باشد، حرا حاصلضرب
 \& \& باشد، جرا حاصلضرب
 A

 ساده هستند؟
 سه عامل اول متمايز مرتبه گروه >

 وجود دارند؟ با استفاده از سؤال


## دورانهاى مزدوج در بُعد سه

 هركاه $l$ خطى عمود بر $a$ باشد مكان $l \alpha$ را را توصيف كنيد $\beta^{-1} \alpha \beta$ همجنين رابطةٌ بين سه خط



نحو هندسى تمايز بگذاريد.

خود ريختيها
$g \mapsto a^{-1} g a$ ar مطرح در سوال 10 حغظ كندة ساختار است و يك يكريختى از گُروه DF



هر يكريختى از يک گروه بروى خود يک خودر خريختى گروه



نگاشته مىشود؟ \&ه. تحت يک خودريختى يک گروه آيا هر زيرگروه نرمال بهرى يک زيرگروه نرمال نگاشته مىشود؟ هو . هV درنى نام دارد. تحت يك خودريختى درونى آيا هر ردأ مزدوجى بهروى خود خود نگاشته مى شود.
ه^. هA. تحت يك خودريختى درونى آيا زيرگروه نرمال بهرى خود نگاشته مىشود؟
هQ. ثابت كنيد تابع دادهشده با

$$
\alpha \mapsto(\backslash Y) \alpha(\backslash \upharpoonright)
$$

يك خودريختى گروه
بررسى كنيد اين خودريختى به صورت يك رور خردر بررسى نگارة يك ردء مزدوجى از خودريختى درونى نيست.
 -\&. ثابت كنيد تابع داده شده با

$$
g \mapsto g^{-1}
$$

يك خودريختى براى هر گروه آبلى ارائه مىدهد ر وتتى اين تابع همانى نيست (جنان كه

 تشكيـل مىدهنـــد؟


گروهها، راهى به هندسه
خلاصه مطالب

تعريف سؤال 9 داشته باشد كه $9=g^{-1} y g$ در

تضيه مزدوج بودن يك رابطءّ همارزى روى يك گروه است. سؤال ت

هر ردة مزدوجى $S_{n}$ در برگيرندة همن جايگشتها با ساختار دور مفروض
سؤالهاى است.

اگر N زيرگروهى ازگروه G باشد آنگاه N يك زيرگروه نرمال G است اگر
 ra, rF
هر زيرگروه نرمال اجتماعى از ردههاى مزدوجى است.
 سؤال $H \times K$ K $H \cap K=\{e\}$ يكريخت است. $G$ آنگاه باحاصلضرب مستقيم

تعريف


تضيه مركز


تنها زيرگروههاى نرمال $A^{\prime}$ مرتبهاى ا و 9 دارند.
$g \mapsto a^{-1} g a$ هرگاه $a$ عضو مفروضى ازيك گروه $G$ باشد تابع داده شده با سؤال
يك يكريختى از گروه به خود است و خودريختى درنى نام دارد.

خودريختيهاى درنى يك گروه G يك زيرگروه از ${ }_{\text {از }}$ را تشكيل مىدهند. سؤال 81

تضيه سؤال SY به گرره خودريختيهاى G است.

## يادداشت تاريخى

درسال J.I AFD. كالوشى نشان دادكه ردهماى مزدوجى

 خودريختيهاى دونى و برونى در سال 1901 توسط ن.

[^9]جوابهای فصل IV)
. (YY) ( $)$ ( 1

$$
. \alpha^{-1}(\backslash Y) \alpha=(\backslash \alpha Y \alpha) . \vdash
$$

r.

$$
m \alpha=m \Longleftrightarrow m \alpha \beta=m \beta \Longleftrightarrow(m \beta) \beta^{-1} \alpha \beta=m \beta \text {.户 }
$$

ه. يكتايى نقطة ثابت آن را به يك دوران مبدّل مىكند. سوال
\&. هرگاه l محور $\alpha$ باشد $\alpha \beta$ ه
است. سؤال r.ا


$$
\beta^{-1} \tau \beta=\beta^{-1} \sigma_{\backslash} \sigma_{\curlyvee} \beta=\left(\beta^{-1} \sigma_{\backslash} \beta\right)\left(\beta^{-1} \sigma_{\curlyvee} \beta\right)
$$

. $\tau^{-1} R \tau={ }^{\circ} R \tau={ }^{\circ} \tau=1 . \wedge$
9. (يك) بنابه سؤال 9 تنها بازتابها.
(دو) بنابه سؤال $\Delta$ تنها دورانها.
(سه) بنابه سوال V تنها انتقالها.
(حهار) تنها لغزهها: نتطهُ ثابت ندارد و اگر

$$
\cdot \beta^{-1} \gamma \beta=\left(\beta^{-1} \sigma_{\curlyvee} \beta\right)\left(\beta^{-1} \sigma_{r} \beta\right)\left(\beta^{-1} \sigma_{r} \beta\right) \cdot \gamma=\sigma_{\backslash} \sigma_{r} \sigma_{r}
$$

سوال Fq.9 ا را ببينيد.

$$
\begin{align*}
& \binom{g}{a^{-1} g a}=\left(\begin{array}{cccccccc}
e & a & a^{r} & a^{r} & b & b a & b a^{r} & b a^{r} \\
e & a & a^{r} & a^{r} & b a^{r} & b a^{r} & b & b a
\end{array}\right) \text { ।. } \\
& \binom{g}{b^{-1} g b}=\left(\begin{array}{cccccccc}
e & a & a^{r} & a^{r} & b & b a & b a^{r} & b a^{r} \\
e & a^{r} & a^{r} & a & b & b a^{r} & b a^{r} & b a
\end{array}\right) \\
& .\left(g^{-1} a g\right)\left(g^{-1} a g\right) \cdots\left(g^{-1} a g\right)=g^{-1} a a \cdots a g . \mid \gamma
\end{align*}
$$

$n$
$n$
r|

$$
b=g^{-1} a g \Rightarrow g b g^{-1}=a \Rightarrow a=\left(g^{-1}\right)^{-1} b g^{-1}=b
$$

$$
\begin{gathered}
\qquad b=g^{-1} a g \text { ترايايى } a(g h) .
\end{gathered}
$$

 $a^{-1} a^{r} a=a^{r}, b^{-1} a^{r} b=a^{r}$. بنابراين برابر با
 مزدوج مىباشند. الـ اگر به ازای همة است. צا. . همهُ مجموعههاى تك عضوى.
. IV

19. 19



$$
\begin{gathered}
\cdot\{(I Y)(Y Y) ،(I Y)(Y Y) ،(I Y)(Y Y)\} \cdot Y Y \\
. \alpha^{-r} \gamma \alpha^{r}=(I Y) ، \delta=(I Y) ، \gamma=(Y r) \cdot r Y
\end{gathered}
$$

. $\left(g^{-1} k g\right) \alpha=g^{-1} \alpha . e \alpha . g \alpha=g^{-1} \alpha . g \alpha=\left(g^{-1} g\right) \alpha=e \alpha$. . $\mathrm{H} F$
سوال MY.19 هر زيرگروه نرمال هسته يك همريختى است.

$$
\begin{aligned}
. g\left(g^{-1} N g\right) & \subseteq g N \Leftarrow g^{-1} N g \subseteq N . Y \Delta \\
& \left(g^{-1} N g\right) g^{-1} \subseteq N g^{-1} \Leftarrow g^{-1} N g \subseteq N a
\end{aligned}
$$

צ צ. جون

$$
\cdot<a ، a^{r}>=\left\{e, a ، a^{r}, a^{r}\right\} ،<a^{r}>=\left\{e, a^{r}\right\} ،<e>=\{e\} . \upharpoonright \vee
$$

 از اينها اجتماعى از ردههاى مزدوجى است. هر جفت ديگر از ردهها هم
 است.

گروْها، راهى به هندسه

 دورها و لذا يك ترانهش است است

 گاهى اين زيرگروه را

$$
\begin{aligned}
& . S_{\mathrm{r}} / V_{\mathrm{r}} \cong S_{\mathrm{r}} \cong D_{\mathrm{r}} . S_{\mathrm{r}} / A_{\mathrm{r}} \cong C_{\mathrm{r}} \text { ( }
\end{aligned}
$$

$$
\begin{aligned}
& \text {.r. } \\
& . g^{-1} a g=\left(a_{1} b_{1}\right)^{-1} a\left(a_{1} b_{1}\right)=b_{1}^{-1} a_{1}^{-1} a a_{1} b_{1}=a_{1}^{-1} a a_{1}
\end{aligned}
$$

 (سه) بلد.


 rr .$K \cong C_{Y}$

$$
. C_{a^{r}}=D_{r} \cdot C_{b}=\left\{e, b, a^{r}, b a^{r}\right\} . C_{a}=\left\{e, a, a^{r}, a^{r}\right\} . r 千
$$

هاז. بسته بودن، همانى، و وارونها را بررسى كنيد. \& \&r. ردة مزدوجى
$D_{p} \quad\{e\}$
$D_{\mu} \quad\left\{a^{r}\right\}$
. $\left\{e, a, a^{r}, a^{r}\right\} \quad\left\{a, a^{r}\right\}$
. $\left\{e, b, b a^{r}, a^{r}\right\} \quad\left\{b, b a^{r}\right\}$
.$\left\{e, b a, b a^{r}, a^{r}\right\} \quad\left\{b a, b a^{r}\right\}$
$\lambda=1$ = (اندازء رده)
. $\mathrm{y} x^{-1} \in C_{a} \Leftrightarrow y x^{-1} a=a y x^{-1} \Leftrightarrow x^{-1} a x=y^{-1} a y . \mathrm{rV}$

程 $x^{-\top} a x=y^{-\top} a y \Leftrightarrow C_{a} x=C_{a} y$





 ردة مزدوجى ديگرى تعلت دارند.


بنابراين يكى نرج و ديگرى فرداست. لذايك جايگثشت نزج در

 بر
$\frac{\varepsilon_{0}}{\Gamma} A_{0} A_{\Delta}$ ر
عضو است، يعنى هـة


 . $\beta \alpha^{-1} \beta \alpha=(c d e)$ ( . $N$ ( $N$ بسته اس

.FV

的

گروهها، راهى بد هندسه

است بنابراين مرتبه > شاخص ( مرتبه آن برابر با ها لست. از اين رو


 $A \beta\left(\beta^{-1} \alpha \beta\right)=A \beta, A \beta \in a \beta \Leftarrow A \in a$ عموداند وباهم زاوية $\theta$ مى
的 ${ }^{-1} \alpha \beta$
 ممكن است با يكديگر مزدوج باشند اما با دورانهايى به اندازة
 از اين رو نگاشت حانظ ساختار است. $g^{-1} x y g=\left(g^{-1} x g\right)\left(g^{-1} y g\right)$



$$
b=x^{-1} a x \Rightarrow b \alpha=\left(x^{-1}\right) \alpha \cdot a \alpha \cdot x \alpha=(x \alpha)^{-1} a \alpha(x \alpha)
$$ \&ه. يك زيرگروه نرمال اجتماعى از ردههاى مزدوجى است. بله. . $\Delta V$

. 1 . بلa.


$$
\begin{aligned}
& (\text { IY }) \alpha(\backslash Y)=(\text { Ir }) \beta(\backslash Y) \Rightarrow \alpha=\beta \\
& (\text { IY }) \alpha \beta(\text { IY })=[(\text { IY }) \alpha(\text { IY })]((\text { Ir }) \beta(\text { IY })]
\end{aligned}
$$


 -9.

$$
\text { ا.9. تركيب } x \mapsto g_{r}^{-1} x g_{r}, x \mapsto g_{1}^{-1} x g \text { برابر با }
$$

和 $x \mapsto g_{r}^{-1}\left(g_{1}^{-1} x g_{\wedge}\right) g_{r}=\left(g_{\wedge} g_{\mathrm{r}}\right)^{-1} x\left(g_{\wedge} g_{\mathrm{r}}\right)$

درنى بسته است. واون را ارائه مىدهد. $(x y) \alpha=x \alpha . y \alpha$ \%r
 خودريختها بسته است. نگاشت همانى يك خودريختى است. $x \alpha^{\text {اس }}$ ( $\left.\alpha^{-1} . y \alpha^{-1}\right) \alpha=x y$ (

$$
\text { لذا } x \alpha^{-1} \cdot y \alpha^{-1}=(x y) \alpha^{-1}
$$

$\qquad$
كروههاى كسرى خطى

هرگاه تاثثير اعضاى گروه خطى عام روى زيرفضاهاى يك بُعدى را بررسى كنيم يك گروه جايخشتى ترايا به دست مى آوريم كه يك نگاره همريخت گروه خطى عام است. اين امر باعث مىشود كه گروه موبيوس و گروه تصويرى روى يك خط بـى بهعنوان مثالهايىى از
 يک بُعدى (Fr جايگرد مىشوند. اين قدمى است كه از يك فضاى بردارى به يك فضاى تصويرى
 زير فضاهاى يک بُعدى نقاط خط تصويرى هستند. به طور كلى زير فضاهاهاى بُعدى (

 در چنين شرايطى گاهى از بهكارگيرى مختصات همگن براى نقاط تصويرى صحبت مى دینيم.

جايگشتهای فضاهای يك بُعلى $V_{Y}(\mathbb{R})$ ا ا.
 بيابيد. آيا نگارههاى اين نقاط همگى در يك زيرفضاى يك بُعدى قرار دارند؟ هرگاه : نگاشته شود مقدار $\{x(s, I) \mid x \in \mathbb{R}\}$ تحت $\{x(Y, I) \mid x \in \mathbb{R}\}$

گروهها، راهى به هندسه
$\{x(t, 1) \mid x \in \mathbb{R}\}$ آيا زيرفضاى $\}$ نگاشته مىشود؟ در اين صورت مقدار $t$ را بيابيد. به ازاى يك عدد حقيقى مفروض m، آيا زيرضضاى
 يك عدد 'm را بر حسب m به گونهاى يافت كه $\boldsymbol{m}$ بـ

نگاشته شود؟ $\left\{x\left(m^{\prime}, l\right) \mid x \in \mathbb{R}\right\}$

 $\{x(m, l) \mid x \in \mathbb{R}\}$ فرض اين كه تحت r. آيا هر زيرفضاى يى بُعدى از ( $\left\{\left(x,^{\circ}\right) \mid x \in \mathbb{R}\right\}$ يا به صورت $\{x(m, 1) \mid x \in R\}$ هرگاه زيرنضاهاى يك بُعدى

$$
\begin{aligned}
& \{x(m, \) \mid x \in \mathbb{R}\} \mapsto m \\
& \left\{\left(x,^{\circ}\right) \mid x \in \mathbb{R}\right\} \mapsto \infty
\end{aligned}
$$

نشانگذارى كنيم جايگشت القا شده به وسيلة $\alpha$ ( در سوال ( ) از \} دهيد. بگوييد چه مقدارى از m به م نگاشته مىشود و نگارة م (أ F . $\left\{x(m, 1) \mid x \in \mathbb{Z}_{r}\right\}$ - $\left\{x(1,1) \mid x \in \mathbb{Z}_{r}\right\} ،\left\{x(\bullet, 1) \mid x \in \mathbb{Z}_{r}\right\}$ نگـارة مـر يك از زيرنضاهـاى


$$
\alpha:(x, y) \mapsto(x, y)\left(\begin{array}{ll}
\bullet & 1 \\
1 & 1
\end{array}\right)
$$

بيابيد. آيا هر تبديل خطى ناتكين

هرگاه زيرنضاهاى يك بُعدى

$$
\begin{aligned}
\left\{x(m, \) \mid x \in \mathbb{Z}_{r}\right\} & \mapsto m \\
\left\{\left(x,{ }^{\circ}\right) \mid x \in \mathbb{Z}_{r}\right\} & \mapsto \infty
\end{aligned}
$$

نشانگذارى كنيم جايگشتى از نگارة m يك عبارت كلى جبرى ارائه دهيد به شرطى كه ديگر از كند.
ه. هرگاه $\alpha$ ر $\beta$ تبديلهاى خطى ناتكين ${ }^{\text {ه }}$ باشند كه زير نضاهاى يك بُعدى
 هـرگـا $، ~ \alpha \beta^{-1}:(x, y) \mapsto(x, y) A$ و $(1,1) \alpha \beta^{-1}=(s, t)$
$A$

 روى زير فضاهاى يك بُعدى بيابيد.
V. هرگاه تحت تبديل خطى ناتكين

$$
\alpha:(x, y) \mapsto(x, y)\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

از نگاشته شود با فرض اين كه $\left\{x\left(m^{\prime}, ~ I\right) \mid x \in F\right\}$ m بنويسيد. نگارة زيرفضاى $m$, $\alpha$ حيست؟ نگارة زيرنضاى ( $\left\{\left(x,^{\circ}\right) \mid x \in F\right\}$ ^. هرگاه يك نگاشت

$$
x \mapsto \frac{a x+b}{c x+d}
$$

گروهها، راهى به هندسه

تعريـف كنيـم كـه $c \neq 0, a, b, c, d \in F$ حــه عضـــوى از $F$ بايـد از دامنـهٔ حـذن

$$
\frac{a x+b}{c x+d}=\frac{b}{d}+\frac{a d-b c}{d(c x+d)} x
$$

نشان دهيد هرگاه $a d-b c=0$

$$
x \mapsto \frac{a x+b}{c x+d}
$$


-ا. هرگاه $c$ ع عضو $s \neq 0, a d-b c \neq$
شده به وسيلهُ

$$
\begin{aligned}
x & \mapsto \frac{a x+b}{c x+d} \\
\text { نگاشتى دوسويى از } F & -\{s\} \text { باشد. } F-\{-d / c\} \text { به }
\end{aligned}
$$

 بـا $\{x(a m+b, l) \mid x \in F\}$, بروى زيرفضاى يك بُعدى $\{x(m, l) \mid x \in F\}$ $\alpha$. $a \neq 0$

. هرگاه $a d-b c \neq 1$.

$$
\alpha: x \mapsto \frac{a x+b}{c x+d}
$$

$(-d / c) \alpha=\infty, ~ c \neq 0$ تعـريـف میکنيـم كـــه هـرگگاه , دارد.
 را مشخص كنيد.

GL(Y,F) $\rightarrow \mathbf{L F}(F)$ همر يختى
Yا. ثابت كنيد نگاشت از گروه $G L(Y, F)$ يعنى ماتريسها تحت عمل ضرب ماتريسى، بروى مجموعه تبديلهاى كسرى خطى تحت عمل تركيب كه با

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \mapsto\left[x \mapsto \frac{a x+b}{c x+d}\right]
$$

داده مىشود يك همريختى است. نتيجه بگيريد تبديلهاى كسرى خطى تحت عمل تركيب يى گروه تشكيل مىدهند. اين گروه با LF 1 نمايش داده مىشود.

( $\left(\begin{array}{ll}r & 1 \\ 0 & r\end{array}\right)$, (ll $\left.\begin{array}{ll}1 & Y \\ 0 & 1\end{array}\right)$

\&ا. با استفاده از سؤال r مرتبه گروه $L F\left(\mathbb{Z}_{r}\right)$ را نتيجه بگيريد.

 SF
 يك زيرنضاى يك بُعدى را بيابيد. مرتبه مركز اين گروه وجود دارند؟ با استفاده از اين نتايج و با بهكار بردن تضيه اصلى همريختيها مرتبه بيابيد.
 در LF(FF) را به صورت جايخشتهاى مجموعة

گروه خارج تستهاى PGL(Y,F)

ر.Y. با استفاده از تضيه اصلى همريختيها روى سوال r


گروهها، راهى به هندسه

يكريخت است.
گروه خارج تسمتهاى GL(Y,F)/C به گروه خطى تصويرى عام



$$
x \mapsto \frac{x-a}{x-b} \cdot \frac{c-b}{c-a}
$$

$F \cup\{\infty\}$ جيست؟ تراياى سوگانه است. Y Y. ثابت كنيد تنها تبديل كسرى خطى كه
 بهطور يكتا مشخص مى ار مشود. rr. هرگاه F
 شامل
 اسكالر ديگرى نيست جه مىتوانوانيم بگوييم.
 كنيد كه تبديلهاى كسرى خطى


FSL (Y,F) Fروه خطى تضويرى خاص









 هر يك از اين گروهها وگروههاى خارج تسمتهاى



 گروه خارج تسمتهاى S/CS S/ گروه خطى تصويرى خاص اr. با استفاده از نمادگذارى سوال
 مركز GL(Y,F) ترار دارد و نتيجه بگيريد دترمينان A $A$ مجذور كامل است.


يكسان تحت $\pi$ ثابت كنيد

$$
x \mapsto \frac{a x+b}{c x+d}
$$

در ST ترار دارد (با استناده از نمادگذارى سؤال •Y)

 (FF .
$\mathbb{Z}_{\Delta} \cup\{\infty\}$ \}
 تقارنهاى دورانى دوازده وجهى تناظر يُ يابند. يا با با استغاده از سؤال كنيد مرتبه گروه توليد شده توسط اين دو تبديل كسرى خطى 90 يا كـتر از آ آن است. با

استفاده از سوال ه. ه (جهار) نتيجه بگيريد اين دورانهاى دوازده وجهى با تقارنهاى دورانى


 از سؤال
 ماتريسهاى مختلط ناتكين به صورت

خلاصهُ مطالب
 سؤالهاى اگر زير نضاهاى يك بُعدى با

$$
\begin{aligned}
& \{x(m, \) \mid x \in F\} \mapsto m \\
& \left\{\left(x,^{\circ}\right) \mid x \in F\right\} \mapsto \infty
\end{aligned}
$$

نشانگذارى شوند آنگاه جايگشت القا شده بهوسيله
دقيقاً تبديل كسرى خطى

$$
x \mapsto \frac{a x+b}{c x+d}
$$

استكه $\infty$ ثابت نگاه داشته مى شود هرگاه ه نگاشته مىشوند هرگاه

نگاشتى از

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \mapsto\left[x \mapsto \frac{a x+\dot{b}}{c x+d}\right]
$$

داده مىشود يك همريختى با هسته مركز GL(Y,F) بهروى گروه كسرى خطى $L F(F)$ است.

اگر C مركز $C$ سؤال $G L(Y, F) / C$ موسوم به گروه خطى تصويرى عام گروه كسرى خطى LF $L$ /

گروه كسرى خطى روى خط تصويرى FU\{ تضيه سؤالهاى تبديل توسط اثرش روى سه عضو متمايز مشخص می مشود. Yr.rl

تعريف اگر G ${ }^{\text {ت }}$ مركز $S L(Y, F)$ را نمايش دهد آنگاه گروه خارج قسمتهاى سؤال
 سوال


يادداشت تاريخى
 جخگنه اين گروه براى اعداد مختلط به نحو تركيبى توسط ا.ف.موبيوس (

 خط به خط ديگر در صفحهُ تصويرى حقيقى ظاهر شد. برای هييت

 وى سادگى

1) Rotman
2) Carmichael

كروهها، راهى به هندسه


rro
كروههاى كسرى خطى
جوابهای نصل 11

$$
\begin{aligned}
& . m^{\prime}=\frac{r m+r}{r m+0}, t=\frac{0}{r} . s=\frac{\Lambda}{11} . l \\
& . m^{\prime}=\frac{r_{m+r}}{r_{m+0}} . r
\end{aligned}
$$

$$
\begin{aligned}
& \left\{x\left({ }^{\circ}, 1\right)\right\} \rightarrow\{x(1,1)\} \rightarrow\{x(\curlyvee, 1)\} \rightarrow\left\{x\left(1,{ }^{\circ}\right)\right\} \rightarrow\{x(\cdot, 1)\} . \varphi^{\digamma}
\end{aligned}
$$

(
بنابراين
 .
. . . $\left\{\left(\begin{array}{ll}1 & 0 \\ r & 1\end{array}\right)\left(\begin{array}{ll}r & 0 \\ 1 & r\end{array}\right)\right\} \cdot\left\{\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}\circ & r \\ r & r\end{array}\right),\right\}$ مجموعة زيرفضاهاى يك بُعدى را به همان طريق جايگرد مىكنند.

$$
\begin{array}{r}
.\{x(-d, c)\} \rightarrow\left\{\left(x,{ }^{\circ}\right)\right\} \rightarrow\{x(a, c)\} . m^{\prime}=\frac{a m+b}{c m+d} \cdot \bigvee \\
.-d / c \cdot \wedge \\
. s=a / c \cdot \wedge^{\circ}
\end{array}
$$

 .Ir

$$
\begin{aligned}
& (\cdot): x \mapsto x, \\
& (\cdot \backslash \infty): x \mapsto \frac{1}{x+1}, \\
& (\cdot \infty): x \mapsto \frac{x+1}{x}, \\
& (\cdot 1): x \mapsto x+1 \\
& (\cdot \infty): x \mapsto \frac{1}{x} \\
& (\mid \infty): x \mapsto \frac{x}{x+1} .
\end{aligned}
$$




ال1ه. ماتريسهاى اسكالر.

$$
\begin{aligned}
& \text {. }\left(\infty^{\circ}\right): x \rightarrow \frac{1}{x} \text { ، }\left(\infty^{\circ} \backslash Y\right): x \rightarrow \frac{1}{x+1} \cdot I \vee
\end{aligned}
$$


سه ماتريس در مركز. $\left|L F\left(F_{\mathrm{F}}\right)\right|=\mathrm{m}_{0}$.
.(•\a) : $x \mapsto b x+1$ ( $(\circ \backslash a b \infty): x \mapsto \frac{b}{x+b} .19$
C .Yo






 شوند. لذا ( يس برابر با $G L\left(q^{r}, F\right)$
. سؤالهاى 0 و 9.10 را مقايسه كنيد.

$$
\text { ( } \cdot \infty)(I Y)(Y \digamma): x \mapsto \frac{r}{x} \cdot(I Y \nmid Y)!x \mapsto Y x . Y \Delta
$$





است.
q- $q$ عضو است كه تعدادى فرد مىباشد، لذا بنابه تضئ لاگرانز هر عضو اين گروه مرتبه فرد دارد.

$$
. a^{r}=1 \Leftrightarrow
$$


$A \pi=B \pi \quad B \in S$ اس. آر $A \pi \in S \pi$ آنگاه به ازاى عضوى مانند
لذا

$$
\begin{aligned}
& \text {. } \operatorname{det} A=a^{r}{ }^{r} \operatorname{det} A B^{-1}=a^{r} \\
& \cdot\left(\begin{array}{ll}
a / r & c / r \\
b / r & d / r
\end{array}\right) \cdot r r
\end{aligned}
$$

rr. از سؤالهاى اMr

$$
x \mapsto \frac{a x+b}{c x+d}
$$

در ST است اگر و تنها اگر $a d-b c$ يى مجذور كامل باشد. بنابراين يى همريختى

 ( ا دارند. بنابه سؤال Fo.IV يك عضو مرت مىكنند. نتيجه از سؤالهاى ( برابر با 1 دارند.


צ. $P$. هر عضو C يك مجذور كامل است لذا،

## 19

## جهاركانها و دورانها

در اين نصل ابتدا جبر ماتريسنها را به وسيلة تعريف جمع ماتريسها و اثبات توانين

 جگونه گروه خودريختيهاى درونى جهارگانها با گروه دورانهاى نضاى سهبُعدى با يكى نتطة ثابت داده شده يكريخت است.
 كتاب ريس'؛ نصل ه كتاب كورتيس '؛ نصل \& كتاب كاكستر (

## جمع ماتريسها

در دو سؤال اول جبر ماتريسها را در مضمونى بسيار كلى توسعه مىیدهيمي جمع

 توزيعِيْيرى برثرار باشند سازگار است.
$V_{\mathbf{n}}(F) \mapsto V_{m}(F)$ هر دو تبديلهای خطى $\mathbf{~ v}$ باشند ثابت كنيد v v يك تبديل خطى است. اين مطلب وجود ماتريسى


تعريف مىكنيم $A+B=C$ و عمل جمع مانزيسها نام دارد. با در نظر گرفتن ....

C به صورت جمع مؤلفهاى از $A$ و $A$ و $B$ ساخته مى شود. Y

تعريف $A+B$ ثابت كنيد

$$
M(A+B)=M A+M B
$$

بهعلاوه با استفاده از خطى بودن v

$$
(A+B) M=A M+B M
$$

جبر حهارگانها
حال مبجوعــهُ ماتريسهــاى در نظـر گرنتـه شـده در سـؤال آخر نصل گذشته را


دســت مىآوريـم.
r. هر ماتريس مختلط و هـر چهارگـان را با استفـاده از نمادگـذارى ضـرب اسكالـر ماتريسهــا يعنـى

$$
\left(\begin{array}{ll}
k_{p} & k_{q} \\
k_{r} & k_{s}
\end{array}\right)=k\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
a+i b & c+i d \\
-c+i d & a-i b
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+b\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)+c\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)
$$

مىنويسيم كه a، b، $\quad$, d اعداد حقيقى هستند.
فرض كنيد
$\mathfrak{i k}=-\mathbf{j} \cdot \mathbf{k i}=\mathbf{j} ، \mathbf{j} \mathbf{k}=\mathbf{i} \quad \mathbf{j} \mathbf{i}=-\mathbf{k} \quad \mathbf{i j}=\mathbf{k}, \mathbf{l}^{r}=\mathbf{j}^{r}=\mathbf{k}^{r}=-I$ $\mathbf{k J}=-\mathbf{i}$
ثابت كنيد مجموعهُ هشت ماتريس يك گروه تشكيل مىدهد.

YFI

نمادگذارى اين سؤال را در بقيهُ نصل بهكار مى بريريما
F F

$$
\alpha:\left(\begin{array}{cc}
a+i b & c+i d \\
-c+i d & a-i b
\end{array}\right) \mapsto(a, b, c, d)
$$

داده مىشود. ثابت كنيد $\alpha$ يك دوسويى است و تحت $\alpha$ ساختار جمع ماتريسها با با جمع بردارها و ساختار ضرب اسكالر ماتريسها با ضرب اسكا توصيف جهارگانها به صورت يک نضاى بردارى چهار بُعدى روى اعداد حقيقى بهوسيله يكريختى $\alpha$ توجيه مىشود.


$$
\bar{A}=a I-b \mathbf{i}-c \mathbf{j}-d \mathbf{k}
$$

تعريف مىكنيم. با استفاده از سؤالهاى r و r نشان دهيد

$$
A \bar{A}=\left(a^{r}+b^{r}+c^{r}+d^{r}\right)=I=(\operatorname{det} A) I
$$

حهارگان بالا حهارگان حقيقى نام دارد هرگاه حقيقى تحت ضرب با همه جهارگانها تعويضهذيرانداند. ₹. با استفاده از سؤالهاى ماثريسها بسته است. با استفاده از سوال ضر بى دارد كه يك حهارگان است. كدام يك از اصول يك هيئت براى حهاركانها اعمال جمع و ضرب مانريسها برقرار هستند؟ V. هر يك از برابريهایى

$$
\begin{aligned}
(A B)(\overline{A B}) & =(\operatorname{det} A B) I=(\operatorname{det} A \cdot \operatorname{det} B) I=(A \bar{A})(B \bar{B})=A(B \bar{B}) \bar{A} \\
\overline{A+B} & =\bar{A}+\bar{B} \text { بررسى كنيد } \cdot \overline{A B}=\bar{B} \cdot \bar{A} \text { را توجيه كنيد و نتيجه بگيريد }
\end{aligned}
$$

 نتيجه مىدهد $A \mathrm{j}=\mathrm{j} A, c=d=0$

گروهها، راهى به هندسه

حقيقى مركز گروه ضربى حهارگانها را تشكيل مىدهند.
تبديل X
 مىتوانيم آن را به عنوان يك طولايی نضاى حقيقى سهبُعدى در نظر بگيريم. 9. فرض كنيد R يك حهارگان ناصفر دلخواه باشد و @ تابعى با دامنه حهارگانها را نمايش دهد كه با $r$ re $R^{-1}(X+Y) R=R^{-1} X R+R^{-1} Y R$ داريم ${ }^{\text {دا }} R^{-1}(r X) R=r\left(R^{-1} X R\right.$ سیس با كمك دو سويى $\alpha$ سؤال $F$ توصيف
 -ا. @ هر جهارگان حقيقى را ثابت نگاه مىدارد.


$$
, \lambda^{r}-r a \lambda+\operatorname{det} A=\circ
$$

$\operatorname{det}\left(R^{-1} A R-\lambda I\right)=\operatorname{det}\left[R^{-1}(A-\lambda I) R\right]=\operatorname{det}(A-\lambda I)$
معادله مشخصه يكسان دارند. $R^{-1} A R, A$
هرگاه $a=0$ ماتريس $A$ يك چهارگان محض نام دارد. ثابت كنيد $\varrho$ روى مجموعه حهارگانهای محض به صورت يك دو سويى عمل مىكند.


$$
\beta: b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mapsto(b, c, d)
$$

داده مىشود. آيا $\beta$ يى دو سويى است؟ آيا $\beta$ ساختار جمع بردارى و ضرب اسكالـر را حفظ میىكنـد؟ نتيجه بگيريـد است.
F . $X$. $\left.R^{-1} X R\right)\left(\overline{R^{-1} X R}\right)=X \bar{X}$


 است كه مبدأ را ثابت نگاه مىدارد.

بقـية سؤالهاى اين نصل دتيقاً به رابطه دتـيق بـين جـهارگان R $R$ و دوران


 به وسيلة $X \mapsto R^{-1} X R$ ثابت نگاه داشته مىشود. در واقع اين مطلب محور دوران را

بهصورت ( برك
ها هر هرگاه به ازای پ

 Q $Q \bar{Q}=I$ حال فرض كنيد


$$
\text { . } \cos \frac{\theta}{r} I+\sin \frac{\theta}{r} U
$$


باشد، $\beta$ نتطهاى روى كرة واحد به مركز مبدأ است. X.



$$
\text { كنيد XY } .
$$

 كه $X . U=0$ (به نحوى كه سوى X $X$ از مبدأ عمود بر $U \beta$ باشد) ثابت كنيد.

$$
U X U=X \text { بنابراينX } X U=X \times U=-U X=\bar{U} X=U^{-1} X
$$

$U \bar{U}=I I$ يك جهارگان محض $U$ با $U$ ك $Q=\cos \frac{\theta}{r} I+\sin \frac{\theta}{\gamma} U$ فرض كنيد . IV

است. هرگاه يادآرريد هر ها كه با استفاده از اين واتعيت كه سوهاى
 عمل مىكند.

 زاويهاى به اندازه $\theta$ دوران مى يابد.

^1. هستئ همريختى $R \mapsto\left[X \mapsto R^{-1} x R\right]$ جيست؟ اين نتيجه را با سؤال
YY.1A مقايسه كنيد.
خلاصهٔ مطالب

هركاه $B$ و $B$ ماتريسهاى $n \times m$ ريى يك هيئت باشند ماتريسى مانند

تعريف مىكنيم A+B=C.

ضرب ماتريسها از هر در, طرف راست و جب رى جمع ماتريسها

توزيعيذير است.

تحت عملهاى جمع و ضرب ماتريسها، جهارگانها همهُ اصول يك هيئت بهجز تعويضيذيرى براى ضرب را برقرار مىكند. سؤالهای s. $\Delta$. $r$

جهارگانها يك فضاى بردارى جهاربُعدى روى اعداد حقيقى تشكيل مىدهند.

ي $X \mapsto R^{-1} X R$ سوال 9 نگاشتى دو سويى است.
 جهارگان محض نام دارد.

جهارگانهای محض يى نضاى بردارى سهبُعدى رى اعداد حقيقى تشكيل
تضيه
سؤال IF میدهند.

نگاشت $X \mapsto R^{-1} X R$ حهارگانهاى محض را بروى خود میینگارد و تضيه سؤالهاى بنابراين به صورت يى تبديل خطى عمل مى ايكند و در واقع يى طوليايى | | روى اين نضاى سهبُعدى است.

اگر تضيه سؤالهاى آنگاه $X \mapsto R^{-1} X R$ دورانى حول محور $X$ ا $X$ به اندازء زارية $\theta$ است. |V.|F

گروهها، راهى به هندسه

يادداشت تاريخى
و.ر. هاميلتون سعى كرد تا طريقى راكه اعداد مختلط نقاط صفتحن حقيقى را توصيف

 حقيقى سه بعدى هـانند هاند است. على رغم ناكام ماندن تلاش وى (كه در واتع غير مدكن بود) با با يشتكارى كه داشت



 برداختن به جهارگانها از طريق ماتريسها كه در اين نصل انجام گرار ( تعلت دارد. ( $1 \wedge \Delta \Lambda$ )

## جوابهای فصل 19

,$\left(\mathbf{v}_{\wedge} A+\mathbf{v}_{\wedge} B\right)+\left(\mathbf{v}_{\mathbf{r}} A+\mathbf{v}_{\mathbf{r}} B\right)=\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{r}}\right) A+\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{r}}\right) B .1$

$$
k(\mathbf{v} A+\mathbf{v} B)=(k \mathbf{v}) A+(k \mathbf{v}) B
$$

$\cdot[\mathbf{v}(A+B)] M=\mathbf{v} A M+\mathbf{v} B M \cdot[\mathbf{v} M](A+B)=\mathbf{v} M A+\mathbf{v} M B . \mathbf{r}$


\＆．اء ． اين كه俍 $a=b=c=d=$ ．信 $B \bar{B}$ حقيقى استى 9．به تعريف يك تبديل خطى در سؤ －1． II．دتيقاً وتتى يك جهاركان محض است كه معادلة مشخصة آن به صورت新 $\lambda^{r}+\operatorname{det} A=0$

$$
\begin{aligned}
& \left(R^{-1} X R\right)\left(\overline{R^{-1} X R}\right)=R^{-1} X R \bar{R} \bar{X} \overline{R^{-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =(X \bar{X}) R^{-1} \overline{R^{-1}}(R \bar{R}) \text { حقيقى اسن } X \bar{X} \overline{\text { M }} \\
& =X \bar{X} R^{-1}(R \bar{R}) \overline{R^{-1}} \text {. }
\end{aligned}
$$

 $a^{r}$ از $X \beta$

$$
\text { است كه } a^{r} I=(X-Y)(\overline{X-Y})
$$

．$R U=(a I+b U) U=a U+b U^{r}=U(a I+b U)=U R .1 千$

$$
R^{-1} U R=R^{-1} R U=U
$$

$Q R^{-1}$ بنابراين $Q R^{-1} X=X Q R^{-1} \Leftrightarrow R^{-1} X R=Q^{-1} X Q .10$


گروهها، راهى به هندسه

$$
\begin{aligned}
& X U=X \times U \quad X . U={ }^{\circ} \text {. } 19 \\
& =-U \times X \\
& =-U X
\end{aligned}
$$

به ازاى يک جهارگان محض $\overline{\text { یی }}$

$$
\begin{aligned}
Q^{-1} X Q & =\left(\cos \frac{\theta}{r} I-\sin \frac{\theta}{r} U\right) X\left(\cos \frac{\theta}{r} I+\sin \frac{\theta}{r} U\right) \\
& =\left(\cos \frac{\theta}{r} X-\sin \frac{\theta}{r} U X\right)\left(\cos \frac{\theta}{r} I+\sin \frac{\theta}{r} U\right) \\
& =\cos ^{r} \frac{\theta}{r} X-\sin \frac{\theta}{r} \cos \frac{\theta}{r} U X+\cos \frac{\theta}{r} \sin \frac{\theta}{r} X U-\sin ^{r} \frac{\theta}{r} U X U \\
& =\left(\cos ^{r} \frac{\theta}{r}-\sin ^{r} \frac{\theta}{r}\right) X+r \sin \frac{\theta}{r} \cos \frac{\theta}{r} X U \\
& =\cos \theta X+\sin \theta X \times U
\end{aligned}
$$

$$
\text { . } Q^{-1} Y Q=Q^{-1} X Q+a U \text { بنابراين } Y=X+a U
$$

1^. جهارگانهای حقيقى.

## r.

## كروههاى مستوى

تبديلهاى خطى ناتكين خطها را به خطها مىنگارند نسبتها در امتداد يى خط رو را را ثابت
 گروه مستوى نام دارد. در حالت و نيز گروه تمام تبديلهاى حافظ تحدب است
. مطالعة همزمان: بخش r I. تابع مختلط

$$
z \mapsto e^{i \theta} z
$$

را به وسيله يكى گرفتن اعداد مختلط $x+i y$ با نقاط حقيقى ( $x+y$ ) به صورت تبديلى خطى از $)$


$$
z \mapsto e^{i \theta} z+c
$$

بد صورت تابعى از نضاى بردارى Vr
گروه انتقال
r. به ازاى هر هينت F يك تابع از (

$$
(x, y) \mapsto(x, y)+(a, b)
$$

يك انتقال نام دارد. حهار انتقال بردارى F. F. يك تابع از نضاى بردارى (F

$$
\mathbf{v} \mapsto \mathbf{v}+\mathbf{c}
$$

يى انتقال نضا نام دارد. در فضاى بردارى


حند تبديل مستوى خاص
ه. براى حه ماتريس 「

$$
\mathbf{v} \mapsto \mathbf{v} A+\mathbf{c}
$$

از نضاى بردارى

$$
(x, y) \mapsto(x+r y+r, \digamma x+\Delta y+\varepsilon)
$$

\&. جه شرايطى بايد روى ماتريس

$$
\mathbf{v} \mapsto \mathbf{v} A+\mathbf{c}
$$

از

$$
\begin{aligned}
& (x, y) \mapsto(x, y)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)+(1, \circ) \text { ) تبديلهای.V } \\
& (x, y) \mapsto(x, y)\left(\begin{array}{ll}
1 & 1 \\
\bullet & 1
\end{array}\right)+(1, \circ)
\end{aligned}
$$

از نضاى بردارى با استفاده از سوال YY.IV ثابت كنيد اين تبديلها گروهى يكريخت با با

كروههاى مستوى
 بردارى (

در اين نضا هستنذ. (يك) هرگاه


 مستوى $A G(n, F)$ موسوم است و تبديلهاى تشكيل دهنده آن تبديلهاى مستىى نام

 $V_{n}(F)$ (ll هرگاه $\tau: \mathbf{v} \mapsto \mathbf{v}+\mathbf{a}, \alpha: \mathbf{v} \mapsto \mathbf{v} A+\mathbf{~}$ باشند نرمال گروه مستوى است. گروه خارج قسمتهاى $A G(n, F) / T$ جيست؟

خطها در يك نضای بردارى
خر|
(الف) (يك) مجموعه نقاط
 هستند توصيف كنيد.
 هندسى توصيف كنيد؛ (دو) زيرمجموعههايى كه براى آنها به ترتيب توصيف كنيد. براى هر نضاى بردارى، زيرفضاهاى يك بُعدى و هم مجموعههاى آنها در گروه جمعى بردارها خطهاى نضا نام دارند. r| ها هرگاه در

گروهها، راهى به هندسه

هستند.
 نتاط متمايز نضاى بردارىاند مشخص كنيد ( v

ناورداهای گروههای مستوى $\mathbf{v} \tau=\mathbf{v}^{\prime}, \mathbf{u} \tau=\mathbf{u}^{\prime}$ هرگاه $V_{n}(F)$ ( ثابت كنيد خطهاى يك فضاى بردارى تحت يك انتقال جه نتيجهاى مىدهد؟
 ثابت كنيد $\mathbf{v} \alpha=\mathbf{v}^{\prime}$

$$
[(1-k) \mathbf{u}+k \mathbf{v}]=(1-k) \mathbf{u}^{\prime}+k \mathbf{v}^{\prime}
$$

( فرض كنيد $\alpha$ تبديل حانظ خط و نسبت از نضاى بردارى $V_{n}(F)$ برود
باشد به اين معنى كه به ازاى هر دو نتطه متمايز $u$ و $u$ از $\mathbf{~ ا ز ~}$

$$
[(1-k) \mathbf{u}+k \mathbf{v}] \alpha=(1-k)(\mathbf{u} \alpha)+k(\mathbf{v} \alpha)
$$

$\alpha \tau^{-1}$ هرگاه $\tau$ (يك) o را ثابت نگاه مىدارد؟
(دو) خطها و نسبتها را حفظ مىكند؟

ثابت كنيد به ازاى بردارهای دلخواه u

$$
، \alpha: k \mathbf{v} \mapsto k(\mathbf{v} \alpha)(ی ى)
$$


 (سه) ثابت كنيد $\alpha$ يك تبديل خطى است.

 مستوى $V_{n}(F)$ خطها و نسبتها را حفظ مىكند.
$V_{n}(F)$ هرگاه يک هيئت F داراى يک خودريختى. نابديهى باشد فضاى بردارى داراى تبديلهاى حافظ خط است كه حانظ نسبت نيستند.

مرتبهُ گروههاى مستوى
-Y. با استفاده از سؤال ^ (يك) ثابت كنيد اگر F F

$$
|A G(n, F)|=|G L(n, F)| \cdot|F|^{n}
$$

خلاصهٔ مطالب

تعريف سؤال F F نام دارند.

انتقالهاى يى فضاى بردارى يى گروه يكريخت با گروه بردارها تحت عمل سؤال F F جمع تشكيل مىدهند.

تعريف $A$ اگر $A$ يك ماتريس در $A L(n, F)$ باشد آنگاه هر تبديل از ${ }^{\text {از }}$ به
سؤال

$$
\mathbf{v} \mapsto \mathbf{v} A+\mathbf{c}
$$

يك تبديل مستوى نام دارد.

تبديلهاى مستوى يى فضاى بردارى اين گروه، گروه مستوى AG(n,F) نام دارد. سؤال

خطهاى $V_{n}(F)$ هم مجموعههاى زيرفضاهاى يك بُعدى هستند. تعريف Mr سؤال
 سؤال
 If سؤال

گروهها، راهى به هندسه

و v

$$
\{(1-k) \mathbf{u}+k \mathbf{v} \mid k \in F\}
$$

است.

همة تبديلهاى مستوى، خطها و نسبتها را حفظ مىكنند
تضيه سؤال 19

همهٔ تبديلهاى حانظ خط و نسبت از $V_{n}(F)$ تبديلهاى مستوى هستند.

تضيه
سؤال 19

يادداشت تاريخى
حوالى سال IVEY ا.وارينگ' تبديلهاى صفحه از نوع

$$
(x, y) \mapsto\left(\frac{a x+b y+c}{p x+q y+r}, \frac{e x+f y+h}{p x+q y+r}\right)
$$

را بررسى كرد و ادعـا كرد اين تبديلها خمهـاى هـدرجه را به هـم مـىنگـارند. اين
 هـمگن مـنجـر شـ. هر مـقطع مـخروطى تحـت يك تبديل تصويرى بـه مـطـع مـخـروطى ديگرى نگاشتـه مـىشود. گروه مسـتوى زيرگروهـى از گروه تصـويرى
 (ا.ن.موبيوس بررسى شـد تبديلهـاى مـستوى بيضـيها را به بيضـيها





1) E.Waring
2) J.Plücker
3) Erlanger Programme

خرد T $T$ گروه انتقالهاى نضاى بردارى Substitutions
 , نشان داد هر عضو S بايد حاصلضربى از يك تبديل خطى و و يك انتقال باشد.

گروهها، راهى به هندسه

Po جوابهای نصسل.

انتقال است.
(نتقالها گروهى يكريخت با گروه
بردارها تشكيل مىدهند.

$$
. c=(r, q) \cdot A=\left(\begin{array}{ll}
1 & r \\
r & \Delta
\end{array}\right) \cdot \Delta
$$

\& 9 بايد ناتكين باشد.

$$
\text { ، } \tau \text {. }
$$


 مىدهد.
(ب) (يك) يك خط موازى با (د)
 مىدهد. $k \geq$ منقاط بعد c c را مىدهد.

$$
\begin{aligned}
& \text {. } A B^{-1}=I \text { بنابراين } \alpha \tau^{-1}\left(\beta \tau^{-1}\right)^{-1}=I \Leftarrow \alpha \tau^{-1}=\beta \tau^{-1} \Leftarrow \alpha=\beta \\
& . \alpha \beta: \mathrm{v} \mapsto \mathrm{v} A B+\mathrm{c} B+\mathrm{d}(\mathrm{~s}) \\
& . \alpha^{-1}: \mathrm{v} \mapsto \mathrm{v} A^{-1}-c A^{-1} \text { (س) } \\
& \text { ( (०Y) }): x \mapsto x+Y \text { ( }(\circ \backslash Y): x \mapsto x+1: x \mapsto x_{1}(\circ) .9
\end{aligned}
$$

$$
\begin{aligned}
& . \alpha^{-1} \tau \alpha: \mathbf{v} \mapsto \mathbf{v}+\mathbf{a} A \cdot A G(n, F) / T \cong G L(n, F) . \\
end{aligned}
$$

$$
\begin{aligned}
& (\cos +i \sin \theta)(x+i y)=x \cos \theta-y \sin \theta+i(x \sin \theta+y \cos \theta) .1 \\
& (x, y) \mapsto(x, y)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) . \\
& .(x, y) \mapsto(x \cos \theta-y \sin \theta+a, x \sin \theta+y \cos \theta+b) . r \\
& p^{r}{ }^{r}
\end{aligned}
$$

rov

$$
\begin{aligned}
& . k \mathbf{a}+\mathbf{c}=k \mathbf{b}+(1-k) \mathbf{c} . I r \\
& .\{k \mathbf{u}+(1-k) \mathbf{v} \mid k \in F\} . I f
\end{aligned}
$$

 بنابراين $\mathbf{v}^{\prime}-\mathbf{v}=\mathbf{u}^{\prime}-\mathbf{u}$

$$
\begin{aligned}
& {[(1-k) \mathbf{u}+k \mathbf{v}] \tau=(1-k) \mathbf{u}+k \mathbf{v}+\left(\mathbf{u}^{\prime}-\mathbf{u}\right)} \\
& \quad=(1-k) \mathbf{u}+k \mathbf{v}+(1-k)\left(\mathbf{u}^{\prime}-\mathbf{u}\right)+k\left(\mathbf{v}^{\prime}-\mathbf{v}\right)
\end{aligned}
$$

تحت يك انتقال خطها به خطها نگاشته مىشوند.

$$
\begin{aligned}
& . \mathbf{u}=0 \text { • } 1 \text { (يك) } \\
& \text { (سه) استلزام (يك) و (دو). }
\end{aligned}
$$

○.

## Y

## كروههاى متعامد

اولين مرحله در اين نصل مشخص كردن زيرگروه طولياييها در گروه خطى عام است روت رو


يا ا - دارند.

مرحلة دوم در اين نصل نتان دادن اين مطلب است كه هم در بُعد دو و هم در بُعد سه هر تبديل متعامد با دترمينان ا+ + يك دوران است

 ازگرره متعامد يكريخت استا ريمت
مرحلة نهایى، ردمبندى گروهمای متنامى دورانها隹 شامل طولباييهاى متقابل بشوند
 (
(يك) $\alpha$ يك طرلبايى ثابت نگاه دارندة مبدأ است؛

،u.v = u $\alpha . \mathrm{v} \alpha$ حاصلضر بهای اسكالر را حفظ میكند، يعنى $\alpha$ (دو)

تبديلهايى كه اين شرايط را برقرار مىكنْد تبديلهاى متعامد نام دارند و ماتريسهاى آنها نيز ماتريسهاى متعامد ناميده مىشوند.
 و $z \mapsto e^{i \theta z} z$ r ( $V_{Y}(\mathbb{R})$ بنويسيد. $z \mapsto e^{i \theta} \bar{z}$ هرگاه گروه طولماييهاى ثابت نگاه دارنده́ مبدأ را بهعنوان زيرگروهى از
 توصيف اين طولاييها بهعنوان تبديلهاى خطى بهكار بردهايد حاصلضرب $A A^{T}$ را بيابيد. r. دترمينانهاى ماتريسهای $O(Y)$ چه هستند؟ كدام يك از اعضاى $O(Y)$ هسته
 اين زيرگروه، گروه متعامد خاص SO(Y) نام دارد. اعضاى اين زيرگروه را به نحو هندسى توصيف كنيد.
. F


$$
\begin{aligned}
& \text { (دو) ثابت كنيد u.v = v.u } \\
& \text { u. }
\end{aligned}
$$

(حهار) ثابت كنيد ناصلهُ بين دو نقطه (ينج) هرگاه $\alpha$ يى طولابيى ثابت نگاه دارندهُ مبدأ باشد با توجه به فاصلهُ مبدا تا u ثابت
 (شش) بررسى كنيد همه نتايج اين سؤال برای (Vr) نيز برقرار انست. v u باشد داشته باشيم u.v =u $\alpha$ (

$$
\begin{aligned}
& ، \mathbf{u . u}=\mathbf{u} \alpha . \mathbf{u} \alpha \text { (يك) } \\
& \text { ، } \mathbf{0} \alpha=\mathbf{o}(\mathrm{g})
\end{aligned}
$$

(سه) $\alpha$ يى طوللايى ثابت نگاه دارندة مبدأ است.

سؤالهاى ₹ و ه اثبات اين مطلب كه طولباييهاى ثابت نگاه دارندة مبدأ تبديلهاى حافظ حاصلضرب اسكالر هستند را با بدست مى \&. هرگاه v


$$
\begin{gathered}
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} . \mathbf{c}=\mathbf{c} . \mathbf{a}=0, \mathbf{a} . \mathbf{a}=\mathbf{b} . \mathbf{b}=\mathbf{c} . \mathbf{c}=1 \\
. A A^{T}=I \text { نتيجه بگيريد } .
\end{gathered}
$$

Y. فرض كنيد $\alpha$ تبديلى از از طوليايى از ( $\left.{ }^{\circ}, 1\right) \alpha=\left(b_{1}, b_{\mathrm{r}}\right)$





 . $A A^{T}=I$ اسكالر را حغظ مىكند.
 تبديلهاى خطى v $\mapsto \mathrm{v} A$ هستند بهطورى كه $A A^{T}=I$ را به دست مىدهند.
 مىدهند. يك ماتريس $A$ كه در شرط $A A^{T}=I$ صدت كند يك ماتز يس متعامد نام دارد. آيا ماتريسهاى متعامد تحت•ضرب ماتريسها بايد يك گروه تشكيل دهند؟ ثابت كنيد دترمينان يك ماتريس متعامد $\pm 1$ است. با استفاده از ايدههاى سؤال r نشان دهيد

گروهها، راهى به هندسه

ماتريسهاى متعامد با دترمينان ا+ يك زيرگروه ازگروه متعامد تشكيل مىدهند. زيرگروه
 -l.

$$
\left(\begin{array}{ccc}
\cos \theta & \sin \theta & \circ \\
-\sin \theta & \cos \theta & \circ \\
\circ & \circ & 1
\end{array}\right),\left(\begin{array}{ccc}
\cos \theta & \sin \theta & \circ \\
\sin \theta & -\cos \theta & \circ \\
\circ & \circ & 1
\end{array}\right) \quad,\left(\begin{array}{ccc}
\cos \theta & \sin \theta & \circ \\
-\sin \theta & \cos \theta & \circ \\
\circ & \circ & -1
\end{array}\right)
$$

متعامد است و در هر مورد دترمينان را به دست آوريد. هرگاه A ماتريس آخر را نمايش
 ديگرى را ثابت نگاه نمىدارد.

SO SO (r)

 متعامد بـا دترمينــان ا- وجود دارند كه انعكاس نيستند. لذا تدرى تعجبآور به نظـر
 در شـش ســؤال بعد ثــابت مىشـود. II. ال هرگاه A ماتريسى در SO( 1 باشد هر خط استدلال زير را توجيه كنيد.

$$
\begin{aligned}
\operatorname{det}(A-I) & =\left(A-A A^{T}\right) \\
& =\operatorname{det} A\left(I-A^{T}\right) \\
& =\operatorname{det} A \cdot \operatorname{det}\left(I-A^{T}\right) \\
& =\operatorname{det}\left(I-A^{T}\right) \\
& =\operatorname{det}(I-A) \\
& =(-1)^{r} \operatorname{det}(A-I)
\end{aligned}
$$

$\operatorname{det}(A-I)=0$ سرانجام نتيجه بگيريد


مeدار ويرْاهى برابر با I + دارد.
 v $\mapsto$ v $A$ بهطور هندسى توصيفكنيد. هرگاه a بردارى ويزه با مeدارويزة
 را هرگاه u.a = بيابيد. دربارة نگارة صفحة گذرنده از o متعامد بر خط oa تحت
 $\alpha: v \mapsto v A$ v هرگاه ( If
 مىكند و دو صورت مدكن ماتريس A را نتيجه بخيريد. هرگاه $A \in S O(\Gamma)$ مشخص كنيد كدام يك از اين صورتها امكانبذير است. مىدانيم كه هر تبديل در SO(Y) بردارى ويزه با مقدار ويزٔ برابر با 1 دارد و و حالا بنشان داديم كه هرگاه اتفاتاً اين بردار ويزه برابر با ( 1 بر
 اه الثابت مىكنيم SO(r)

$$
A=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & \circ \\
-\sin \theta & \cos \theta & \circ \\
\circ & \circ & 1
\end{array}\right) \quad, B=\left(\begin{array}{ccc}
\cos \phi & \circ & -\sin \phi \\
\circ & 1 & \circ \\
\sin \phi & \circ & \cos \phi
\end{array}\right)
$$

بررسى كنيد (r)








Fروه متعامد (r)
با يافتن يک ماتريس خاص كه با هر عضو گروه جابهجايى است و دترمينانى برابر با ا- دارد، مىتوانيم معلوماتمان دربارة (r)
. يك ماتريس اسكالر غير همانى در $O(T)$ بيابيد. IV
 . $\{ \pm I\}, S O(\Psi)$

گروههای متناهى طولیاييها
ثابت مىكنيم كه هرگروه متناهى از طولاييها يك نتطهُ ثابت دارد و بنابراين با زيرگروهى از گروه متعامد مناسبى يكريخت است. براى اثبات اين مطلب ابتدا بايد ثابت كنيم هر طولبايى يك تبديل مستوى است. قبلاً اين مطلب را در حالت دوبُعدى داشتهايم . اما بايد در حالت سهبُعدى نيز آن را ثابت كنيم
 يك طولبايى و انتقال متعامد است.

 مستوى است.

 $V_{r}(\mathbb{R})$ نقطهای از فضای v حالا فرض كنيد $G=\left\{\alpha_{1} \alpha_{j}, \alpha_{r} \alpha j, \cdots, \alpha_{n} \alpha j\right\}$

res

مدار

 گروه $G$ و به عضو بخصوص $\alpha$ بستگى ندارد اين مطلب نشان مىدهد نعطها كه بدوسيلáG ثابت نگاه داشته مى شود. Y Y. با انتخاب مناسبى از انتقال $\tau$ نشان دهيد هر

 ....

$$
\circ=\theta_{1}<\theta_{r}<\cdots<\theta_{n}<r \pi
$$

بگويد چرا دورانى به اندازء مضرب دلخواهِ به غير از مضربى از استدلال كنيد) نتيجه بگيريد هر زيرگروه متناهى (Y) SO(Y دورى است.
 با استفاده از سوال

است.
 نتيجه بگيريد يک زيرگروه متناهى $O(Y)$ كه دست كم شامل يك انعكاس است يك گروه دو وجهى است.

زيرگروههاى متناهى (r)
 در .rV




گروهها، راهى به هندسه



 و مدار كامل هر يك از اين تطبها را تحت G مشخر مدار پايدارسازهايى از يك مرتبهُ دارند؟
 G گروه تقان دورانى مكعب را نمايش دهد. نتاطى ازكره را كه توسط يكى زيرگروه دوريى
 توسط يك زيرگروه مرتبه

 دارند. مدار هر تطب G تحت G را بيابيد. آيا همهٔ تطبهاى يک مدار يک رنگ دارند
 G نقاط ترمز سؤالهاى Y از SO(Y) را عمل كننده روى كره واحد با مركز مبدأ در نظر میى

 تعلت دارد و برابر با m/ $G$ | | است؟ سوال 9 اV. 9 را به كار بريد.

يا
اM. جند دوران در G غير از همانى در m- تطبى يكسانى شريكـاند.
 شوند چرا هر دوران در G غير از همانى دو مرتب محاسبه شده است. rr. با نوشتن $G \mid=N$ | از سوال بر در نتيجه بگيريد.

$$
r(N-1)=\sum \frac{N(m-1)}{m}
$$

$$
1 / r \leq 1-\frac{1}{m}<1,1 \leq r-r / N<r . r r \text { r. } 1 \text {. بخوييد خرا در سؤ }
$$ تتيجه بگيريد تنها يك مدار از تطبها و جهار يا بيشتر مدار از تطبها غير محتمل هستند. هr. فرض كنيد دو مدار از تطبها يكى از m- تطبها و ديگرى از n- ت تطبها وجود $N / m+N / n=r$ دارند. بنابراين


 تقارنهاى دورانى يك منشور منتظم قائم مشخص كنيد. צس. فرض كنيد سه مدار از تطبها يكى از l- تطبها ديگرى از m- تطبها و سومى از n- تطبها وجود دارند بنابراين

$$
\begin{gathered}
r-r / N=\left(1-\frac{1}{l}\right)+\left(1-\frac{1}{m}\right)+\left(1-\frac{1}{n}\right) \\
1+r / N=1 / l+1 / m+1 / n
\end{gathered}
$$

و اين كه l، m، n با هم نمىتواند بز برگتر يا مساوى ب باشند.
 اين گونه تطبها را براى گروه تقارنهاى دورانى يك منشور منتظم محاط دهيد. نتيجه بخيريد $G \cong D_{n}$ درن


$$
r \leq n=\frac{q N}{N+1 r}<\varepsilon
$$

هرگاه $n=r$ ثابت كنيد $n=1 Y$ و $N=$ اين كه تطبها با گروه تقارنهاى دورانى يك چهار

 N = \&o متناظراند. بررسى كنيد $n=9$ غير محتمل استى.

گروهها، راهى به هندسه $\frac{1}{l}+\frac{1}{m}+\frac{1}{n} \leq 1<1+Y / N$

زيرگروههای متناهى

 ( $d$ c c، bıa ،F ، Y، Y ، I أس وجه هاى مربعى
 را به صورت جايگشتهاى رأسها بنويسيد و بعد از يافتن جفتى از مولدها براى اين گروه، ، $\beta \alpha^{r}$ ، $\beta \alpha$ ، $\beta$ ، $\alpha^{r}$ ، $\alpha^{r}$ ، $\alpha$ ، $e$ از مرتبه $\alpha$ . $\beta \alpha^{r}$
هشت تقارن باقيماندة مكعب مستطيل را به صورت جايگشتهاى رأسها بنويسيد و سعى (lc) (Yd)(Ya)(Fb) كنيد اين تقارنها را به طور هندسى توصيف كنيد. هرگاه $\gamma$ نتطهُ تقارن


كا گr. Fr

 رأسها بنويسيد و بعد از يافتن جفتى از مولدهاى اين گروه، $\alpha$ از مرتبه
 شش تقارن باقيمانده منشور را به صورت جايگشتهاى رأسها بنويسيد و سعى كنيد اين تقارنها را به طور هندسى توصيف كنيد. منشور در يک كره با مركز O محاط مى $O$ مود و و اين كره هستند. هرگاه $\gamma$ تقارن نقطهاى حول O $O$ نمايش دهد كه وقتى به دوازده نقطه نامبردة وى كره تحديد شود ( دورانى كره به اندازة زاوية $\pi$ / $\pi$ باشد كه وقتى به دوازده نقطةء نامبردة روى كره تحديد شود (lćYárb́b) (Ícŕaŕb) است ثابت كنيد شش تقارن منشور كه دوران نيستند

rea
گروههاى متعامد

است؟ آيا > $\delta, \beta$ < يك گروه دو وجهى است؟
(FF


و هرگاه $\gamma$ تقارن نتطهایى
 دوران مىباشند. نتيجه بگيريد يا

$$
\left\{\beta_{1}, \beta_{\mathrm{r}}, \cdots, \beta_{n}\right\}=\left\{\alpha_{\curlyvee}, \alpha_{\curlyvee}, \cdots, \alpha_{n}\right\}
$$

يا
خلاصهٔ مطالب

اگر سؤالهاى ارزاند.
(يك) $\alpha$ يك طولبايى ثابت نگاه دارندة 0 است؛ A_I
(دو) $\alpha$ حاصلضر $\alpha$ (دهاى اسكالر را حفظ مى


تعريف يك تبديل صادت در شرطهاى تضيءّ تبل يك تبديل متعامد نام دارد و يى سؤالهاى ماتريس A $A A^{T}=I$ يك ماتريس متعامد نام دارد. 9 ، $r$

 , 9

كروهها، راهى به هندسه
(بد ترتيب (r) (

هر عضو SO(Y) و SO(Y) يكى دوران است.
تضيه
سوالهاى 18. $11 . \%$

سوال \1 است.

يك گروه متناهى از طولباييها يك نتطة ثابت دارد و با زيرگرمى از يك گرره سؤالهاى متعامد يكريخت است. Pr_19

يى زيرگروه متناهى SO(Y) بايد دورى باشد. هر زير گروه متنامى ديگر سوالهاى O(Y) دو وجهى است. rs. MF

يك زيرگروه متنامى SO(Y) يا دورى يا دو وجهى يا گروه دورانهاى يك سؤالهاى جسم منتظم است. rq_rV

يادداشت تاريخى
گروه متعامد در ابتدا به عنوان گروه تبديلهاى حغظ كندأ (
 تبديلهاى خطى حغظ كنندا را بدون استغاده از ماتريسها متذكر شده است. امكان تعريف تبديلهاى $A A^{\text {اس }}$ اس

 اولين اثبات از رددبندى گروههاى متناهى دورانهاى نضاى سهبُعلى به ا. براويس



 ترين به خواننده واگذار شدهاند.
3) Regular polytopes

## PI جوابهای فصل

．$z \mapsto e^{i \theta} \bar{z} g \neq e^{i \theta} z z$ ． 1 ．


$$
\text { ماتريس بازتاب } A A^{T}=I .
$$


 （بنج）با تراردادن v＝0 در（جهار）به دست مى آآريم v（u ，و با استفاده از（سه）،（دو）（u－v）•（u－v）＝（u $\alpha-\mathbf{v} \alpha) \cdot(\mathbf{u} \alpha-\mathbf{v} \alpha)$ ．u $\cdot \mathbf{v}=\mathbf{u} \alpha \cdot \mathbf{v} \alpha$ ب $\mathbf{u}$ دست مى آوريم $\mathbf{~ u} \cdot \mathbf{u}=\mathbf{u} \alpha \cdot \mathbf{u} \alpha$


 a•b＝e

$$
A A^{T}=\left(\begin{array}{llll}
\mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\
\mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\
\mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c}
\end{array}\right)=I
$$

$$
(1, \cdot) \cdot(x, y)=x=\left(a_{1}, a_{\curlyvee}\right) \cdot(\dot{x}, \dot{y}) \cdot \curlyvee
$$

$$
(\cdot, \backslash) \cdot(x, y)=y=\left(b_{\curlyvee}, b_{r}\right) \cdot\left(\dot{x}, y^{\prime}\right)
$$

$\mathbf{u} A \cdot \mathbf{v} A=\mathbf{u} A(\mathbf{v} A)^{T}=\mathbf{u} A A^{T} \mathbf{v}^{T}=\mathbf{u} \mathbf{v}^{T}=\mathbf{u} \cdot \mathbf{v} \cdot \mathrm{A}$

$A \mapsto \operatorname{det} A \cdot \operatorname{det} A= \pm 1$ بنابراين

$(x, y, z)=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta,-z) \cdot-$ । ،－1．।．1。

先 $\operatorname{det}(A-I)=0.1 ヶ$
rir . صفحه گذرنده از مبدأ عمود بر oa.
oa لذا صفتحئ كذرنده از $\mathbf{u} A \cdot \mathbf{a}=\circ \Leftarrow \mathbf{u} A \cdot \mathbf{a} A=0 \Leftarrow \mathbf{u} \cdot \mathbf{a}=\circ$ به وسيلة v v ثابت نگاه داشته مى شود. ( $\operatorname{det} A=1$ تنها اولى محتمل A . If

است.

ه حول محور $y$ است.

$$
-\tan \phi=\frac{\sqrt{\left(a_{1}^{\Gamma}+a_{r}^{\Gamma}\right)}}{a_{r}} \cdot-\tan \theta=\frac{a_{r}}{a_{1}}
$$

\&1\&

$$
\begin{aligned}
& \text { ( }{ }^{\circ},{ }^{\circ}, 1 \text { دارد. } \\
& \text {. }-I \text {.IV }
\end{aligned}
$$

 به ازاى ماتريسى مانند $A \in S O(Y)$ به صورت $A$ - $A$ است


A متعامد است.

A متعامد است.
. $\alpha_{1} \alpha_{j}=\alpha_{r} \alpha_{j} \Rightarrow \alpha_{l}=\alpha_{r}$. بنا به بسته بودن
اعضاى مجموعه دوم متايزاند. مدار v .ry

$$
\begin{aligned}
\mathbf{w} \alpha & =\frac{1}{n}\left(\mathbf{v}_{\wedge} A+\mathbf{v}_{\curlyvee} A+\cdots+\mathbf{v}_{\mathbf{n}} A\right)+\mathbf{c} \\
& =\frac{1}{n}\left(\mathbf{v}_{\backslash} A+\mathbf{c}+\mathbf{v}_{\curlyvee} A+\mathbf{c}+\cdots+\mathbf{v}_{\mathbf{n}} A+\mathbf{c}\right) \\
& =\frac{1}{n}\left[\mathbf{v}_{\backslash} \alpha+\mathbf{v}_{\curlyvee} \alpha+\cdots+\mathbf{v}_{\mathbf{n}} \alpha\right) \\
& =\mathbf{w}
\end{aligned}
$$



据 كه تناقض است. اين زيرگروه متناهى به وسيلة دورانى به اند اندازة
 دو هم مجموعه در $G$ دارد.





 در يك مدار.





$$
\text { |. } m-1 .
$$

r.r. جr. جرن هر دوران دو تطب دارد.
.rf

$$
\begin{gathered}
N \geq r \Rightarrow \cdot<\frac{r}{N} \leq 1 \Rightarrow-1 \leq-\frac{r}{N}<\cdot \Rightarrow 1 \leq r-\frac{r}{N}<r . \\
1-\frac{1}{m}<1 \leq r-\frac{r}{N}
\end{gathered}
$$

بنابراين تنها يك مدار غير محتمل است. هرگاه جهار با بيشتر مدار وجود داشته باشد،

$$
\begin{aligned}
& \sum\left(1-\frac{1}{m}\right) \geq r \cdot \frac{1}{r}=r>r-\frac{r}{N} . \\
& \text { عא. اگر } \\
& \frac{1}{l}+\frac{1}{m}+\frac{1}{n} \leq 1<1+\frac{r}{N}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{r}+\frac{1}{r}+\frac{1}{n}=1+\frac{r}{N} \Rightarrow n=\frac{1}{p} N . r v
\end{aligned}
$$

$$
\begin{aligned}
& . n<8 \\
& n=r \Rightarrow N=1 Y . \quad n=Y \Rightarrow N=Y Y . \quad n=0 \Rightarrow N=q_{0} .
\end{aligned}
$$

.$r q$

$$
m, n \geq r \Rightarrow \frac{1}{m}+\frac{1}{n} \leq \frac{1}{r} \Rightarrow \frac{1}{r}+\frac{1}{m}+\frac{1}{n} \leq 1 \leq 1+\frac{r}{N}
$$


يك يا دو هممجموعه دارد.
، $\alpha^{Y}=(I Y)(Y F)(a c)(b a), \alpha=(I Y Y F)(a b c d), e=(1)(a) . \mathcal{F I}^{\prime}$ $, \beta \alpha=(\backslash b)(Y a)(Y d)(\digamma c), \beta=(1 a)(Y d)(r c)(\digamma b), \alpha^{r}=(\backslash \uparrow \Psi Y)(a d c d)$
 , $\beta \alpha \gamma=(1 \mathcal{Y})(Y \Psi)(a d)(b c), \beta \gamma=(1 Y)(a c), \alpha^{Y} \gamma=(1 a)(Y b)(Y c)(\mathcal{Y} d)$
 $. \alpha^{r} \gamma=(\backslash b r d)(r c \notin a) \quad ، \alpha \gamma=(1 d r b)(r a \notin c) ، \gamma=(\backslash c)(r d)(r a)(\uparrow b)$〒 ماتريس I . $S_{F} \times C_{Y}$. Fr

$$
، \alpha^{r}=(I r Y)(a c b) ، \alpha=(\mid Y r)(a b c) \cdot e=(1)(a) . \nmid r
$$


${ }^{\prime} \beta \delta \gamma=(1 r)(a c) \quad ، \beta \delta^{r} \gamma=(Y r)(b c) \quad \delta^{r} \gamma=(\backslash a)(Y b)(Y c)$ , $. \delta \gamma=(1 c r a r b) \quad \delta^{\Delta} \gamma=(\backslash b r a r c)$ )







گروهها، راهی به هندسه

$$
\alpha_{i} \beta_{j}=\alpha_{i}\left(\beta_{j} \gamma\right) \gamma=\left(\beta_{k} \gamma\right) \gamma=\beta_{k} \cdot \beta_{i} \beta_{j}=\left(\beta_{i} \gamma\right)\left(\beta_{j} \gamma\right)=\alpha_{k}
$$ لذا مجموعه بسته است و يك گروه تشكيل مىدهد.

كروههاى كسستهُ ثابت نكاه دارندهُ يك خط


 يك خط گروههاى تقارنهاى نوارها يا يا كتيبهها هستند


 كه به صورت نگارهها مىتوانيم به دست آوريم ثايهاى برایى ردهبندى مورد نظر ماست.
 ميلان! صفحه f1 كتاب كاكستر ( ( ) )؛ كتاب بون ( 1999 ( ) .

طولیاييهاى ثابت نگاه دارنده يك خط
 طرف راست و جب تا بينهايت ادامه دارند انواع طولباييها را درگروه تقارن هر الگو نا نام بريدي.



گروهها، راهى به هندسه
. بروى خود بنگارند با در نظر گرنتن نگاره ه يك محدوديت لازم روى مقدار c را مشخص
 كنيد. r. به ازاى مقادير حقيقى c توصيفهاى هندسى تبديلهاى

$$
\begin{aligned}
& z \mapsto x+c, \\
& z \mapsto-z+c, \\
& z \mapsto-\bar{z}+c \\
& z \mapsto \bar{z}+c
\end{aligned}
$$

 ثابت نگاه دارنده خط حقيقى در واتع كانى نيز هستند. آيا مجموعه همهُ طولثاييهاى از اين انواع يك گروه تشكيل مىدهند؟ F

ترار دارد.
ه. نرض كنيد G يك گروه از طولِاييهاى ثابت نگاه دارندة خط حقيقى باشد اما
هيج نقطهای را ثابت نگاه ندارد.
 تغيير دهد، به طور هندسى هرى هندسى توصيف كنيد.
(دو) هرگاه G شامل يك بازتاب با محور عمود بر خط حقيقى باشد با ارائه استدلالى شبيه حالت (يك) ثابت كنيد G بايد در برگيرنده يك انتقال باشد. (سه) هرگاه G در برگيرنده يک لغزه باشد چحرا G بايد در برگيرندة يك انتقال باشد؟ نتيجه بگيريد G بايد در برگيرنده يک انتقال باشده

يك نگارهٔ همرينت: گروه نقطهاى \&. ثابت كنيد نگاشت $\pi$ از گروه تشابههاى تعريف شده با

$$
\pi:[z \mapsto a z+b] \mapsto[z \mapsto a z]
$$

$$
\pi:[z \mapsto a \bar{z}+b] \mapsto[z \mapsto a \bar{z}]
$$

يك همريختى گروه است. هستئ $\pi$ جيست؟ اگر G گروه تشابهها باشد آنگاه $G \pi$ گروه نتطهاى G نام دارد (دتت كنيد! $G \pi$ بهطور كلى زيرگروه G نيست.) V. V. نگارة گروه تمام طولناييهاى ثابت نگاه دارنده خط حقيقى تحت همريختى

$$
\text { سؤال } 9 \text { جِيست؟ }
$$


 گنت؟ Q. هرگاه G دربارة اعضاى $G \pi=\{[z \mapsto z],[z \mapsto-z]\}$ -1. هرگاه G يك زيرگروه از گروه طولباييهاى ثابت نگاه دارندة خط حقيقى باشد و

$$
G \pi=\{[z \mapsto z],[z \mapsto-\bar{z}]\}
$$

دربارة اعضاى G جه مىتوان گنت؟



 II. الـرگاه G يكى زيرگروه از گروه تـام طولباييهاى ثابت نگاه دارندهٔ خط حقيقى باشد و $G \pi=\{[z \mapsto z],[z \mapsto \bar{z}]$ با ارائة مثالى نشان دهيد هر هر جند گرور

 G $G=D_{\text {r }}$
 توصيـف كنيـد.

گروههاى گسسته تبديلها









 ال. طول انتقال طولباييهاى صفحه كه در برگيرندة يك انتقال است داد انتقالى با طول مينيمال است.
 دارد و يك نتطه را ثابت نگاه ندارد در برگيرندة انتقالى با طول مينيمال است.

ردهبندى گروههاى كتيبه

 يك كتيبه نام دارد.
يكى الگوى كتيبه را نمايش دهيد كه گروه كتيبهُ آن تنها در برگيرندة انتقالها باشد. آيا اين گروه كتيبه بايد دورى باشد؟

 شامل بازتابها و لغزهها نيست. هرگاه يك انتقال مينيمال در اين گروه ور ا گروه باشد برسى كنيد

گروههاى گسسته ثابت نگاه دارندة يك خط
را به صورت را به صورت نگاشتهاى اعداد مختلط نمايش دهيد


 باند بررستى كنيد
 كتيبه را به صوزت نگاشتهاى اعداد مختلط نـايش دهي دهي < $\tau, \varrho \gg$ نباشد و به ازاى عددى حقيقى مانند اين حالت را به صورت نگاشتهاى اعداد مختلط مشخص كنيد

 لغزهها باشد ثابت كنيد آن گروهى دورى است و يك كتيبه با اين گروه تقارنها را نمايش

اY. هرگاه يك گروه كتيبه در برگيرندء هر دو نوع از سه نوع طولبايى،
يك نيمدور،
يك لغزه،
يك بازتاب با محور عمود بر خطى ثابت،
باشد ثابت كنيد آن در برگيرندة هر سه نوع طو طوليايى است
 باشند اما در برگيرندة بازتابى نسبت به خـي خطى ثابت مينيمال در اين گروه و ر صورت نگاشتهاى اعداد مختلط نمايش دهيد. با با انتخاب مناسبى از مولدها نشان دهيد اين گروه بهطور مجرد با با
r倍 $z \mapsto \bar{z}$ همة اعضاى اين گروه را به صورت نگاشتهای اع اعداد مخري اين گروه به طور مجرد با

گروهها، راهى به هندسه
كنيد. يك الگوى كتيبه با جنين گروه كتيبهاى بكشيد. rץ. هرگاه يك گروه كتيبه در برگيرندة يك انتقال مينيمال آن
 صورت دارد و اينها اعضاى گروه را نمايش مىدهر دهيد اين گروه بهطور مجرد با كتيبهاى بكشيد.
 كتيبه با آن و نيز گروه نتطهاى مربوط (در معناى سوال 9 (
...LLLLLLL... (يك)
$\cdots Z Z Z Z Z Z Z \cdots$ (دو)
$\cdots V V V V V V V \cdots$ (س)
$\cdots D_{D} D_{D} D_{D} D \cdots$ (جها (
$\cdots$.
$|||||\mid \cdots$ (هفت)
خلاصهٔ مطالب

نگاشت ازگروه تشابههاى داده شده به وسيله

$$
[z \mapsto a z+b] \mapsto[z \mapsto a z]
$$

$$
[z \mapsto a \bar{z}+b] \mapsto[z \mapsto a \bar{z}]
$$

يك همريختى است. نگارة گروه G تحت اين همريختى گروه نتطهاى G نام دارد. تعريف يى گروه از تبديلهاى صنحه به خود گسسته نام دارد هرگاه به ازاى هر نتط؛

YAr كروههاى گسسته ثابت نگاه دارندهُ يك خط P از صفحه بتوانيم دايرهاى به مركز P بكشيم كه در برگيرندة نتطةٌ ديگرى از مدار P نباشد.

يك گروه گسسته كه يك نتطه صفحه را ثابت نگاه دارد يى گروه متناهى سؤال If إست و دورى يا دو وجهى مى.اشد.

تعريف يك گیروه گسسته كه يك خط را ثابت نگاه مى دارد اما هيج نتطهاى را ثابت سؤال IV نگاه نمىدارد يك گروه كتيبه نام دارد.

تضيه سؤالهاى iV ،1s


گروه كتيبه با گروه نتطهاى C IV سؤال گروه كتيبه با گروه نتطهاهى Cr يك گروه دو وجهى نامتناهى است كه متشكل سؤال 1^ از نيمدورها و انتقالهاست.

سه گروه كتيبه با گروه نتطهاى \D وجود دارند. يكى گروه دورى توليد شده
 انتقالهاست. سومى حاصلضرب مستقيم زيرگروههاى وكا توليد شده به وسيله يك انتقال و يك بازتاب نسبت به محور است. نوالها ، PO , 19 YI

دوگروه كتيبه باگروه نتطهاى
 همه تبديلهاى محتمل است و برابر با حاصلضرب مستقيم يك گروه دو وجهى M! , Y!

گروهها، راهى به هندسه
كنيد. يك الگوى كتيبه با جنين گروه كتيبهاى بكشيد.

 آن در برگيرندة يك نيمدور است و و با اختيار مبداً در مركز اين ني صورت
 دهيد اين گروه بهطور مجرد با كتيبهاى بكشيد. NF

$\cdots L L L L L L L \cdots$...
$\cdots Z Z Z Z Z Z Z \cdots$ (دو)
$\cdots V V V V V V V \cdots$....
$\cdots D_{D} D_{D} D_{D} D \cdots$ (جها)
…DDDDDDD $\cdots$ (
$|||||\mid \cdots$ || $|$ (هفت
خلاصهٔ مطالب

نگاشت ازگروه تشابههاى داده شده به وسيله

$$
[z \mapsto a z+b] \mapsto[z \mapsto a z]
$$

$$
[z \mapsto a \bar{z}+b] \mapsto[z \mapsto a \bar{z}]
$$

يك همريختى است. نگارء گروه G تحت اين همريختى گروه نتطهاى G نام دارد. تعريف يك گره از تبديلهاى صفحه به خود گسسته نام دارد هرگاه به ازاى هر نتطة

P از صفحه بتوانيم دايرهاى به مركز P بكشيم كه در برگيرندة نتطئ ديگرى
از مدار P نباشد.

يك گروه گسسته كه يك نتطهّ صفحه را ثابت نگاه دارد يك گروه متناهى سؤال If است و دورى يا دو وجهى مىباشد.

تعريف يك گیروه گسسته كه يك خط را ثابت نگاه مى دارد اما هيج نتطهاى را ثابت سؤال IV نگاه نمىدارد يی گروه كتيبه نام دارد.

تضيه سؤالهاى IV ،1s

گروه كتيبه با گروه نتطهاى C ${ }^{\text {K يك گروه دورى متشكل از همةٔ انتقالهاست. }}$
 سؤال 1^ از نيمدورها و انتقالهاست.

سه گروه كتيبه با گروه نقطهاى \D وجود دارند. يكى گروه دورى توليد شده
 انتقالهاست. سومى حاصلضرب مستقيم زيرگروههاى توري وليد شده به وس وسيله سؤالهاى ، YO.19 يك انتقال و يك بازتاب نسبت به محور است.

دوگروه كتيبه باگروه نقطهاى
 ( YY ، YI

نامتناهى توليد شده بهوسيلة يك انتقال و يك نيمدور و زيرگروه توليد شده بهوسيله يك بازتاب نسبت به محور است.

## يادداشت تاريخى

اولين استغاده وسيع از اعداد مختلط در تحليل گروههاى طولباييهاى صفحه در جلد
Vorlesungen über die theorie der automorphen functionen اول كتاب اثر ر. غرايك و ن. كلاين (I^QV) ظاهر شد. در اين كتاب گروههاى گسسته، گروههاى




1) G.polya
2) P.Niggli
3) A. speiser
4) Theorié der Gruppen von endliche Ordnung

جr جوابهای فصل

.Y نيمدورها F Y Y Y
. $e^{i \theta}= \pm 1$ حقيقى هستند بنابراين $e^{i \theta}, ~ c . Y$

بازتاب هرگاه c=0، لغزه در غير اين صورت.
F
ه. (يك) هر
اندازء دو برابر فاصلة $A A \beta$ است
(دو) اگ
攺 ${ }^{-1} \alpha \beta$
(سه) هرگاه $\gamma$ يك لغزه باشد ${ }^{\gamma}$ بی يك انتقال است.
\&. گروه انتقال هسته $\pi$ است.
$\{[z \mapsto \pm z],[z \mapsto \pm z]\} . \vee$

9. همة انتقالها يا نيم دورها.
-1. همگیى انتقال يا بازتابهايى با محورهاى عمود بر خط حقيقى هستند. II. گروه توليد شده به وسيلة لغزء

Y Y ا الگوى צ همة $n \in \mathbb{Z}$ در برگيرندة
r
 آنگاه مدارها خوشهاى مىشوند.
ها . اگر انتقالها را بتوان به اندازة طولهاى بهددر دلخواه كوجكى انجام داد آنگاه مدارها خوشهاى مىشوند. \&ا. هرگاه هيج نتطهاى ثابت نگاه داشته نشود يكى انتقال يا يك لغزه بايد در گروه باشند. الگ الگوى ا سؤال I. گروه بهوسيلة $z \mapsto z+1$ توليد مىشود، انتقالى با طول

## مينيمال.

$z \mapsto \pm z+n .1$. 1 . الگوى


$$
. z \mapsto-\bar{z}+r+n
$$

 جايز نيست، يس گروه متشكل است از . 1 . 1 . الگُ

 بازتاب و نيمدور كه مnكن است
 ,
rr $z \mapsto \bar{z}$ است. بنابراين همة اعضا به صورت
 זr. طركلباييهايى كه در >

 $\varrho \gamma \tau^{[-r]}: z \mapsto z+r-[r]$ يكى عدد صحيح نيست، اما آنگاه گروه در برگيرندة انتقال است كه با مينيمال بودن ال الم



## rr

## كروههاى كاغذ ديوارى

تدم اصلى در ردهبندى گروههاى گسسته: صفحه كه يك نتطه يا يى خط را را ثابت نگاه


 امكان كه در بعضى حالتها ير زحمت است ردمبندى را كامل مىكند.
 مكميلان؛ كتاب شات|شنايدر'؛ ؛ نصل 1 كتاب مارتين.

## تحديد بلورنگارانه


مركز A باندازة زاوية $\theta$ است. نگارة $A \tau$ ار را تحت انتقال

$$
\text { سؤال 9.1 } 1 \text { ، }
$$



$$
\text { بگيريد } \begin{aligned}
\\
\hline
\end{aligned}
$$

1) School Mathematics Project 2) Schattschneider

گروهها، راهى به هندسه

 طول انتقال نتيجه بگيريد $G$ نمىتواند يك گروه گسسته باند r. هرگاه يك گروه گسسته از طولباييهاى صفحه در در برگيرنده يك انتقال و و يكى دوران
 اين مطلب به تحديد بلورنگارانه موسوم است.

گروههاى نقطهاى محتمل


.



 اين كه نگارههاى اين اعضا در گروه نتطهاى هستند، يك ان انتال در Wر W است است \&. هرگاه يك گروه كاغذ ديوارى W
 است. ثابت كنيد هر گروه كاغذ ديوارى در برگيرندة يك انتقال است.

C\ كروه نقطهای
 از همئ انتقالهاست. فرض كنيد $\tau$ يك انتقال با طول مين


 حنين نتطهاى با مينيمال بودن $\tau$ يا $\sigma$ تناتض دارد؟ نتيجه بغيريد W با حاصلضرب

مستيم دو گروه دورى يكريخت است. اين كروه كاغذ ديوارى با \p


CY كروه نقطهای
A. نرض كنيد W يك گروه كاغذ ديوارى با گررو نتطهاى Cr با باشد، آنگاه W W متشكل




اين كروه كاغذ ديوارى با با

 كاغذ ديوارى از نوع


گروهها، راهى به هندسه

Fr گروه نقطهای
-1. فرض كنيد W يك گروه كاغذديوارى باگروه نتطهاى Cr باشد، آنگاه W متشکل از همه دورانهاى به اندازة


$W=<\alpha, \tau>$ نشان دهيد $T$ نتيجه بگيريد $T=<\tau, \alpha^{-1} \tau \alpha$ اين گروه كاغذ ديوارى با با
 , $A \tau^{-1} \alpha^{r}, A \tau^{-1} \alpha$, $A \tau^{-1}$, $A \tau \alpha^{r}$ ، $A \tau \alpha ، A \tau$的 $\alpha^{-1} \tau^{-1} \alpha^{-1}, \alpha^{-1} \tau \alpha^{-1}$ ، $\tau^{-1} \alpha$ ، $\alpha \tau^{-1}$ ، $\tau \alpha$ ، $\alpha \tau$


مركزها مقايسه مىشود؟
نتيجه بگيريد يى گروه كاغذ ديوارى از نوع pr سه مدار rـ مركزى دارد.


Cf كروه نقطهای
 از همهُ دورانهاى بهاندازء




$$
\text { نتيجه بغيريد } W=<\alpha, \tau>.
$$

اين گروه كاغذ ديوارى با

F
 ,
هرگاه $\alpha$ و $\beta$ دو ربع دور باشند جرگون




## گروه نقطهای ع

 متشكل از همُ دورانهاى به اندازة
 درا


$$
\text { نشان دهيد } T=<\tau, \alpha^{-1} \tau, \alpha>=\alpha, \tau \gg \text { و نتيجه بگيريد } W=
$$

اين گروه كاغذ ديوارى با
 كنيد
 مىگیيند. با در نظرگرگنتن تبديل

گروهى وسط خط واصل دو \&ـ مركزى قرار مىگيرد.

 مدار منحصر بفرد از يك گروه كاغذ ديوارى از نوع ¢p قرار دارند.

B) گروه نقطهای
 از گروه نتطهاى نگاشته مىشوند محورهاى موازی دارند.

 , $T$ گروه انتقالهاى W $W$ باشند جرا



 و نتيجه بگيريد W شامل انتقالهاى عمود بر l است است.








 حال فرض مىكنيم كه هرگاه فرض و واين نوع گروه به pm مشهور است. هرگاه $W=\langle\varrho, \tau, \sigma\rangle$

$$
\text { فرد باشد يك لغزه } \delta \text { بسازيد كه }
$$

 اM. ثابت كنيد گروهى از نوع pm دتيقاً دو مدار از محورها

rr. ثابت كنيد يك گروه از نوع pg شامل هيجِ بازتابى نيست.


گروهها، راهى به هندسه

Y Y. فرض كنيد W يك گروه كاغذ ديوارى با گروه نقطهاى \D شامل يك طولنايى



W است.
با استفاده از استدلال سؤال V نشان دهيد گروه انتقالهاى W شامل يك عضو

 O $O \gamma^{-1} \mu^{-1} \gamma, O \gamma^{-1} \mu \gamma$ نتيجه بگيريد انتقال $\gamma^{-1} \mu^{-1} \gamma \mu \in<\alpha>\gamma^{-1} \mu \gamma \mu \in<\tau>$ و از و مكان


 وسط O و است و O
برابر با


 باشد $\mu^{-1} \delta$ باشد. m حه زوج باشد و حه فرد W شامل بازتابى مانند $\varrho$ است و $W$ اس اين نوع گروه به cm مشهور است.
 دارند و محورهاى لغزههايى كه محورهاى بازتابها نيستند نيز در يكى مدار قرار دارند.


Fr Fروه نقطهابی

 W $W$ يكى نيمدور انست و نتيجه بگيريد W $W=<\gamma, \delta, T>$ كه $T$ كروه انتقالهاى W است. با استفاده از سؤال 19 نشان دهيد يك انتقال مينيمال $\tau$ در سوى محور $\gamma$ و يی

انتقال مينيمال $\sigma$ در سوى محور $\delta$ وجود دارند.
حال فرض كنيد

 (دو) هرگاه m $n$ غرد باشند لغزههاى

 $\varrho$ نسبت به محور $\gamma$ و يك لغزة $\lambda$ ر را حنان بيابيد كه

 و هر 「- مركزى ریى محور يی بازتاب است.

|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

 ندارد و دقيقاً دو مدار از r _ مركزیها وجا وجود دارند.


گروهها، راهى به هندسه

 وجود دارند.

 متقابل در W با محورهاى متعامد باشند. فرض كنيد $\tau$ يك انتقال مينيمال در سوى محور ر ر $\gamma$ زيرگروه سره از T گروه انتقالهاى W باشد. . $T$ ثابت كنيد W شامل بازتابهاى \@ و وِ است كه محورهای آنها به ترتيب موازى با محور $\gamma$
در اين حالت $W=<\varrho_{1}, \varrho_{r}, \mu, \tau \gg$ و گروه به نوع cmm مشهور است. -r. براى يک گروه از نوع cmm نشان دهيد بين دو محور موازى بازتابها دحورى از يك لغزه وجود دارد. نشان دهيد سه مدار rـ مركزى وجود دار دارند كه دو تا از آنها روى محورهاى بازتابها و يكى از آنها روى محور لغزه قرار دارند.


## گروه نقطهای

 يك نتطه روى محور $\gamma$ ثابت كنيد $\gamma$ هر











 $A \tau$ حال با استفاده از استدلالهاى سؤال


$$
\text { ترار دارد. } A \sigma^{-1} \alpha^{\curlyvee}
$$

 rrı. برای يك گروه از نوع
 S.M.P

گروهها، راهى به هندسه



Sf كروه نقطهای
 سؤال
 W باشد، جرا $W$ تحت > $\alpha, \tau$ > ترار دارند كه به آن به عنوان مدار A $A$ (شامل A $A$ مركز $\alpha$ ) ) و مدار








 از مركز $\alpha$ در سوى $\tau$ مى گیذرد، W $W$ به نوع



از جهار طولبايى ثابت نگاه دارندة A جهار طولبايى متقابل متمايز بسازيد كه A $A$ را به





در يى گروه از نوع
 يك جنين گروهى وجود ندرارين؟ \& \&. در يك گروه از نوع ديگر از محورهاى لغزهها وجود دارند.



 شامل † از محورهاى لغزه وجود دارد.

Sروه نقطهاى ^r. هرگاه W يى گروه كاغذ ديوارى با گروه نتطهاى \&D باشد با استفاده از سؤال

گروهها، راهى به هندسه

اץ نشان دهيد W شامل يكى بازتاب $\varrho$ است. هرگاه $\alpha$ دورانى به اندازة


 ممكن شامل دحورهاى بازتابها است. با استفاده از سؤال 19 انشان

 مينيمال نباشد با استفاده از سوال
 ببريد و نتيجه بخيريد در هر دو حالت از مركز $\alpha$ در سوى انتقال مينيمال $\tau$ است.
اين گروه به نوع
هף. در يك گروه از نوع


بازتابها نيستند.


هر يك از IV نوع در حد يكر يختى يكتا است
 نشان دهيد براى هر دو گروه از يك نوع مولدها ممكن است تحت مزدوجگيرى cmm

به وسيلة يى تبديل مستوى تناظر يابند به نحوى كه دو زيرگروه انتقالها دو زيرگروه طولباييهاى مستقيم و دو گروه تمام يكريخت هيري هستند


 مستقيم و دو گروه تـام يكريخت هستند.

خلاصهٔ مطالب

تحديد بلورنگارانه . اگر يك گروه گسسته در برگيرندة يك انتقال و يك دوران سؤال 「

تعريف يك گروه گسسته كه يا يك نتطه يا يك خط را ثابت نگاه ندارد و متشكل سؤال ه از طولباييهاى صنحه باشد يى گروه كاغذ ديوارى نام دارد.
 سؤال F دو مولد دارد.

تضيه سؤالهای | Y.lo،A، $V$ Fliforld
در حد يكريختى دتيقاً سه گروه كاغذديوارى با گروه نتطهاى \D وجود دارد. تضيه سؤالهاى Fo،rriro تضيه
در حد يكريختى دقيقاً جهار گروه كاغذ ديوارى با گروه نقطهاى D سؤالهاى دارند. Fo،ra.ro در حد يكريختى دقيقاً دوگروه كاغذ ديوارى باگروه نقطهاى Dr وجود دارند. تضيه سؤالهاى Flır

سؤالهاى FI. r

در حد يكريختى دتيفاً يك گروه كاغذ ديوارى با گرره نتطهاى \&D وجود
تضيه سؤالهاى دارد. FI، ،1/
يادداشت تاريخى










 الگو ارائه مىدهد.
در سال 1900 د. هيلبرت سوالى با اين مضمون مطرِ كرد كه آيا تعداد گروههاى گسستء ${ }^{\text {R }}$ متناهى هستن؟ ياسح منبت توسط ل. باير باخ
3) E. S. Fedorov
4) A. schönflies
5) Uber die Analogie der Kristallsymme trie in der Ebene 6) L.Bieberbach

جوابهاى فصل
 . $\tau^{-1}\left(\alpha^{-1} \tau \alpha\right)$ r نيز $\tau\left(\alpha^{-r} \tau \alpha^{r}\right)$


ه. هرگاه نeطهاى
 نتطهاى به همانى نگاشته مى

 , Y تحت گروه >
 يك منوازیالاضاع با با رأسهاى
 آن نـىتواند روى يالهاى متوازیالاضلاع


 بنابراين $11.1 ॰$. 1. صدق مىكنند.

 استو هيـع نتطهه يـا خطـى ثابـت نگـاه داشتـه نـى شــود و بــــا به تعريف، گروه گسسته

گروهها، راهى به هندسه
9. جهار.


يك انتقال همطول با $\tau$ است لذا
II. نتطهُ A 1 مركز 1 مركزهاست. اگر $\tau$ يى انتقال با طول مينيمال باشد، لذا مراكز نشاندار شده تا تا حد امكان
 لذا مدارهاى rـ مركزىها دقيقاً مدارهاى تحت گروه انتقالها هستند.

 اعضاى گروه $\alpha^{-1}$ انتقالى همطول با $\alpha$ در در $W-<\tau>$ است.
 با




 Y- مركزى ديگر در مر بع سؤال

 ¢1. عضو 1 ع . $\eta \alpha \eta$
 (Ba است. B
 عدد ماكسيمال است. $\gamma: z \mapsto e^{i \theta} \bar{z}+c$ را $e^{\frac{i \theta}{\top}} \bar{c}+e^{-\frac{i \theta}{\top}} c, \gamma^{\gamma}: z \mapsto z+e^{i \theta} \bar{c}+c=z+\left(e^{\frac{i \theta}{T}} \bar{c}+e^{\frac{-i \theta}{T}} c\right) e^{\frac{i \theta}{T}} .{ }^{\text {I }}$ حقيقى است. هركاه

 بنابه سؤال Y. بی،

گروهها، راهى به هندسه

的 $\alpha^{-1} \gamma^{-1} \alpha \gamma=\alpha^{-1} \varrho^{-1} \alpha \varrho$ بنابراين
 عمود بر l بهوسيلة W $W$ ثابت نگاه داشته مى


عمود بر l نيست و لذا
با. هر هرگاه
 كه متقابل مرتبهُ

$$
\text { . }<\delta>=<\gamma, \tau>\text { بنابراين } \delta^{m}=\gamma
$$



 تا حد امكان نزديك به هم، آنگاه محور هر بازتاب ديريگر در در مدارى ترار درار دارد كه يكى از اين دو ترار دارند، تحت گروه انتقالها. Y عضوى از مرتبه


快 $l \mu$



 موازی با $l$ محورهاى لغزهما هستند. به علاوه


صورت لغزههاى ديگرى وجود ندارند كه متوازىالاضايلاع اصلى را تطع كند.


 در W $W$ دارد.
 با مراكز در مستطيل O O، O O O O $O$, O انتقالها r- مركزى انیای ديگرى نمى


 انتقالى بهاندازء دو برابر فاصلة بين آنهاست.

rV. هرگاه $\alpha$ نيمدورى با مركز روى محور يك لغزء $\gamma$ باشد، $\alpha \gamma$ بازتابى با يكى محور عمود است. طولباييهاى مستیيم درون مستطيل اصلى با خطهاى ميانى محورهاى به سبب طول مينيمال انتقالها r_ مركزى داشته باشند. جون





 بنابراين هر r- ب- مركزى روى محور يی لغزه وجود داري مراكز روى محور مر و و حاصلضرب اين نيمدورها برابر با
 هستند $O \lambda^{-1}$ O $O \lambda^{-1} \tau$ اين كه

 باشد حاصلضرب با $\varrho$ بايد مورد بررسى ترار گيرد.
-「. نرض كنيد A نتطةٌ تقاطع دو محور متعامد بازتابهايى در W باشد. متوازىالاضلاع

اصلى با رأسهاى A A $A \sigma \mu^{-1}$ ، $A \sigma$ ، 1 در نظر بغيريد كه در اين حالت يك لوزى است. جون بازتابهايى با محورهاى متعامد گذرنده از از A $A$ وجود دارند
 تطرهاى اين لوزى محورهاى بازتابهاى \@ و و


سه محور بازتاب در هر سوكه لوزى را تطع مى مكند به سبب مينيمال بودن $\tau$ و $\sigma$ بايد








اץ. هرگاه $\gamma$ يكى بازتاب باشد



گروهها، راهى به هندسه





 صورت رو A را جايگرد مىكند A A در مدار Aاست. (يك) جون $A$ را ثابت نگاه مىدارند و تنها جهار نتطة A $A$ از A هم فاصله هستند بنابراين اين خهار نتطه نگارههاى ممكن A $A \tau$ هستند.

(دو) طولباييهاى مستقيم روى مدار B ترايا هستند بنابراين اگر Aز در مدار B باشد براى



 باست، لذا $A A \beta^{\curlyvee}$
 $\alpha^{r} \gamma=\alpha^{r} \varrho \sigma$ هرگاه لغزء
 حال حا

محورهاى در جهار سو وجود داشته باشند، آنگاه دو محور كه زاوية نتطة F F مركزى مانند حالت pFm يكديگر را تطع مىكنند (حالت (يى)).


צז. هرگاه A يى F F مركزی واتع بر محور بازتاب باشد مانند مورد @ در سوال $\alpha, \sigma=\alpha^{-1} \tau \alpha$ (يى)، مربع اصلى $A \tau \sigma$ را در نظر بغيريد
 تحت >>
 ت $\varrho\left(\alpha^{-1} \tau \alpha\right)$


 محور بازتاب $\varrho \alpha$ در يكى از دو مدار محورهايى كه تبلاً شناخته شدهاند ترار ندارد. مدار

گروهها، راهى به هندسه

اين محور در برگيرندة محورهاى موازى و عمود گذرندة از هر يكى از رأنهایى مربع اصلى
 موازى انتقالى به اندازء دو برابر فاصلةُ بين آنهاست و $\tau$ مينيمال است. تبديل $\varrho \alpha \tau$ لغزهاى با محور موازى با تطر گذرنده از A $A$ و وسط $A$ و $A$ است.

 به دست مىدهد. لذا همة اين محورها در يك مدار قرار دارند. Y rr. غرض كنيد A مركز $\alpha$ باشد كه محورهاى لغزه

 وسيلة $\alpha$ ، $\alpha$ ر $\gamma \alpha$ حهار بازتاب با محورهاى موازى با تطرهاى مربع اصلى به دست
 تطرهاى مربع اصلى به دست مىآيند و مربع را تطع مىكينند.

 با انتقال
 كه از هيج ${ }^{\text {ا }}$
 دارد، زيرا $\alpha$ دورنى به اندازة
 قرار دارند. اگر $\alpha$ دورانى به اندازء از از هم باشند (طول يك انتقال مينيمال) و ر از هم بانتد، آنگاه يك طولبايى ماند $\delta$ در درگروه وجود دارد كه
 وسط
 داشته باشند، آنگا。


 Y
 $\mu: \mathbf{v} \rightarrow \mathbf{v} M$ نيز $\mathbf{O} \sigma_{r}$,



مبدأهاى
 را به با

گروهها، راهى به هندسه

مراكز ،(يكريخت هستند. رشهای ارائه شده در اينجا برای انواع نيز به كار مى cmm , pgg



 اين رش را نيز میتوانيم برای انواع كار بريم. استناده از يك تشابد در اين حالتها (نه صرناً يكى تبديل مستوى ) براى حفظ كردن زاويهها ضرورى است.

Bartlow, T.L., 1972 'An historical note on the parity of permutations', Amer. Math. Monthly, 79, 766-9.

Birkhoff, G. and MacLane, S., 1953. A Survey of Modern Algebra, Macmillan, NewYork.

Bourbaki, N., 1960, Eléments d'histoire des mathématiques, Hermann, Paris.

Budden, F.J., 1978, The Fascination of Groups, Cambridge University Press.

Burn, R.P., 1973, 'Geometrical illustrations of group theoretical concepts', Math. Gaz., 57, 110-19.

Burn, R.P., 1977, Groups of linear transformations, Math. Gaz., 61, 273-9.

Cajori, F., 1952, A History of Mathematical Notations II, Open Court.

Cajori, F., 1961. A History of Mathematics, Macmillan, New York.

Carmichael, R.D., 1956, Introduction to the Theory of Groups of Finite Order, Dover.

Cayley, A., 1854, 'On the theory of groups, as depending on the symbolic equation $\theta^{n}=1$, Phil. Mag., 7, 40-7, Coll. Math. Works, II, 123-30.

Cayley, A., 1858, A memoir on The Theory of matrices, Phil. Trans. R.S.,148, Coll. Math. Works, II, 475-96.

Cayley, A., 1878, 'The theory of groups', Amer.J.Math.,1, 50-2, Coll Math. Works, X, 401-3.

Coxeter, H.S.M., 1969, Introduction to Geometry, Wiley Coxeter, H.S.M., 1973, Regular Polytopes, Dover.

Coxeter, H.S.M., 1974, Regular Complex Polytopes, Cambridge University Press.

Curtis, M.L., 1979, Matrix Groups, Springer-Verlag.
Dieudonné, J., 1962, La Géometrie des Groupes Classiques, Springer-Verlag.

Dieudonné. J., 1969, Linear Algebra and Geometry, Kershaw.
Ford, L.R., 1951, Automorphic Functions, Chelsea.
Forder, H. G., 1960, Geometry, Hutchinson.
Fraleigh, J. B., 1976, A First Course in Abstract Algebra, Addison - Wesley.

Fricke, R. and Klein, F., 1897, Vorlesungen über die Theorie der automorphen Functionen I, Teubner.

Gardiner, C. F., 1980, A First Course in Group theory, SpringerVerlag.

Gauss, C. F., 1801, Disquisitiones Arithmeticae, tr. English 1965, Yale.

Green, J. A., 1965, Sets and Groups, Routledge and Kegan Paul.

Hilbert, D. and Cohn-Vossen, S., 1952, Geometry and the Imagination, Chelsea.

Hille, E., 1959, Analytic Function Theory I, Blaisdell.
Jordan, C., 1870, Traité des Substitutions, Gauthier-Villars (reprinted 1957).

Klein, F., 1884, Lectures on the Icosahedron, tr. English 1956, Dover.

Knopp, K., 1952, Elements of the Theory of Functions, Dover.
Ledermann, W., 1960, Complex Numbers, Routledge and Kegan Paul.

Lockwood, E. H. and Macmillan, R. H,. 1978, Geomertric Symmetry, Cambridge University Press.

Martin, G. E., 1982, Transformation Geometry, Springer Verlag.

Maxwell, E.A., 1965, Algebraic Structure and matrices II, Cambridge University Press.

Miller, G. A., 1935, 'History of the theory of groups to 1900', Coll Works, Vol. pp. 427-67, University of Illinois. Urbana.

Netto, E., 1880, Theory of Substitutions, tr. English 1892, Chelsea.

Neumann, P. M., Stoy , G. A. and Thompson, E. C., 1980, Groups and Geometry, Mathematical Institute, Oxford.

Nový, A., 1973, Origins of Modern Algebra, Noordhoff International.

Pedoe, D., 1970, A Course of Geometry for Colleges and Universities, Cambridge University Press.

Pólya, G., 1924, Über die Analogie der Kristallsymmetrie in der Ebenr', Zeitschrift für Kristallographie, 60, 278-82.

Rees, E. G., 1983, Notes on Geometry, Springer - Verlag.
Rotman, J.J., 1973, The Theory of Groups, Allyn and Bacon.
Schattschneider, D., 1978, 'The plane symmetry groups', Amer. Math. Monthly, 85, 439-50.

School Mathematics Project, 1970, Additional Mathematics Part I, Cambridge University Press.

Schwerdtfeger, H., 1979, Geometry of Complex Number, Dover.
Speiser, A., 1927, Theorie der Gruppen von endliche Ordnung, Springer-Verlag,

Steinhaus, H. 1960, Mathematical Snapshots, Oxford University Press.

Weyl, H., 1960, Symmetry, Princeton.
Yaglom, I. M., 1973, Geometric Transformations III, Math. Assn. America.

## وازثنامه (نارسى ـ انگليسى)

Complex numbers
Conjugate Complex numbers
Conjugate elements
Translation
Inversion
ب ب ب با با
Reflection

Vectors
Eigen vectors
Highest Common Factor
Enlargement
Closure
Icosahedron
Infinity
NTH:
بينيايت

Stabiliser
Basis

Function
ت
تابع

Identity Function
Transformation
Linear transformation
Singular linear transformation
Non-singular linear Transformation
Linear Fractional Transfarmation
Orthogonal Transformation
Circular Transformation
Affine Transformation
Möbius Transformation
Crystallograhic restriction
Transposition
Transitive
Doubly Transitive
Triply Transitive
Composition of function
Similarity
Spiral Similarity
Opposite Similarity
Direct Similarity
Projection
Stereographic projection
Commutative
Change of basis
Symmetry
Reflection Symmetry
Rotational Symmetry
Point Symmetry in 3-dimensions
تابع همانى تبديل
تبديل خطى
تبديل خطى تكين
تبديل خطى ناتكين
تبديل كسرى خطى
تبديل متعامد
تبديل مستدير
تبديل مستوى
تبديل موبيوس
تحديد بلورنگارانه
ترانهش
ترايايى
ترايايى دوگانه
ترايايى سهگانه
تركيب تابع
تشابه
تشابه ماربيجى
تشابه متقابل

تعويضبذير
تقارن
تقارن بازتابى
تقارن دورانى
تقارن نتطهاى در سه بعد

| Permutation | جايخشت |
| :---: | :---: |
| Even permutation | جايگشت نوج |
| Odd permutation | جايگشت فرد |
| Conjugate permutations | جايگشتهاى مزدوج |
| Cayley table | جدول كِيلى |
| Vector addition | جمع بردارى |
| Matrix addition | جمع ماتريس |


| Quaternions | جهارگانها |
| :---: | :---: |
| Real quaternions | حهارگانهایى حقيقى |
| Pure quaternions | حهارگانهای محض |
| Conjugate quaternions | جهاركانهایى مزدوج |
| Unit quaternions | حهاركانهایى |
| Tetrahedron | چهار وجهى |


| Scalar product | حاصلضرب اسكالر |
| :---: | :---: |
| Vector product | حاصاصضرب بردارى |
| Inner Product | حاصلضرب داخلى |
| Cartesian product | حاصلضرب دكارتى |
| Matrix product | حاصلضرب ماتريس |
| Direct product | حاصلضرب مستقيم |

Automorphism
Inner automorphism

| Great Circle | دايرهٔ عظيمه |
| :---: | :---: |
| Circles on Sphere | دايرههاهى روى كره |
| Orthogonal Circles | دايرههاى متعامد |
| Determinent | دترمينان |
| Dodecahedron | دوازده وجهى |
| Rotation | دوران |
| Rotation of Sphere | دَورّران كره |
| Rotation Conjugate | دوران مزدورج |
| Disjoint Cycle | دور مجزا |
| Bijection | دوسويى |


| Relàtion | رإبه |
| :---: | :---: |
| Reflexive relation | رابطهُ بازتابى |
| Transitive relation | رابطهة ترايايى |
| Symmetric relation | رابطة تقارنى |
| Equivalence relation | رابطه همارزى |
| Residue Class | ردهٔ ماندهها |
| Conjugacy classes |  |
| Equivalence Class | ردءٔ همارزى |

Spanned Subspace
Subgroup
Proper Subgroup
Finite Subgroup
Normal Subgroup

زيرفضبا توليد شده
زيرگروه
زيرگروه سره
زيرگروه متناهى
زيرگروه نرمال

Index of Subgroup
Associativity
Duel Figure
Argument of Complex number

Gauss plane
Möbius plane
Scalar multiplication


صفحةٔ گاوس صفتحئ موبيوس ضرب اسكالر

## b

Opposite isometries
Conjugate isometries
Direct isometries
Length of a translation

Scale Factor
Signature of permutation

طولياييهاى مستقيم
طول يك انتقال

طوللاييهاى متقابل
طولباييهاى مزدورج

|  | ف / ت |
| :---: | :---: |
| Vector Space | فضاى بردارى |
| Image Space | فضاى نغارهها |
| Distributive law | قانون توزيعى |
| Modulus of Complex number | قدر مطلت عدد مخر |
| Fundamental theorem on homomorphism | تضيهٔ اصلى هـلى |
| Cayley's theorem | تضيهٔ كيلى |
| Lagrange's theorem | تضيه لاكرانز |
| Leonardo's theorem | قضيه لـوناردو |
| Pole | قطب |
| Shear | قيحى |
|  | ك ر گ |
| Riemann sphere | كرئ ريمان |
| Group | كروه |
| Abelian group | گروه آبلى |
| Euclidean group | كروه اقليدسى |
| Dilatation group | گروه انبساط |
| Translation group | كروه انتقال |
| Transitive group | گروه ترايا |
| Projective group | كروه تصوهيرى |
| Projective Special group | گروه تصويرى خاصى |
| Projective general group | گروه تصويرى عاره |
| Quotient group | كروه خارج قسمتها |
| Special Linear group | گروه خطى خره |
| General linear group | گروه خطى عره |
| Cyclic group | كروه دورى |
| Dihedral group | گروه دو وجهى |

Simple group
Group of isometries
Wallpaper group
Frieze group
Linear fractional group
Discrete group
Orthogonal group
Special orthogonal group
Symmetric group
Alternating group
Affine group
Möbius group
Point group
Generated groups

Glide - reflection

| Matrix | ماتريس |
| :---: | :---: |
| Scalar matrix | ماتريس اسكالر |
| Transposed matrix | ماتريس ترانهاد. |
| Diagonal matrix | ماتريس تطرى |
| Orthogonal matrix | ماتريس متعامد |
| Similar matrices | ماتريسهاى متشابه |
| Triangular matrices | ماتريسهاى مثلثى |
| Orthogonal | متعامد |
| Dircet Sum | مجموع مستقيم |


| Axis of reflection | محور بازتاب |
| :---: | :---: |
| Tangent Cone | مخروط مدر |
| Orbit | مدار |
| Order | مرتبه |
| Order of elements | مرتبه اعضا |
| Order of group | مرتبغ كروه |
| Centre of rotation | مركز دوران |
| Centraliser | مركز ساز |
| Centre of group | مركز گروه |
| Conjugate | مزدوج |
| Affine | مستوى |
| Characteristic equation | معادله مشخصه |
| Eigenvalues | مقادير ويزه |
| Prism | منشور |
| Möbius | موبيوس |
| Cross -ratio | نسبت غيرتوافقى |
| Embedded in inversion | نشانده شده در انعكاس |
| Fixed points | نقاط ثابت |
| Point at infinity | نقطهُ در بينهايت |
| Inverse points | نتطهُ منعكس |
| Surjection | نگاشت بوشا |
| Argand diagram | نوودار آركان |
| Half - turn | نيمدور |

Left inverse
Inverse product
Right inverse
Inverse matrix

|  | V / |
| :---: | :---: |
| Kernel | هسته |
| Kernel of linear transformation | هسته: تبيل خطى |
| Octahedron | هشت وجهى |
| Equivalence | همارزى |
| Identity | هـانى |
| Homomorphism | همريختى |
| Cosets | هممجموعهدها |
| Left cosets | هممجموعههایى |
| Right cosets | هممجموعههاى راست |
| Field | هينت |
| Isomorphism | يكريختى |

وارن حاصنضرب
وارون راست
وارن ماتريس
( 1


## وازمنامه (انگليسى ـ نارسى)

## A / B

Abelian group


Affine
Affine group
گروه مستوى
Affine transformation
تبديل مستوى
Alternating group
Angles preserved
Argand diagram
Argument of Complex number
Associativity
Automorphism
Axis of reflection
Basis
گروه متناوب
زاريههاى حغظ شده


بايه
Bijection دوسويى

C
Cartesian product
Cayley table جدول كيلى
Cayley's thearem
Center of group
Centraliser
Center of rotation
مركز دوران
Change of basis

Characteristic equation
معادلة مشخصه
دايرههاى روى كره
تبايل مستير
بستار
تويضبنير
اعداد مختلط
تركيب تابع
ردههاى مزدوج
مزدوج
اعداد مختلط مزدوج
اعضاى مزدوج
طولباييهاى مزدوج
جايگشتهای مزدوج
جهارگانهاى مزدوج
هممجموعهها
نسبت غيرتوافقى
تحديد بلورنگارانه
گروه دورى

D
Determinant
Diagonal matrix
Dihedral group
Dilatation group
Direct isomerties
Direct product
Direct Similarity
Direct sum
 ماتريس تطرى گروه دورجهى گروه انبساط طولباييهاى مستقيم حاصلضرب مستقيم


| Discrete group | گروه گسmه |
| :---: | :---: |
| Disjoint Cycle | دور مجزا |
| Distributive law | قانون توزيعى |
| Dodecahedron | دوازده وجهى |
| Doubly transitive | ترايايى دوكانه |
| Duel figure | شكل دوگان |
| E |  |
| Eigenvalues | مقادير ويزه |
| Eigenvectors | بردارهاى ويزه |
| Embedded in inversion | نشانده شده در انیا |
| Enlargement | بزرگسازى |
| Equivalence | همارزى |
| Equivalence class | ردة همارزى |
| Equivalence relation | رابطه همارزى ها |
| Euclidean group | گروه اقليدسى |
| Even permutation | جايگشت نوج |

## F

Field
Finite subgroups
Fixed points
Frieze group
Function
Fundamental theorem on homomorphism


G
Gauss plane
General linear group
Generated groupsGlide - reflectionGreat Circle
GroupGroup of isometriesگروره خطى عای توليد شده
گروههای توليد شده
لغزه
دايره عظيمه
گروه
كروه طولبييها
H / IHalf - turnHighest Common FactorHomomorphismIcosahedron
Identity
Identity fuction
Image spaceIndex of Subgroup
همانىتابع همانىInverse pointsInverse productوارون حاصلضربInversionIsometriesانعكاسطولباييهاIsomorphismيكريختى

K / L

Kernel
Kernel of linear transformation
Lagrange's theorem
Left cosets
Left inverse
Length of a translation
Leonardo's theorem
Linear fractional group
Linear fractional transformation
Linear transformation
Lines in a vector space

$$
\begin{aligned}
& \text { هسته } \\
& \text { هستة تبديل خطى } \\
& \text { تضيهُ لاكرانز } \\
& \text { هم مجموعههاى جب } \\
& \text { وارن جب } \\
& \text { طول يك انتقال } \\
& \text { تضيه لوناردو } \\
& \text { گروه كسرى خطى } \\
& \text { تبديل كسرى خطى } \\
& \text { تبديل خطى }
\end{aligned}
$$

خطهاى يك نضاى بردارى
$\mathbf{M} / \mathbf{N}$
Matrix
Matrix addition
Matrix product
Möbius
Möbius group
Möbius plane
Möbius transformation
Mödulus of complex number
Non-singular linear transformation
Normal subgroup


موبيوس
گروه موبيوس
صفحئ موبيون تبديل موبيوس تدر مطلت عدد مختلط

تبديل خطى ناتكين
زيركروه نرمال

O
Octahedron
Odd permutation
هشت وجهى
جايگشت فرد

Opposite isometries
Opposite similarity
Orbit
Order
Order of elements
Order of group
Orthogonal
Orthogonal circles
Orthogonal group
Orthogonal matrix
Orthogonal transformation
$\mathbf{P} / \mathbf{Q}$
Permutation
Pole
Point at infinity
Point group
Point Symmetry in 3 dimensions
Prism
Projection
Projective general group
Projective group
Projective line
Projective Special group
Proper Subgroup
Pure quaternions
Quaternions
Quotient group

طولباييهاى متقابل
تشابب متقابل
مدار
مرتبه
مرتبة اعضا
مرتبغ گروه
متعامد
دايرههاى متعامد
كروه متعامد
ماتريس متعامد
تبديل متعامد
تقارن نتطهاى در سه بعد منشور
تصوير
گروه تصويرى عام گروه تصويرى
خط تصويرى
گروه تصويرى خاص زيرگروه سيره
جهاركانهاى محض
جارگانها
گروه خارج تسمتها

## R

Real quaternions
Reflection
Reflection Symmetry
Residue class
Reflexive relation
Relation

| جهارگانهای حقيقىى |
| :---: |
| بازتاب |
| تقارن بازتابى |
| ردء ماندههها |
| رابطة بازتابى |
| رابطه |
| كره ريمان |
| هممجموعههاى راست |
| وارن راست |
| دوران |
| دوران مزدرج |
| دوران كره |
| تقارن دورانى |

## S

Scalar factor
Scalar matrix
عامل مقياس ماتريس اسكالر
Scalar multiplication
ضرب اسكالر
Scalar product
حاصلضرب اسكالر
Shear
Signature of permutation
علامت جايگشت
Similarity
Similar matrices
Simple group
Singular linear transformation
Spanned Subspace
Special linear group


| Special orthogonal group | كروه متعامد خاص |
| :---: | :---: |
| Spiral similarity | تشابه ماريبحى |
| Stabiliser | ¢ايدارساز |
| Stereographic projection | تصوير گنجنگاشتى |
| Subgroup | زيركروه |
| Subspace | زيرفضا |
| Surjection | نگاشت بوشا |
| Symmetric group | گروه متقارن |
| Symmetric relation | رابطه تقارنى |
| Symmetry | تقارن |
| $\mathbf{T} / \mathbf{U}$ |  |
| Tangent cone | مخروط مـاس |
| Tetrahedron | حهار وجهى |
| Transformation | تبديل |
| Transitive | ترايا |
| Transitive group | گروه ترايا |
| Transitive relation | رابطهّ ترايا |
| Translation | انتقال |
| Translation group | كروه انتقال |
| Transposed matrix | ماتريس ترانهاده |
| Transposition | ترانهش |
| Triangular matrices | ماتريسهاى مثلثى |
| Triply transitive | ترايايى سهكانه |
| Unit quaternions | حهارگانهاى واحد |
| V / W |  |
| Vector | بردار |

Vorctor addition
Veritor product
Virtor space
Wallpaper group

جـعبردارى
حاصلضرب بردارى نضاى بردارى گروه كاغذديوارى

اين كتاب دربر گيرندهٔ دنبالهاى از سؤ الهاى بـ دقت انتخاب شده است كد خو انندهر را با
 اين ميحث مطر ح مى شود كمك مى كـندا
 مقدمهاى بر اعداد منتلط با هد

 اصلى اين كتاب هستّد.

QMY - fr $\Delta-1 \Delta \cdot-x=\operatorname{Li}$
ISBN 964-445-250 - X
:Jt, 1A…:* 6


[^0]:    2) P.G. L. Dirichlet
    3) N. Bourbaki
[^1]:    $\xrightarrow{\text { Nosent }}$

[^2]:    號

[^4]:    保
    保

[^5]:    3) A.F. Möbius
    4) H.Poincaré
    5) R. Fricke
[^6]:    1) Birkhoff
    2) Maclane
[^7]:    1) Appolonius
    2) R. Descartes
    3) G. Cantor
    4) Traité des Substitutions
[^8]:    1) Euclid
    2) E. Galois
    3) E.H. Moore
[^9]:    1) F.G. Frobenius
