GALOIS THEORY

M. PAVAMAN MURTHY
K.G. RAMANATHAN C. S. SESHADRI
U. SHUKLA R. SRIDHARAN
Tata Institute of Fundamental Research, Bombay

School of Mathematics
Tata Institute of Fundamental Research, Bombay

All communications pertaining to this series should be addressed to:

School of Mathematics

tata Institute of Fundamental Research Bombay 5, India.

(C)

Edited and published by K. Chandrasekharan for the Tata Institute of Fundamental Research, Bombay, and printed by R. Subbu at the Commercial Printing Press Limited, 34-38 Bank Street, Fort, Bombay, India.

EDITORIAL NOTE

This little book on Galois Theory is the third in the series of Mathematical pamphlets started in 1963. It represents a revised version of the notes of lectures given by M. Pavaman Murthy, K.G. Ramanathan, C.S. Seshadri, U. Shukla and R. Sridharan, over 4 weeks in the summer of 1964, to an audience consisting of students and teachers, some of them new to algebra. The course evoked enthusiasm as well as interest. Special thanks are due to the authors, and to Professor M.S. Narasimhan who, as Chairman of the Committee on the Summer School, was responsible for organizing it. I owe personal thanks to Professor Raghavan Narasimhan who has done the actual editing of the work.
K. Chandrasekharan

PREFACE

This pamphlet contains the notes of lectures given at a Summer School on Galois Theory at the Tata Institute of Fundamental research in 1964. The audience consisted of teachers and students from Indian Universities who desired to have a general knowledge of the subject. The speakers were M. Pavaman Murthy, K.G. Ramanathan, C.S. Seshadri, U. Shukla and R. Sridharan.

The rudiments of set theory are assumed. Chapters I and II deal with topics concerning groups, rings and vector spaces to the extent necessary for the study of Galois Theory. In Chapter III, field extensions are studied in some detail; the chapter ends with the theorem on the simplicity of a finite separable extension. The fundamental theorem of Galois Theory is proved in Chapter IV. Chapter V deals with applications of Galois Theory to the solution of algebraic equations and geometrical constructions.

Contents

1 Groups 1
1.1 Groups and Homomorphisms 1
1.2 Subgroups and quotient groups 4
1.3 Solvable groups 10
1.4 Symmetric groups and solvability 12
2 Rings and Vector Spaces 15
2.1 Rings and homomorphisms 15
2.2 Ideals and quotient rings. 18
2.3 Polynomial rings. 20
2.4 Vector spaces 24
3 Field Extensions 29
3.1 Algebraic extension 29
3.2 Splitting fields and normal extensions 31
3.3 Separable extensions 35
3.4 Finite fields 38
3.5 Simplicity of finite separable extension 39
4 Fundamental Theorem 41
5 Applications of Galois Theory 47
5.1 Cyclic extensions 47
5.2 Solvability by radicals 50
5.3 Solvability of algebraic equations 53
5.4 Construction with ruler and compass 57

Chapter 1

Groups

1.1 Groups and Homomorphisms

Definition 1.1 A group is a pair (G, ψ), where G is a set and $\psi: G \times G \rightarrow G$ is a map $(\psi(x, y)$ being denoted by $x y)$ satisfying.
(a) $(x y) z=x(y z), \forall x, y, z \in G$ (associativity)
(b) there exists an element $e \in G$ such that $e x=x e=x, \forall x \in G$, and
(c) if $x \in G$ there exists an element $x^{\prime} \in G$ such that

$$
x^{\prime} x=x x^{\prime}=e .
$$

Remark 1.2 The map ψ is called the group operation. We denote the group simply by G when the group operation is clear from the context.

Remark 1.3 The element e is unique. For, if $e_{1} \in G$ such that $e_{1} x=$ $x e_{1}=x, \forall x \in G$, we have, in particular, $e=e e_{1}=e_{1}$. The element e is called the identity element of G.

Remark 1.4 For $x \in G$ the element x^{\prime} is unique. For, if $x^{\prime \prime} \in G$ such that $x^{\prime \prime} x=x x^{\prime \prime}=e$, then we have

$$
x^{\prime \prime}=x^{\prime \prime} e=x^{\prime \prime}\left(x x^{\prime}\right)=\left(x^{\prime \prime} x\right) x^{\prime}=e x^{\prime}=x^{\prime} .
$$

The element x^{\prime} is called the inverse of x and is denoted by x^{-1}.

Remark 1.5 In view of associativity, we define

$$
x y z=(x y) z=x(y z), \text { where } x, y, z \in G
$$

More generally, the product $x_{1} x_{2} \ldots, x_{n}$ is well-defined, where x_{1}, x_{2}, $\ldots, x_{n} \in G$ (proof by induction). For $x \in G$ we set
(i) $x^{n}=x x \ldots x$ (n factors), for $n>0$;
(ii) $x^{0}=e$;
(iii) $x^{n}=\left(x^{-1}\right)^{-n}$, for $n<0$

A group G is called abelian or commutative, if

$$
x y=y x, \forall x, y \in G
$$

For an abelian group we sometimes write $\psi(x, y)=x+y$ and call the group operation addition in the group. We then denote the identity by 0 and the inverse of an element x by $-x$. Also we write

$$
\begin{aligned}
n x & =x+x \cdots+x(n \text { terms }), \text { for } n>0 \\
0 x & =0 \\
n x & =(-n)(-x), \text { for } n<0
\end{aligned}
$$

A group G is called a finite group if the set G is finite. The number of elements in a finite group is called its order.

Example 1.6 The set \mathbf{Z} (resp. $\mathbf{Q}, \mathbf{R}, \mathbf{C}$) is an abelian group under the "usual" addition.

Example 1.7 The set $\mathbf{Q}^{*}\left(\right.$ resp. $\left.\mathbf{R}^{*}, \mathbf{C}^{*}\right)$ of non-zero rational (resp.real, complex) numbers is an abelian group under "usual" multiplication.

Example 1.8 The set $\mathbf{Z} /(m)$ of residue classes modulo m, where m is an integer, is a group under addition given by $\bar{r}+\bar{s}=\overline{r+s}$ where $\bar{r}+\bar{s} \in \mathbf{Z} /(m)$.

Example 1.9 A one-one map of the set $I_{n}=\{1,2, \ldots, n\}$ onto itself is called a permutation. The set of all permutations of I_{n} is a group, the
group operation being given by the composition of maps. It is called the symmetric group of degree n and is denoted by S_{n}. If $\sigma \in S_{n}$ we write

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n)
\end{array}\right)
$$

For $n \geq 3, S_{n}$ is not abelian. The order of S_{n} is n !
Definition 1.10 Let G and G^{\prime} be groups. A map $f: G \rightarrow G^{\prime}$ is called a homomorphism if $f(x y)=f(x) f(y), \forall x, y \in G$.

Remark 1.11 For a group G, the identity map $I_{G}: G \rightarrow G$ is a homomorphism.

Remark 1.12 If $f: G \rightarrow G^{\prime}$ and $g: G^{\prime} \rightarrow G^{\prime \prime}$ are homomorphisms, then the map $g \circ f: G \rightarrow G^{\prime \prime}$ is a homomorphism.

Definition 1.13 A homomorphism $f: G \rightarrow G^{\prime}$ is called an isomorphism, if there exists a homomorphism $g: G^{\prime} \rightarrow G$ such that $g \circ f=I_{G}$ and $f \circ g=I_{G^{\prime}}$. We then write $G \approx G^{\prime}$. An isomorphism $f: G \rightarrow G$ is called an automorphism.

Remark 1.14 A homomorphism is an isomorphism if and only if it is one-one and onto.

Remark 1.15 A homomorphism maps the identity into the identity and the inverse of an element into the inverse of its image.

Example 1.16 The natural map $q: \mathbf{Z} \rightarrow \mathbf{Z} /(m)$ given by $q(r)=\bar{r}$, where $r \in \mathbf{Z}$, is an onto homomorphism. For $m \neq 0$, it is not an isomorphism.

Example 1.17 The map $f: \mathbf{Z} \rightarrow \mathbf{Z}$ given by $f(n)=2 n$ is a one-one homomorphism, which is not onto.

Example 1.18 The map $f: \mathbf{R} \rightarrow \mathbf{R}^{*+}$ (the set of non-zero positive real numbers) given by $f(x)=a^{x}$, where a is a fixed real number greater than 1 and $x \in \mathbf{R}$, is an isomorphism.

Example 1.19 Let G be a group and let $a \in G$. The map $f_{a}: G \rightarrow G$ given by $f_{a}(x)=a x a^{-1}$, where $x \in G$ is an automorphism, called the inner automorphism given by a.

1.2 Subgroups and quotient groups

Definition 1.20 A subgroup H of a group G is a non-empty subset H of G such that if $x, y \in H$, then $x^{-1} y \in H$.

Remark 1.21 The identity e of G belongs to H. Also, if $x \in H$, then $x^{-1} \in H$. In fact H becomes a group under the induced group operation.

Remark 1.22 The inclusion map $i: H \rightarrow G$ given by $i(x)=x$, where $x \in H$, is a homomorphism.

Example 1.23 G and $\{e\}$ are subgroups of G.
Example $1.24 \mathbf{Z}$ is a subgroup \mathbf{Q}, \mathbf{Q} is a subgroup of \mathbf{R} and \mathbf{R} is a subgroup of \mathbf{C}.

Example 1.25 The set of even integers is a subgroup of \mathbf{Z}.
Let $f: G \rightarrow G^{\prime}$ be a homomorphism of groups. The set $f(G)$ is a subgroup of G^{\prime}. If e^{\prime} denotes the identity of G^{\prime}, the set $\{x \in G \mid f(x)=$ $\left.e^{\prime}\right\}$ is a subgroup of G, called the kernel of f and denoted by $\operatorname{Ker} f$. More generally, the inverse image of a subgroup of G^{\prime} is a subgroup of G.

The intersection of a family of subgroups of a group is a subgroup. If S is a subset of the group G, the intersection of the family of all the subgroups of G which contain S is called the subgroup generated by S. If S consists of just one element a, the subgroup generated by $\{a\}$ is called the cyclic subgroup generated by a. It is easily seen that the cyclic subgroup generated by a consists of the powers of a. A group G is called cyclic if it coincides with the cyclic subgroup generated by an element $a \in G$.

Example 1.26 Z is an infinite cyclic group generated by 1.
Example 1.27 Z/ (m) is a cyclic group of order $|m|$, if $m \neq 0$.
Proposition 1.28 Any subgroup H of \mathbf{Z} is cyclic.
Proof: For, if $H=\{0\}$, there is nothing to prove. If $H \neq\{0\}$, let m be the least positive integer in H. Now for any $n \in \mathbf{Z}$ we have $n=q m+r$ where $q, r \in \mathbf{Z}$ and $0 \leq r<m$. If $n \in H$ then $r=n-q m \in H$, which implies that $r=0$. Hence $H=m \mathbf{Z}$.

Notation: For subsets A and B of a group G, we set $A B=\{a b \mid$ $a \in A, b \in B\}$. If $A=\{a\}$ (resp. $B=\{b\}$) we write $a B$ (resp. $A b$) for $\{a\} B$ (resp. $A\{b\}$). If $A, B, C \subset G$, it is obvious that $(A B) C=A(B C)$ and we write $A B C$ for either of them.

Let G be a group and let H be a subgroup. Let $R=R_{H}$ denote the equivalence relation in G defined as follows: $x R y$, if $x^{-1} y \in H$, where $x, y \in G$. The equivalence class $x H$ to which x belongs is called a left coset of G modulo H. If the quotient set G / R consists of n elements, the n is said to be the index of H in G and is denoted by $[G: H]$.

Proposition 1.29 (Lagrange) Let H be a subgroup of a finite group G. Then the order of G is the product of the order of H and the index of H in G. In particular, the order of H is a divisor of the order of G.

Proof: We first note that the map $t: H \rightarrow x H$ given by $t(h)=x h$, where $h \in H$, is a one-one onto map. Therefore the number of elements in any left coset is equal to the order of H. Since any two distinct left cosets are disjoint and the index of H in G is the number of left cosets, the theorem follows.

An element of a group G is said to be of order n if the cyclic subgroup generated by a is of order n.

Corollary 1.30 The order of an element of G is a divisor of the order of G.

Corollary 1.31 A group of prime order p is cyclic.
For, if a is any element different from the identity, the order of a divides p and so is equal to p.

Proposition 1.32 The following statements are equivalent:
(i) n is the order of a;
(ii) n is the least positive integer such that $a^{n}=e$;
(iii) $a^{n}=e$ and if $a^{m}=e$, then $n \mid m$.

Proof: (i) \Rightarrow (ii). Since the cyclic subgroup generated by a is finite, it follows that the elements $\left(a^{i}\right)_{i \in \mathbf{Z}}$ are not all distinct. If $a^{p}=a^{q}$ where $p>q$, then $a^{p-q}=e$. Thus there exists a positive integer m such that $a^{m}=e$. Taking m to be least positive integer for which $a^{m}=e$, we
observe that the elements $\left\{a^{i} \mid 0 \leq i<m\right\}$ are distinct and form a subgroup, which is the cyclic subgroup generated by a. Hence $m=n$.
(ii) \Rightarrow (iii). Let $a^{m}=e$. We have $m=q n+r$, where $q, r \in \mathbf{Z}$ and $0 \leq r<n$. This gives $e=a^{m}=\left(a^{q}\right)^{n} a^{r}=a^{r}$. Since n is the least positive integer such that $a^{n}=e$, it follows that $r=0$. Hence $m=q n$.
(iii) \Rightarrow (i). The elements $\left(a^{i}\right)_{0 \leq i<n}$ are all distinct. For, if $a^{p}=a^{q}$ where $0 \leq p<n, 0 \leq q<n$, and $p>q$, then $a^{p-q}=e$. Therefore, by hypothesis, n divides $p-q$, which is impossible since $p-q$ is less than n. Clearly $\left\{a^{i} \mid 0 \leq i<n\right\}$ is the cyclic subgroup generated by a.

The maximum of the orders of the elements of a finite abelian group is called the exponent of the group.

Proposition 1.33 If m is the exponent of a finite abelian group G, then the order of every element of G is a divisor of m.

We first prove the following.
Lemma 1.34 Let a and b be elements of a group G such that $a b=b a$. If a and b are of orders m and n respectively such that $(m, n)=1$, then $a b$ is of order mn.

Proof: We have $(a b)^{m n}=a^{m n} b^{m n}=e$. Therefore, if d is the order of $a b$, then $d \mid m n$. Again, since $(a b)^{d}=e$ we have $a^{d}=b^{-d}$ and so $a^{n d}=e$. Therefore $m \mid n d$. Since $(m, n)=1$ it follows that $m \mid d$. Similarly, $n \mid d$. Since $(m, n)=1, m n \mid d$. This proves that $a b$ is of order $m n$.
Proof of the Proposition: Let a be an element of maximum order m and let b be any element of order n. Let, if possible, $n \nmid m$. Then there exists a prime number p such that if r (resp. s) is the greatest power of p dividing n (resp. m), we have $r>s$. Then $a^{p^{s}}$ (resp. $b^{n / p^{r}}$) has order m / p^{s} (resp. p^{r}). Since $\left(m / p^{s}, p^{r}\right)=1$ we see, by the above lemma, that the element $a^{p^{s}} b^{n / p^{r}}$ is of order $\left(m / p^{s}\right) p^{r}$ which is greater than m, since $r>s$. This contradicts the assumption on a. Hence the proposition.

Definition 1.35 A subgroup H of a group G is said to be normal in G if $x H x^{-1}=H, \forall x \in G$.

A subgroup H of G is normal if and only if $x H x^{-1} \subset H, \forall x \in G$.
For any subgroup H of G and any $x \in G, x H x^{-1}$ is a subgroup of G, which is called a conjugate of H. By the definition of a normal subgroup, it follows that a subgroup H is normal if and only if all its conjugates coincide with H.

Let $f: G \rightarrow G^{\prime}$ be a homomorphism of groups. The inverse image of a normal subgroup of G^{\prime} is a normal subgroup of G. Moreover, if f is onto, the image of a normal subgroup of G is a normal subgroup of G^{\prime}.
G and $\{e\}$ are normal subgroups of G. A subgroup of G other than G is called a proper normal subgroup. If a group has no proper normal subgroup other than $\{e\}$, it is called a simple group.

Example 1.36 In an abelian group every subgroup is normal.

Example 1.37 An abelian group $G(\neq\{e\})$ is simple if and only if it is cyclic of prime order.

Example 1.38 The kernel of a homomorphism of groups $f: G \rightarrow G^{\prime}$ is a normal subgroup of G.

Example 1.39 If H and K are subgroups of G and if $H K=K H$, then $H K$ is a subgroup of G. The condition $H K=K H$ is satisfied if either H or K is a normal subgroup of G. If both H and K are normal subgroups of G, then $H K$ is also a normal subgroup of G.

Let G be a group and H be a normal subgroup of G. Consider the set G / R of left cosets of G modulo H. We define an operation on G / R by setting $x H \cdot y H=x y H$, where $x, y \in G$. We assert that this operation is well defined. For, if $x^{\prime} \in x H$, and $y^{\prime} \in y H$, that is $x^{\prime}=x h_{1}, y^{\prime}=$ $y h_{2}$, where $h_{1}, h_{2} \in H$, then $x^{\prime} y^{\prime}=x h_{1} y h_{2}=x y\left(y^{-1} h_{1} y\right) h_{2} \in x y H$, since $y^{-1} h_{1} y \in H$. It is easily seen that G / R is a subgroup under this operation, the identity being $H(=e H)$ and the inverse of $x H$ being $x^{-1} H$. We call this group the quotient group of G by H and denote it by G / H. The natural map $q: G \rightarrow G / H$ given by $q(x)=x H$ is clearly an onto homomorphism and its kernel is H.

Example 1.40 The group $\mathbf{Z} /(m)$ of residue classes modulo m is the quotient group $\mathbf{Z} / m \mathbf{Z}$.

Let $f: G \rightarrow G^{\prime}$ be an onto homomorphism with kernel H. We define a homomorphism $\bar{f}: G / H \rightarrow G^{\prime}$ by setting $\bar{f}(x H)=f(x)$, where $x \in G$. Clearly \bar{f} is well defined and is an isomorphism of G / H onto G^{\prime} and we have $\bar{f} \circ q=f$ where $q: G \rightarrow G / H$ is the natural map. Thus, "upto an isomorphism" , every homomorphic image of a group is a quotient group. This is usually called the "fundamental theorem of homomorphisms".

Remark 1.41 Let G be a group and let H and K be normal subgroups of G such that $K \subset H$. The homomorphism $\bar{f}: G / K \rightarrow G / H$ given by $\bar{f}(x K)=x H$, where $x \in G$ is onto and clearly has H / K as kernel. Hence $(G / K)(H / K) \approx G / H$. (First isomorphism theorem.)

Remark 1.42 Let H and K be subgroups of a group G and let K be normal in G. Then the homomorphism $f: H \rightarrow H K / K$ given by $f(h)=h K$, where $h \in H$ has $H \cap K$ as kernel and $H / H \cap K \approx H K / K$. (Second isomorphism theorem.)

Remark 1.43 Let G be a cyclic group generated by an element a. The map $f: \mathbf{Z} \rightarrow G$ given by $f(n)=a^{n}$, where $n \in \mathbf{Z}$ is an onto homomorphism. Therefore $\mathbf{Z} / \operatorname{Ker} f \approx G$. Since Ker $f=m \mathbf{Z}$ for some $m \geq 0$, it follows that every cyclic group is isomorphic to $\mathbf{Z} / m \mathbf{Z}$. It can now be easily shown that subgroups and quotient groups of a cyclic group are cyclic.

Remark 1.44 If G is any group with identity e we have $G /\{e\} \approx$ $G, G / G \approx\{e\}$.

Let G be a group and let $a, b \in G$. We say that a is conjugate to b, if there exists an element $x \in G$ such that $a=x b x^{-1}$. It is easy to verify that the relation of conjugacy is an equivalence relation. An equivalence class is called a conjugacy class or a class of conjugate elements.

Remark 1.45 The subset $\{e\}$ of G is a conjugacy class.

Remark 1.46 If a is conjugate to b, then a^{m} is conjugate to b^{m}, where $m \in \mathbf{Z}$.

Remark 1.47 A subgroup H of G is normal if and only if it is a union of conjugacy classes.

Let K be a subset of a group G. We define a subset N_{K} of G called the normaliser of K in G as follows: $N_{K}=\{x \in G \mid x K=K x\}$. If K consists of just one element a we denote the normalizer of $\{a\}$ by N_{a} and call it the normalizer of a. It is easy to verify that the normalizer of a subset K in G is a subgroup of G.

Remark 1.48 A subgroup H is normal in G if and only if $N_{H}=G$.

Proposition 1.49 Let G be a finite group and let $a \in G$. Then the number of elements conjugate to a is equal to the index of the normalizer of a in G.

Proof: Let C denote the conjugacy class to which a belongs and consider the map $\chi: G \rightarrow C$ given by $\chi(x)=x a x^{-1}$ where $x \in G$. This is an onto map. If $n \in N_{a}$ then $\chi(x n)=(x n) a(x n)^{-1}=x\left(n a n^{-1}\right) x^{-1}=$ $x a x^{-1}=\chi(x), \forall x \in G$. This shows that any two elements of the same left coset of G modulo N_{a} have the same image in C. Conversely, if $x, y \in G$ and $\chi(x)=\chi(y)$, then $x a x^{-1}=y a y^{-1}$ giving $\left(y^{-1} x\right) a\left(y^{-1} x\right)^{-1}=a$. This means $y^{-1} x \in N_{a}$ and so x and y belong to the same left coset of G modulo N_{a}. Hence χ induces a one-one correspondence between the left cosets of G modulo N_{a} and the distinct conjugates of a.

Corollary 1.50 The number of elements conjugates to a is a divisor of the order of the group G. In particular, if G is of order p^{n}, where p is a prime, then a conjugacy class consists of p^{i} elements, where $0 \leq i \leq n$.

An element $a \in G$ is said to be central if $x a=a x, \forall x \in G$. The subset of all central elements of G is called the centre of G.

Remark 1.51 An element a of a group G is central if and only if the subset $\{a\}$ is a conjugacy class.

Remark 1.52 The centre of a group is a normal subgroup.

Proposition 1.53 If G is a group of order p^{n} where p is a prime and $n \geq 1$ then the centre of G has more than one element.

Proof: Let $C_{i}(1 \leq i \leq m)$ be the distinct conjugacy classes of G and k_{i} the number of elements of C_{i}. We have $k_{i} \mid p^{n}$ (Proposition 1.29 and 1.49) so that if $k_{i} \neq 1, p \mid k_{i}$. Let C_{1} be the conjugacy class containing the identity. If the centre of G reduces to $\{e\}$, we have $C_{1}=\{e\}$ and $k_{i}>1$ for every $i \neq 1$. Further,

$$
p^{n}=1+\sum_{i \geq 2} k_{i} .
$$

Since $p \mid k_{i}$ for $i \geq 2$, this is impossible.

1.3 Solvable groups

Definition 1.54 A group G is said to be solvable if there exists a sequence of subgroups.

$$
G=G_{0} \supset G_{1} \supset \cdots \supset G_{n}=\{e\}
$$

such that G_{i+1} is a normal subgroup of G_{i} and G_{i} / G_{i+1} is abelian $(0 \leq$ $i<n)$. Such a sequence is called a solvable series of G.

Remark 1.55 Every abelian group is solvable.
Proposition 1.56 Any subgroup and any quotient group of a solvable group is solvable. Conversely, if there is a normal subgroup H of a group G such that H and G / H are solvable, then G is solvable.

Proof: Let G be a solvable group having a solvable series

$$
G=G_{0} \supset G_{1} \supset \cdots \supset G_{n}=\{e\} .
$$

If H is a subgroup of G, then

$$
H=H \cap G_{0} \supset H \cap G_{1} \supset \cdots \supset H \cap G_{n}=\{e\}
$$

is a solvable series of H, since $H \cap G_{i+1}$ is a normal subgroup of $H \cap G_{i}$ and $\left(H \cap G_{i}\right) /\left(H \cap G_{i+1}\right)$ is isomorphic to a subgroup of G_{i} / G_{i+1} and so abelian $(0 \leq i<n)$. (Compose the inclusion map $H \cap G_{i} \rightarrow G_{i}$ with the natural map $G_{i} \rightarrow G_{i} / G_{i+1}$ and apply the fundamental theorem of homomorphisms.) Again, if H is a normal subgroup of G and $q: G \rightarrow$ G / H is the natural homomorphism, then

$$
G / H=q\left(G_{0}\right) \supset q\left(G_{1}\right) \supset \cdots \supset q\left(G_{n}\right)=\{e\}
$$

is a solvable series of G / H, since $q\left(G_{i+1}\right)$ is a normal subgroup of $q\left(G_{i}\right)$ and $q\left(G_{i}\right) / q\left(G_{i+1}\right)$ which is isomorphic to a quotient of G_{i} / G_{i+1} is abelian $(0 \leq i<n)$.

Conversely, let H be a normal subgroup of G such that H and G / H are solvable. Let $q=G \rightarrow G / H$ be the natural homomorphism. Let

$$
H=H_{0} \supset H_{1} \supset \cdots H_{n}=\{e\}
$$

and

$$
G / H=G_{0}^{\prime} \supset G_{1}^{\prime} \supset \cdots \supset G_{m}^{\prime}=\{e\}
$$

be solvable series for H and G / H respectively. Then it is trivial to see that

$$
\begin{aligned}
G= & q^{-1}\left(G_{0}^{\prime}\right) \supset q^{-1}\left(G_{1}^{\prime}\right) \supset \cdots \supset q^{-1}\left(G_{m}^{\prime}\right)\left(=H=H_{0}\right) \\
& \supset H_{1} \supset \cdots \supset H_{n}=\{e\} .
\end{aligned}
$$

is a solvable series for G.
Proposition 1.57 Any group of order p^{n} where p is a prime, is solvable.

Proof: We prove the proposition by induction on n. For $n=0$, the proposition is trivial. Let $n \geq 1$ and assume that the proposition is true for $r<n$. Let G be a group of order p^{n}. Then by Proposition 1.53, the centre C of G has order p^{s} where $s \geq 1$. Then the order of G / C is p^{n-s} and $n-s<n$. By the induction hypothesis G / C is solvable. Now the proposition follows from Proposition 1.56.

Proposition 1.58 A finite group G is solvable if and only if there exists a sequence of subgroups

$$
G=G_{0} \supset G_{1} \supset \cdots \supset G_{n}=\{e\}
$$

such that G_{i+1} is a normal subgroup of G_{i} and G_{i} / G_{i+1} is cyclic, of prime order $(0 \leq i<n)$.

Proof: Suppose G is solvable and let

$$
G=G_{0} \supset G_{1} \supset \cdots \supset G_{n}=\{e\}
$$

be a solvable series of G. We shall interpose between G_{i} and G_{i+1} a sequence of subgroups

$$
G_{i}=H_{i, 0} \supset H_{i, 1} \supset \cdots \supset H_{i, m}=G_{i+1}
$$

such that $H_{i, j+1}$ is a normal subgroup of $H_{i, j}$ and $H_{i, j} / H_{i, j+1}$ is of prime order $(0 \leq j<m)$. For this, it is sufficient to show that given a finite group A and a normal subgroup B of A such that A / B is abelian, there exists a normal subgroup N of A containing B such that A / N is of prime order. Indeed let N be a maximal proper normal subgroup of A containing B. Clearly A / N is simple. However, A / N being a homomorphic image of A / B is abelian and hence of prime order.

The converse is trivial.

1.4 Symmetric groups and solvability

Definition 1.59 Let S_{n} be the symmetric group of degree n. An r-cycle is a permutation σ such that there exist r distinct integers $x_{1}, \ldots, x_{r}(1 \leq$ $x_{i} \leq n$) for which $\sigma\left(x_{1}\right)=x_{2}, \ldots, \sigma\left(x_{r-1}\right)=x_{r}, \sigma\left(x_{r}\right)=x_{1}$ and $\sigma(x)=x$ for $x \neq x_{i}, 1 \leq i \leq r$. We then write $\sigma=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$. A 2 -cycle is called a transposition.

Remark 1.60 An r-cycle is an element of order r.
Remark 1.61 If $\sigma=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ is an r-cycle and τ is any permutation, then $\tau \sigma \tau^{-1}=\left(y_{1}, y_{2}, \ldots, y_{r}\right)$, where $\tau\left(x_{i}\right)=y_{i}$, for $1 \leq i \leq r$.

Proposition 1.62 S_{n} is generated by transpositions.
Proof: We prove the proposition by induction on n. For $n=1,2$ the assertion is trivial. Assume the proposition for $n-1$ and let $\sigma \in$ S_{n}. If $\sigma(n)=n$, then by the induction hypothesis σ is a product of transpositions. If $\sigma(n)=k$ where $k \neq n$, the permutation $\tau=(k, n) \sigma$ is such that $\tau(n)=n$ and so is a product of transpositions. Therefore $\sigma=(k, n) \tau$ is also a product of transpositions.

Corollary $1.63 S_{n}$ is generated by the transpositions $(1, n),(2, n), \ldots$, ($n-1, n$).

For, $(i, j)=(i, n)(j, n)(i, n)$.
Lemma 1.64 If a permutation can be expressed as a product of m transpositions and also as a product of n transpositions, then $m-n$ is even.

Proof: The map $f: S_{n} \rightarrow\{-1,1\}$ given by

$$
f(\sigma)=\prod_{1 \leq i<j \leq n} \frac{\sigma(i)-\sigma(j)}{i-j},
$$

where $\sigma \in S_{n}$ is easily seen to be a homomorphism of groups. If σ is a transposition, then $f(\sigma)=-1$. Regarding σ as a product of m (resp. n) transpositions, we get $f(\sigma)=(-1)^{m}$ (resp. $\left.f(\sigma)=(-1)^{n}\right)$. Hence $m-n$ is even.

Definition 1.65 A permutation is said to be odd (resp. even) if it can be expressed as a product of an odd (resp. even) number of transpositions.

It should be noted that, in view of the preceding lemma, the notion of odd and even permutations is well defined.

The set of even permutations is a normal subgroup of S_{n} and is denoted by A_{n}. It is called the alternating group of degree n. We note that the quotient group S_{n} / A_{n} is of order 2 if $n>1$.

Remark 1.66 S_{n} is solvable for $n \leq 4$. For $n=1,2$ there is nothing to prove. For $n=3$,

$$
S_{3} \supset A_{3} \supset\{e\}
$$

is a solvable series of S_{3}. For $n=4$,

$$
S_{4} \supset A_{4} \supset V_{4} \supset\{e\}
$$

is a solvable series of S_{4}, where

$$
V_{4}=\{e,(1,2),(3,4),(1,3),(2,4),(1,4)(2,3)\} .
$$

It can be verified that V_{4} is a normal subgroup of A_{4} and A_{4} / V_{4} is a group of order 3 and so is cyclic. Also, V_{4} is abelian.

Theorem 1.67 S_{n} is not solvable for $n>4$.
We need the following
Lemma 1.68 If a subgroup G of $S_{n}(n>4)$ contains every 3-cycle and if H is a normal subgroup of G such that G / H is abelian, then H contains every 3-cycle.

Proof: Let $q: G \rightarrow G / H$ be the natural homomorphism. If $\sigma, \tau \in$ $G, q\left(\sigma^{-1} \tau^{-1} \sigma \tau\right)=q(\sigma)^{-1} q(\tau)^{-1} q(\sigma) q(\tau)=e$, since G / H is abelian. Therefore $\sigma^{-1} \tau^{-1} \sigma \tau \in H, \forall \sigma, \tau \in G$. Let (i, j, k) be an arbitrary 3cycle. Since $n>4$, we can choose $\sigma=(i, k, l), \tau=(j, k, m)$ where i, j, k, l and m are all distinct. Then

$$
\sigma^{-1} \tau^{-1} \sigma \tau=(l, k, i)(m, k, j)(i, k, l)(j, k, m)=(i, j, k) \in H
$$

Proof of Theorem: Let, if possible,

$$
S_{n}=G_{0} \supset G_{1} \supset \cdots \supset G_{m}=\{e\}
$$

be a solvable series. Since S_{n} contains every 3 -cycle, it follows from the above lemma that G_{i} contains every 3 -cycle for every i where $1 \leq i \leq m$. But, for $i=m$ this is clearly impossible.

Chapter 2

Rings and Vector Spaces

2.1 Rings and homomorphisms

Definition 2.1 A ring A is a triple (A, ϕ, ψ), where A is a set and ϕ, ψ mappings of $A \times A$ into A (we write $\phi(x, y)=x+y, \psi(x, y)=x y$, for $x, y \in A)$ such that
(i) (A, ϕ) is an abelian group;
(ii) $x(y z)=(x y) z$, for $x, y, z \in A$ (associativity);
(iii) $x(y+z)=x y+x z,(y+z) x=y x+z x$, for every $x, y, z \in A$ (distributivity);
(iv) there exists an element $1 \in A$ called the unit element such that $1 x=x 1=x$, for every $x \in A$.

Remark 2.2 ϕ and ψ are called the ring operations. ϕ is called the addition and ψ, the multiplication in the ring A; we often write $(A,+)$ for the abelian group (A, ϕ).

Remark 2.3 The identity of (A, ϕ) is called the zero element of A and is denoted by 0 .

Remark 2.4 The unit element is unique.

Remark 2.5 The associative law for multiplication is valid for any number of elements.

Remark 2.6 For $a, b \in A$ with $a b=b a$ and any integer $n \geq 0$, we have $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$, where, for any $x \in A$ and any positive integer m, we write $x^{m}=x \ldots x$ (m times). We set $x^{0}=1$.

Remark 2.7 For any $a \in A$, by (iii), the map $x \rightarrow a x$ (resp. $x \rightarrow x a$) is a homomorphism of the group $(A,+)$ into itself and hence $a 0=0$ (resp. $0 a=0$).

Definition 2.8 A ring A is commutative if $x y=y x$, for every $x, y \in A$.

Example 2.9 The set Z (resp. Q, R, C) of integers (resp. rationals, reals, complex numbers) is a commutative ring with the "usual" addition and multiplication.

Example 2.10 The additive group of residue classes modulo an integer m is a ring, the multiplication being given by $\bar{r} \bar{s}=\bar{r} s$, where $\bar{r}, \bar{s} \in$ $\mathbf{Z} /(m)$.

Example 2.11 Let G be any abelian group. The set $\operatorname{Hom}(G, G)$ of all homomorphisms of G into itself is a ring with respect to the ring operations given by $(f+g)(x)=f(x)+g(x),(f g)(x)=f(g(x))$ for $f, g \in \operatorname{Hom}(G, G), x \in G$.

Note that $\operatorname{hom}(G, G)$ is, in general, not commutative.
Let A be a ring. A subring B of A is a sub-group of $(A,+)$ such that $1 \in B$ and, for $x, y \in B, x y \in B$. We observe that B is a ring under the induced operations. The intersection of any family of subrings of A is again a subring. Let S be a subset of A. The intersection of the family of all subrings of A containing S is called the subring generated by S.

Unless otherwise stated, all the rings we shall consider hereafter will be assumed commutative.

Let $a, b \in A$. We say that a divides b (or that a is a divisor of b, notation $a \mid b)$ if there exists $c \in A$ such that $b=a c$. If a does not divide b, we write $a \nmid b$. An element $a \in A$ is said to be a zero divisor if there exists $x \in A, x \neq 0$ such that $a x=0 . A$ is said to be an integral domain if $A \neq\{0\}$ and it has no zero-divisors other than 0 . An element $a \in A$ is said to be a unit in A if there exists $a^{-1} \in A$ such that $a a^{-1}=a^{-1} a=1$. Let A be an integral domain. A non-zero element $a \in A$ is called irreducible if it is not a unit and $a=b c$ with $b, c \in A$ implies that either b or c is a unit.

A commutative ring A is said to be a field if $A^{*}=A-\{0\}$ is a group under multiplication, so that every non-zero element is a unit. Clearly, a field contains at least two elements. A subring R of a field K is called a subfield of K if the ring R is a field. Any intersection of subfields of K is again a subfield. If S is a subset of K, then the intersection of all subfields of K containing S is called the subfield generated by S.

Example 2.12 Z is an integral domain.
Example $2.13 \mathrm{Z} /(m)$ is a field if and only if m is a prime. For, if $m=r s$, with $|r|,|s| \neq 1$, then $\bar{r} \bar{s}=\overline{r s}=0$, but $\bar{r}, \bar{s} \neq 0$. Hence $\mathbf{Z} /(m)$ is not an integral domain and a fortiori is not a field. Let m be prime and $\bar{r} \in \mathbf{Z} /(m)$ with $\bar{r} \neq 0$. then $(r, m)=1$, i.e. there exist $s, t \in \mathbf{Z}$ with $s r+t m=1$. Obviously $\bar{s} \bar{r}=1$. Hence $\mathbf{Z} /(m)$ is a field.

Example 2.14 Q, R, C are fields.
Let A, A^{\prime} be rings. A map $f: A \rightarrow A^{\prime}$ is called a homomorphism if (i) $f(x+y)=f(x)+f(y)$, (ii) $f(x y)=f(x) f(y)$ for every $x, y \in A$, and (iii) $f(1)=1$.

For any ring A, the identity map is a homomorphism. Let A, B, C be rings and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be homomorphisms. Then $g \circ f: A \rightarrow C$ is a homomorphism.

A homomorphism $f: A \rightarrow A^{\prime}$ is said to be an isomorphism if there exists a homomorphism $g: A^{\prime} \rightarrow A$ such that $g \circ f=I_{A}, f \circ g=I_{A^{\prime}}$; the rings A and A^{\prime} are then said to be isomorphic and we write $A \approx A^{\prime}$. An isomorphism $f: A \rightarrow A$ is called an automorphism.

Remark 2.15 A homomorphism is an isomorphism if and only if it is one-one and onto.

Remark 2.16 Let $f: A \rightarrow A^{\prime}$ be a ring homomorphism. If B is a subring of A, then $f(B)$ is a subring of A^{\prime}.

Example 2.17 Let A be a ring and B a subring of A. Then the inclusion $i: B \rightarrow A$ is a one-one homomorphism.

Example 2.18 The natural map $q: \mathbf{Z} \rightarrow \mathbf{Z} /(m)$ is a homomorphism.
Example 2.19 The map $f: \mathbf{C} \rightarrow \mathbf{C}$ given $f(z)=\bar{z}$ is an automorphism of \mathbf{C}.

Let A be an integral domain. Let A^{*} denote the set of non-zero elements of A. On the set $A \times A^{*}$ we define the relation $(a, b) \sim(c, d)$ if $a d=b c$. Since A is an integral domain, it can be verified that this is an equivalence relation. We make the quotient set $K=\left(A \times A^{*}\right) / \sim$ a ring by defining the ring operations as follows $a / b+c / d=(a d+$ $b c) / b d, \quad(a / b)(c / d)=a c / b d$, where a / b denotes the equivalence class containing (a, b). It is easily verified that these operations are well defined and the K is a ring. In fact, K is a field, the inverse of $a / b, a \neq 0$, being b / a. K is called the fraction field of A. The map $i: A \rightarrow K$ given by $i(a)=a / 1$ is a $1-1$ homomorphism. We shall identify A with the subring $i(A)$ of K. If $f: A \rightarrow L$ is a one-one homomorphism of A into a field L, then f can be extended in a unique manner to a one-one homomorphism \bar{f} of K into L, by defining $\bar{f}(a / b)=f(a) f(b)^{-1}$ for $b \neq 0$. If A is a subring of L, the subfield generated by A is the quotient field of A.

Example 2.20 Q is the quotient field of \mathbf{Z}.

2.2 Ideals and quotient rings.

Definition 2.21 Let A be a commutative ring. An ideal I of A is a subgroup of $(A,+)$ such that for $x \in I, a \in A$, we have $a x \in I$.

For any ring A, the intersection of any of family if ideals of A is again in ideal. Let S be a subset of A. The intersection of the family of all ideals containing S is called the ideal generated by S. It is easily seen that if S is not empty, then this ideal consists precisely of all finite sums of the form $\sum \lambda_{i} x_{i}, \lambda_{i} \in A, x_{i} \in S$. For $a \in A$, the ideal generated by $\{a\}$, namely $\{x a \mid x \in A\}$ is called the principal ideal generated by a and is denoted by $\{a\}$. An integral domain for which every ideal is principal is called a principal ideal domain.

Example $2.22\{0\}$ and A are ideals of A.

Example 2.23 Z is a principal ideal domain, the ideals of \mathbf{Z} being precisely subgroups of \mathbf{Z}.

Example 2.24 Let $f: A \rightarrow A^{\prime}$ be a homomorphism, then $\operatorname{ker} f=\{x \in$ $A \mid f(x)=0\}$ is an ideal.

Proposition 2.25 A commutative ring A is a field if and only if $1 \neq 0$ and it has no ideals other than A and (0).

Proof: Let A be a field. Clearly $1 \neq 0$. Let I be a non-zero ideal of A. Then there exists $a \in I, a \neq 0$. We have $1=a^{-1} a \in I$ and hence $A=I$. Conversely, assume that $1 \neq 0$ and that the only ideals of A are (0) and A. Then for any $a \in A, a \neq 0,(a)=A$. Hence there exists $b \in A$ with $b a=1$, i.e. A is a field.

Let I be an ideal of A. The additive group A / I is a ring called the quotient ring with respect to the multiplication $(x+I)(y+I)=x y+I$, for $x, y \in A$. Since I is an ideal this multiplication is well-defined. The natural map $q: A \rightarrow A / I$ is an onto homomorphism with kernel I.

Example 2.26 The ring $\mathbf{Z} /(m)$ of residue classes modulo m is the quotient ring of \mathbf{Z} by the principal ideal (m).

Let $f: A \rightarrow A^{\prime}$ be an onto homomorphism. Let I be the kernel of f. The homomorphism f induces a homomorphism $\bar{f}: A / I \rightarrow A^{\prime}$, by setting $\bar{f}(x+I)=f(x)$ for $x \in A$ it is easy to verity that \bar{f} is an isomorphism of rings and that $\bar{f} \circ q=f$ where q is the natural map $A \rightarrow A / I$. This is called the fundamental theorem of homomorphisms for rings.

Remark 2.27 Let K be a field. Consider the homomorphism $f: \mathbf{Z} \rightarrow K$ given by $f(n)=n 1(=1+\cdots+1, n$ times $)$. By the fundamental theorem of homomorphisms, we have $\mathbf{Z} / \operatorname{ker} f \approx f(\mathbf{Z})$. We know that ker $f=(p)$ for some $p \geq 0$. We call p the characteristic of the field K. Clearly $p a=0$ for every $a \in K$. If $p \neq 0$ then p is a prime. Obviously $p \neq 1$ and if $p=r s, r>0, s>0$, then $f(p)=f(r) f(s)=0$. Since K is a field, either $f(r)=0$ or $f(s)=0$ i.e. $p \mid r$ or $p \mid s$. Since $r \geq 1, s \geq 1$, it follows that either $r=1$ or $s=1$. Thus $\mathbf{Z} /(p)$ is a field and K contains a subfield isomorphic to $\mathbf{Z} /(p)$. If $p=0$, then the one-one homomorphism $f: \mathbf{Z} \rightarrow K$ can be extended to an isomorphism of \mathbf{Q} onto a subfield of K. Hence K contains a subfield isomorphic to \mathbf{Q}. Thus we have the following

Proposition 2.28 Every field contains a subfield isomorphic either to the field of rational numbers or to the field of residue classes of integers modulo a prime p.

The fields $\mathbf{Q}, \mathbf{Z} /(p)$ where p is a prime are called prime fields.
If k is a field of characteristic $p>0$, then we have,

$$
(a+b)^{p}=\sum_{i=0}^{p}\binom{p}{i} a^{i} b^{p-i}=a^{p}+b^{p} \text { for } a, b \in K
$$

The mapping $x \rightarrow x^{p}$ is a one-one homomorphism of K into K.
Let K be a finite field (i.e. K has a finite number of elements); then the characteristic p of K is >0. The mapping $x \rightarrow x^{p}$ is then an automorphism of K.

2.3 Polynomial rings.

Let A be a ring. Consider the set R of sequences $f=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$, where, $a_{n} \in A$ and $a_{n}=0$ for all but a finite number of n. Let $f, g \in R$ where $f=\left(a_{0}, \ldots, a_{n}, \ldots\right)$ and $g=\left(b_{0}, \ldots, b_{n}, \ldots\right)$. We make R into a ring by defining the ring operations as follows:
$f+g=\left(a_{0}+b_{0}, \ldots, a_{n}+b_{n}, \ldots\right), f g=\left(c_{0}, \ldots, c_{n}, \ldots\right), c_{n}=\sum_{i+j=n} a_{i} b_{j}$,
The unit element of R is $(1,0,0, \ldots)$. The mapping $f: A \rightarrow R$ defined by $f(a)=(a, 0, \ldots)$ is clearly a one-one homomorphism and we identify A with the subring $f(A)$ of R. If we write $X=(0,1,0, \ldots)$, then, for $i>0, X^{i}=\left(d_{0}, d_{1}, \ldots\right)$ where $d_{i}=1$ and $d_{j}=0$ for $j \neq i$. It is easy to see that every $f \in R$ can be written uniquely as a finite sum $\sum a_{i} X^{i}, a_{i} \in A$. The ring R is denoted by $A[X]$, and is called the polynomial ring in one variable over A. The elements of $A[X]$ are called polynomials.

Let A, B be rings and $\phi: A \rightarrow B$ a ring homomorphism. Then ϕ admits a unique extension to a ring homomorphism $\phi: A[X] \rightarrow B[X]$, with $\phi(X)=X$. We have only to set $\phi\left(\sum a_{i} X^{i}\right)=\sum \phi\left(a_{i}\right) X^{i}$.

Let B be a ring and A a subring of B. For any $\alpha \in B$ we define a map $\psi: A[X] \rightarrow B$ by setting $\psi\left(\sum a_{i} X^{i}\right)=\sum a_{i} \alpha^{i}$. It is easily verified that ψ is a ring homomorphism. We write $\psi(A[X])=A[\alpha]$ and for $f(X)=\sum a_{i} X^{i} \in A[X]$, we write $\psi(f)=f(\alpha)\left(=\sum a_{i} \alpha^{i}\right)$. We say that α is a root of f if $f(\alpha)=0$.

Let $f=\sum a_{i} X^{i} \in A[X], f \neq 0$. Then we define the degree of f (notation : $\operatorname{deg} f$) to be the largest integer n such that $a_{n} \neq 0$. We call a_{n} the leading coefficient of f. If $a_{n}=1, f$ is said to be a monic polynomial. We have $\operatorname{deg}(f+g) \leq \max (\operatorname{deg} f, \operatorname{deg} g)$ if $f \neq 0, g \neq 0$ and $f+g \neq 0$. A polynomial of degree 1 is called a linear polynomial.

Remark 2.29 If A is an integral domain and $f, g \in A[X]$, with $f \neq$ $0, g \neq 0$, then $f g \neq 0$, i.e. $A[X]$ is an integral domain and we have $\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$.

Remark 2.30 If A is an integral domain, the the units of $A[X]$ are precisely the units of A.

Proposition 2.31 (Euclidean Algorithm.) Let A be a commutative ring. Let $f, g \in A[X]$, and let g be a monic polynomial. Then there exist $q, r \in A[X]$ such that $f=q g+r$, where $r=0$ or $\operatorname{deg} r<\operatorname{deg} g$. Further q and r are unique.

Proof: Suppose deg $f=n$, deg $g=m$. If $n<m$ choose $q=0$ and $r=f$. If $n \geq m$, we prove the lemma by induction on n. Assume the lemma to be true for polynomials f of degree $<n$. We have $\operatorname{deg}\left(f-a_{n} X^{n-m} g\right)<n$ where a_{n} is the leading coefficient of f and so by induction hypothesis,

$$
f-a_{n} X^{n-m} g=q_{1} g+r_{1}
$$

with $r_{1}=0$ or $\operatorname{deg} r_{1}<m$. Hence $f=q g+r$ where $q=a_{n} X^{n-m}+q_{1}$ and $r=r_{1}$.

We next prove the uniqueness. Suppose, further, that $f=q^{\prime} g+r^{\prime}$, where $r^{\prime}=0$ or $\operatorname{deg} r^{\prime}<m$. Then $\left(q-q^{\prime}\right) g=r^{\prime}-r$. If $r^{\prime} \neq r$ then $q \neq q^{\prime}$ and since g is a monic polynomial $\operatorname{deg}\left(r^{\prime}-r\right) \geq m$. This is a contradiction. Hence $r^{\prime}=r$. Since g is monic, it follows that $q^{\prime}=q$.

Remark 2.32 The above proposition is valid, more generally, if the leading coefficient of g is a unit. In particular, if A is a field, it is enough to assume that $g \neq 0$.

Corollary 2.33 Let $f \in A[X]$. Then $\alpha \in A$ is a root of f if and only if $X-\alpha$ divides f.

Proof: By the above lemma we have $f=q(X-\alpha)+a$ with $a \in A$. Hence $f(\alpha)=q(\alpha) 0+a$, i.e. $f(\alpha)=0$ if and only if $X-\alpha$ divides f.

Let $f \in A[X], f \neq 0$. We say that $\alpha \in A$ is a simple root of f if $(X-\alpha) \mid f$ and $(X-\alpha)^{2} \nmid f$. If $(X-\alpha)^{r} \mid f$ with $r>1$, we say that α is a multiple root of f.

Proposition 2.34 Let A be an integral domain and let f be an element of $A[X]$ of degree n. Then f has at most n roots.

Proof: If $\alpha \in A$ is a root of f, we have $f=(X-\alpha) g$ where $g \in A[X]$ and $\operatorname{deg} g=n-1$. If $\beta \in A, \beta \neq \alpha$ is a root of f, we have $0=f(\beta)=$ $(\beta-\alpha) g(\beta)$. Since A is an integral domain, we have $g(\beta)=0$. Now the proposition follows by induction on n.

Proposition 2.35 Let K be a field. Then $K[X]$ is a principal ideal domain.

Proof: Let I be a non-zero ideal of $K[X]$. Let $g \in I$ be a nonzero polynomial of smallest degree in I. For any $f \in I, f \neq 0$, by Proposition 2.31, we have $f=q g+r$, where $r=0$ or deg $r<\operatorname{deg} g$. Since $r=f-q g \in I$, we have $r=0$. Hence $I=(g)$.

Proposition 2.36 Let K be a field. Any non-constant polynomial $f \in$ $K[X]$ can be expressed as a product $f=c \prod_{i=1}^{m} p_{i}$, where $c \in K$ and p_{i} are monic irreducible polynomials. Further, this expression is unique except for the order of factors.

Proof: We prove the existence by induction on $n=\operatorname{deg} f$. If $n=0$, $f \in K$ and there is nothing to prove. Further if f is irreducible, then $f=c\left(c^{-1} f\right)$, where $c \in K$ is so chosen that $c^{-1} f$ is a monic irreducible polynomial. If f is not irreducible, then $f=g h$ where $\operatorname{deg} h \neq 0, \operatorname{deg} g \neq 0$. Since $\operatorname{deg} g<n, \operatorname{deg} h<n$, by induction hypothesis $g=a \prod_{i=1}^{r} p_{i}, h=b \prod_{j=1}^{q} q_{j}$, where $a, b \in K$ and p_{i}, q_{j} are monic irreducible polynomials. Hence $f=a b \prod_{i=1}^{r} p_{i} \prod_{j=1}^{s} q_{j}$.

To prove the uniqueness we need the following
Lemma 2.37 Let p be an irreducible polynomial in $K[X]$. Then $K[X] /(p)$ is a field. In particular, if $p \mid g h$, where $g, h \in K[X]$, then $p \mid g$ or $p \mid h$.

Proof: Let $\bar{g} \in K[X] /(p)$ with $\bar{g} \neq 0$. Let $g \in K[X]$ represent \bar{g}. Then $g \notin(p)$. Consider the ideal I generated by p and g. Since $K[X]$ is a principal ideal domain, we have $I=(t)$, for some $t \in K[X]$. Since $p \in I, p=w t, w \in K[X]$. We assert that w is not a unit. For otherwise $I=(p)$ and hence $g \in(p)$ and this contradicts our hypothesis. Since p is irreducible, t is a unit. Hence $I=K[X]$ and $1=u p+v g$, for some $u, v \in K[X]$. Thus $\bar{v} \bar{g}=1$ where $\bar{v} \in K[X] /(p)$ is the class of v. This proves the lemma.

Assume that $f=c \prod_{i=1}^{r} p_{i}=c^{\prime} \prod_{j=1}^{s} p_{j}^{\prime}$ with $c, c^{\prime} \in K$ and p_{i}, p_{j}^{\prime} monic irreducible polynomials in $K[X]$. It is evident that $c=c^{\prime}$. Hence we have $\prod_{i=1}^{r} p_{i}=\prod_{j=1}^{s} p_{j}^{\prime}$. We shall prove the uniqueness by induction
on r. Since p_{r} divides the product $\prod_{j=1}^{s} p_{j}^{\prime}$, by the above lemma p_{r} divides one of the factors of $\prod_{j=1}^{s} p_{j}^{\prime}$. We may assume $p_{r} \mid p_{s}^{\prime}$. Since p_{r}, p_{s}^{\prime} are monic irreducible polynomials we have $p_{r}=p_{s}^{\prime}$. Hence $\prod_{i=1}^{r-1} p_{i}=$ $\prod_{j=1}^{s-1} p_{j}^{\prime}$. By induction hypothesis, the uniqueness follows.

Proposition 2.38 (Gauss.) Any non-constant irreducible polynomial in $\mathbf{Z}[X]$ is also an irreducible polynomial in $\mathbf{Q}[X]$.

Proof: Let f be a non-constant irreducible polynomial in $\mathbf{Z}[X]$. Then the g.c.d. of the coefficients of f is 1 . If possible let $f=g h$ where $g, h \in \mathbf{Q}[X]$ and $\operatorname{deg} g>0, \operatorname{deg} h>0$. Then we have $d f=g^{\prime} h^{\prime}$, where $d \in \mathbf{Z}, d>0$ and $g^{\prime}, h^{\prime} \in \mathbf{Z}[X], \operatorname{deg} g^{\prime}>0, \operatorname{deg} h^{\prime}>0$. Let d_{1} (resp. d_{2}) be the g.c.d. of the coefficients of g^{\prime} (resp. h^{\prime}). Since the g.c.d. of the coefficients of f is 1 , it follows that $d_{1} d_{2} \mid d$. Hence we may assume without loss of generality that the g.c.d. of the coefficients of g^{\prime} (resp. $\left.h^{\prime}\right)$ is 1 . Let p be a prime factor of d. Let $\eta: \mathbf{Z}[X] \rightarrow \mathbf{Z} /(p)[X]$ be the ring homomorphism given by $\eta\left(\sum a_{i} X^{i}\right)=\sum \bar{a}_{i} X^{i}$, where \bar{a}_{i} is the class of a_{i}. We have $0=\eta(d f)=\eta\left(g^{\prime}\right) \eta\left(h^{\prime}\right)$. Since $\mathbf{Z} /(p)[X]$ is an integral domain, either $\eta\left(g^{\prime}\right)=0$ or $\eta\left(h^{\prime}\right)=0$, i.e. p divides all the coefficients of either g^{\prime} or h^{\prime}-a contradiction. Hence $d=1$, i.e. $f=g^{\prime} h^{\prime}$. Since f is irreducible in $\mathbf{Z}[X]$, either g^{\prime} or h^{\prime} is a unit. This is a contradiction.

Proposition 2.39 (Eisenstein's irreducibility criterion). Let $f=a_{0}+$ $a_{1} X+\cdots+a_{n} X^{n} \in \mathbf{Z}[X]$. Suppose $a_{i} \equiv 0(\bmod p)$ for $i<n$, $a_{n} \not \equiv$ $0(\bmod p)$ and $a_{0} \not \equiv 0\left(\bmod p^{2}\right)$; (here p is a prime $)$. Then f is irreducible in $\mathbf{Q}[X]$.

Proof: We may assume that the g.c.d. of the coefficients of f is 1. By virtue of the above proposition it is enough to prove that f is irreducible in $\mathbf{Z}[X]$. Let if possible $f=g h$, where $g, h \in \mathbf{Z}[X]$ and $\operatorname{deg} g>0, \operatorname{deg} h>0$. Let $\eta: \mathbf{Z}[X] \rightarrow \mathbf{Z} /(p)[X]$ be the ring homomorphism given by $\eta\left(\sum b_{i} X_{i}\right)=\sum \bar{b}_{i} X^{i}$, where \bar{b}_{i} is the residue class of b_{i}. Putting $\eta(u)=\bar{u}$ for $u \in \mathbf{Z}[X]$ we have $\bar{f}=\bar{g} \bar{h}$. Since $\bar{f}=\bar{a}_{n} X^{n}$, it follows by uniqueness of factorization in $\mathbf{Z} /(p)[X]$ that $\bar{g}=\bar{b} X^{l}, \bar{h}=$ $\bar{c} X^{n-l}$. Since $a_{n} \not \equiv 0(\bmod p)$, we have $l=\operatorname{deg} \bar{g}=\operatorname{deg} g>0$ and $n-l=\operatorname{deg} \bar{h}=\operatorname{deg} h>0$. Hence the constant terms of g and h are divisible by p which implies $a_{0} \equiv 0\left(\bmod p^{2}\right)$. This contradicts the assumption on a_{0}.

2.4 Vector spaces

Definition 2.40 A vector space over a field K is a triple $(V,+, \psi)$ where (1) $(V,+)$ is an abelian group,
(2) $\psi: K \times V \rightarrow V$ (we write $\psi(\lambda, x)=\lambda x$) is such that
(a) $\lambda(x+y)=\lambda x+\lambda y$,
(b) $(\lambda+\mu) x=\lambda x+\mu x$,
(c) $\lambda(\mu x)=(\lambda \mu) x$,
(d) $1 x=x$,
where $\lambda, \mu \in K, x, y \in V$.
Remark 2.41 The elements of K are called scalars and the elements of V are called vectors, ψ is called the scalar multiplication.

Remark $2.42 \lambda x=0$ if and only if $\lambda=0$ or $x=0$. For (a) (resp.(b)) implies $\lambda 0=0$ (resp. $0 x=0$). On the other hand, if $\lambda x=0$ and $\lambda \neq 0$, we have $0=\lambda^{-1}(\lambda x)=\left(\lambda^{-1} \lambda\right) x=1 x=x$.

Example 2.43 Let K be a field and k a subfield of K. Then K is a vector space over k if we set $\psi(\lambda, x)=\lambda x$ for $\lambda \in k, x \in K$.

Example 2.44 For any field K, the set K^{n} of all ordered n-tuples $\left(\lambda_{1}, \ldots, \lambda_{n}\right), \lambda_{i} \in K$, is a vector space over K if we set

$$
\left(\lambda_{1}, \ldots, \lambda_{n}\right)+\left(\mu_{1}, \ldots, \mu_{n}\right)=\left(\lambda_{1}+\mu_{1}, \ldots, \lambda_{n}+\mu_{n}\right)
$$

and

$$
\lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\lambda \lambda_{1}, \ldots, \lambda \lambda_{n}\right)
$$

Example 2.45 For any field K, the ring $K[X]$ becomes a vector space over K if we set $\psi(\lambda, f)=\lambda f, \lambda \in K, f \in K[X]$.

A subset W of V is called a subspace of V if W is a subgroup of $(V,+)$ and $\lambda x \in W$ for $\lambda \in K, x \in W$. Then W is a vector space over K under the induced operations. We say that a subspace W is a proper subspace of V if $W \neq V$.

Example 2.46 (0) and V are subspaces of V.

Example 2.47 If K is a field, any ideal in $K[X]$ is a subspace of $K[X]$.
Example 2.48 The intersection of a family of subspaces of V is a subspace of V. If S is a subset of V, the intersection W of the family of all subspaces containing S is called the subspace generated by S and S is called a set of generators of the subspace W. It is easy to see that if S is not empty, W consists precisely of elements of the form $\sum_{i=1}^{n} \lambda_{i} x_{i}, \lambda_{i} \in K, x_{i} \in S, n>0$; if $S=\phi$, then $W=\{0\}$.

Let V, W be vector spaces over a field K. A map $f: V \rightarrow W$ is called a K-linear map if f is a homomorphism of $(V,+)$ into $(W,+)$ and $f(\lambda x)=\lambda f(x)$ for $\lambda \in K, x \in V$. A K-linear map $f: V \rightarrow W$ is called an isomorphism if there exists a K-linear map $g: W \rightarrow V$ such that $g \circ f=I_{V}, f \circ g=I_{W}$. It is easy to see that a K-linear map $f: V \rightarrow W$ is an isomorphism if and only if f is one-one and onto.

Example 2.49 The map $p_{i}: K^{n} \rightarrow K$ defined by $p_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ is a K-linear map. The maps p_{i} are called projections.

Example 2.50 The map $z \rightarrow \bar{z}$ is an \mathbf{R}-linear isomorphism of the vector space \mathbf{C} onto \mathbf{C}.

Let V be a vector space and W a subspace of V. The additive group V / W becomes a vector space if we set $\lambda \bar{x}=\bar{\lambda} x$ for $\bar{x} \in V / W, \lambda \in K$. The vector space V / W is called the quotient space of V by W. The natural map $q: V \rightarrow V / W$ is a K-linear map.

Remark 2.51 It is easy to see that if $f: V \rightarrow W$ is a linear map, then ker f is a subspace of V and that if f is onto, it induces a linear isomorphism \bar{f} of $V / \operatorname{ker} f$ onto W.

Let $x_{i}, 1 \leq i \leq n$ be elements of V. We say that they are linearly independent if $\sum_{1 \leq i \leq n} \lambda_{i} x_{i}=0, \lambda_{i} \in K$ implies $\lambda_{i}=0$ for every $i, 1 \leq$ $i \leq n$.

A subset S of V is said to be linearly independent if every finite subset of elements of S is linearly independent. A set consisting of a single non-zero element of V is linearly independent. Note that a subset of a linearly independent set is linearly independent. S is said to be linearly dependent if it is not linearly independent.

Definition 2.52 A subset S of V is called a base (or a K-base) of V if S is linearly independent and generates V.

Clearly S is a base of V if and only if every element $v \in V$ can be uniquely written as finite sum $v=\sum \lambda_{i} s_{i}, \lambda_{i} \in K, s_{i} \in S$.

Example 2.53 The set $\left\{1, x, x^{2}, \ldots\right\}$ is a base for the vector space $K[X]$.

Example 2.54 For any field K, the elements $e_{i}=\left(\delta_{i 1}, \ldots, \delta_{i n}\right), 1 \leq$ $i \leq n$, form a base for the vector space K^{n}, where $\delta_{i j}=0$ for $i \neq j$, and $\delta_{i j}=1$ for $i=j$.

Proposition 2.55 Let V be a vector space. Let $x_{i}, 1 \leq i \leq m$, generate V. If S is any linearly independent set of V, then S contains at most m elements.

Proof: We shall prove the proposition by induction on m. If $m=0$, then $V=0$ and $S=\emptyset$. Let $m>0$ and let y_{1}, \ldots, y_{n} be finitely many elements of S. Let V^{\prime} be the subspace of V generated by x_{2}, \ldots, x_{m}. If $y_{i} \in V^{\prime}$, for $1 \leq i \leq n$, then by the induction hypothesis, $n \leq m-1$. Otherwise $y_{i} \notin V^{\prime}$ for some i, say for $i=1$. Then $y_{1}=\sum \alpha_{i} x_{i}, \alpha_{1} \neq 0$, so that $x_{1}=\beta_{1} y_{1}+\sum_{2 \leq i \leq m} \beta_{i} x_{i}, \beta_{i} \in K . y_{i}-\lambda_{i} y_{1} \in V^{\prime}$. Clearly the elements $y_{i}-\lambda_{i} y_{1}, 2 \leq i \leq n$, are linearly independent and hence by the induction hypothesis, $n-1 \leq m-1$. Thus S consists of at most m elements.

Corollary 2.56 If $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ are bases of V, then $m=n$.

We say that a vector space is of dimension n (notation : $\operatorname{dim} V=n$) if there exists a base of V consisting of n elements. If $\operatorname{dim} V=n$, then by Corollary 2.56 every base of V consists of n elements.

Corollary 2.57 Let W be a subspace of V with $\operatorname{dim} V=n$. Then W has a base consisting of at most n elements, i.e. $\operatorname{dim} W \leq \operatorname{dim} V$. If W is a proper subspace of V, then $\operatorname{dim} W<\operatorname{dim} V$.

Proof: Any linearly independent set in V consists of at most n elements. Choose a maximal set of linearly independent elements in W. This forms a base of W. Hence $\operatorname{dim} W \leq \operatorname{dim} V$. Since any linearly independent set consisting of n elements generates V, it follows that if W is a proper subspace of V, then $\operatorname{dim} W<\operatorname{dim} V$.

Proposition 2.58 Let V be a vector space over an infinite field K. Then V is not the union of a finite number of proper subspaces.

Proof: We shall prove that given n proper subspaces $\left(V_{i}\right), 1 \leq i \leq n$, there exists an $x \in V, x \notin \bigcup_{i=1}^{n} V_{i}$. We shall prove this by induction on n. If $n=1$, choose $x \notin V_{1}$. Assume there exists an $e \notin V_{i}, 1 \leq i \leq n-1$. If $e \notin V_{n}$, there is nothing to prove. Suppose $e \in V_{n}$. Choose $f \notin V_{n}$. Then $e+\lambda f \notin V_{n}$ for every $\lambda \in K^{*}$. We claim that there exists a $\lambda_{0} \in K^{*}$ such that $e+\lambda_{0} f \notin V_{i} 1 \leq i \leq n$. For otherwise, since K is infinite, there exist $\lambda, \lambda^{\prime} \in K^{*}, \lambda \neq \lambda^{\prime}$ such that $e+\lambda f, e+\lambda^{\prime} f \in V_{i}$, for some $i<n$. Then $\left(\lambda-\lambda^{\prime}\right) f \in V_{i}$, i.e. $f \in V_{i}$. Hence $e \in V_{i}$. This is a contradiction.

Chapter 3

Field Extensions

3.1 Algebraic extension

Let K be a field and k a subfield of K. Then K will be called an extension of K and written K / k. Two extensions $K / k, K^{\prime} / k$ are said to be k-isomorphic if there exists an isomorphism σ of K onto K^{\prime} such that $\sigma \mid k$ is the identity. σ is then called a k-isomorphism. Let $\alpha_{1}, \ldots, \alpha_{n} \in K$. We denote by $k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (resp. $k\left[\alpha_{1}, \ldots, \alpha_{n}\right]$) the subfield (resp. subring) of K generated by k and $\alpha_{1}, \ldots, \alpha_{n}$. Clearly $k\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is a subring of $k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Clearly, any $\alpha \in k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ can be written as $\alpha=\frac{f\left(\alpha_{1}, \ldots, \alpha_{n}\right)}{g\left(\alpha_{1}, \ldots, \alpha_{n}\right)}$ where $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (resp. $\left.g\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=$ $\sum_{i_{1} \ldots i_{n}} a_{i_{1} \ldots i_{n}} \alpha_{1}^{i_{1}} \cdots \alpha_{i_{n}}^{n}$ (resp. $\left.=\sum_{j_{1} \ldots j_{n}} b_{j_{1} \ldots j_{n}} \alpha_{1}^{s_{1}} \ldots \alpha_{n}^{s_{n}}\right)$ with $a_{i_{1} \ldots i_{n}}$, $b_{j_{1} \ldots j_{n}} \in k$ and $g\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq 0$. For $\alpha \in K$, the field $k(\alpha)$ is called a simple extension of k. The map $\phi: k[X] \rightarrow k[\alpha]$ defined by $\phi(g)=g(\alpha)$ for any $g \in k[X]$ is clearly an onto homomorphism of rings.
CASE (i) Ker $\phi=(0)$, i.e. α is not a root of any non-zero polynomial over k. We say in this case that α is transcendental over k. Then the one-one homomorphism $\phi: k[X] \rightarrow k(\alpha)$ can be extended to a one-one homomorphism of $k(X)$ the quotient field of $k[X]$, onto a subfield of $k(\alpha)$. However, this subfield contains α and k, and it must therefore coincide with $k(\alpha)$. Hence $k(\alpha)$ is isomorphic to $k(X)$.
Case (ii) Ker $\phi \neq(0)$, i.e. α is root of a non-zero polynomial. We say then that α is algebraic over k. Since every ideal in $k[X]$ is a principal ideal (Chapter 2 Proposition 2.25), we have $\operatorname{Ker} \phi=(f)$ for some $f \in k[X]$. Clearly, f is not a constant. The polynomial f is irreducible. In fact, suppose $f=g h$ where $\operatorname{deg} g$ and $\operatorname{deg} h$ are both less
than $\operatorname{deg} f$. We then have $0=f(\alpha)=g(\alpha) h(\alpha)$. Hence either $g(\alpha)=0$ or $h(\alpha)=0$ i.e. $g \in(f)$ or $h \in(f)$. This is impossible in view of our assumption on the degrees of g and h.

We have an isomorphism $k[X] /(f) \approx k[\alpha]$. Since $k[X] /(f)$ is a field (see Chapter 2), it follows that $k[\alpha]$ is a field, and since it contains α and k we have $k[\alpha]=k(\alpha)$. Hence $k[X] /(f) \approx k(\alpha)$. We may assume that f is a monic polynomial. The polynomial f is then called the minimal polynomial of α over k.

An extension K / k is called an algebraic extension if every $\alpha \in K$ is algebraic over k. We note that if $\alpha \in K$ is algebraic over k it is algebraic over any field L such that $K \supset L \supset k$.

Proposition 3.1 Let $\alpha \in K$ be algebraic over k and let n denote the degree of its minimal polynomial. Then the k-vector space $k(\alpha)$ has dimension n over k.

Proof: In fact $1, \alpha, \ldots \alpha^{n-1}$ form a k-base for $k(\alpha)$. Since α cannot satisfy a polynomial of degree $<n$, the elements $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent over k. Moreover it is clear by induction that any α^{i} can be expressed as a linear combination of $1, \alpha, \ldots, \alpha^{n-1}$ with coefficients in k.

Let K / k be an extension such that K is a vector space of dimension n over k. We then say that K is a finite extension of k and write $(K: k)=n(n$ is called the degree of K over $k)$. If $\alpha_{1}, \ldots, \alpha_{n} \in K$ form a k-base of K, we have $K=k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Proposition 3.2 Any finite extension K / k is an algebraic extension.
Proof: For any $\alpha \in K, \alpha \neq 0$ there exists a non-zero integer n such that $1, \alpha, \ldots, \alpha^{n}$ are linearly dependent over k and hence there exist $a_{1}, \ldots, a_{n} \in k$, with $a_{i} \neq 0$ for at least one i such that $\sum_{0 \leq i \leq n} a_{i} \alpha^{i}=0$ i.e. α is a root of the non-zero polynomial $\sum_{0 \leq i \leq n} a_{i} X^{i}$.

Proposition 3.3 Let K / k and L / k be extensions such that $(K: k)=m$ and $(L: K)=n$. Then $(L: k)=m n$.

Proof: Let $\alpha_{1}, \ldots, \alpha_{m}$ be a k-base of K and let $\beta_{1}, \ldots, \beta_{n} K$-base of L. We assert that the elements $\alpha_{i} \beta_{j}, 1 \leq i \leq m, 1 \leq j \leq n$, form a k-base for L. In fact let $\alpha \in L$. Then $\alpha=\sum_{1 \leq j \leq n} t_{j} \beta_{j}$ with $t_{j} \in K$. Let $t_{j}=\sum_{1 \leq i \leq m} s_{i j} \alpha_{i}$ with $s_{i j} \in k$. We then have $\alpha=\sum_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} s_{i j} \alpha_{i} \beta_{j}$. Hence the $\alpha_{i} \beta_{j}$ generate L as a k-vector space. On the other hand,
suppose that $\sum_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} s_{i j} \alpha_{i} \beta_{j}=0$ where $s_{i j} \in K$. We must then have $\sum_{1 \leq i \leq m} s_{i j} \alpha_{i}=0$ for every j. This implies that $s_{i j}=0$ for every i, j with $1 \leq i \leq m, 1 \leq j \leq n$. Thus the $\alpha_{i} \beta_{j}$ are linearly independent.

Corollary 3.4 Let K / k be any extension and $\alpha_{1}, \ldots, \alpha_{n} \in K$ be algebraic over k. Then $k\left(\alpha_{1}, \ldots, \alpha_{n}\right) / k$ is a finite extension.

Proof: In fact, the corollary has already been proved for $n=1$ (Proposition 3.1). Let us assume by induction that $k\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) / k$ is a finite extension. Then $k\left(\alpha_{1}, \ldots, \alpha_{n}\right)=k\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\left(\alpha_{n}\right)$ is a finite extension of $k\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$. The corollary now follows from Proposition 3.3.

It follows from Corollary 3.4, that if $\alpha, \beta \in K$ are algebraic, then $\alpha+\beta, \alpha^{-1}(\alpha \neq 0)$ and β are algebraic.

Corollary 3.5 If K / k and L / K are algebraic extensions, then L / k is algebraic.

Proof: Let $\alpha \in L$ and let $\sum_{0 \leq i \leq n} a_{i} \alpha^{i}=0$ with $a_{0}, \ldots, a_{n} \in K, a_{i} \neq$ 0 for at least one i. Clearly α is algebraic over $k\left(a_{0}, \ldots, a_{n}\right)$. Since $k\left(a_{0}, \ldots, a_{n}\right) / k$ is finite by Corollary 3.4, it follows from Proposition 3.3that $k\left(\alpha, a_{0}, \ldots, a_{n}\right) / k$ is finite. Hence α is algebraic over k, by Proposition 3.2.

Example 3.6 Any field is an extension of its prime field.
Example 3.7 \mathbf{C} / \mathbf{R} is an extension of degree 2 .
Example 3.8 For any field $k, k(X) / k$ is not algebraic; here $k(X)$ is the fraction field of $k[X]$. In fact X is transcendental over k.

3.2 Splitting fields and normal extensions

Definition 3.9 Let k be a field and let $f \in k[X]$. An extension K / k is called a splitting field of f if
(i) $f(X)=c \prod_{1 \leq i \leq n}\left(X-\alpha_{i}\right) ; \alpha_{i} \in K, c \in k$;
(ii) $K=k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Proposition 3.10 Any nonconstant polynomial $f \in k[X]$ has a splitting field.

Proof: Let $f \in k[X]$ be an irreducible polynomial. Then $k[X] /(f)$ is a field (see Chapter 2). The map $a \rightarrow \bar{a}$ of k into $k[X] /(f)$, where \bar{a} is the coset of a in $k[X] /(f)$, is clearly a one-one homomorphism and we identify k with its image. Thus $k[X] /(f)$ is an extension of k. Let $q: k[X] \rightarrow k[X] /(f)$ denote the natural map and let $q(X)=\alpha$. Clearly $f(\alpha)=0$. Let $\operatorname{deg} f=n$. Since $1, \alpha, \ldots, \alpha^{n-1}$ form a k-base for $k[X] /(f)$ (Proposition 3.1), we note that $(k[X] /(f): k)=\operatorname{deg} f$.

We prove the proposition by induction on $n=\operatorname{deg} f$. If $n=1, f$ is a linear polynomial and k is obviously a splitting field of f. Let us assume $n \geq 2$ and that for any polynomial g of degree $n-1$ over any field, there exists a finite extension in which g can be written as a product of linear factors. Let f be any polynomial of degree n. Let f_{1} be an irreducible factor of f. Let $K_{1}=k(\alpha)$ be an extension of k such that $f_{1}(\alpha)=0$. Then $f(\alpha)=0$ and therefore $f=(X-\alpha) g$, where $g \in K_{1}[X]$ with $\operatorname{deg} g=n-1$ (corollary to Proposition 2.31) By induction, there exists a finite extension of K_{1} in which g can be written as a product of linear factors. Thus, there exists a finite extension K / k such that $f(X)=c \prod_{1 \leq i \leq n}\left(X-\alpha_{i}\right) ; \alpha_{i} \in K, c \in k$. Then $k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a splitting field of f. This proves the proposition.

Let k, k^{\prime} be fields and let $\sigma: k \rightarrow k^{\prime}$ be an isomorphism. If we define for any $f=a_{0}+\cdots+a_{n} X^{n} \in k[X], \bar{\sigma}(f)=\sum_{0 \leq i \leq n} \sigma\left(a_{i}\right) X^{i}$, we have an isomorphism $\bar{\sigma}: k[X] \rightarrow k^{\prime}[X]$ such that $\bar{\sigma} \mid k=\sigma$. We shall often write σ for $\bar{\sigma}$. If $f \in k[X]$ is irreducible, then $\sigma(f)$ is irreducible in $k^{\prime}[X]$ and we have an induced isomorphism $k[X] /(f) \approx k^{\prime}[X] /(\sigma(f))$. Since for any root α of f, we have an isomorphism $k[X] /(f) \approx k(\alpha)$, in which the coset of X is mapped on to α, this implies that if α (resp. α^{\prime}) is a root of $f\left(\right.$ resp. $\sigma(f)$), we have an isomorphism $k(\alpha) \approx k\left(\alpha^{\prime}\right)$ (in which α is mapped onto α^{\prime}) and which coincides with σ on k.

In particular, if $k^{\prime}=k$ and $\sigma=$ identity, then for any two roots α, α^{\prime} of f we have a k-isomorphism $k(\alpha) \approx k\left(\alpha^{\prime}\right)$ which maps α onto α^{\prime}.

Definition 3.11 Let K / k be an algebraic extension. Two elements $\alpha, \alpha^{\prime} \in K$ are said to be conjugates over k if there exists a k-isomorphism of $k(\alpha)$ onto $k\left(\alpha^{\prime}\right)$ which maps α onto α^{\prime}.

Proposition 3.12 Let K / k be an algebraic extension and let $\alpha, \alpha^{\prime} \in K$. Then α and α^{\prime} are conjugates over k if and only if they have the same minimal polynomial over k.

Proof: If α and α^{\prime} have the same minimal polynomial oner k, we have proved above that α and α^{\prime} are conjugates. Conversely, suppose that
α, α^{\prime} are conjugates over k. Let f and g denote the minimal polynomials of α and α^{\prime} respectively. Let $\sigma: k(\alpha) \approx k\left(\alpha^{\prime}\right)$ be a k-isomorphism such that $\sigma(\alpha)=\alpha^{\prime}$. We have

$$
0=\sigma(f(\alpha))=f(\sigma(\alpha))=f\left(\alpha^{\prime}\right)
$$

Thus $g \mid f$. Since f is monic and irreducible we have $f=g$.
Proposition 3.13 Let k, k^{\prime} be fields and let $\sigma: k \rightarrow k^{\prime}$ be an isomorphism. Let f be any polynomial with coefficients in k, and let K, K^{\prime} be splitting fields of f and $\sigma(f)$ respectively. Then there exists an isomorphism $\tau: K \rightarrow K^{\prime}$ such that $\tau \mid k=\sigma$.

Proof: We proceed by induction on the degree of f. If $\operatorname{deg} f=0$ there is nothing to prove. Let $\operatorname{deg} f \geq 1$ and let f_{1} be an irreducible factor of f. Let α be a root of f_{1} and let α^{\prime} be any root of $\sigma\left(f_{1}\right)$. By what we have seen above, σ can be extended to an isomorphism $\sigma_{1}: k(\alpha) \rightarrow k^{\prime}\left(\alpha^{\prime}\right)$ such that $\sigma_{1}(\alpha)=\alpha^{\prime}$. Let $f=(X-\alpha) g$, with $g \in k(\alpha)[X]$. Then $\sigma(f)=\left(X-\alpha^{\prime}\right) \sigma_{1}(g)$. The field K (resp. $\left.K^{\prime}\right)$ is a splitting field of the polynomial g (resp. $\sigma_{1}(g)$ over $k(\alpha)$ (resp. $\left.k^{\prime}\left(\alpha^{\prime}\right)\right)$. By induction, σ_{1} admits an extension to an isomorphism $\tau: K \rightarrow K^{\prime}$. We clearly have $\tau \mid k=\sigma$.

In particular, taking $k=k^{\prime}$ and $\sigma=$ identity, we obtain the

Corollary 3.14 Any two splitting fields of a polynomial are isomorphic, i.e. the splitting field of a polynomial is unique " up to k-isomorphism".)

In view of the above corollary, we can talk of "the splitting field" of a polynomial f over k.

Let k be a field and let K, K^{\prime} be extensions of k. A one-one homomorphism $\sigma: K \rightarrow K^{\prime}$ such that $\sigma \mid k=$ identity is called a k-isomorphism of K into K^{\prime}.

Proposition 3.15 Let K be the splitting field of a polynomial f over a field k and let L / K be any extension. Then, for any k-isomorphism σ of K into L, we have $\sigma(K)=K$.

Proof: For, let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of f in K. Since $\sigma\left(\alpha_{i}\right)$ is also a root of f and since f can have at most n roots in L, we must have $\sigma\left(\alpha_{i}\right)=\alpha_{j}$ for some j. Since σ is one-one, it permutes the elements $\alpha_{1}, \ldots, \alpha_{n}$. Hence $\sigma(K)=K$.

Proposition 3.16 Let K be the splitting field of polynomial f over k and let ϕ be an irreducible polynomial over k. If ϕ has a root in K, then ϕ is a product of linear factors in K. Conversely, if K / k is a finite extension which is such that any irreducible polynomial over k having a root in K is a product of linear factors in K, then K is the splitting field of some polynomial over k.

Proof: Let $K=k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be the splitting field of f where α_{1}, \ldots, α_{n} are the roots of f. Let $\beta \in K$ be a root of ϕ and let L be the splitting field of ϕ over K. Let β^{\prime} be any root of ϕ in L. We have a k-isomorphism $\sigma: k(\beta) \approx k\left(\beta^{\prime}\right)$ such that $\sigma(\beta)=\beta^{\prime}$. Since the splitting field of f (resp. $\sigma(f)=f)$ over $k(\beta)\left(\right.$ resp. $\left.k\left(\beta^{\prime}\right)\right)$ is $K(\beta)=k\left(\beta, \alpha_{1}, \ldots, \alpha_{n}\right)=K$ (resp. $\left.K\left(\beta^{\prime}\right)=k\left(\beta^{\prime}, \alpha_{1}, \ldots, \alpha_{n}\right)\right), \sigma$ can be extended to a k-isomorphism of K onto $K\left(\beta^{\prime}\right)$. Since K is a splitting field, it follows by Proposition 3.15 that this k-isomorphism is an automorphism of K, i.e. $K=K\left(\beta^{\prime}\right)$ or $\beta^{\prime} \in K$.

Suppose now that K / k is a finite extension such that any irreducible polynomial which has a root in K is a product of linear factors in K. Let $K=k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and let f_{1}, \ldots, f_{n} denote the minimal polynomials of $\alpha_{1}, \ldots, \alpha_{n}$ respectively. Clearly, K is the splitting field of $\prod_{1 \leq i \leq n} f_{i}$.

Definition 3.17 A normal extension K / k is an algebraic extension such that any irreducible polynomial over k which has a root in K is a product of linear factors in K.

It follows from Proposition 3.16 that finite normal extensions are precisely splitting fields.

Proposition 3.18 Let K / k be a finite extension. Then there exists a finite normal extension L / k such that K is a subfield of L. Let $K_{i} / k, i=1,2, \ldots, n$ be finite extensions. Then there exists a finite normal extension L / k and k-isomorphisms σ_{i} of K_{i} into L.

Proof: For, let $K=k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and let $f_{i}, 1 \leq i \leq n$, be the minimal polynomial of α_{i} over k. The splitting field of $\phi=\prod_{1 \leq i \leq n} f_{i}$ considered as a polynomial over K is easily seen to be the splitting field of ϕ over k and we may take L to be this field.

Let now $K_{i} / k, 1 \leq i \leq n$, be finite extensions. Let $N_{i} / k, 1 \leq i \leq n$, be finite normal extensions such that K_{i} is a subfield of N_{i} for $1 \leq i \leq n$. Let N_{i} be the splitting field of ϕ_{i} over k. Let $\phi=\prod_{1 \leq i \leq n} \phi_{i}$. We take L to be the splitting field of ϕ over k. Since ϕ_{i} splits in \bar{L}, L contains a
splitting field of $\phi_{i}(1 \leq i \leq n)$. Hence there exists a k-isomorphism of N_{i} (and hence K_{i}) onto L.

Example 3.19 Let α be a root of $X^{3}-2 \in \mathbf{Q}[X]$. Then $\mathbf{Q}(\alpha) / \mathbf{Q}$ is not a normal extension.

Example 3.20 The field \mathbf{C} of complex numbers is such that every nonconstant polynomial with coefficients in \mathbf{C} has a root in \mathbf{C} ("Fundamental Theorem of Algebra"), i.e. \mathbf{C} contains a splitting field of any polynomial in $\mathbf{C}[X]$. Such fields are said to be algebraically closed.

3.3 Separable extensions

Definition 3.21 Let k be a field. An irreducible polynomial $f \in k[X]$ is called separable if all its roots (in the splitting field) are simple. Otherwise, f is called inseparable. A non-constant polynomial $f \in k[X]$ is called separable if all its irreducible factors are separable.

Let K / k be an algebraic extension. An element $\alpha \in K$ is called separable over k if the minimal polynomial of α over k is separable. An element $\alpha \in K$ which is not separable will be called inseparable. An algebraic extension K / k will be called separable if all its elements are separable over k, otherwise it is called inseparable.

If $\alpha \in K$ is separable over k, α is separable over any L with $K \supset L \supset$ k. In fact the minimal polynomial g of α over L divides the minimal polynomial f of α over k. Since f is separable, it follows that g is separable.

Before treating separable extensions further, we introduce some results on roots of polynomials.

Let $f \in k[X]$ and let $f=\sum_{0 \leq i \leq n} a_{i} X^{i}$. We define the derivative of f, denoted by f^{\prime}, by $f^{\prime}=\sum_{1 \leq i \leq n} i a_{i} X^{i-1}$. The following properties are then easily verified; we suppose that $f, g \in k[X]$ and $a \in k$.
(i) If $f \in k$, then $f^{\prime}=0$,
(ii) $(f+g)^{\prime}=f^{\prime}+g^{\prime}$,
(iii) $(f g)^{\prime}=f g^{\prime}+f^{\prime} g$,
(iv) $(a f)^{\prime}=a f^{\prime}$.

Let $\alpha \in k$ be a root of a polynomial f. Let $f=(X-\alpha) g$. We then have

$$
f^{\prime}=(X-\alpha) g^{\prime}+g .
$$

This gives $g(\alpha)=f^{\prime}(\alpha)$.
Proposition 3.22 Let $f \in k[X]$ be a non-constant polynomial with α as a root. Then α is a multiple root if and only if $f^{\prime}(\alpha)=0$.

Proof: Let $f=(X-\alpha) g$. Clearly, α is a multiple root of f if and only if $g(\alpha)=0$. Since $f^{\prime}(\alpha)=g(\alpha)$, the proposition follows.

Corollary 3.23 Let f be an irreducible polynomial. Then f has a multiple root if and only if $f^{\prime}=0$.

Proof: We may suppose that f is monic. Let α be a root of f. By the above corollary α is a multiple root of f if and only if it is a root of f^{\prime}. Since f is the minimal polynomial of α, this is the case if and only if $f \mid f^{\prime}$. If $f^{\prime} \neq 0$, we have $\operatorname{deg} f^{\prime}<\operatorname{deg} f$ and f cannot divide f^{\prime}.

Corollary 3.24 Any irreducible polynomial f over a field of characteristic 0 is separable. An irreducible polynomial f over a field k of characteristic $p>0$, is inseparable if and only if there exists $g \in k[X]$ such that $f(X)=g\left(X^{p}\right)$.

Suppose f is inseparable. Let $f=\sum_{0 \leq i \leq n} a_{i} X^{i}$. In view of Corollary 3.23, we must have $\sum_{1 \leq i \leq n} i a_{i} X^{i-1}=0$, which implies that $i a_{i}=0$ for $1 \leq i \leq n$. If k is of characteristic 0 , this implies that $a_{i}=0$ for $i \geq 1$. If k is of characteristic $p \neq 0$, and if $a_{i} \neq 0$, we have $p \mid i$.

Remark 3.25 Let k be a field of characteristic 0 . Then any algebraic extension of k is separable.

Remark 3.26 Let k be a field of characteristic $p \neq 0$ having an element α such that the polynomial $f=X^{p}-\alpha$ has no root in k. Then we assert that $X^{p}-\alpha$ is an irreducible polynomial over k which is inseparable over k. Let β_{1}, β_{2} be two roots of this polynomial (in a splitting field). Then $\beta_{1}^{p}=\beta_{2}^{p}=\alpha$ and hence $\beta_{1}=\beta_{2}$. Thus all the roots of this polynomial are equal, say, to β. Let g be the minimal polynomial of β. If h is any monic irreducible factor of f, we have $h(\beta)=0$ and hence $g=h$. There is thus an integer i such that $f=g^{i}$. This equation implies that $p=n i$, where $n=$ degree of g. Since g is not linear $n \neq 1$. Hence $i=1$.

In particular, let $k(x)$ be the field of rational functions in one variable x over a field of characteristic $p \neq 0$. Then $X^{p}-x$ is an irreducible inseparable polynomial over $k(x)$. For, if $X^{p}-x$ has a root in $k(x)$ there exist $g, h \in k[X]$ with $x=(g / h)^{p}$,i.e. $x h^{p}=g^{p}$. But this implies that $p \operatorname{deg} h+1=p \operatorname{deg} g$, which is impossible. Thus there exist inseparable algebraic extensions.

Lemma 3.27 Let K / k and L / K be finite extensions. Let N / k be a finite normal extension of k such that L is a subfield of N. Let m be the number of (distinct) k-isomorphisms of K into N and let n be the number of (distinct) K-isomorphisms of L into N. Then the number of distinct k-isomorphisms of L into N is mn.

Proof: Let $\left(\sigma_{i}\right)_{1 \leq i \leq m}$ be the distinct k-isomorphisms of K into N, and let $\left(\tau_{j}\right)_{1 \leq j \leq n}$ be the distinct K-isomorphisms of L into N, For $1 \leq$ $i \leq m$ let $\bar{\sigma}_{i}$ be an extension of σ_{i} to an automorphism of N; (this exists by Proposition 3.13). We assert that $\bar{\sigma}_{i} \circ \tau_{j}$ are distinct. Suppose $\bar{\sigma}_{i} \circ \tau_{j}(x)=\bar{\sigma}_{i} \circ \tau_{s}(x)$ for every $x \in L$. Therefore, for every $x \in K$, we get $\sigma_{i}(x)=\sigma_{r}(x)$, which implies that $i=r$. Therefore $\tau_{j}(x)=\tau_{s}(x)$ for every $x \in L$ which implies that $j=s$. Let θ be any k-isomorphisms of L into N, Clearly $\theta \mid K=\sigma_{i}$ for some i.Then $\left(\bar{\sigma}_{i}\right)^{-1} \circ \theta \mid K=$ identity. Thus $\left(\bar{\sigma}_{i}\right)^{-1} \circ \theta=\tau_{j}$ for some j. Hence $\theta=\bar{\sigma}_{i} \circ \tau_{j}$.

Proposition 3.28 Let K / k be an extension of degree n and N / k a finite normal extension such that K is a subfield of N. Then there are at most n distinct k-isomorphisms of K into N.

Proof: We prove the proposition by induction on $(K: k)$. If $(K: k)=$ 1 , there is nothing to prove. Assume that $(K: k)>1$. Choose $\alpha \in K$ with $\alpha \notin k$. Then $[K: k(\alpha)]<(K: k)$. Hence, by induction, the number of distinct $k(\alpha)$-isomorphisms of K into N is at most $[K: k(\alpha)]$. On the other hand, for any $\alpha \in K$, the number of (distinct) conjugates of α is at most equal to the degree of the minimal polynomial of α. Since any k-isomorphism of $k(\alpha)$ into N takes α into a conjugate of α and, given a conjugate $\beta \in N$, there exists a unique k-isomorphism of $k(\alpha)$ into N which maps α on β, it follows that the number of distinct k-isomorphism of $k(\alpha)$ into N is at most $[k(\alpha): k]$. The proposition now follows from the lemma above.

Proposition 3.29 A finite extension K / k of degree n is separable if and only if for any finite normal extension N / k such that K is a subfield of N, there are n distinct k-isomorphisms of K into N.

Proof: Let K / k be separable. Let K be a subfield of any finite normal extension N of k. We prove the assertion by induction on n. If $n=1$, there is nothing to prove. Let $n>1$. Choose $\alpha \in K, \alpha \notin k$. Then $[K: k(\alpha)]<n$ and since $K / k(\alpha)$ is separable, the number of distinct $k(\alpha)$-isomorphisms of K into N is precisely $[K: k(\alpha)]$. On the other hand, since α is separable, all the roots of its minimal polynomial are simple and hence the number of distinct k-isomorphisms of $k(\alpha)$ into N is $[k(\alpha): k]$. The lemma above now proves the assertion.

Conversely, suppose K / k has n-distinct isomorphisms into a finite normal extension N / k containing K as a subfield. Let $\alpha \in K$. By Proposition 3.28, the number of distinct $k(\alpha)$-isomorphisms of K into N is at most $[K: k(\alpha)]$. Also, the number of k-isomorphisms of $k(\alpha)$ into N is at most $[k(\alpha): k]$. Since $n=[K: k(\alpha)][k(\alpha): k]$, it follows that $[k(\alpha): k]=$ number of distinct k-isomorphisms of $k(\alpha)$ into N, i.e. all the conjugates of α are distinct. Hence α is separable.

Corollary 3.30 If K / k is a finite separable extension and L / K is a finite separable extension, then L / k is separable.

In view of the lemma, it follows that the number of distinct k isomorphisms of L into any normal extension N / k containing L as a subfield is equal to $(L: K)(K: k)=(L: k)$. Hence L / k is separable.

Corollary 3.31 If $\alpha_{1} \ldots, \alpha_{n} \in K$ are separable elements over k, then $k\left(\alpha_{1}, \ldots, \alpha_{n}\right) / k$ is separable.

3.4 Finite fields

Let F be a finite field of characteristic $p \neq 0$. We know then that $F /(\mathbf{Z} /(p))$ is a finite extension. Let $(F: \mathbf{Z} /(p))=n$. Let $\alpha_{1}, \ldots, \alpha_{n} \in$ F be a $\mathbf{Z} /(p)$-base for F. Then every element of F can be uniquely expressed as $\sum_{1 \leq i \leq n} a_{i} \alpha_{i} ; a_{i} \in \mathbf{Z} /(p)$. Since $\mathbf{Z} /(p)$ has p elements, it follows that F^{-}has p^{n} elements. Now $F^{*}=F-\{0\}$ is a group of order $p^{n}-1$ and hence any non-zero element of F is a root of the polynomial $X^{p^{n}-1}-1$. Thus any element of F satisfies the polynomial $X^{p^{n}}-X \in \mathbf{Z} /(p)[X]$. Since F has p^{n} elements, it follows that F is the splitting field of the polynomial $X^{p^{n}}-X$ over $\mathbf{Z} /(p)$. Since all the roots of this polynomial are distinct, it follows that F is a separable extension of $\mathbf{Z} /(p)$. In view of the uniqueness of splitting fields, it follows that any
two finite fields with the same number of elements are isomorphic. It is also clear that any algebraic extension of a finite field is separable.

Proposition 3.32 For any finite field $F, F^{*}=F-\{0\}$ is a cyclic group.
Proof: Let α be an element of F^{*} of maximum order, say, n. Then $\beta^{n}=1$ for every $\beta \in F^{*}$ (Proposition 1.33, Chapter 1). Since the polynomial $X^{n}-1$ has at most n roots, it follows that the order of $F^{*} \leq n$. However $1, \alpha, \ldots, \alpha^{n-1} \in F^{*}$. Hence F^{*} is generated by α.

Remark 3.33 Let F be a finite field with $1=a_{0}, \ldots, a_{n}$ as its elements. Then the polynomial $f(X)=a_{0}+\prod_{0 \leq i \leq n}\left(X-a_{i}\right)$ has no root in F. Thus a finite field is not algebraically closed.

3.5 Simplicity of finite separable extension

Theorem 3.34 Let K / k be a finite separable extension. Then there exists an $\alpha \in K$ such that $K=k(\alpha)$ (i.e. any finite separable extension is simple).

Proof: Case (i) k is a finite field. Then K being a finite extension of a finite field is finite. Hence K^{*} is a cyclic group by Proposition 3.32. Let α be a generator. We then have $K=k(\alpha)$.
CASE (ii) k is an infinite field. Let $(K: k)=n$. Let N / k be a finite normal extension containing K as a subfield. Since K / k is separable, it follows by Proposition 3.29 that there exist n distinct k-isomorphisms $\sigma_{1}, \ldots, \sigma_{n}$ of K into N. For each $i \neq j$, let $V_{i j}=\left\{x \in K \mid \sigma_{i}(x)=\right.$ $\left.\sigma_{j}(x)\right\}$. Then $V_{i j}$ is clearly a subspace of the k-vector space K. Since by assumption, $\sigma_{i} \neq \sigma_{j}$ for $i \neq j$, it follows that $V_{i j}$ is a proper subspace of K. By Proposition 2.58, Chapter $2 \bigcup_{i \neq j} V_{i j}$ is a proper subset of K. Hence there exists an $\alpha \in K$ such that $\sigma_{i}(\alpha) \neq \sigma_{j}(\alpha)$ for $i \neq j$. Thus α has n distinct conjugates, and we have $(k(\alpha): k)=n$. Thus $K=k(\alpha)$.

Chapter 4

Fundamental Theorem of Galois Theory

LET K be a field. If σ_{1} and σ_{2} are two automorphism of K, then the mapping $\sigma_{1} \circ \sigma_{2}: K \rightarrow K$ defined by $\left(\sigma_{1} \circ \sigma_{2}\right)(x)=\sigma_{1}\left(\sigma_{2}(x)\right), x \in K$, is again an automorphism of K. Thus if A is the set of all automorphisms of K, it is easily verified that A is a group with the group operation $\phi: A \times A \rightarrow A$ defined by $\phi\left(\sigma_{1}, \sigma_{2}\right)=\sigma_{1} \sigma_{2}=\sigma_{1} \circ \sigma_{2}$. We say that G is a group of automorphisms of K if G is a subgroup of A. Let k be a subfield of K. Then we denote by $G(K / k)$ the subset of A formed by the k-automorphisms of K, i.e. an element of A belongs to $G(K / k)$ if and only if $\sigma(x)=x$ for every $x \in k$. We see that $G(K / k)$ is a subgroup of A.

An extension K / k of fields is said to be a Galois extension if it is finite, normal and separable. Then the group $G(K / k)$ of k-automorphisms of K is called the Galois group of K over k.

If G is a group of automorphisms of a field K, then the set k of elements $x \in K$ such that $\sigma(x)=x$ for every $\sigma \in G$, is a subfield of K, called the fixed field of G.

Let G be a group of automorphism of a field K and $f=\sum_{i=0}^{n} a_{i} X^{i}$ be a polynomial over K. Then if $\sigma \in G$, we define the polynomial $\sigma(f)$ by $\sigma(f)=\sum_{i=0}^{n} \sigma\left(a_{i}\right) X^{i}$. If $\sigma(f)=f$ for every $\sigma \in G$, the coefficients a_{i} belong to the fixed field k of G.

Proposition 4.1 Let K / k be a Galois extension. Then $G(K / k)$ is a finite group of order $(K: k)$ and k coincides with the fixed field of $G(K / k)$.

This is an immediate consequence of the results proved in the last chapter. It follows from Proposition 3.15 and 3.29 of Chapter 3 that $G(K / k)$ is finite and order of $G=(K: k)$. To prove that k coincides with the fixed field of $G(K / k)$, we may assume that $K \neq k$. Now if α is an element of K not belonging to k, there exists an element $\beta \in K, \alpha \neq \beta$, such that α and β are conjugate over k, since K / k is normal and separable (Sections 2 and 3, Chapter 3). Now $k(\alpha)$ and $k(\beta)$ are k-isomorphic and since this isomorphism can be extended to a k-automorphism of K (Proposition 3.13, Chapter 3), there exists an element $\sigma \in G(K / k)$ such that $\sigma(\alpha)=\beta$. This shows that the fixed field of $G(K / k)$ is k.

The following theorem is in some sense a converse of Proposition 4.1.

Theorem 4.2 Let H be a finite group of automorphisms of a field K. Then if k is the field of $H, K / k$ is a Galois extension and $H=G(K / k)$.

Let $\sigma_{1}, \ldots, \sigma_{n}$ be the distinct elements of H. Let α be an element of K, and $\beta_{1}, \ldots, \beta_{m}$ be the distinct elements among $\sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)$. Now if σ is an element of $H, \sigma\left(\beta_{1}\right), \ldots, \sigma\left(\beta_{m}\right)$ are again distinct, since σ is an automorphism. Further $\sigma \sigma_{1}, \ldots, \sigma \sigma_{n}$ is a permutation of $\sigma_{1}, \ldots, \sigma_{n}$, from which it follows that $\sigma\left(\beta_{1}\right), \ldots, \sigma\left(\beta_{m}\right)$ is a permutation of $\beta_{1}, \ldots, \beta_{m}$. Consider the polynomial $f \in K[X]$ defined by $f=\prod_{i=1}^{m}\left(X-\beta_{i}\right)$. We have $\sigma(f)=\prod_{i=1}^{m}\left(X-\sigma\left(\beta_{i}\right)\right)=\prod_{i=1}^{m}\left(X-\beta_{i}\right)=f$, for every $\sigma \in H$. It follows that f is a polynomial over k. All the roots of f lie in K and are distinct; therefore f is a separable polynomial over k. Further, f is irreducible over k. In fact, if g is the minimal polynomial of α over k, we have $g\left(\sigma_{i}(\alpha)\right)=\sigma_{i}(g(\alpha))=0$. Thus $\operatorname{deg} g \geq \operatorname{deg} f$. Since $g \mid f$, we have $f=g$. Since $f(\alpha)=0, \alpha$ is algebraic and separable over k and $(k(\alpha): k) \leq n=$ order of H. It follows that K / k is an algebraic, separable extension.

Let N / k be a finite extension such that N is a subfield of K. Then since N / k is separable, $N=k(\beta)$, for some $\beta \in K$ (Theorem 3.34, Chapter 3.) Thus we have $(N: k) \leq n$. We choose now N such that N / k is finite and $(N: k)$ is maximum among all subfields of K containing k and finite over k. We have $N=k(\alpha)$. Let now θ be any element of K. Let M be the subfield of K generated by N and θ. Then M / k is finite (Corollary 3.4, Proposition 3.3, Chapter 3) and therefore by the choice of N, we have $(M: k) \leq(N: k)$. But M contains N so that $(M: k)=(N: k)(M: N)$. (Proposition 3.3, Chapter 3). It follows that $(M: N)=1$ and thus $M=N$. Therefore every element of K
belongs to N, i.e. $K=N$. We have therefore proved that K / k is a finite separable extension. Now $K=k(\alpha)$ and since $\sigma_{1}, \ldots, \sigma_{n}$ are distinct k-automorphisms of $K, \sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)$ are distinct. Therefore the polynomial $f=\prod_{i=1}^{n}\left(X-\sigma_{i}(\alpha)\right)$ over k of degree n, is the minimal polynomial of α over k and K is obviously the splitting field of f. We have $H \subset G(K / k)$ and order of $G(K / k)=n$ (Proposition 3.28, Chapter 3). Therefore $H=G(K / k)$. This concludes the proof of the theorem.

Let K / k be a Galois extension. Let $S(K / k)$ denote the set of subfields of K containing k and $S(G)$ denote the set of subgroups of $G=G(K / k)$. We define mappings:

$$
\begin{aligned}
& \Phi: S(K / k) \rightarrow S(G) \\
& \Psi: S(G) \rightarrow S(K / k)
\end{aligned}
$$

as follows: if K_{1} is an element of $S(K k)$, i.e. a subfield of K containing $k, K / K_{1}$ is also a Galois extension (the finitness and separability of K / K_{1} are immediate; to show that K / K_{1} is normal, we can use the fact that K is the splitting field of a polynomial f over k and a fortiori K is the splitting field of f over K_{1}, so that the normality of K / K_{1} follows). Now we set $\Phi\left(K_{1}\right)=G\left(K / K_{1}\right)$. If H is a subgroup of G, we denote by $\Psi(H)$ the fixed field of H.

Theorem 4.3 (Fundamental theorem of Galois Theory.) The maps $\Phi \circ$ $\Psi: S(G) \rightarrow S(G)$ and $\Psi \circ \Phi: S(K / k) \rightarrow S(K / k)$ are identity mappings.

Proof: That $\Psi \circ \Phi: S(K / k) \rightarrow S(K / k)$ is the identity map, is equivalent to the statement that if K_{1} / k is an extension such that K_{1} is a sub-field of K, then K_{1} is the fixed field of $G\left(K / K_{1}\right)$. This results from Proposition 4.1. That $\Phi \circ \Psi: S(G) \rightarrow S(G)$ is the identity map, is equivalent to the assertion that if H is a subgroup of G and K_{1} the fixed field of H, we have $H=G\left(K / K_{1}\right)$. This results from Theorem 4.2.

Corollary 4.4 Let K_{1} / k be an extension such that K_{1} is a subfield of K. Then K_{1} / k is a Galois extension if and only if $G\left(K / K_{1}\right)$ is a normal subgroup of $G(K / k)$ and then there is a natural isomorphism of $G\left(K_{1} / k\right)$ onto the quotient group $G(K / k) / G\left(K / K_{1}\right)$.

If σ is an element of $G(K / k)$, then $\sigma\left(K_{1}\right)$ is again a subfield of K containing k and $G\left(K / \sigma\left(K_{1}\right)\right)$ is the subgroup of $\sigma G\left(K / K_{1}\right) \sigma^{-1}$ of $G(K / k)$, as is verified easily. Now K_{1} / k is normal if and only if $\sigma\left(K_{1}\right)=K_{1}$ for
every $\sigma \in G(K / k)$ (this follows from Proposition 3.15, Chapter 3). Now if $\sigma\left(K_{1}\right)=K_{1}, \sigma G\left(K / K_{1}\right) \sigma^{-1}=G\left(K / K_{1}\right)$ for every $\sigma \in G(K / k)$, which shows that $G\left(K / K_{1}\right)$ is a normal subgroup of $G(K / k)$. Conversely if $\sigma G\left(K / K_{1}\right) \sigma^{-1}=G\left(K / K_{1}\right)$ for every $\sigma \in G(K / k)$, the fixed field of $G\left(K / K_{1}\right)$ is the same as that of $\sigma G\left(K / K_{1}\right) \sigma^{-1}$ for every $\sigma \in$ $G\left(K / K_{1}\right)$. By Proposition4.1 the fixed field of $G\left(K / K_{1}\right)$ is K_{1} and that of $\sigma G\left(K / K_{1}\right) \sigma^{-1}$ is $\sigma\left(K_{1}\right)$. Therefore $K_{1}=\sigma\left(K_{1}\right)$ for every $\sigma \in G(K / k)$, which shows that K_{1} normal. This completes the proof of the first part of the corollary.

Suppose now that K_{1} is an extension of $k, K \supset K_{1} \supset k$, such that K_{1} / k is normal. We have seen that if $\sigma \in G(K / k)$, we have $\sigma\left(K_{1}\right)=K_{1}$. We thus get a mapping $f: G(K / k) \rightarrow G\left(K_{1} / k\right)$, namely, if σ is in $G(K / k), f(\sigma)$ is the restriction of σ to K_{1}. It is verified easily that f is a homomorphism of groups. Further f is onto, because every k-automorphism of K_{1} can be extended to a k-automorphism of K (Proposition 3.13, Chapter 3). The kernel of f is precisely $G\left(K / K_{1}\right)$ so that $G(K / k) / G\left(K / K_{1}\right)$ is naturally isomorphic to $G\left(K_{1} / k\right)$, q.e.d.

Let K_{1} / k and K_{2} / k be two extensions of a field k such that K_{1} and K_{2} are again contained in an extension N of k. We denote by $K_{1} K_{2}$ the subfield of N generated by K_{1} and K_{2} (the extension $K_{1} K_{2} / k$ is often called a composite of K_{1} / k and K_{2} / k over k.) We note that $K_{1} K_{2} \supset K_{1}, K_{1} K_{2} \supset K_{2}$.

Proposition 4.5 Let K_{1} / k be a Galois extension, then $K_{1} K_{2} / K_{2}$ is also a Galois extension. Further there is a natural group homomorphism $f: G\left(K_{1} K_{2} / K_{2}\right) \rightarrow G\left(K_{1} / k\right)$ such that the kernel of f reduces to the identity element, i.e. $G\left(K_{1} K_{2} / K_{2}\right)$ can be identified with a subgroup of $G\left(K_{1} / k\right)$.

The field K_{1} is the splitting field of a separable polynomial h over k. Since K_{2} contains k, h can also be considered as a polynomial over K_{2} and then we see that $K_{1} K_{2}$ is the splitting field of the polynomial h over K_{2}. From this it follows that $K_{1} K_{2} / K_{2}$ is a Galois extension.

Let σ be an element of $G\left(K_{1} K_{2} / K_{2}\right)$. Since $\sigma(x)=x$ for every $x \in$ K_{2}, a fortiori $\sigma(x)=x$ for every $x \in k$. Further since K_{1} / k is a normal extension, $\sigma\left(K_{1}\right)=K_{1}$. We thus get a mapping $f: G\left(K_{1} K_{2} / K_{2}\right) \rightarrow$ $G\left(K_{1} / k\right)$, namely if $\sigma \in G\left(K_{1} K_{2} / K_{2}\right), f(\sigma)$ is the restriction of σ to K_{1}. Further if $\sigma \neq$ identity, $f(\sigma)$ is not the identity element of K_{1} / k, for then σ would be the identity automorphism of $K_{1} K_{2}$, since $K_{1} K_{2}$ is generated by K_{1} and K_{2}. This completes the proof of the proposition.

Remark 4.6 In general f need not be onto; for example if $K_{1}=K_{2}$, we have $K_{1} K_{2}=K_{2}$. Then $G\left(K_{1} K_{2} / K_{2}\right)$ reduces to one element and we can choose K_{1} / K such that $G\left(K_{1} / k\right)$ consists of more than one element.

Theorem 4.7 Let k be a finite field consisting of q elements and $K a$ finite extension of k. Then K / k is a Galois extension and the Galois group $G(K / k)$ is cyclic. If $\sigma: K \rightarrow K$ is the mapping defined by $\sigma(a)=$ $a^{q}, a \in K, \sigma$ is a k-automorphism and is a generator of $G(K / k)$.

Let p be the characteristic of k and $\mathbf{Z} /(p)$ the prime field of characteristic p. We have $K \supset k \supset \mathbf{Z} /(p)$. We have seen that $K / \mathbf{Z} /(p)$ is a Galois extension (Section 4, Chapter 3). Therefore K / k is a Galois extension. Consider the mapping $\sigma: K \rightarrow K$ defined by $\sigma(a)=a^{q}$. If $a \in k, \sigma(a)=a$ since the multiplicative group k^{*} is of order $(q-1)$ and $a^{q-1}=1, a \in k^{*}$, which gives $a^{q}=a$. If a is the zero element of k, we have obviously $a^{q}=a$. It is easily verified that σ is an automorphism of K. Let $m=(K: k)$. The group $G(K / k)$ is of order m and if we show that the element σ is of order m, it follows that $G(K / k)$ is cyclic and that σ is a generator of $G(K / k)$. We know that the multiplicative group K^{*} is cyclic (Proposition 3.32, Chapter 3); let α be a generator of K^{*}. Therefore the order of α is $\left(q^{m}-1\right)$. We have $\sigma(\alpha)=\alpha^{q}$. Suppose that σ as an element of $G(K / k)$ is of order s i.e. $\alpha^{q^{s}}=\alpha$ and s is the least positive integer with this property. It follows that $s=m$ and therefore the theorem is proved.

Chapter 5

Applications of Galois Theory

Notation Let K be a field of characteristic p and m a positive integer. We write $[m, p]=1$ if either of the following conditions is satisfied:
(1) $p=0$ and m arbitrary,
(2) $p>0$ and m and p are coprime.

5.1 Cyclic extensions

Let K be a field characteristic p and m an integer ≥ 1 such that $[m, p]=$ 1.

Consider the polynomial $f=X^{m}-1$ in $K[X]$. If ρ is any root of f, then $f^{\prime}(\rho)=m \rho^{m-1} \neq 0$ so that all the roots of f are distinct (Proposition 3.22, Chapter 3). Let $\rho_{1}, \ldots, \rho_{m}$ be the roots of f. These are called the m-th roots of unity. They form an abelian group under multiplication. Let t be the exponent of this abelian group. Then $\rho_{i}^{t}=1$ for $1 \leq i \leq m$ (Proposition 1.33, Chapter 1). Since $X^{t}-1$ has only t roots in its splitting field over K, we see that $t=m$. This means that the $\rho_{i}(1 \leq i \leq m)$ form a cyclic group order m. Any generator of this group is called a primitive m-th root of unity. If ρ is primitive m-th root of unity, we have

$$
f=X^{m}-1=\prod_{0 \leq i \leq m-1}\left(X-\rho^{i}\right)
$$

and the field $L=K(\rho)$ is clearly the splitting field of f over K. The extension L / K is separable since all the roots of f are distinct. Thus L / K is a Galois extension.

Let G be the Galois group of L / K and $\sigma \in G$. If ρ is a primitive m th root of unity, so is $\sigma(\rho)$ and therefore $\sigma(\rho)=\rho^{\nu}$ where $(\nu, m)=1$ and the integer ν is determined uniquely modulo m. Let R_{m} denote the multiplicative group of residue classes mod m which are prime to m. It is easily verified that the map $\sigma \rightarrow \bar{\nu}$, where $\bar{\nu}$ is the residue class of $\nu \bmod m$, defines a homomorphism ϕ of G into R_{m}. If an element $\sigma \in G$ is such that $\sigma(\rho)=\rho$, we have $\sigma\left(\rho^{i}\right)=\rho^{i}, 0 \leq i \leq m-1$, and therefore σ is the identity element e of G. Thus $\operatorname{ker} \phi=(e)$ i.e. G is isomorphic to a subgroup of R_{m}. We have therefore proved the following.

Proposition 5.1 Let L be the splitting field of $X^{m}-1$ over K. Then $L=K(\rho)$ where ρ is a primitive m-th root of unity and L / K is a Galois extension whose Galois group is isomorphic to s subgroup of R_{m}.

An extension F / E is called cyclic if it is a Galois extension with cyclic Galois group.

Remark 5.2 Let us assume that the integer m in Proposition 5.1 is a prime. Then R_{m} is cyclic (Proposition 3.32, Chapter 3). Hence G is also cyclic, i.e. L / K is cyclic.

Proposition 5.3 Let the field K contain all the m-th roots of unity. Let L be the splitting field of the polynomial $f=X^{m}-\omega, \omega \in K$, over K. If $\alpha \in L$ is a root of f, we have $L=K(\alpha)$ and L / K is a cyclic extension. If m is a prime, either $L=K$ or $(L: K)=m$.

Proof: We have

$$
f=\prod_{0 \leq i \leq m-1}\left(X-\alpha \rho^{i}\right)
$$

where ρ is a primitive m th root of unity. It follows that $L=K(\alpha)$. Since $[m, p]=1, f$ is separable over K and thus L / K is a Galois extension.

Let G be the Galois group of L / K. We have, for any $\sigma \in G, \sigma(\alpha)=$ $\alpha \rho^{i}$ for some integer i, which is determined uniquely modulo m. It is easily verified that the map $\sigma \rightarrow i$ (modulo m) defines a homomorphism ϕ of G into $\mathbf{Z} /(m)$ and that $\operatorname{ker} \phi=(e)$. Thus G is isomorphic to a subgroup of the cyclic group $\mathbf{Z} /(m)$ and hence G is cyclic. If m is a prime, $\mathbf{Z} /(m)$ has no subgroup other than (0) and $\mathbf{Z} /(m)$ so that $G=(e)$
or $G \approx \mathbf{Z} /(m)$. From this it follows that either $L=K$ or $(L: K)=m$ (Proposition 4.1, Chapter 4).

Proposition 5.4 Let m be a prime and K contain all the m-th roots of unity. Let L / K be a cyclic extension such that $(L: K)=m$. Then there exists an element $\omega \in K$ such that L is the splitting field of $X^{m}-\omega$ over K.

We require the following

Lemma 5.5 Let ρ be a primitive m-th root of unity, m being a prime. Then, if a is an integer

$$
\sum_{0 \leq i \leq m-1} \rho^{i a}=\left\{\begin{array}{l}
0 \text { if } m \nmid a \\
m \text { if } m \mid a
\end{array}\right.
$$

Proof of the Lemma If $m \mid a, \rho^{i a}=1$ for every integer i. Hence $\sum_{0 \leq i \leq m-1} \rho^{i a}=m$. If $m \nmid a, \theta=\rho^{a}$ is again a primitive m th root of unity since m is prime. Therefore $\sum_{0 \leq i \leq m-1} \rho^{i a}=\sum_{0 \leq i \leq m-1} \theta^{i}=$ sum of the roots of the polynomial $X^{m}-1$. Hence $\sum_{0 \leq i \leq m-1} \rho^{i a}=0$. Proof of Proposition Since L / K is separable, $L=K(\beta)$ for some $\beta \in L$ (Theorem in Section 3.5, Chapter 3). Let f be the minimal polynomial of β over K. Then f splits into linear factors over L since L / K is normal; let $f=\left(X-\beta_{1}\right) \cdots\left(X-\beta_{m}\right), \beta=\beta_{1}$. Let σ be a generator of the Galois group of L / K. We can assume, without loss of generality that $\sigma\left(\beta_{i}\right)=\beta_{i+1}$ for $1 \leq i \leq m-1$ and that $\sigma\left(\beta_{m}\right)=\beta_{1}$. Let $\alpha_{k} \in L, 1 \leq k \leq m$, be defined as follows ${ }^{1}$

$$
\alpha_{k}=\sum_{0 \leq i \leq m-1} \rho^{k i} \beta_{i+1} .
$$

By the above lemma, we have

$$
\sum_{1 \leq k \leq m} \alpha_{k}=\sum_{0 \leq i \leq m-1} \beta_{i+1}\left(\sum_{1 \leq k \leq m} \rho^{k i}\right)=m \beta_{1} .
$$

Further $\alpha_{m}=\sum_{1 \leq i \leq m} \beta_{i}$ and therefore belongs to K. Since $m \beta_{1}$ is not in K, it follows that there exists a $k, 1 \leq k \leq m-1$ such that $\alpha_{k} \notin K$.

[^0]Let $\alpha=\alpha_{k}$. Now

$$
\begin{aligned}
\sigma(\alpha) & =\sum_{0 \leq i \leq m-1} \rho^{k i} \sigma\left(\beta_{i+1}\right) \\
& =\sum_{0 \leq i \leq m-2} \rho^{k i} \beta_{i+2}+\rho^{k(m-1)} \beta_{1} \\
& =\rho^{-k} \sum_{0 \leq i \leq m-1} \rho^{k i} \beta_{i+1}=\rho^{-k} \alpha
\end{aligned}
$$

so that $\sigma\left(\alpha^{m}\right)=(\sigma(\alpha))^{m}=\alpha^{m}$. Since σ generates $G, \tau\left(\alpha^{m}\right)=\alpha^{m}$ for every $\tau \in G$. Thus $\alpha^{m}=\omega \in K$. Since $(K(\alpha): K)$ divides m which is a prime, $(K(\alpha): K)=1$ or m. Since $\alpha \notin K,(K(\alpha): K)=m$, so that $L=K(\alpha)$. It follows that L is the splitting field of $X^{m}-\omega$ over K, and our proposition is proved.

Corollary 5.6 Let K be of characteristic $\neq 2$ and L / K an extension such that $(L: K)=2$. Then there exists an element $\alpha \in L$ such that $\alpha^{2} \in K$ and $L=K(\alpha)$.

The proof is immediate.
Remark 5.7 Propositions 5.1 and 5.3 do not remain valid if we drop the condition that K all the m th roots of unity.

5.2 Solvability by radicals

Let K be a field of characteristic p. An extension L / K is said to be a simple radical extension if there exists an element α in L such that $\omega=\alpha^{m} \in K,[m, p]=1$ and $L=K(\alpha)$. We sometimes write $\alpha=\omega^{1 / m}$ and call α a simple radical over K. An extension L / K is said to be a radical extension if there exist subfields $K_{i}(1 \leq i \leq n)$ containing K such that $K_{1}=K, K_{n}=L, K_{i+1} \supset K_{i}$ and K_{i+1} / K_{i} is a simple radical extension. Any element of L is called a radical over K.

If M / L and L / K are radical extensions then M / K is a radical extension. We note that a simple radical extension is finite and separable and therefore any radical extension is finite and separable. Let L / K be a radical extension, N / L any extension and F a subfield of N containing K. Then it is easily seen that $L F / F$ is a radical extension, where $L F$ is the field generated by L and F in N. From this it follows that if L / K is an extension and $L_{i}(i=1,2)$ are subfields of L containing K such
that L_{i} / K is radical $(i=1,2)$ then $L_{1} L_{2} / K$ is a radical extension, since $L_{1} L_{2} / L_{1}$ and L_{1} / K are radical extensions. Now if $L_{i}(1 \leq i \leq l)$ are a finite number of subfields of L containing K such that L_{i} / K is radical for $1 \leq i \leq l$, it is clear by induction on l that $\left(L_{1} L_{2} \cdots L_{l}\right) / K$ is again a radical extension.

Proposition 5.8 Let L / K be a radical extension. Then there exists an extension M / L such that M / K is a Galois radical extension.

Proof: Clearly it is sufficient to prove that there is a Galois radical extension M / K and a K-isomorphism of L onto a subfield of M.

The proof is by induction on $(L: K)$. If $(L: K)=1$, there is nothing to prove. Suppose that $(L: K)=n>1$. Then there exists a radical extension L_{1} / K such that $L=L_{1}(\alpha), \alpha^{m}=a \in L_{1},[m, p]=1$ and $L \neq L_{1}$. Since $\left(L_{1}: K\right)<n$, by the induction hypothesis, there exists a Galois radical extension M_{1} / K such that L_{1} is a subfield of M_{1}. Let G be the Galois group of M_{1} / K. Set

$$
f=\prod_{\sigma \in G}\left(X^{m}-\sigma(a)\right) .
$$

Clearly $f \in K[X]$. Let M be the splitting field of f over M_{1}. It is obvious that M / M_{1} is a radical extension an it follows that M / K is a radical extension. Further M / K is a Galois extension, for if M_{1} is the splitting field of a polynomial ϕ over K, then M is the splitting field over K of the polynomial ϕf. The inclusion mapping of L_{1} into M_{1} can be extended to an isomorphism of $L=L_{1}(\alpha)$ into a subfield of M (cf. Section 2 of Chapter 3). This completes the proof of the proposition.

Proposition 5.9 Let L / K be a Galois radical extension. Then the Galois group of L / K is solvable.

Proof: By the definition of a radical extension, there exist subfields $K_{i}(1 \leq i \leq n)$ of L, such that $K_{n}=L, K_{1}=K$ and $K_{i+1}=$ $K_{i}\left(\beta_{i}\right), \beta_{i}^{m_{i}}=a_{i} \in K_{i},\left[m_{i}, p\right]=1(1 \leq i \leq n-1)$. Let $m=$ $\prod_{1<i \leq n-1} m_{i}$. Clearly $[m, p]=1$. Let L be the splitting field over K of a polynomial $f \in K[X]$. If M is splitting field over L of the polynomial $\phi=\left(X^{m}-1\right) f$, it is also the splitting field of ϕ over K. Since ϕ is separable over K, it follows that M / K is a Galois extension. Let F be the subfield of M generated by K and the roots of $X^{m}-1$. Let $F_{i}(1 \leq i \leq n)$ be the subfield of M generated by F and K_{i}. We set $F_{0}=K$. Clearly
$F_{1}=F, F_{n}=M$ and $F_{i+1}=F_{i}\left(\beta_{i}\right)(1 \leq i \leq n-1)$. Since F contains all the m th roots of unity, it follows that $F_{i+1} / F_{i}(1 \leq i \leq n-1)$ is a cyclic extension (Proposition 5.3).

We assert that the Galois group G of M / K is solvable. Let G_{i} be the subgroups of G having $F_{i}, 1 \leq i \leq n$, as fixed fields. We have $G=G_{0} \supset G_{1} \supset G_{2} \supset \cdots \supset G_{n}=\{e\}$. Since $F_{i+1} / F_{i}(0 \leq i \leq n-1)$ are normal, it follows that G_{i+1} is a normal subgroup of G_{i} and that G_{i} / G_{i+1} can be identified with the Galois group of $F_{i+1} / F_{i}, 0 \leq i \leq n-1$ (Corollary to Theorem 4.3, Chapter 4). By Proposition $5.1 G_{0} / G_{1}$ is abelian and we have seen above that $G_{i} / G_{i+1}(1 \leq i \leq n-1)$ is cyclic. Thus we have a solvable series for G (Section 3, Chapter 1) so that G is solvable.

Since the Galois group of L / K can be identified with a quotient group of G (Corollaryto Theorem 4.3, Chapter 4), it follows that the Galois group of L / K is solvable (Proposition 1.56).

Proposition 5.10 Let L / K be a Galois extension of degree n such that $G=G(L / K)$ is solvable. Suppose that $[n, p]=1$. Then there exists an extension M / L such that M / K is a radical extension.

Proof: We prove the proposition by induction on the order of G. If $G=\{e\}$, there is nothing to prove. Otherwise, there is a normal subgroup G_{1} of G such that G / G_{1} is cyclic of prime order (and the order of G_{1} is then strictly less than that of G; Proposition 1.58, Chapter 1). Let L_{1} be the fixed field of G_{1}. Then L / L_{1} and L_{1} / K are Galois extension with Galois group G_{1} and G / G_{1} respectively (Theorem 4.3, Chapter 4). Let $m=$ order of G / G_{1}. Then $[m, p]=1$. Let N be the splitting field of $X^{m}-1$ over L and F the subfield of N generated by K and the roots of $X^{m}-1$. Let $L_{1} F$ (resp. $L F$) be the subfield of N generated by L_{1} and F (resp. L and F).

Now $L_{1} F / F$ is a Galois extension and $G\left(L_{1} F / F\right)$ is isomorphic to a subgroup of $G\left(L_{1} / K\right)$ (Proposition 4.5, Chapter 4). Since m is prime $G\left(L_{1} f / F\right)=\{e\}$ or it is a cyclic group of order m. Since F contains all the m th roots of unity, it follows that $L_{1} F / F$ is a simple radical extension (Proposition 5.4.)

The extension $L F / L_{1} F$ is Galois and $G\left(L F / L_{1} F\right)$ is isomorphic to a subgroup of $G\left(L / L_{1}\right)$ (Proposition 4.5, Chapter 4), since $L F$ is the subfield of N generated by L and $L_{1} F$. It follows that $G\left(L F / L_{1} F\right)$ is solvable (Proposition 1.56, Chapter 1) and that if r is its order $[r, p]=1$. Then, by the induction hypothesis, there is an extension $M / L F$ such
that $M / L_{1} F$ is a radical extension. Since F / K is a radical extension, it follows that M / K is a radical extension. This completes the proof of the proposition.

Let $f \in K[X]$. Then f is said to be solvable by radicals over K if the splitting field of f over K is a subfield of a radical extension over K. It is easily seen that f is solvable by radicals over K if and only if every irreducible factor of f is solvable by radicals over K.

Theorem 5.11 Let $f \in K[X]$ and L be the splitting field of f over K. Suppose that $[n, p]=1$ where $n=(L: K)$. Then L / K is a Galois extension and f is solvable by radicals if and only if $G(L / K)$ is solvable.

Proof: Let α be any element of L. Let g be the minimal polynomial of α over K and m its degree. Since $m=(K(\alpha): K)$, we have $m \mid n$ and $[m, p]=1$. Therefore g is separable over K. Thus α is separable over K and it follows that L / K is a Galois extension. Suppose now that $G(L / K)$ is solvable. By Proposition 5.10, it follows that there exists an extension M / L such that M / K is a radical extension. Conversely let M / L be an extension such that M / K is a radical extension. Using Proposition 5.8, we may assume that M / K is a Galois radical extension. By Proposition 5.9, we see that $G(M / K)$ is solvable. Since $G(L / K)$ is isomorphic to a quotient group of $G(M / K)$, it follows that $G(L / K)$ is solvable.

Remark 5.12 If in the above theorem, f is such that $[m!, p]=1$ where $m=\operatorname{deg} f$, it follows that $[n, p]=1$.

5.3 Solvability of algebraic equations

Let H be a subgroup of the symmetric group S_{n} on the set $\left\{x_{1}, \ldots, x_{n}\right\}$. We say that H is transitive if given x_{i}, x_{j} there exists $\sigma \in H$ such that $\sigma\left(x_{i}\right)=x_{j}$.

Let $f \in K[X]$ and suppose that it is separable over K. Let L be the splitting field of f over K. Then L / K is a Galois extension. The group $G=G(L / K)$ is called the group of the polynomial f over K.

Suppose now that f is irreducible. Let $\alpha_{1}, \ldots, \alpha_{n}$ be its roots. For any root α_{i} of f and $\sigma \in G, \sigma\left(\alpha_{i}\right)$ is again a root of f, so that $\sigma\left(\alpha_{i}\right)=\alpha_{j}$ for some j. Thus σ induces a permutation $\bar{\sigma}$ of the set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$.

The map $\sigma \rightarrow \bar{\sigma}$ of G into the permutation group S_{n} as defined above, is clearly an isomorphism of G onto a subgroup of S_{n}. We identify G with
its image under this mapping and thus regard G as a permutation group. The subgroup G of S_{n} is transitive, since given any two roots α_{i}, α_{j} there is a K-automorphism σ of L such that $\sigma\left(\alpha_{i}\right)=\alpha_{j}$ (Proposition 3.13, Chapter 3).

Theorem 5.13 Let the characteristic p of the field K be different from 2 and 3 and $f \in K[X]$ be of degree ≤ 4. Then f is solvable by radicals over K.

Proof: We can assume that f is irreducible. If $n=\operatorname{deg} f$, we have $[n!, p]=1$. Therefore, if L is the splitting field of f over K and $m=(L: K)$, we have $[m, p]=1$. By what we have seen above, $G(L / K)$ can be identified with a subgroup of $S_{n}, n \leq 4$. Since S_{n} is solvable for $n \leq 4$ (Section 4, Chapter 1), it follows that $G(L / K)$ is solvable. (Proposition 1.56, Chapter 1). The theorem now follows from Theorem 5.11.

Given a field K, we ask the question whether there exists a separable polynomial over K which is not solvable by radicals over K. The answer is not always in the affirmative.

For instance, consider the following examples:

Example 5.14 Let $K=\mathbf{C}$, the field of complex numbers. The "Fundamental Theorem of Algebra" implies that any irreducible polynomial f over \mathbf{C} is linear. This means that \mathbf{C} is itself the splitting field of f over C. Hence the group of f reduces to the identity element, in particular f is solvable by radicals!

Example 5.15 Let $K=\mathbf{R}$, the field of real numbers and f an irreducible polynomial over \mathbf{R}. Since $(\mathbf{C}: \mathbf{R})=2$ and f splits into linear factors in \mathbf{C}, it follows that the splitting of f over \mathbf{R} is either \mathbf{C} or \mathbf{R}. Hence the group of f is of order ≤ 2. Therefore f is solvable by radicals over \mathbf{R}.

Example 5.16 Let K be a finite field and L / K any finite extension. We know that L / K is cyclic (Theorem 4.7, Chapter 4). In particular $G(L / K)$ is solvable.

We shall now show, however, that there exist irreducible polynomials over the field \mathbf{Q} of rational numbers such that their groups over \mathbf{Q} are not solvable.

Proposition 5.17 Let G be a transitive subgroup of the permutation group S_{p}, p being a prime. Suppose that G contains a transposition. Then $G=S_{p}$.

Proof: We represent S_{p} as the permutation group of $I_{p}=\{1,2, \ldots, p\}$. Let H be the subgroup of G generated by the transpositions contained in G. Then $H \neq\{e\}$ and it is a normal subgroup of G, for if (i, j) is a transposition in G, we have $\sigma(i, j) \sigma^{-1}=(\sigma(i), \sigma(j))$ and if $\tau=\prod_{1 \leq k \leq n} \tau_{k}$ where τ_{k} is a transposition in G, then $\sigma \tau \sigma^{-1}=\prod_{1 \leq k \leq n}\left(\sigma \tau_{k} \sigma^{-1}\right)$. We assert that H is a transitive subgroup of S_{p}. This fact is a consequence of the following.

Lemma 5.18 Let G be a transitive subgroup of S_{p}, p being a prime. Then if H is a normal subgroup G such that $H \neq\{e\}$, it is also a transitive subgroup of S_{p}.

Proof of the Lemma We introduce an equivalence relation in I_{p} as follows. We write $i \sim j$ if there exists $h \in H$ such that $h(i)=j$. Let $H(i)$ be the equivalence class containing $i \in I_{p}$. Then $H(i)$ is the subset $\{\sigma(i) \mid \sigma \in H\}$ of I_{p}. We assert that if i, j are in $I_{p}, H(i)$ and $H(j)$ have the same number of elements. In fact, there exist $\tau \in G$ such that $\tau(j)=i$ and we have $H(i)=H(\tau(j))=\tau H(j)$ since H is normal. Since τ is a one-one mapping of I_{p} onto itself, $H(j)$ and $\tau H(j)$ have the same number of elements and the assertion follows. Since I_{p} is the disjoint union of the distinct equivalence classes $H(i)$, it follows that if m is the number of elements in $H(i), m \mid p$. Since $H \neq\{e\}$, we have $m \neq 1$ and it follows that $m=p$. Hence $H(i)=I_{p}$, i.e. H is a transitive subgroup of G.

We now continue the proof of the proposition. There is a transposition $\left(i_{1}, i_{2}\right) \in H$. Let i_{2}, \ldots, i_{q} be these elements of I_{p} such that $\left(i_{1}, i_{j}\right) \in H, 2 \leq j \leq q$. We can assume without loss of generality, that $i_{1}=1, i_{2}=2, \ldots i_{q}=q$. If $q=p, H=S_{p}$ so that $G=S_{p}$ and the proposition is proved. Suppose that $q<p$. Then $(1, i) \in H$ for $1 \leq i \leq q$ and $(1, j) \notin H$ for $j>q$. Since H is transitive, there exists $\sigma \in H$ such that $\sigma(1)=p$. Now $\sigma=\tau_{1} \ldots \tau_{h}$ where $\tau_{k}, 1 \leq k \leq h$, are transpositions in H. Suppose that all the $\tau_{k}, 1 \leq k \leq h$, leave the set $\{1, \ldots q\}$ invariant, i.e. if $1 \leq i \leq q$, then $1 \leq \tau_{k}(i) \leq q$ for every $k, 1 \leq k \leq h$. Then for every i with $1 \leq i \leq q$, we have $1 \leq \sigma(i) \leq q$, which is a contradiction. Therefore there is a $\tau_{k}, 1 \leq k \leq h$, which is of the form $\left(i_{1}, i_{2}\right)$ with
$1 \leq i_{1} \leq q$, and $i_{2}>q$. Then we have

$$
\left(1, i_{1}\right)\left(i_{1}, i_{2}\right)\left(1, i_{1}\right)^{-1}=\left(1, i_{2}\right) \in H
$$

This leads to a contradiction. Thus $q=p$ and the proposition is proved.
Proposition 5.19 Let $f \in \mathbf{Q}[X]$, where \mathbf{Q} is the field of rational numbers such that (1) $\operatorname{deg} f=p, p$ being a prime, (2) f is irreducible and, (3) f has exactly $(p-2)$ real roots (in the field \mathbf{C} of complex numbers). Then the group of f is S_{p}.

Proof: We assume that $p \geq 3$, since the proposition is trivial for $p=2$. The map $\mathbf{C} \rightarrow \mathbf{C}$ defined by $z \rightarrow \bar{z}$, (\bar{z} being the complex conjugate of z), is clearly an \mathbf{R}-automorphism of \mathbf{C}. Therefore if $\alpha \in \mathbf{C}$ is a root of a polynomial g with real coefficients, then $\bar{\alpha}$ is also a root of g.

Let $f=\prod_{1 \leq i \leq p}\left(X-\alpha_{i}\right)$ be such that α_{i} with $3 \leq i \leq p$ are real. We have $\alpha_{2}=\overline{\alpha_{1}}$. Thus the mapping of \mathbf{C} onto \mathbf{C} defined by $z \rightarrow \bar{z}$ induces an automorphism σ of the splitting field of f over \mathbf{R} and σ induces the transposition $\left(\alpha_{1}, \alpha_{2}\right)$ on the set $\left\{\alpha_{1}, \ldots \alpha_{p}\right\}$. Therefore the group of f contains a transposition and since it is transitive on $\left\{\alpha_{1}, \ldots \alpha_{p}\right\}$ (f being irreducible), it follows that the group of f is S_{p} (Proposition 5.17).

Theorem 5.20 For every prime p, there exists a polynomial $f \in \mathbf{Q}[X]$ whose group is S_{p}. In particular there exist polynomials over \mathbf{Q} which cannot be solved by radicals over \mathbf{Q}.

For $p=2$, we may take f to be any irreducible polynomial of degree 2 over \mathbf{Q} (for example $X^{2}+1$).

If $p \geq 3$, we construct an irreducible polynomial f of degree p over \mathbf{Q} such that f has precisely $(p-2)$ real roots (in \mathbf{C}). Then by Proposition 5.19 , it follows that the group of f is S_{p}.

If $p=3$, we can take $f=X^{3}-2$. Clearly f is irreducible (for example, in view of Eisenstein's criterion (Proposition 2.39, Chapter 2)).

Let us assume that $p \geq 5$. Let $a_{1}, a_{2}, \ldots, a_{p-2}$ be even integers such that

$$
a_{1}>a_{2}>\cdots>a_{p-2}
$$

and b a positive even integer. Let

$$
g=\left(X^{2}+b\right) \prod_{1 \leq i \leq p-2}\left(X-a_{i}\right) .
$$

Let $t_{k}=\frac{a_{k}+a_{k+1}}{2}, 1 \leq k \leq p-3$. Clearly t_{k} is an integer. Also $\left(t_{k}^{2}+b\right) \geq 2$. Further $\left|t_{k}-a_{i}\right| \geq 1(1 \leq i \leq p-2)$ and at least for one $i,\left|t_{k}-a_{i}\right|>1$, so that we have $g\left(t_{k}\right)>2,1 \leq k \leq p-3$. Now, if $a_{i}>x>a_{i+1}(1 \leq i \leq p-3), g(x)>0$ or $g(x)<0$ according as i is even or odd. Therefore $\left(g\left(t_{k}\right)-2\right)>0$ or $g\left(t_{k}\right)-2<0$ according as k is even or odd $(1 \leq k \leq p-3)$. Now if x is sufficiently large, $g(x)-2>0$ and $g(x)-2<0$ for $x \leq a_{p-2}$.

Thus if $f=g-2, f$ has at least $(p-2)$ real roots $\alpha_{1}, \ldots, \alpha_{p-2}$ such that $\alpha_{1}>t_{1}, t_{i}>\alpha_{i+1}>t_{i+1}(1 \leq i \leq p-4)$ and $t_{p-3}>\alpha_{p-2}$.

Let α_{p-1}, α_{p} be the remaining roots of f (in \mathbf{C}). We have

$$
\begin{aligned}
\sum_{1 \leq i \leq p} \alpha_{i} & =\sum_{1 \leq i \leq p-2} a_{i}=t(\text { say }) \\
\sum_{1 \leq i<j \leq p} \alpha_{i} \alpha_{j} & =b+\sum_{1 \leq i<j \leq p-2} a_{i} a_{j}=b+m \text { (say) }
\end{aligned}
$$

Then

$$
\sum_{1 \leq i \leq p} \alpha_{i}^{2}=t^{2}-2(b+m) .
$$

We now choose b such that $t^{2}-2(b+m)<0$. Then f has only $(p-2)$ real roots.

We show now that f is irreducible. If $f=X^{p}+\sum_{1 \leq i \leq p} c_{i} X^{p-i}$, clearly $2 \mid c_{i}(1 \leq i \leq p)$ and $4 \nmid c_{p}$. The irreducibility of f is now a consequence of Eisenstein's criterion (Proposition 2.39, Chapter 2).

Finally, since for $p \geq 5, S_{p}$ is not solvable, it follows that there exist polynomials over \mathbf{Q} which are not solvable by radicals over \mathbf{Q}.

Remark 5.21 If $p=5$, an example of a polynomial f over \mathbf{Q} with S_{5} as its group is obtained as follows. With the notation as in the proof of the theorem, we can take $a_{1}=2, a_{2}=0, a_{3}=-2$ and $b=6$. Then

$$
\begin{gathered}
g=\left(X^{2}+6\right)(X-2) X(X+2) \quad \text { and } \\
f=X^{5}+2 X^{3}-24 X-2 .
\end{gathered}
$$

5.4 Construction with ruler and compass

Let \mathbf{E} the plane, i.e. the set $\mathbf{R} \times \mathbf{R}$. We fix a system of rectangular axes for \mathbf{E} and by the coordinates (x, y) of a point of \mathbf{E}, we mean the coordinates with respect to these axes. If S is a subset of \mathbf{E}, we set
$X(S)=\{x \in \mathbf{R} \mid(x, y) \in S$ for some $y \in \mathbf{R}\}$ and $Y(S)=\{y \in \mathbf{R} \mid$ $(x, y) \in S$ for some $x \in \mathbf{R}\}$. We denote by $K(S)$ the subfield of \mathbf{R} generated by $X(S) \cup Y(S)$.

Let S be a subset of \mathbf{E} consisting of at least two points. We may assume, without loss of generality, that S contains $(0,0)$ and $(1,0)$. We say that S is stable under constructions with ruler and compass (or S is stable) if the following conditions are satisfied.
(1) If the line through A, B meets another line through C, D where $A, B, C, D \in S$ at a point E, then E is in S;
(2) If a point E of \mathbf{E} is in the intersection of a circle with centre A passing through B, and the line through C and $D(A, B, C, D \in S)$, then E is in S.
(3) If a point E of \mathbf{E} is in the intersection of circles with centres A and C passing through B and D respectively $(A, B, C, D, \in S)$, then E is in S.

Let S be any subset of the plane containing $(0,0)$ and $(1,0)$. Then the intersection of all stable subsets of \mathbf{E} containing S is again stable. This set is called the stable closure of S and is denoted by $C(S)$.

Let K be a subfield of \mathbf{R}. It is said to be stable if ithe square root of every positive element of K is in K is again stable. If K is any subfield of \mathbf{R} the intersection of all stable subfields of \mathbf{R} containing K is again stable. This field is called the stable closure of K and is denoted by $C(K)$.

Proposition 5.22 Let S be a stable subset of \mathbf{E}. Then we have $X(S)=$ $Y(S)=K(S)$ and $K(S)$ is a stable subfield of R. Further, $(x, y) \in S$ if and only if x, y are in $X(S)$.

Conversely, if K is a stable subfield of \mathbf{R}, the subset S of \mathbf{E} defined by $S=\{(x, y) \mid x, y \in K\}$ is stable.

Proof: By the well-known constructions with ruler and compass, we see that $(1)(x, y) \in S$ if and only if $(x, 0),(0, x),(0, y),(y, 0)$ are in S; (2) if x, y are in $X(S)$, then $x-y$ and $x y^{-1}($ if $y \neq 0)$ are in $X(S)$; and (3) if $x>0$, and x is in $X(S)$, then \sqrt{x} is in $X(S)$. The first part of the proposition is an easy consequence of these properties. The converse is an immediate consequence of the following:
(1) if the line through A, B intersects another line through C, D (where $A, B, C, D \in S$), at a point E, the coordinates of E are in $K(T) ; T$ being the subset of S consisting of A, B, C, D;
(2) if E belongs to the intersection of the circle with centre A passing through B, and the line through C, D (where $A, B, C, D \in S$), the coordinates of E are in an extension L of $K(T)$ such that $(L: K(T)) \leq 2$.
(3) if any point $E \in \mathbf{E}$ is in the intersection of circles with centres A and C, passing through B and D respectively, (where $A, B, C, D \in S$) then the coordinates of E are in an extension L of $K(T)$ such that $(L: K(T)) \leq 2$.

Remark 5.23 (1) Let S be the subset of \mathbf{E} consisting of the two points $(0,0)$ and $(1,0)$. Then $C(S)$ is the set of points which is usually referred to as being constructible by ruler and compass given the unit length. In this case, we have $\mathbf{Q}=K(S)$.
(2) Let S be a subset of \mathbf{E} containing $(0,0)$ and $(1,0)$. Then we have $K(C(S))=C(K(S))$.

Let N / K be a radical extension. It is said to be of type 2 if there exist subfields $N_{i}(0 \leq i \leq n)$ of N containing K such that $N_{0}=K, N_{n}=$ $N, N_{i} \subset N_{i+1}$ and $\left(N_{i+1}: N_{i}\right) \leq 2(0 \leq i \leq n-1)$. We note that if M / K is any extension and $M_{j}(1 \leq j \leq m)$ are subfields of M containing K such that $M_{j} / K(1 \leq j \leq m)$ are radical extensions of type 2 , then the extension $\left(M_{1} \ldots M_{m}\right) / K$ is again a radical extension of type 2 .

Proposition 5.24 Let K be a subfield of \mathbf{R} and $x \in C(K)$. Then there exists a subfield L of $C(K)$ containing x and K such that L / K is a radical extension of type 2 .

Proof: For every integer $i \geq 0$, we define inductively subfields K_{i} of $C(K)$ as follows : $K_{0}=K, K_{i+1}$ is the subfield of $C(K)$ generated by K_{i} and the square roots of all the positive elements of K_{i}. Clearly $C(K)=\bigcup_{i \geq 0} K_{i}$.

The element $x \in K_{i}$ for some i. We prove the proposition by induction on i. Let us assume that the proposition is proved for all y in K_{i-1}. There exist elements $\theta_{1}, \ldots \theta_{n}$ in K_{i} such that $\theta_{j}^{2} \in K_{i-1}(1 \leq j \leq n)$ and $x \in K_{i-1}\left(\theta_{1}, \ldots \theta_{n}\right)$. Then $x=f\left(\theta_{1}, \ldots, \theta_{n}\right) / g\left(\theta_{1}, \ldots, \theta_{n}\right)$, where

$$
\begin{aligned}
f\left(\theta_{1}, \ldots, \theta_{n}\right) & =\sum a_{i_{1}, \ldots, i_{n}} \theta_{1}^{i_{1}} \ldots \theta_{n}^{i_{n}}, \\
g\left(\theta_{1}, \ldots, \theta_{n}\right) & =\sum b_{j_{1}, \ldots, j_{n}} \theta_{1}^{j_{1}} \ldots \theta_{n}^{j_{n}}, g\left(\theta_{1}, \ldots, \theta_{n}\right) \neq 0
\end{aligned}
$$

and $a_{i_{1}, \ldots, i_{n}}, b_{j_{1}, \ldots, j_{n}}$ are in K_{i-1}. By the induction hypothesis every one of the elements $a_{i_{1}, \ldots, i_{n}}, b_{j_{1}, \ldots, j_{n}}$ is contained in a subfield of $C(K)$ which is a radical extension of K of type 2 . Thus, there exists a radical
extension of L_{1} / K of type 2 containing all the $a_{i_{1}, \ldots, i_{n}}, b_{j_{1}, \ldots, j_{n}}$. We have $x \in L_{1}\left(\theta_{1}, \ldots, \theta_{n}\right)$ and $\theta_{i}^{2} \in L_{1}(1 \leq i \leq n)$. We take $L=L_{1}\left(\theta_{1}, \ldots, \theta_{n}\right)$; obviously L / L_{1} is a radical extension of type 2 and thus L / K is a radical extension of type 2 .

Theorem 5.25 Let K be a subfield of \mathbf{R}. Then an element y of \mathbf{R} is in $C(K)$ if and only if there is a Galois extension N / K such that $(N: K)=2^{m}$ (for some integer m) and $y \in N$.

Proof: Let $y \in C(K)$. Then by Proposition 5.24, there exists a subfield M of \mathbf{R} such that M / K is a radical extension of type 2 and y is in M. We assert that if M is any radical extension of type 2 , there exists an extension N / M such that N / K is Galois and $(N: K)=2^{m}$ for some m. In fact the required Galois extension is obtained by repeating the proof of Proposition 5.8 for this particular case.

Let now N / K be a Galois extension of degree 2^{m} such that y is in N. We can assume that N is a subfield of \mathbf{C}; for, N is the splitting field of a polynomial f over $K(y)$ and by the fundamental theorem of algebra, f splits into linear factors in \mathbf{C}, so that there is a $K(y)$-isomorphism of σ of N onto the subfield N^{\prime} of \mathbf{C} generated by $K(y)$ and the roots of f in C. The group $G(N / K)$ has a solvable series:

$$
G(N / K)=G_{0} \supset G_{1} \supset G_{2} \cdots \supset G_{n}=(e)
$$

such that G_{i+1} is a normal subgroup of G_{i} and G_{i} / G_{i+1} is of order 2 $(0 \leq i \leq n-1)$ (Propositions 1.57 and 1.58, Chapter 1). If K_{i} are the fixed fields of G_{i} we have $K_{0}=K, K_{n}=N$ and $\left(K_{i+1}: K_{i}\right)=2$. We prove by induction on i that $K_{i} \cap \mathbf{R} \subset C(K)$ for every i. Assume that $K_{i-1} \cap \mathbf{R} \subset C(K)$. We have $K_{i}=K_{i-1}(x), x \in K_{i}$ and $x^{2} \in K_{i-1}$. Therefore every element of K_{i} is of the form $a+b x, a, b \in K_{i-1}$. By the induction assumption, the real and imaginary parts of a, b and x^{2} are in $C(K)$. Moreover if x is any complex number such that the real and imaginary parts of x^{2} are in $C(K)$, it is easy to see that the real and imaginary parts of x are also in $C(K)$. Thus $K_{i} \cap \mathbf{R} \subset C(K)$. Since $y \in N \cap \mathbf{R}$, we have y is in $C(K)$ and the theorem is proved.

Example 5.26 Trisection of an angle. Let S be the set consisting of points $O=(0,0), P=(1,0)$ and $Q=(x, y)$ such that P and Q lie on the same circle C with centre O. Let θ be the angle $P \hat{O} Q$ and R be the point on C such that $P \hat{O} R$ is $\theta / 3$. The problem is to decide whether any point on the line through O and R is in $C(S)$, or equivalently, whether
R is in $C(S)$. We have $R=(\cos \theta / 3, \sin \theta / 3)$ and R is in $C(S)$ if and only if $\cos \theta / 3$ is in $C(K(S))$. Now $\cos \theta / 3$ is a root of the polynomial $f=4 X^{3}-3 X-\alpha$, where $\alpha=\cos \theta$. We can choose α such that $\alpha \in Q, 0 \leq \alpha \leq 1$ and f irreducible over Q (for example $\theta=\pi / 3$). It is easy to see that f is irreducible also over $K(S)$. Then $\cos \theta / 3$ for such a choice of α is not in $C(K(S))$, since $(K(S)(\cos \theta / 3): K(S))=3$.

Example 5.27 Squaring the circle. Let S be the set consisting of $O=$ $(0,0)$ and $P=(1,0)$. Let $R=(x, 0)$ be a point such that the area of the square whose base is $O R$, is equal to that of the circle with centre O and passing through P. The problem is to decide whether $R \in C(S)$ or, equivalently whether $x \in C(\mathbf{Q})$. We have $X^{2}=\pi$. It is known that π is not algebraic over \mathbf{Q}. Since every element of $C(\mathbf{Q})$ is algebraic over $\mathbf{Q}, R \notin C(S)$; thus the unit circle cannot be squared.

Example 5.28 Doubling the cube. Let S consist of the points $O=$ $(0,0)$ and $P=(1,0)$. Let $R=(x, 0)$ be such that the volume of the cube with $O R$ as an edge is equal to twice the volume of the cube with $O P$ as an edge. The problem is to decide whether R is in $C(S)$ or, equivalently, whether $x \in C(\mathbf{Q})$. Clearly x is a root of the polynomial $f=X^{3}-2$. Since the group of f over \mathbf{Q} is S_{3}, we have $R \notin C(S)$.

Example 5.29 Construction of regular polygons with a given number of sides. Let S be the set consisting of the points $O=(0,0)$ and $P=(1,0)$. Let Δ be a regular polygon with h sides, one of whose vertices is P and which is inscribed in the circle with centre O and radius $O P$. The problem is to decide whether the vertices of Δ are in $C(S)$; clearly this is equivalent to finding if $R=(\cos 2 \pi / h, \sin 2 \pi / h)$ is in $C(S)$. Let $\rho=\exp (2 \pi i / h), i=\sqrt{-1}$. We have $\cos 2 \pi / h=\left(\rho+\rho^{-1}\right) / 2$. Thus $(\mathbf{Q}(\rho):(\cos 2 \pi / h))=2$. Now $\mathbf{Q}(\rho) / \mathbf{Q}$ is a Galois extension since ρ is a primitive h th root of unity. Because of Theorem 5.25 , we see that $R \in C(S)$ if and only if $(\mathbf{Q}(\rho): \mathbf{Q})=2^{m}$ for some integer m.

Let us now suppose that h is a prime. We shall show that the vertices of Δ are in $C(S)$ if and only if h is a Fermat prime, i.e. $h=2^{2^{\lambda}}+1$ for some integer λ. Since

$$
1-X^{h}=(1-X)\left(1+X+\cdots+X^{h-1}\right)
$$

ρ is a root of the polynomial $f=1+X \cdots+X^{h-1}$.
Set $X=Y+1$. Then $f(X)=g(Y)$, where

$$
g(Y)=Y^{h-1}+\binom{h}{1} Y^{h-2}+\cdots\binom{h}{h-1} .
$$

Since h is a prime, h divides $\binom{h}{j}, 1 \leq j \leq(h-1)$ and h^{2} does not divide $\binom{h}{h-1}=h$. Hence by Eisenstein's criterion (Proposition 2.39, Chapter 2), g and hence f, is irreducible over \mathbf{Q}. Therefore, $(\mathbf{Q}(\rho)$: $\mathbf{Q})=(h-1)$. Thus R is in $C(S)$ if and only if $h=1+2^{m}$. It is easy to see (since h is a prime) that m is of the form 2^{λ} for some integer i.e. h is a Fermat prime. Setting $\lambda=0,1,2$ we get $h=3,5,17$ which are primes. Thus, an equilateral triangle, a pentagon and a 17-gon can be constructed by ruler and compass.

It is not known whether there exists an infinity of Fermat primes.

Bibliography

[1] E. ARTIN Galois theory, Notre Dame, Indiana, (1959).
[2] N. BOURBAKI Algébre, Chap. V, Hermann, Paris, (1950).
[3] N. JACOBSON Lectures in Abstract Algebra, Vol, III, Van Nostrand, Princeton, (1964).
[4] K. G. RAMANATHAN Lectures on the Algebraic Theory of Fields, Tata Institute of Fundamental Research, (1954).
[5] B. L. VAN DER WAERDEN Modern Algebra, Vol. I, Ungar, New York, (1948).

[^0]: ${ }^{1}$ The expression for α_{k} is called the Lagrange resolvent.

