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To MADHUBALA
and MANJARI

That is infinite, this is infinite; from that infinity
emanates this infinity. Taking away this infinity
from that infinity, infinity still remains behind.

Ishavasya Upanishad






Prefdce to the Third Edition

Several small changes and modifications have been made in
bringing out this edition. These have been prompted by the feedback
received from students during my courses and by the suggestions
received from several teachers.

It has been found that determination of the character tables even
of simple groups is a hurdle most students find difficult to cross.
Therefore Chapter 3 of this edition contains a flow-chart explaining
step by step the method of determining the character table of a group,
along with a parallel-running example illustrating the procedure in
full details. An Appendix on mappings and functions has also been
added. Temptation to add material of advanced nature has been
resisted. "

Thanks are due to several readers for helpful suggestions.

Simla, March 1982 A.W. Joshi



Preface to the Second Edition

It gives me great pleasure to bring out this second edition. It was
very gratifying to see that the first edition of this work was generally
liked by physicists. [ have continued to give courses on group
theory during this period and the response from students has been
very encouraging.

Many little changes have been made here and there in this
edition in an attempt to improve the treatment and presentation.
Sections 1.1, 1.2, 1.6, 2.4, 4.1 and 4.2 have been considerably
rewritten. A section on Lorentz group has been added in Chapter 4.

[ am grateful to Dr. R. Vasudevan, now in the Department of
Mathematics, Regional Engineering College, Thiruchirapalli, for useful
discussions clarifying many mathematical subtleties. to Dr. Bipin
Kumar Agarwal, Department of Physics, University of Allahabad,
and to Dr. Tulsi Dass, Department of Physics, Indian Institute of
Technology, Kanpur, for fruitful correspondence. I am thankful to
a number of reviewers and readers who took great pains to go
through the first edition and made suggestions for its improvement.

A.W. JosHI
Meerut, October 1976



Preface to the First Edition

One main reason has prompted me to write this book—there is
hardly any self-contained book at present on group theory for physicists
at an introductory level. It is my own experience that in my student
days, I had to refer to over halfa dozen books to obtain a rudimentary
knowledge of group theory and representation theory. At the
introductory level, it is desirable that a beginner should be able to get
most (preferably all) of the relevant material in a single book which
can then serve as a textbook for a course on group theory for the
graduate student in physics. It is with this aim that I have tried to
collect diverse material such as vector spaces, Hilbert spaces, operators.
direct product of matrices, topological groups, connectedness and
compactness, etc. These are pure mathematical topics and a physics
student would invariably have to go to the mathematics department
to master these concepts.

Having included such relevant topics which are sine qua non for
understanding every step in the applications of group theory in physics
in general, some of the most importantand illustrative applications in
quantum mechanics, atomic physics and solid state physics have been
taken up. For example. the generalapplications in quantum mechanics
include symmetry and degeneracy, good quantum numbers, matrix
element theorem, level splitting and selection rules, dynamical symmetry,
time-reversal symmetry, etc. In atomic physics, the applications of
group theory to selection rules, Zeeman effect, addition of angular
momenta, irreducible tensor operators and the Wigner-Eckart theorem
have been treated. The crystal field splitting of atomic leveis, Brillouin
zones and the electronic structure of crystals are discussed as exemplary
applications in solid state physics.

It has been one of my major aims to keep the book at an introductory
level. I have often sacrificed rigour in favour of clarity. Attempt
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has been made to make sure that the student grasps the fundamental
principles throughly at every stage of his progress. Having grasped
these, the student is left to himself to develop his knowledge in any
desired direction. For example, Chapter 4 on continuous groups pro-
vides, 1 presume, a fairly sound base for elementary particle physics. But
only the basic principles of SU(2) and SU(3) are discussed and I have
stopped as soon as we really approach elementary particle physics.

Although a few special topics have been dealt with in the appen-
dices, I am aware that a large number of applications of group theory
are still left out. One could think of the role of symmetry in molecular
vibrations. various physical propertics of crystals, crystal field theory,
lattice dynamics, higher symmetry schemes for clementary particles,
and numerous other applications. However, I believe, only a specialist
is likely to refer to these topics; the purpose of the beginner should
be well served by this book in its present form.

At present, very few Indian universities have courses in group
theory for M.Sc. (physics) students. Ttis my sincere hope that the
easy availability of an elementary book such as this would accelerate
the process of inclusion of group theory in the M .Sc. (physics) syllabi
by more and more universities. While giving courses based on the
material of this book for the last three years, [ have tried to appreciate
the difficulties of the students and have modified the presentation of the
material accordingly to remove the obstacles. I hope this book will
be equally useful to teachers and students.

A large number of problems has been provided at the end of every
chapter. These serve a twofold purpose. Firstly, they enable the
“student to test his understanding, providing at the same time a better
and firm grasp ol the principles involved. Secondly, some of the
problems can also be looked upon as extensions of the material treated
in the respective chapters. The results of such problems have quite
often been used in succeeding chapters.

I am thankful to the referees of this book for making valuable
suggestions” for improving the manuscript. I am very grateful to
Mr. Sudarshan Kumar Bahl for help in proofreading. I shallbe glad
to receive any comments and suggestions from the readers.

A.W. JosHI
Meerut, August 1973
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CHAPTER 1

Abstract Group Theory

The concept of groups had its origin more than 150 years ago,
in the beginning of the nineteenth century. The early development
of the theory of groups was due to the famous mathematicians Gauss,
Cauchy, Abel, Hamilton, Galois, Sylvester, Cayley, and many others.!
However, till the advent of modern quantum mechanics in 1925, it
did not find much use in physics. The advantages of group theory
in physics were soon recognized and the new tool was put to use in the
calculations of the atomic structures and spectra by, to name only
a few, H.A. Bethe, E.P. Wigner and others. Group theory has now be-
come indispensable in most branches of physics and physical chemistry.

Although a mathematician is generally more interested in the
formal development of abstract group theory, a physicist finds the
representation theory of groups of direct use in quantum physics and
other branches of physics. In this chapter, we shall discuss only those
aspects of abstract group theory which will be needed for under-
standing the representation theory; this will be taken up in Chapter 3
for finite groups and in Chapter 4 for continuous groups.

1.1 Whatis a Group?

Consider the set [ of all integers, I={..., —3,—2,~1,0,1,2,...},
and consider the rollowing four properties of this set: (a) The sum of
any two elements of the set 7 is again an integer and henee belongs

1Bell (1965).
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to the set 1. (b) The set contains an element O, called zero, which has
the property that for any element m& I, m+0=0+m=m. (c) For
every element m of I, there exists a unique element » also belonging to
I, such that m+n=n+m=0; evidently, n=—m. (d) If m, n and p are
any three elements of I, m4-(n+p)=(m-n)+4p; this means that the law
of addition is associative.

Consider another set, the set U(n) of all unitary matrices of order
n, where n is a fixed finite positive integer. This set has the following
four properties: (a) If U and ¥V are any two unitary matrices of order
n, their product UV is again a unitary matrix of order » and hence
belongs to the set U(n). (b) The set contains the unit matrix / which
has the property UI=IU=U for every UcU(n). (c) If U is an
element of U(n), there exists a unique element V also in U(n) such
that UV=VU=I (d) IfU,V and W are any three elements of the
set, UVW)=(UV)W.

It will be noticed that thg four properties satisfied by the above
two sets are very much similar in nature. In fact, these properties
define a group and both the sets discussed above are examples of a
group.

Abstractly, a group is a set of distinct elements, G={E, 4, B, C,
D, ...}, endowed with a law of composition (such as addition,
multiplication, matrix multiplication, etc.), such that the following
properties are satisfied :

(2) The composition of any two elements 4 and B of G under the
given law results in an element which also belongs to G. Thus,

AsBe G, BoAE G, (1.1
where we have denoted the composition of two elements of G by the
symbol ». Symbolically,

A°eBE G~ A,BEG.
This property is known as the closure property of the group and the
set is said to be closed under the given law of composition.

(b) There exists an identity element E€ G such that for all AEG,

EoAd=AoE=A4. (1.2)
.Symbolically,
JEEGDEcA=AE=ANM A EG.
E is known as the identity element of G.
{¢) For any element A€ G, there exists a unique element BEG
such that
Ao B=Bo A=E. (1.3)
Symbolically,
Y AEGIABEGD AcB=Bo A=EFE.
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B is called the inverse of A, and vice versa.
(d) The law of composition of the group elements is associative,
i.e., for any A4, B, CEG, ) _
Ao(BoC)=(AeB)o C. (1.49)
Symbolically,
Ao(BoC)=(A°B)eC~ A, B, CE G,

The number of elements in a group is called its order. A group .
containing a finite number of elements is called a finite group; a
group containing an infinite number of elements is called an infinite
group. An infinite group may further be either discrete or continuous:
if the number of the elements in a group is denumerably infinite
(such as the number of all integers), the group is discrete; if the
number of the elements in a group is nondenumerably infinite (such
as the number of all real numbers), the group is continuous.

Some more examples of a group are:

(i) The group of order two consisting of the real numbers 1,—1,
with ordinary multiplication as the law of composition.

(ii) The group of order four consisting of the complex numbers
1, i, —1, —i (where /2=—1), under multiplication.

(iii) The discrete infinite group of all real integers discussed above.
The law of composition is addition and the identity element is O.

(iv) The set of all real numbers under addition. This is a
continuous group with O as the identity element. The inverse of a
number b is its negative —b.

(v) The set of all positive (zero excluded) real numbers under
multiplication. The identity element is 1 and the inverse of x is its
re_ciproceil 1/x.

(vi) The single point set containing just the unity is a group of
order one under multiplication.”

(vi)) The set of the two matrices l: (1) ? ]'ahd l:_(l) (I):Iunder

matrix multiplication.
(viii) The set of all nonsingular square matrices of order n (n
a positive integer) under matrix multiplication. o
(ix) If k is a positive integer, the set (0, 1, 2, ..., k—1) of k
integers isa group under? addition modulo (k). The identity element is
zero and the inverse of an element r is k—r.

2A number n modulo (k) is defined as the remainder obtained on dividing
n by k. Thus,10 modulo (6) =4, 3 modulo (3) =0, etc. Let k=6 in Example
(ix); then 3+4=1, 54+1=0, etc.
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(x) If pis a prime number greater than 1, the set (1, 2, ..., p—1)
of p—1 integers is a group under multiplication® modulo (p).
The identity element is 1 and the inverse of an element ris (sp-+1)/r
where s is the smallest positive integer which makes sp+1 an integral
multiple of r in the ordinary sense.

(xi) The set of all matrices of order m X n under matrix addition.
The identity element is the null matrix of order m xn and the inverse
of an element A is its negative —A.

In the above examples, we come across two basic laws of
composition—addition and multiplication—each referring to scalars
and matrices. When the law of composition of a group is addition, the
inverse of an element is called the additive inverse; when it is
multiplication, the inverse is called the multiplicative inverse. Thus, if
x is a number, —x is its additive inverse and 1/x the multiplicative
inverse provided x=£0. If 4 is a matrix,— A4 is its additive inverse and
A~ the multiplicative mverse provided A4 is nonsingular. Similarly, in
the case of a group of numbers, 0is the additive identity and 1 the
multiplicative identity; in the case of a group of matrices, the null
matrix (of appropriate order) is the additive identity while the unit
matrix (of appropriate order) is the multiplicative identity.

Hereafter, the symbol o will be dropped and, for example, 4B
will be written for A o B. Similarly, we shall often replace the word
‘composition’ by ‘multiplication’ or ‘product’ of group elements.

The product of the group elements is not necessarily commutative,
i.e., in general, AB#BA. If all the elements of 4 group commute with
each other, it is said to be an abelian group. Such groups have impor-
tant consequences as will be seen later. All the groups considered
above, except the group U(n) of all unitary matrices of order n and
the group of all nonsingular matrices of order », are abelian groups.

1.1.1 Group of transformations. The groups of particular
interest to a physicist are the groups of transformations® of
physical systems. A transformation which leaves a physical system
invariant is called a symmetry transformation of the system. Thus any
rotation of a circle about an axis passing through its centre and per-
pendicular to the plane of the circle is a symmetry transformation for
it. A permutation of two identical atoms in a molecule is a
symmetry transformation for the molecule.

3See footnote 2. In this Example, if p=7, then 3.4=5, 2.5=3, etc.; the
inverse of 4 is 2, since 4.2=1.
4Such as rotations, reflections, permutations, translations, etc.
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We shall now show that the set of all symmetry transformations of
a system is a group. First we observe that if we perform two symmetry
transformations of the system successively, the system remains
invariant. Thus the composition of any two symmetry transformations
of the system is again a symmetry transformation of the system, i.e.,
the set considered isclosed under the law of successive transformations.
We can define an identity transformation which leaves the systen
unchanged; and this obviously belongs to the set. Given a symmetry
transformation, we see that there exists an inverse transformation which
also belongs to the set. Finally, the successive transformation »f the
system obeys the associative law. This proves that the set consilered
is a group. ‘ _

The group of all symmetry transformations of a system 1s called
the group of symmetry of the system.

1.1.2 The group of symmetry of a square. Suppose we have
a square cut out in a piece of cardboard as shown in Fig. (1.1).
Let us label the various points of the square as shown in the figure:
the corners by a, b, ¢, d; the centres of the edges by e, /, g, h; and -
the centre of the square by 0. The points marked 1, 2,...,8 are fixed
on the paper (they are not marked on the square). Now suppose we

1 2
a T
N ’f b
\\ i //
N : ’
N ! //
AN ‘. 7 ¢
e
] - SEREETE 7
.0} N
// ! N
pd : S
i 1 AN
d 'h &
4 8 3

FIGURE 1.1 The axes and the planes of symmetry of a square

rotate the square through a right angle about a line perpendicular to
the square and passing through o. But for the labeling a, b,..., 5,
we would not notice any change in the square. Consider all such
symmetry transformations of the square (such as rotating or reflecting
it, without bending or stretching) which leave the position of
the boundaries of the square unchanged but give a distinct labeling of
the marked points a, b. ..., /1. Before listing all such transfor-
mations, it would be proper to say a few words about the notation we
shall be using.
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If a rotation through an angle 2rn/n (n a positive integer) about
some axis leaves the system invariant, the axis is known as an #n-fold
symmetry axis of the system and the corresponding operation is
denoted by C,. Its integral powers, which will also be symmetry
transformations of the system, will be denoted by C.*; this repre-
sents k successive operations of C, on the system, or a rotation of
2rk/n about the axis, A reflection in a plane will be denoted by
mor o with a subscript specifying the plane of reflection. The
identity transformation will be denoted by F. -

While enumerating all the symmetry transformations of a square,
which are listed in Table (1.1), we.shall use the shorthand notation
‘reflection in a line’ to mean ‘reflection in a plane perpendicular to the
square passing through the line’.

It can be seen that the operations listed in Table (1.1) exhaust
the symmetry transformations of a square, i.e.,-there is no other trans-
formation which leaves the square in the same position and yet gives
a distinct labeling for the points a, b, ..., h. Ope may think of in-
version through the centre o; but it can be readily verified that it is
identical to C,2.

Y

E C, c,? Cy?
y‘ y

X X = —l_
my my _0'14 . av
x|

Y

FIGURE 1.2 The cquivalance of the transformations of a square
with those of a cartesian coordinate system

It is interesting to note that these eight transformations correspond
to the eight different ways in whiclh we can choose a cartesian coordinate
system with axes parallel to the edges of the square. These are shown
in Fig. (1.2). We either consider that the coordinate system is held
fixed while the square 1s transformed, which is known as the active
viewpoint, or that the square is held fixed while the coordinate
system is transformed, which is known as the passive viewpoint. It
should be noted that a transformation in the active viewpoint is
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Symbol

Mx

my

ay

TaBLE 1.1 SYMMETRY TRANSFORMATIONS
OF A SQUARE

Operation

The identity.

A clockwise rotation through 90° about
an axis normal to the square and passing
through o.

A rotation through 180° about the above
axis.

A clockwise rotation through 270° about
the same axis.

Reflection in the line 5-7.

Reflection in the line 6-8.

Reflection in the line 1-3.

Reflection in the line 2-4.

Result

o
4
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equivalent to the inverse transformation in the passive viewpoint.
Thus, if in the active viewpoint, we define C, as a clockwise rotation
of the square, in the passive viewpoint, C, would mean an anticlockwise
rotation of the coordinate system. This convention will be used
throughout this book and isillustrated explicitly in Fig. (1.2).

It can be readily verified that the set of the eight transformations
listed in Table (1.1) is a group which is the group of symmetry of a
square. Thus, consider the operation of C, followed by that of 6, on
the square. This can be found as follows:

a b d a d < a b
6uC4 =g = =my . (1.5
d 4 C b a b d C

Inthe operator notation, we can write this as
UuC4'_—’77X; . (1 . 6)
meaning thereby that the operations of a. Cs4 and of m. on the square

or in fact, on any system, give the same result.
The inverse of an operator is that operator which nullifies the

effect of the first. Thus, consider the successive operation C,2C, on
the square:

a b d al’ a b a b
C‘ac_‘ =C43 = - E ° (1.7)
d c < b d c d c

The same result would be obtained if we operate by C, and C,?
in the reverse order. Thus, by (1.3), C, is the inverse of C,® and vice
versa. In the operator notation, we may write this as

(CH'=CP or C,CP=C3C,=E. (1.8)
1t 1s left asan exercise to verify that each of the eight symmetry trans-
formations has an inverse which is just one of these eight transfor-
mations.

Finally, the transformations obey the associative law. Hence
the set of the symmetry transformations of a square is a group. This
symmetry group of a square of order eight is denoted by C,, in crys-
tallography®.

5The crystallographic point groups are dealt with in Chapter 7. If instead of
the reflections, we consider rotations through = about the four lines of Fig.
(1.1), we hdve the group Dy which is also the symmetry group of a square and
has the eight elements (E, Cy4, C42, Cg3, Cs7, Cggy C13, Caq) Where Csy
denotes a twofold rotation about the line 5-7, etc. See Chapter 7 for more
details. ‘
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1.2 The Multiplication Table

Let us consider the following operations

C, my=o0u, ou C2=iny,

os 0,=C,? and so on.
All such products of the group elements can be represented by atable,
known as the group multiplication 1able. 1t is shownin Table (1.2) for
the symmetry group of a squarc. C,,. Note that in a successive
operation such as ABC. . ., the order of operation is from right to left.
Thus, in the product Cymx, my is the first operation and C, the second
operation. The entry for Cymywould therefore be found in Table (1.2)
in the column corresponding to m, and the row corresponding to C,.

TABLE 1.2 THE MULTIPLICATION TABLE
FOR THE GROUP C,,

SECOND -FIRST

OPERATION OPERATION
E C, C42 C43 i hty Cu Oy

E E C, C2 C? My my ou ay,
C3 | C3& E C, C2 a, Cu my my

Ct|C® C& E C, my Mx G, O
C, C, 2 Cp E Ou o, my  my
Me | M G My Gu E c2 C8 C,
my | my o My oy 2 E C, Cg
Ou Ou Ny oy ny C, Ce E Cg?
G, G, My Ou My C3 C, c? E

The ordering of the rows and the columns in writing down the
multiplication table of a group is immaterial. We have chosen a diffe-
rent ordering for the rows and for the columns:the ordering is such
that an element in the first column (second operation) is the inverse
of the corresponding element in the first row (first operation). If the
multiplication table is written in this way, the principal diagonal
contains only the identity clement E. The advantage of this arrange-
ment will be clear in Section 3.7.

1.2.1 The recarrangement theorem. It will be noticed from the
multiplication Table (1.2) that each element of the group occurs once
and only once in cach column. This is known as the rearrangeineni
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theorem. The arrangement of elements in a row (column) is different
from that in every other row (column).

To prove this theorem, we first show that no element can occur
more than once in a row or a column. For, suppose an element D
occurs twice in a column corresponding to the element 4. This means
that there exist two elements, say B and C, such that

BA=Dand CA=D.
Multiplying from the right by 41, we get

B=DA-', C=DA",
showing that B=C, which is contrary to the hypothesis. that the
group elements are distinct. The same line of argument can be used
to show that no element can occur more than once in a row.

The second part is now easy to prove: since no element can
occur more than once in a row or in a column and since the number
of places to be filled in each row or each column is equal to the
order of the group, each element must occur once and only once in
each row and in each column. This completes the proof.

An important consequence of this theorem 1s that if f is any
function of the group elements, then

T f(A)= X f(4B), 1.9)
AEG AEG

where B is an element of the finite group G and the sum runs over
all the group elements.

1.2.2 Generators of a finite group. It is possible to generate
all the elements of a group by starting from a certain set of elements
which are subject to some relations. Consider the smallest set of
elements whose powers and products generate all the elements of the
group. The elements of this set are called the generators of the group.
We shall restrict ourselves here to finite groups only and illustrate by
means of two examples.

EXAMPLE 1. We wish to generate a group starting from an element
A subject only to the relation A"=EFE such that n is the smallest
positive integer satisfying this relation.

Since A is an element of the group, all its integral powers must
also be in the group. Thus, we generate new elements A2, 43,..., of
the group and the process stops at 4”=E. The higher powers of 4 do
not give us new elements because A% = 4% The desired group is thus
(A4, A%, 4%,..., A", A"=:F), whose order is n.

A J
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ExXAMPLE 2. We wish to generate a group from two elements 4
and B subject only to the relations A>=B3=(AB)*=E.

The group must contain the elements E, 4, B and B?, since A’=E
and B*=F. But then it must also contain all the products of 4. B
and B? among themselves. Hence we get two new elements of the
group, AB and BA. It can be shown that 4 and B do not commute,
since if they do, then from the relation (4B)?=E, we have

E=ABAB=A?B>=PB?,
which is not true. Therefore AB and BA are distinct elements. We
have thus generated the six elements of the group E, A4, B, B%, AB,
BA.

It can now be shown that this set is a group, i.e., it is closed
under multiplication. Suppose we wish to show that the product
(AB) B=AB? belongs to this set. From the relation (AB)*=E, we
have (AB)'=AB or B4 =AB or AB=B-'4 since A*=E. But
from B3=E, we have B-'=B% Hence AB=B%24. Using this. we
find that

(AB)B=B*AB=B*B*4A=BA,
which indeed belongs to the set. Similarly, it can be verified that
the inverse of each element of the set also belongs to the set. Hence
the desired group is (E, 4, B, B 4B, BA). whose order is six.

The generators of a group are not unique; they can be chosen in a
variety of ways. Thus, for example. the group of order six of
Example 2 above may be generated by any one of the following sets

of generators: (4. B), (4, B?), (4, AB), (B. AB), etc. See Problem
(1.25)

1.3 Conjugate Elements and Classes

Consider a relation such as
A-1BA=C. (1.10)
where 4, B and C are elcments of a group. When such a relation
exists between two elements B and C. they are said to be conjugate
elements. The operation is called a similarity transformation of B by
A. It 1s clear that
' ACA-'=B. (.10
1t is not difficult to find such relationships among the clements of"
the group Cy,.. Thus,
Cy72meCy=imy,. (r.12:
showing that nr,y and miy are conjugate tc cach olher.
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It is a simple exercise to show that if B is conjugate to € and B
is also conjugate to D, then C and D are conjugate elements; or
B, C and D are all conjugate to each other.

It immediately follows that we can split a group into sets such
that all the elements of a set are conjugate to each other but no
two elements belonging to different sets are conjugate to each other.
In fact, such sets of elements are called the conjugacy classes or simply
the classes of a group. The identity element E always constitutes
a class by itself in any group, since, for any element 4 of the
group, A"YFA=E. It is left as an exercise to show that the classes

of C,, are
(E), (Ca» C®), (C4P), (m1x, my), (0u, 6) (1.13)

In case we are dealing with groups of transformations consisting
of rotations, reflections and inversion of a physical system, there are
some simple rules which allow the determination of the classes of a
group without having to perform explicit calculations for all the ele-
ments. These are:

(i) Rotations through angles of different .magnitudes must
belong to different classes. Thus C, and C,? of C,, belong to different
classes (see Problem 1.17).

(ii) Rotations through an angle in the clockwise and in the
anticlockwise sense about an axis belong to a class if and only if
there exists a transformation in the group which reverses the direction
of the axis or which changes the sense of a cartesian coordinate
system (i.e., takes a right-handed system into a left-handed one or
vice versa). Thus, C, and C;® of C,, belong to the same class because
a reflection (such as m, or o) changes the sense of the coordinate
system.

(ili) Rotations through the same angle about two different axes
or reflections in two distinct planes belong to the same class if and
only if the two axes or the two planes can be brought into each other
by some element of the group. Thus, mx and m, belong to the same
class since the line 5-7 of Fig. (1.1) can be brought into the line 6-8
by the application of Cy; cu and mx do not belong to the same class
sirice there is no operation in C,, which can bring the line 1-3 into
the line 5-7.

These simple criteria are very useful in obtaining the classes of
the molecular and the crystallogarphic point groups simply by
inspection. ' K
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1.3.1 Multiplication of classes. We now define the product of
two classes as-follows. Let Ci=(A4,, 4s,....4Am) and C;=(B,, B,,...,
B,) be two classes (same or distinct) of a group containing m and n
elements, respectively. We define their product as a set containing all
the elements obtained by taking the products of each element of (;
with every element of ;. We keep each element as many times as it
occurs in the product. Thus,

CiCi=(A.B,, ABy, ..., AiBk,. .., AmB,). (1.14)

We can easily show that the set C; C; consists of complete classes.
It would be enough to show that if an element A;Bx belongs tc the
set ; Cj, then any element conjugate to A,;Bx also belongs t. the
set. Consider an element conjugate to 4;Bx with respect to some ele-
ment X of the group G:

XY ABYX=(X"14,X) (X~ BrX)
=A,B;, say, (1.15)
where, by the definition of a class, 4, belongs to (i and B; belongs
to ;. Hence A,B; belongs to the set Ci(;.

We can then express the product of two classes of a groupas

a sum of complete classes of the group:

Ci Cj':iaijk Ck, (1.16)

where a;;. are nonnegative integers giving the number of times the
class Cx is contained in the product ; C;, and the sum is over all
the classes of the group.

1.4 Subgroups

A set His said to be a subgroup of a group G if H is itself a
group under the same law of composition as that of G and if all the
elements of H are also in G. ,

As an example, consider the four elements (E,C,, C,% C;®) of
C,. It is easy to see that this set satisfies all the axioms defining a
group; hence it is a subgroup of C,,. Some more examples of the
subgroups of C,, are (E, Cy2, myx, m,), (E, cu), etc.

Every group G has two trivial subgroups—the identity element
and the group G itself. A subgroup H of G is called a proper sub-
group if H+#G, i.e., if G has more elements than AH.

If we work out the classes of the two subgroups (F,Cy, C,%,
C») and (£, C2, my,my), we find that in both of these groups every
element constitutes a class by itself (sec Problem 1.12). The
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elements C, and C.® do not belong to the same class in the group
(E.C4, C\2 C®) because there is no operation in this group which
changes the sense of the coordinate system. Similarly, m, and m,
do not belong to the same class in the group (F, C,2 my, m,) because
there is no operation in this group which can take the x axis into
the y axis. It is therefore important to note that elements belonging

to a class in a larger group may not belong to a class in a smaller
subgroup.

1.4.1 Cyclic groups. If A is an element of a group G,

all integral powers of 4 such as 4% 4% ..., must also be in G. If G

is a finite group there must exist a finite positive integer » such that

A"=E, (1.17)

the identity element. The smallest positive (nonzero) integer satis-
fying (1.17) ‘s called the order of the element A.

The group (A4, A% A3, ..., A"=E), which we have already

_ discussed in Example 1 of Section 1.2.2, has the property that

each of its elements is some power of one particular element. Such

groups are called cyclic groups. A group generated by asingle ele-

ment is a cyclic group. Clearly, cyclic groups are abelian, while the
converse is not necessarily true.

1.4.2° Cosets. Consider a subgroup H=(H,=E, H,, ..., Hp)
of order & of a group G which is of orderg. Let X' be any element
of G. Construct all the products such as XE, XH,, etc., and denote
the set of these elements by®
XH=(XE,XH,, XH,, ...,XH,). (1.18)
Now there arise two cases—X may be in the subgroup H or X may
not be in H. If X is a member of H, the set XY H must be identical
to the group H by the definition of a group. In the set YH, we
only have a rearrangement of the elements of H. We may denote
this by writing
XH=H if X€ H. (1.19)
On the other hand, if X does not belong to H, it can be shown that
no element of the set XA belongs to H. This we do by starting
from a contrary assumption. Thus, suppose that XH; for some
value of i (1 <<i<Ch) belongs to H. Now since H is a group, H;—!
also belongs to H. Hence it follows that (YH;) H;-'=X 1s in H,

6This is the multiplication of a set by an element. We have previously
discussed the product of two sets in Section 1.3.1.
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contrary to the hypothesis that X' is not a member of H. This
proves that A and XH have no common element. We say that H
and X H are disjoint sets and express it, in the set theoretic notation,
by saying that the intersection of H and XH is the null set ¢:

H O (XH)=6¢. (1.20)

The set XH is called the Jeft coset of H in G with respect to X.
Similarly, we can define the right coset of Hin G with respect to X as -
the set of elements '

HX=(EX, Hy X, H3X,...,HxX), (1.21)
which will also be disjoint ‘to H if X isnot in H. All the elements
of the left coset and the right coset must of course belong to the
bigger group G since X as well as H; belong to G.

1.4.3 A theorem on subgroups. We are almost half-way through
to prove an important theorem: If a group H of order h is a subgroup
of a group G of order g. then g is an integral multiple of h.

To prove this, let H=(E, H,, H,, ..., H;) be the subgroup of
G. As before, form the left coset of H with respect to an element
X &G which does not belong to A. All the elements X H; (1 <<i<Ch)
belong to G but none of them is a member of H, as already shown
above. Thus, we have /& new elements of the group G. We have so
far generated the following 2 members of G:

HUXH=(E,H,, Hy,..., Hy, X, XH,,....XH,}). (1.22)
If this does not exhaust the group G, then pick up an element Y
from the remaining elements of G such that Y belongs neither to H
nor to XH. Again, forming the left coset YH, we see by the pre-
vious argument that all the elements YH must belongto G, but that
no element of YH can belong to H. That is, the sets H
and' YH are disjoint. We now prove that the sets YH and XH are
also disjoint. For, if an element YH; were to be identical to an
element, say, XH; (1 =i, j<h), then we have

YH,=XH;,

or Y=XH; Hi'=XHy, say, (1.23)
with 1<k <Ch, showing that Y belongs to XH, contrary to the
hypothesis. Thus we have a set of A new elements of G, making
altogether the 3/ elements

HUXHUYH
=(E.Hy, ..., Hn, X, XHyy...,XH, Y, YH,,.. .YHy,. (1.24)
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If this still does not exhaust the group G, then we pick up one
of the remaining elements of G and continue the process. Every
time we generate h new elements, they must all belong to G and
bence the order of G must be an integral multiple of A.

The integer g/h is called the index of the subgroup H in G.

If an element A of a finite group G is of order n, we have
seen that the set (4, A% ...,4"=E) is a subgroup of G. Hence it
follows that the order of every element of a finite group must be an
integral divisor of the order of the group.

1.4.4 Normal subgroups and factor groups. If the left and
the right cosets of a subgroup H with respect to all the elements
X €EG are the same, then H is called a normal subgroup or an inva-
riant subgroup of G. This condition ¢an be written as

XH=HX, .
or X-'HX=H for all X&G. (1.25)

We can also express this condition alternatively by requiring that

every element of XH be equal to some element of HX, or
XH=H;X,

which gives

X-H;X=H,;. (1.26)
But this is just the conjugation relation between the elements H;
and H;and shows that if an element H; belongs to a normal subgroup
H of G, then all the elements conjugate to H; also belong to H.
This is often expressed by saying that a normal subgroup consists of
complete classes of the bigger group. The converse also holds, ie., if
a subgroup H consists of complete classes of G, then H is a normal
subgroup of G (see Problem 1.26). This may therefore be taken as
an alternative definition of a normal subgroup. For example, (E, C,2,
my, My) is a normal subgroup of C,, whereas (E, my) is not.

We now introduce another important concept, that of a factor
group. We shall illustrate this first by an example and then follow
with a general discussion.

Consider a normal subgroup of C,,, say K, ——(E C,?), and form
all its distinct cosets with respect to various elements of Cs,. There
are four such distinct cosets including X|:

K,=(E, Cy?), K,=(Cy, CP),

Ky=(mx,my), Ky=(ow0,). - (1.27)
e can make this set of cosets a group if we define the product of
two cosets as follows: The multiplication of two cosets is a set
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obtained by multiplying each element of the first coset with every
element of the other, repeated elements being taken only once.” In
general, the product of two cosets will depend on the order of
multiplication. Thus, we consider
KKy =(Cy, C3) (mx, my)

=(6u, 6y, 64, 6,)>(0u, 6,)=K,. (1.28)
It can then be seen that the set K=(K, K,, Kj, K,) is closed under
coset multiplication defined above. Similarly, it can be verified that
this set also satisfies all the other requirements for being a group.
Hence it follows that the set K, where each coset K; is considered an
‘element’ on a higher plane of abstraction, isa group under the given
law of composition. This group K iscalled the factor group of G with
respect to the normal subgroup KX,.

Quite generally, if H is a normal subgroup of G, the set of all
the distinct cosets of H in G, together with the coset multiplication
defined above, is called the factor group or the quotient group of G
with respect to H and is denoted by

K=G/H. (1.29)
If g is the order of G and h that of H, then it is easy to see that the
order of K is g/h, the index of Hin G.

1.5 Direct Product of Groups

The direct product of two groups H=(H,=F, H,, H,,..., H))

of order h and K=(K,=E, K,, K;,..., K;) of order k is defined as a

group G of order g==hk consisting of elements obtained by taking

the products of each element of H with every element of K, provided

(i) that H and K have no common element except the identity E and

(ii) that each element of H commutes with every element of K.

The direct-product group is denoted by
G=HQ K=(E, EK,, EK,,. ... EK\, H,K,,.. .,

H,Ky,. .., HyKy). (1.30)

Clearly, both H and K are normal subgroups of G. The subgroups of
C,, afford a simple example of this concept. Thus,

(E, m)® (E, my)=(E, C2, mx, m,). (1.31)

Taking the direct product of groups provides the simplest

method of enlarging a group. This concept finds its immediate use

in the study of symmetry of physical systems such asatoms, molecules,

7Note that this is different from the class multiplication defined earlier.
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crystals, nuclei and elementary particles. To take an example,
suppose G is a group of symmetry (of a system) consisting of proper
rotations only. Suppose we later discover that the inversion, J, is
also a symmetry transformation of the system. The inversion ope-
rator J along with the identity E constitutes a group of order 2,
(E,J). Since the inversion commutes with all the rotations, we can
take the direct product of G with (E, J) to obtain a bigger symmetry
group for the system which is now G®(E, J). Although it is not
possible in reality to tell whether we have found all the symmetries of
a given system, it is naturally desirable to know as many of them
as possible. We shall discuss this concept in more detail when we
come to the applications of group theory to quantum mechanics
in Chapters 5 and 6.

1.6 Isomorphism and Homomorphism

A group multiplication table, such as that shown in Table (1.2)
for the group of a square, characterizes the group completely and
contains all the information about the analytical structure of the
group. All groups having similar multiplication tables have the same
structure—they are said to be isomorphic to each other.

Mathematically, there is an isomorphism between two groups
G={E, A, B, C,...} and G'={E’, A’, B’, C’,...}, both of the same
order g, if there exists a one-to-one correspondence between the elements
of G and G’. In other words, if the one-to-one correspondence is
denoted by A«d’, B~B’, C—C’, etc., then a multiplication such as
AB=C in the group G implies that 4’ B’==C’ in the group G’. The
multiplication table of G’ can thus be obtained from that of G simply
by replacing the elements of G by the corresponding elements of G'.
It should be noted that the identity element of one group corresponds
to the identity element of the other group under isomorphic mapping.

As an example, it can be seen that the group {1, i, —1, —i} of
numbers is isomorphic to the group {£, C,, C,?, C,?} of rotations
under the mapping

1eE, ie2Cy,—1eaCl2 —ieC 2.
Thus, for example, the product (—1) (—i)=i in one group
corresponds to the product C,2 C3=C, in the other. We shall come
across many other examples of isomorphism later.

Very often we come across a many-to-one correspondence or
mapping from one group to another (or one set to another, in
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general). We say that there is a homomorphism from a group G, to
another G; if to each element A in G, there corresponds a unique
element ¢ (A) of G,suchthat ¢ (4B)=¢ (A) ¢ (B). The mapping ¢ must
be defined for all elements of G,. The element ¢ (4) of G, is called the
image or map of the element 4 of G, under the homomorphism.
Although each element 4 of G, is mapped onto a unique element
é(A) of G,, several elements of G; may be mapped onto the same
element in G,. Thus it may happen that ¢ (4)=¢(B) even if A%B. If
n elements of G, are mapped onto each element of G,, we say that
there is an n-to-1 mapping or homomorphism from G, to G,. It is
evident that if n=1, the mapping reduces to isomorphism.

Let us develop a slightly different notation to make the concepts
more clear. Let G={FE, 4, B, C, ...} be a group of order g and let
G'={Ey, Ey, ..., En, Ay, A3, ..., A, ...} be a group of order ng
(note that only one element, say E,, is the identity of G’). Suppose
that it is possible to split the group G’ into g sets (E)), (4i),
etc., each containing n elements such that the elements of G’ can be
mapped onto the elements of G according to the scheme

E,E,, ..., E~>E;
Ay, As, - .., An>4; etc. (1.32)
Then the group G’ is said to be homomorphic to G if the mapping is
such that the product
A1 B;=Cx, 1<k<n, (1.33)
in G’ implies AB = C in G, and vice versa, where C is the image in G
of the elements C, C;..., C, of G'. We say that there is an n-to-1
homomorphism or mapping from G’ to G.

Again the subgroups of C,, provide a simple example of
homomorphism. Thus, the group (£, C%, mx, my) is homomorphic to
the group (E, m,) with the following two-to-one mapping:

E, C2~>E; mgy, my—>m,. (1.349)

1.6.1 The set (F;) is a normal subgroup of G’. It can be shown
quite generally that the set (E;) of G’, whose elements E;, E,, ..., Ex
are mapped onto the identity element F of G, is a normal subgroup
of G'. To prove this, we first show that the set (E;) is a group. In the
group G, we have EE=E; therefore, by the definition of homomorphism,.’
the product of any two elements E; and E; of G’ must belong to
the same set (E;). Thus, the set (E;) is closed under multiplication.
Now we must show that the identity element, which we denote by
L' for a moment, belongs to the set (E;). Suppose E’ belongs to
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some other set of G’, say, E' € (4,); then for any element B, € G',
we must have E’B,=B;. By homomorphism, we must then have
AB=B in G, which is possible only if A=E, 1.e., only if E' € (E).
It is now almost trivial to show that if E;, € (E;), then E;~* also
belongs to the set (£;). Thus we have proved that (E;)is a group.

To prove the second, part, that (E;) is a normal subgroup of
G’, we consider its left and right cosets with any other element, say
A; € G, ie., we consider 4;(E;) and (E;)4;. Because EA=AE=A
in G, any product element such as E;4; or 4;E; of G' must belong
to the set (A4;). Moreover, the products of 4; with all the n elements
E; of the set (E;) exhaust the set (4;). To put it briefly, every element
of (4;) must occur once and only once in the product 4; (Ej); the
same will clearly be true for (E;) 4;. Thus, we have

Ai (Ej)=(A)),
(Ey) Ai=(4)), (1.35)
showing that (F;) is a normal subgroup of G'.

The set (E;) of G’ which is mapped onto E of G is called the kernel
of homomorphism. The above theorem can therefore be stated briefly
by saying that the kernel of homomorphism from G’ to G is a normal
subgroup of G'. |

The identity element furnishes a trivial example of homomorphism.
There is a homomorphism from any group G onto the group of
order one éontaining only the identity element, which, in turn, is a
normal subgroup of any group.

1.7 Permutation Groups

These groups are of considerable importance in the quantum
mechanics of identical particles. Consider a system of n identical
objects. If we interchange any two or more of these objects, the
resulting configuration is indistinguishable from the original one.
We can consider each interchange as a transformation of the system
and then all such possible transformations form a group under which
the system is invariant. Since there are altogether n! permutations on
n objects, the group has order n!. It is known as the permutation
group of n objects or the symmetric group of degree n and is usually
denoted by Sk.

Taking a specific example of three identical objects, we see that
there are six possible permutations which may be denoted as:

i



ABSTRACT GROUP THEORY 21

123 1203 _123)
E=(1 2 3)’ A”(z 3 1)’ B—(a 1 2)

123 (123 B
C=(2 1 3)' D‘(a 2 1)’ F=

The labels 1, 2 and 3 refer to the positions of the three objects rather
than to the objects themselves.® The system itself has six possible
‘states’ which may be denoted by

h=(1 2 3), §=02 3 1), §=3 1 2),

(1.36)

—
—
w
N

(1.37)
=2 1 3. =3 2 1), $=0 3 2).
The six operaters of (1.36) t'n act on any of the above six states
and their operations are to be .nterpreted as follows. The opcration
of A, for example, on any state §; means that the object in position
2 is to be put in position 1, that in position 3 to be put in position 2,
and that in position 1 to be brought to position 3. Thus,

A¢1=(; : 3) (12 3)=@2 3 1)=dy; (1.38a)
c¢2=(; f 3) @3 D=3 2 =1, (1.38b)

It can be readily shown that the set of the six permutations of
(1.36) is a group. The successive operation of two permutations on
a state can be easily worked out. Thus, opcratmg on (1.38b) from the
left, say, by 4, we find

AC=(, 3 ) G20=C 139k (1.39)
But we also have
2
F%:(} : ;) (3 D=@ 1 H=4s (1.40)

Thus, we have

AC Y3=F1),. (1.41)
It will be seen that if we start from any other state, the result is the
same, i.e.,

. ACY=Fi, lgzgs (1.42)
Therefore, in the operator notation, we can write
AC=F. (1.43)

It is left as an exercise in Problem (1.19) to work out the mul-
tiplication table of S,.

8In quantum mechanics it is futile to try to label identical particles!
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Coming back to the general case of n identical objects, we see,
that eéach permutation of these objects can be expressed as the
successive interchange or transposition of two objects taken at a
time. We define a transposition (mk) on n identical objects as
the operation in which the objects in the positions m and & are to
be interchanged leaving all the other objects where they are. It
can then be verified that the symmetric group S, of degree n (n
finite) can be generated by the n—1 transpositions (12), (13),..., (I1n).

As an example, a set of generators of S, are the two transpo-
sitions (12) and (13). All the elements of S, can be written as
suitable products of these generators. Thus, B=(13)(12), F=(13)
(12)(13), C=(12), etc., where, as per the convention, the order. of
operation is from right to left.

If a permutation consists of an even number of transpositions,
it is called an even permutation; if it consists of an odd number of
transpositions, it is called an odd permutation. Thus, the operators
E, A and B of (1.36) are even permutations, while C, D and F are
odd permutations.

The product of two even or of two odd permutations is an
even permutation, whereas the product of an even permutation with
an odd permutation is an odd permutation. It then immediately
follows that the set of all even permutations among the group S,
is a subgroup.® This is known as the alternating group of degree n and
is usually denoted by A4,. Its order is clearly n!/2. Thus, the
alternating group of degree 3 is A,=(E, 4, B), where the elements
have been defined in (1.36).

Some more discussion of the permutation group and its classes is
given in Section 6.1.3.

L8 Distinct Groups of a Given Order

We have already mentioned that isomorphic groups have
identical analytical structures. A number of isomorphic groups
may stand for altogether different physical situations, but it is
_sufficient to study only one of them mathematically. The elements
of a number of isomorphic groups may be matrices or permutations
or coordinate transformations; it suffices to study a group which is
isomorphic to all of these and its elements need not have any

?A similar result does not hold for the set of all odd permutations. Why?
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‘meaning’ and may be treated in the abstract sense. Notice that
the whole theory is based on the four fundamental group axioms
which are quite independent of any particular interpretation given
to the group elements. This part of the theory is therefore called
abstract group theory. We may ‘put in’ any interpretation for the
group elements demanded by the physical situation at hand and
‘take out’ the corresponding results.

It is therefore desirable to enumerate the distinct (nonisomorphic)
groups of a given order =. It is particularly easy to do so for
small values of n. We list below the possible structures of groups
of orders upto n=6.

(i) n=1. There is only one distinct structure: a group having
only the identity element E.

(ii) n=2. Again, there is only one distinct structure: a group
(E, A), where, because the group is of order two, 4% must equal E.

" Any. group of order 2 must be isomorphic to (E, A). Examples are
(E, mx), (E, ou), (1,—1), etc.

(i) n=3. This case also has only one structure: a group
generated by an element A4 of order 3, i.e., (4, A%, A>=E).

(iv) n=4. This is the lowest order for which there are two non-
isomorphic groups. If we denote the group by (E, 4, B, C), then
the two possible structures are discussed below.

As discussed at the end of Section 1.4.3, the elements A4, B
and C can be of order 2 or 4. If any one element, say A, is of
order 4, it follows that the remaining three elements must be equal
to the powers of 4 and we get the structure

A?=B, A3=C; A*=E. (1.44)
This gives us the cyclic group of order 4, (A, A%, A3, A*=E).

In the second case, when no element is of order 4, it follows

that all the elements (excluding the identity) are of order 2; hence

A*=B*=C3*=E., (1.45)
The result of Problem (1.11) then shows that the group must be
abelian. Now consider the product AB; the two possibilities are
AB=EF and AB=C. But AB=F implies that B is the inverse of
A, whereas, from (1.45), we see that 4 is its own inverse. In
other words, AB=E wguld imply B=A ; therefore the only possibility
is AB=C.

The two nonisomorphic structures are then

(a) acyclic group of order 4, (4, A% A% A'=E);

(b) a noncyclic abelian group of order 4, (E, A, B; C) thh
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the structure A*?=B%*=C?*=E, AB=C, BC=A, CA=B. This is the
lowest order norcyclic group.

Any group of order 4 must be isomorphic to one of these two
groups.

(v) n=5. Only one distinct structure is possible in this case:
the cyclic group of order 5, (4, A2, A3, 4%, AS=E).

(vi) n=6. There are again two distinct (nonisomorphic)
groups. We shall prove only a part of this statement to illustrate
the argument involved.

Let us denote the group by (E, 4, B, C, D, F). As before, we
note that the orders of all the elements except £ must be 2, 3 or 6.
If the order of any one elements is 6, it follow that we have a cyclic
group of order 6, (4, 4%, A3, A%, A%, A®=E). Therefore, to find the
second possible structure we exclude this case.

Now we shall show that not all the elements 4, B, C, D and
F can be of order 2. For if they are, then by Problem (1.11), the
group is abelian. Then consider any two elements,_ say A and B
with A2=B2=F, and let AB=BA=C. It is clear that the set
(E, A, B, C) of four elements is a subgroup of order 4. But this
is not possible, because it violates the fundamental theorem on
subgroups that the order of a subgroup must be an integral divisor
of the order of the group. Hemce we conclude that at least one
element is of order 3.

The remaining part of the proof is left to the reader. The two
resulting structures are:

(a) a cyclic group (A4, A%, A3, A%, A%, A®=E);

(b) a noncyclic group (E, 4, B, C, D, F) which is also nonabelian
and has the structure A*=B3=F, C(C*=D*=F?=E, B=A"%,
AC=F, CA=D, BC=D, etc. This is the lowest order nonabelian
group and is isomorphic to S;.

It is not easy, although possible in principle, to go on in this
way to higher values of n. The number of nonisomorphic groups
would increase, in general, with increasing n. However, two comments
are worthy of note:

(i) For every finite value of n, there is always a cyclic group
gencrated by an element of order n, i.e., (4, 4% 43, ..., A"=E).

(ii) If the order n of a group is a prime number, there is only
one possible structure, i. e., the cyclic group of order n.

We conclude this chapter with one solved example.

- EXAMPLE. Prove that aset of agroup G isa systcin of generators of
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G {f and only if no proper subgroup of G exists which contains al}
the elements of the set S.

Choose a subset of the group G such that S is a system of
generators of G. To begin with, let us assume that there exists a
proper subgroup H of G such that SCHCG. Since H is a group -
and S is contained in H, the powers and products of the elements of
S give clements belonging to the group H alone, not G, which
contradicts the assumption that S is a system of generators of G.
Hence, if Sis a system of generators of G, there exists no proper
subgroup of G which contains S.

Now, assume that there exists no proper subgroup of G which
contains S. Let us generate a group by taking all powers and products
of the elements of S. Suppose this gives rise to the group K; evidently,
KCG. But, by assumption, G contains no proper subgroup which
contains S. Hence it follows that K=G, showing that S is a system of
generators of G. Thus if no proper subgroup of G exists which contains
S, then S is a system of generators of G.

The desired result follows immediately on combining the above
two results. C o

PROBLEMS ON CHAPTER 1

(1.1) Show that the following sets are groups under the given laws of com-
position and classify them according to their properties:
(i) theset of all rational numbers1® under addition:
(it) the set of all nonzero rational numbers under scalar multiplication;
(iii) the set of all complex numbers under addition;
(iv) the set of all nonzero complex numbers under scalar multiplication;
(v) the set of the eight matrices

tlonl. [-vel. 7o) 7] L6 31 a0, [0 5],

0 1
[ o]}
under matrix multiplication;
(vi) the set of all unitary matrices of order n under matrix multiplication;
(vii) the set of all even integers under addition;
(viii‘) the set of all complex numbers of unit magnitude under scalar multipli-
cation.
(1.2) Show that the following sets are not groups under the given laws of '
composition. Which of the group axioms do they fail to satisfy? ’
(i) The set of a/l real numbers under multiplication;

10A rational number is one which can be expressed as the ratio of two
integers, p/q. A real number which cannot be expressed as the ratio of two
integers (such as 4/2) is called an irrational number.
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(ii) the set of all nonnegative real numbers under addition;
(iif) the set of all odd integers under (a) muitiplication, (b) addition;
(iv) theset (1,2,..., p—1) of p—1 integers under muitiplication modulo (p)
where p is not a prime number.
(}.3) (a) Do the three matrices

E=r1 0 0 0, A=0 0 0 17 B=r0 0 1 O
0100 [\l 000 0 0 01
0 010 |_0 1 0 0 1000
0 0 01 0010 0100

form a group (under matrix muitiplication)? Add a minimum number of
matrices to this set to make it a group. Find these necessary additional matrices
and write down the multiplication table and classes. Is this group isomorphictc
(E, Cq C¢2, C4®) or to (E, Ca2, mg, my) or to both?

(b) To the group obtained in the above problem, one more matrix is
added:

0 0 01
0010
0100
1

Again, add to this set of matrices a minimum number of matrices to make it a
group. Show that the resulting group has crder eight and that it is isomorphic
to Cy,. (This fact will be used in Section (3.9)

(1.4) Show that the n n-th roots of unity, i.e., exp (i2zk/n)for 1 <k <|n,
form a cyclic group of order n under scalar multiplication. Show that if m is an
integral divisor of n, then the said group has a subgroup of order m.

(1.3) Construct the group multiplication tables for the groups of
Example (ix) of Section 1.1 for k=4 and 5, and for those of Example (x) for
p—s and 7.

(1.6) Write down the multiplication table for the group of the eight matrices
of Problem 1.1 (v). Obtain the classes and all the subgroups. Which of
them are normal subgroups? Show that this group is isomorphic to the group
Cyp- treated in this chapter by finding a suitable one-to-one correspondence.

(1.7) Generate the matrix group two of whose elements are

(7 o]=na [l ol

Show that the group is of order 8 and has 5 classes, but is not isomorphic to
Cye- (Hint: Show thea the matrix group generated here has six clements of
order 4 whereas C,, has only two such elements. The multiplication tables can
therefore not bo identical.) (This shows that two groups of the same order having
the same number of classes are not necessarily isomorphic.)

(1.8) Obtain the products of the various classes of the group C,;e and
express them as sums of classes in accordance with Eq. (1.16).

(1.9) Generate 'a group from two elements 4 and B subject only to the
relations A2= B*==(AB)2« E, where k is a finite integer greater than 1, and find
out its order. (Such groups are known as the dihedral groups and are denoted
by D;.)
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(1.10) What are the generators of the groups Cy, and S3? What are the
generators of the matrix group of Problem 1.1 (v)?

(1.11) Show thata group in which each element except the identity is of
order 2 is abelian.

(1.12) Show that an element of a group G constitutes a class by itself if and
only ifit commutes with all the elements of G. Hence show that in an abelian
group every element is a class. /

(1.13) Let H be a subgroup of a group G and let S be an arbitrary subset
of G.

(i) Let C (5 ; H) be the sot of elements of H each of which commutes with
every element of S, i.c.,

C(S; H)= (XEH]XA AXVAES)

Show that C (S ; H)is a group. (This group is known as the centralizer of S
in H.)

(i) Let N(S ; H) be the set of elements of H such that for all X € H, X—1

SX=S§, i.e.,

N(S ; H)=(X € H| X1 SX=S).
Show that N(S ; H) is a group. (This group is known as the normalizer of
S in H).

(1.14) Show that the group generated by two commuting elements 4 and B
such that A2=B3=E is cyclic. What is its order?

(1.15) Let H be a subgroup of G and let XH be a coset of H which is
disjoint to H. Let Y be an element of G belonging neither to .H nor to XH.
Show that the set YXH need not be disjoint to both H and XH. (Hint: Show
that if YXH were disjoint to both H and X H, then in the proof of the theorem
in Section 1.4.3, we would arrive at the erroneous result that the integer
g/h must be an integral power of 2.)

(1.16) Show that every subgroup of index 2 is a normal subgroup..

(1.17) Show that all the elements belonging to a class of a group have the
same order. Show, by giving a contrary example, that the converse is not
necessarily true.

(1.18) Let C; bea class of a group and let C;* be the set of elements which
are the inverses of those of ;. Show that (* is also a class. (The class (;° is
usually called the inverse of the class C;.)

(1.19) Construct the multiplication table of the symmetric group Sy and
obtain its classes.

(1.20) Show that the symmetric group S, of degree n is homomorphic to
the symmetric group Sy of degree 2.

(1.21) Construct the symmetry group of an equilateral triangle (this group
is denoted by Ty, in crystallography). Write down its multiplication table,
classes, subgroups and normal subgroups. Show that Cj, is isomorphic to Ss.

(1.22) Construct the alternating group of degree 4, A4,. Write down its
multiplication table and obtain its classes.11

(1.23) If G=H @ K, show that

(i} both H and X are normal subgroups of G;

(ii) the factor group G/H is isomorphic to K;

11Ses Falicov (1967), p. 14.
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(iii) G is homomorphic to both H and K;
{iv) the number of classes in G is equal 1o the product of the numbers of classes
in Hand X.

(1.24) Show that the group Cy, is homomorphic to the group (1, —1)
under multiplication. Also show that this 4-to-1 homomorphic mapping can be
established in three distinct ways.

(1.25) Given that 42=B3=(AB)2=F, generate groups starting from the ele-
ments (1) (4, AB), (ii) (B2, BA). Show that in both the cases, you get the same
group as that obtained in Example 2 of Section 1.2.2.

(1.26) If a subgroup H of a bigger group G consists of complete classes of
G, show that H is a normal subgroup of G, that is, the left and the right
cosets of A with respect to any element of G are the same.

(1.27) Consider the symmetric group S, of degree 4 with generators (12),
1234

2134) ¢

(13) and (14). Inthe notation of the text, this means that (12)=(

(a) Express the two permutations

(1 23 4 (1 23 4
A(4321)a“d8'(3142

as products of the generators.

(b) What is the order of each of the two elements 4 and B ? Find the
number of transpositions in each of these elements.

(c) Obtain both the products 4B and BA of these two elements.

(d) Obtain the inverse of each of the two elements.

(1.28) Find the subgroup of the symmetric group S; which leaves the
polynomial xyxz+x3+ x4 invariant. (Such a group is called the group of the
given polynomial.)

(1.29) Find the group of the polynomial xyxg+ x3xq and verify that it
contains as a subgroup the group obtained in Problem (1.28).

(1.30) Prove that the group of all positive numbers under multiplication is
isomorphic to the group of all real numbers under addition. (Hint: The
isomorphic mapping is set up by taking logarithms.)

(1.31) Let G denote a cyclic group of order 12 generated by an element A
and let H be a subgroup generated by the element 43. Find all the cosets of H
in G and obtain the multiplication table for the factor group G/H.

(1.32) Consider the set of the following six functions:

HX)=x, fa@)=1=x, fa(x)=x[(x—1),

o) =1/x, f5 (x)=1](1—=x), fq (X)=(x—1)/x.
Let the operation of composition of two functions be defined as the substitution
of a function into another (that is, ‘function of a function’). Thus for example,

(Ss DX =F5(Js (N =fs (x/(x—1)=1](1 —x/(x—1))
=1—x=fy(x),

so that fy fa=f,, etc. Show that the set is a group under this law of composi-
tion. Show that

(fs)1=fo and (S)-1=f; for i=2,3, 4.
Finally, show that the group is isomorphic to Sa or Cg,.
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(1.33) Determine the symmetry groups of a regular pentagon and a regular
hexagon. Also find their classes.

Bibliography for Chapter 1
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CHAPTER 2

Hilbert Spaces and Operators

It is an axiom of gquantum mechanics that to every physical
observable, there corresponds a hermitian operator and that the
set of all eigenfunctions of a hermitian operator is a complete set.
The Hilbert space of the operator is the set of all linear combinations
of the eigenfunctions. Each state of the system is represented
by a vector of the Hilbert space on which the operator acts. We then
proceed to expand ‘any’ function as a linear combination of all the
eigenfunctions. Sometimes this can be dangerous and misleading
unless we know that the function under consideration belongs to
the Hilbert space and the conditions under which™ such an expansion
is possible. In this chapter, we shall develop the concepts of
Hilbert spaces and operators and prepare the ground for the appli-
cations of group theory in quantum mechanics. In most respects,
this chapter is independent of the first one. None the less, these two
chapters will form the basis of all the remaining chapters.

2.1 Vector Spaces and Hilbert Spaces

In this section, we shall introduce the idea of Hilbert spaces.
Some of their important properties will be described in the next
section. We are very familiar with the ordinary three-dimensional
vector algebra. To a mathematician, however. the familiar three-
dimensional space is just a particular example of the generalized
concept of a vector space of arbitrary dimensions. This purely abs-
tract concept of n-dimensional spaces (n a finite real positive
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integer or infinite) indeed becomes essential in many problems in
modern physics and mathematics.

Bcfore we begin, it will not be out of place to define in brief
a field. Let F be a set of elements (a, b, ¢, d,...) and suppose that
two binary operations are defined for the elements of F: an operation
denoted by -+ (called addition) and an operation denoted by .
(called mudtiplication). Then F is a field if

() F isan abelian group under addition, with an identity
element denoted by 0 and called zero, and

(i) the set of the nonzero elements of F also is an abelian
group under multiplication. The identity element of this grouvp is
denoted by 1 and is called the unity.

We shall quote only three examples of a field to which we shall
frequently refer: )

(a) The set of all real numbers, commonly denoted by R;

(b) The set of all complex numbers, commonly denoted by C;

(c) The set of all rational numbers, commonly denoted by Q.

Loosely speaking, the fields are the number systems of mathe-
matics. An example of a finite field is given in Problem 2.12,

The elements of a field are called scalars.

We shall now define a vector space and the subsequent subsections
will be steps towards defining a. Hilbert space.

2.1.1 Vector space. A set L of elements u, v, w,... is called
a vector space' over a field F if the following two conditions are
fulfilled :

(a) An operation of addition is defined in L, which ‘we
denote by +, such that L is an abelian- group under addition. The
identity element of this group will be denoted by 0.

(b) Any scalar of the field F and any element of L can be
combined by an operation called scalar multiplication to give an
element of L such that for everyu, v€L and a, bEF, we have

a(u+v)y=au+4ave L,
(a+b)u=au-tbuc L,
a(bu)=(a.b)u,
lu=u, Ou=0. (2.1
Note here that 0 is an element of the field F, whereas 0 is the ‘null’
element of L.

1The names vector space, linear vector space and linear space are ali synoni-
mous.
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The elements of a vector space are called vectors. The ‘multi-
plication’ of two elements of a vector space is not necessarily defined.?

Henceforth, we shall not distinguish between the two zeros 0
and 0.

Examples of a vector space are:

(i) The familiar three-dimensional space of position vectors
over the field of real numbers. In the sophisticated mathematical
language, this should now be described as ‘the set of all position
vectors together with the operations of ordinary vector addition and
multiplication of a scalar by a vector’.

(i) The set of all n-tuplets of numbers such as u=(u,, u,, ug
...,un) over a field to which the scalars u; belong. Thus, the set of
all n-tuplets of complex numbers is a vector space over C; the set of
all n-tuplets of real numbers is a vector space over R; the set of all
n-tuplets of rational numbers is a vector space over Q. Two
elements u and w=(w;, W,,...,w,) of this set are said to be equal if
and only if w;=w; for all 1<<i<Cn. We denote this by writing u=w.
The addition of two vectors ¥ and v=(v,, v,,.. ., va) of this space and
scalar multiplication are defined by :

(Uy, Uy o Un)F(Ve, Vas- o o V) =(yF vy, Us+ Vo, . s Un+Vn),

c(Uy, Ugg . UR)y=(Cly, Clygy. .. ,ClUp).
Moreover, if ;=0 for 1<{i<{n, we say that ¥=0.

Example (i) above is clearly a special case of the example at
hand—it is the set of all triplets of real numbers.

(iii) The set of all real numbers.

(iv) The set of all complex numbers.

(v) The set of all rational numbers.

In the last three examples above the scalars and the vectors are
the same. If a vector space i1s defined over the field of real numbers,
it is called a real vector space; a vector space defined over the field
of complex numbers is called a complex vector space.

(2.2)

2.1.2 Imner product space. A vector space L defined over a
field F, where F refers to the field of complex numbers or of real
numbers, is further called an inner product space if its elements satisfy
one more condition:

(c) With every pair of elementsu, v € L, there is associated
a unique number belonging to the field F—denoted by (u, v) and

:If the composition of two elements of a vector space is defined and also belongs
to the space (with a few more conditions on the product), we have an algebra.
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called the inner product or the scalar product of uand v—for which
the following properties hold. :
(u, )=(v, w)*,
(au, bv)=a*b (u, v), (2.3)
(w, au+bvy=a(w, u)+b(w, v),
where the asterisk denotes the complex conjugate.
The linear space of all n-tuplets of complex numbers becomes
an inner product space if we define the scalar product of two elements-
u and v as the complex number given by

n
(u, v)= Elu,-*r,-. (2.4)
1=
The ordinary three-dimensional space of position vectors is
also an inner product space with the familiar rule for taking the
scalar product of two vectors. The vector spaces mentioned as
" examples after (2.2) are all, in fact, inner product spaces with suit-
able rules for taking the inner product.
Taking the inner product of an element with itself, we find,

from (2.4)
n
(u, w)= Z |u |, 2.5)
1=1

where | | denotes the absolute magnitude of the.number enclosed. We
introduce the notation .
[lu|? = (u, u). (2.6)
"~ and the nonnegative square root of this real number, denoted by
|lul|, is called the norm of the vector u. Clearly, in the familiar lan-
guage, this corresponds to the Jength of a vector. It is easy to see -
that the norm has the following properties:
(1) |l||> O, and |ju]|=0 if and only if u=0;
(i) |lu+v]| < ju)|4+|v|]; this is the usual triangular inequality;
(i) Jlaul|=lal |lu].
Before we go a step further and define a Hilbert space, we must
consider what a Cauchy sequence is.

2.1.3 Cauchy sequence. If with each positive integer n we can
associate a number ¢, (in general, complex), then these numbers
Cy Cg Cgye ., Cny... are said to form an infinite sequence or, simply,
a sequence. )

A sequence ¢y, Cy,..., Cn,... is said 1o converge to a number c,
or to be convergent with the limit ¢, if for every real positive number
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«, however small, there exists a positive (finite) integer N such that for
every integer n> N,

l Cy—C | < €, (27)
The number ¢ is called the limit of the sequence.
A sequence ¢;, C,,... is said to be a Cauchy sequence if for

every real positive number ¢, however small, we can find a finite
positive integer N such that for any two integers n>N and m>N,
| en—cCm | < €. ' (2.8)

Examples of convergent, and therefore Cauchy, sequences are:

(i) the sequence of the real numbers whose terms are
cn=2+5/n, i.e.,

7, 9/2, 11/3, 13/4, 3, 17/6,..., 2n+5)/n,..., with the limit
c=2;

@ 1, 1/2, 1/3,..., 1/n,..., with the limitc=0;

(i) 1.9, 1.99, 1.999, 1.9999,.. ., with the limit 2.0;
(iv) the sequence of the complex numbers whose terms are
cn=(5n+3)/4n+i (2n—R)/3n with the limit ¢=5/44i2/3:

The following sequences are divergent:

(i) the sequence of numbers whose terms are c,=p" for p>1,

(i) the sequenceof positive integers, 1, 2, 3,4,..., n,... .

Although, in the above discussion, we have defined a sequence
with reference to numbers (real or complex), it should be clear that
we can easily extend the idea to sequences of arbitrary entities
provided they are all of the same nature. Thus, we may speak of a
sequence of vectors in a two- or a three-dimensional space, a sequence
of n-tuplets in their vector space, etc. Of course, in each case we
must suitably interpret the quantities [cs—c| and |ca—cn| while stu-
dying their convergence. This will be illustrated with reference to a
sequence of n-tuplets because all the other examples follow as special
cases of this one.

Consider a sequence of elements in the vector space of all n-tup-
lets (real ar complex) whose terms are denoted by u(¥, u'®), .. ., utk) .,
where

R =(u, R, g, uptk)), 2.9)
We say that this is a Cauchy sequence if for every positive number
e there exists a positive integer N such that for any two integers
k>N and m>N,
| Wtk —gtm) | < e (2.10)
in thesense that
| ) —y'm | < € for 1<<i<n,
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Similarly, the sequence is said to converge to a limit ¥u=(u,, u,,..., )
if for every real positive number €, we can find a positive integer N
such that for all integers m> N,

| utm —u| < e (2.11)
in the sense that
| wim—uy| < €for 1<Ci<n.

2.1.4 Hilbert space. We are now ready to define a Hilbert
space. We shall restrict ourselves to the field of real or complex
numbers. Consider an inner product space L. If every Cauchy sequence
of elements belonging to L has a limit which also belongs to Z,
the space L is said to be complete. A complete inner product space
is called a Hilbert space.

Examples of Hilbert spaces, as well as contrary examples, are
easy to construct. All the inner product spaces discussed above,
except the vector space of all n-tuplets of rational numbers
(which includes, as a special case for n=1, the set of all rational
numbers), are also Hilbert spaces. The space of all rational numbers
is not complete because we can construct a Cauchy sequence in this
space whose limit is an irrational number, which does not belong to
this space. For example, the sequence of the successive approxima-
tions to the square rootof 2, i.e., 1.414, 1.4142, 1.41421, 1.414213,.. .,
is a Cauchy sequence whose limit 4/2 does not belong to the set of
rational numbers. A similar argument shows that the set of all n-tup-
lets of rational numbers is not a Hilbert space.

2.2 Coordinate Geometry and Vector Algebra iz a New Notation

In what follows, we shall treat Hilbert spaces in general. We
shall denote a Hilbert space of n-dimensions (the dimensionality
is defined below) by L,. Although drawing pictures or diagrams for the
sake of understanding an argument should-not be encouraged in
modern pure physics and mathematics, it may be advisable to take
some specific examples with n=2 or n=3 to make the ideas clear.
Some important concepts and properties are enumerated below.

(i) In the ordinary three-dimensional space of position vectors,
we need a set of three axes, and any point in this space can then be
located by means of three coordinates measured along the three axes.
Similarly, in an n-dimensional vector space, we would need a set of
n ‘independent’ vectors ry, r,,. .-, ra to ‘span’ the whole space.
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Two vectors r;and r; of L, aresaid to be linearly independent of each
other if one is not a constant multiple of the other, i.e., it isimpossible
tofind a scalar csuchthat r;=cr;. In the familiar language, this means
that r; and r; are not ‘parallel’ vectors. In general, m vectors of L, are
said to be a set of linearly independent vectors if and only if the equation

m
T ar=0 (2.12)
i=1
is satisfied only when all the scalars a;=0 for 1<Zi<m. In other words,
the m vectors are linearly independent if it is impossible to construct
the null element of the space by alinear combination of the vectors
with at Jeast one nonzero coefficient. Or again, the set of m vectors
is linearly independent if none of them can be expressed as a linear
combination of the remaining m—1 vectors. A simple test for the
linear independence of a set of vectors is to construct the determinant
of their scalar products with each other as

(ri, 1) (r, 1) oo o(ryy Tm)
= (res 1) (rgy T2) ---("z,"m) ’
(Fms 1) (Fm, T3) <o <(Tmy Fim)

known as the Gram determinant. If I'=0, it follows that one of the
vectors can be expressed asa linear combination of the remaining m— |
vectors, so that the vectors are linearly dependent; if I's£0, the vectors
are linearly independent.

(ii) Inan n-dimensional complete vector space, or Hilbert space,
L,, aset of n linearly independent vectors is called a complete set in L.
If the number of vectors chosen is less than n, they are called an incom-
plete set in Ly; clearly they are not enough to span the full space. On
the other hand, if more than n vectors are chosen in L., they form an
overcomplete or redundant set in Ln. They cannot all be linearly
independent and it is possible to find at least two nonvanishing scalars
a; such that

m
2 ari=0, m>n. (2.13)
=]

(iii) - The dimension of a vector space is the maximum number
of linearly independent vectors in the space or the minimum number
of vectors required to span the space. In other words, the dimension
is the number of linearly independent vectors which are both necessary
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and sufficient to span the full space. Thus, in the ordinary three-
dimensional space of position vectors, we can find at most three
linearly independent vectors; three is also the minimum number of
linearly independent vectors required to span the space.

A set of n linearly independent vectors in an n-dimensional vector
space is called a basis, and the vectors are called the basis veciors.
Clearly, the choice of the basis vectors is not unique; they can be
chosen in an infinite number of ways.

(iv) Any vector u in L, can now be expanded in terms of a
complete set of basis vectorsry, i.e., '

n
u=2 uiri, (214)
. i=1
where u; is the component of u along r;. We say that the space L.
can be fully spanned by the basis vectors. This result holds only if
{r:} is a complete set. The scalars u; are also called the Fourier
coefficients of u and (2.14) is called the Fourier expansion of u.

(v) We choose a unit for the norm of the vectors in the space
L, (in the familiar language, a unit for the ‘length’ of the vectors).
A vector of unit norm is called a wnit vector or normalized vector.
Rather than choosing the basis vectors r; of arbitrary norm, we then
choose a basis consisting of the unit vectors e, e,,..., e, in Ly,

(vi) So far, we have not assumed any refationship among the
basis vectors except their linear independence. But now, for the sake
of convenience and to make our algebra simpler, we will choose a com-
plete set of orthogonal basis vectors, without loss of generality. Inthe
ordinary three-dimensional space, this means that we choose cartesian .
coordinate axes rather than oblique ones. If ¢; are the orthonormal
basis vectors, we have

(9[, 8])2811’, (215)
where 3;; is the Kronecker delta given by
1 ifi=j,
3i1—{0 if it (2.16)

(vii) The scalar product of two vectors

n n
u= 2 we; and v= Z ve (2.17a)

i=1 i=1

is then easily found to be

n
(u, V=, u)*= _2 uit vy (2.17b)

i=1
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n
Also | #]2=(u, v)== Z.‘l | w2 (2.17c)

(viti) A linear transformation in the space L, can be defined by
an operator 7 such that T acting on a vector u& L, gives a vector v,
also belongingto L.. The operation is denoted by

Tu=v. (2.18)
When this happens, that is, when Tu & L,, for all u € L,, the space
L, 1s said to be closed under the action of T.

Note that this is the active view point of tlansformatlons dis-
cussed in Section 1.1.2.

If the vector Tu is unique for all u € L, and if the inverse trans-
formation is also uniquely defined, Tis said to be a one-to-one mapping
of the space Ln onto itself.

We shall be mainly concerned with transformations which pre-
serve the Euclidean properties of the space Ln, such as the norms of
the vectors and the scalar product of two vectors. Rotations, reflec-
tions and inversion are obvious examples of such transformations.

(ix) In the passive view point, we can define transforiations of
the basis vectors ¢; (keeping everything else fixed) resulting in a new
set of basis vectors ¢;" as follows:

ei—~>ei’ =Te= E e; Ty, 1<<i<<n, (2.19)
j=1
where T is a scalar denoting the component of ¢, along e¢;. Trans-

formations which take one orthonormal set of basis vectors into an-
other orthonormal set are called unitary transformations; the operators
associated with them are called wnitary operators®. Itcan be seen that
this definition amounts to preserving the norms and the scalar products

of vectors.
(x) Eq. (2.19) is in fact a set of n linear equations which can be

written explicitly as

T(ey, €y .en)=(e,. ¢ y..., &n')
=(eneyeesen) [ Ty Ty oo T )
) T Ty oo Ton
‘ . (2.20)
L T,u Tnz e Tnn _J

3 If the vectors of the space L, are real, te., if L, is defined over the field of
real numbers, these reduce to orrhogonal transformations and orthogonal
operators, respectively,
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The square matrix* [T;;]=T of order » onthe right hand side is called
¢ representation of the operator T in the basis (e;).

(xi) Consider a vector ¢; of (2.19). If we take its scalar pro-
duct with any of the original basis vectors, say e, we get

n
(ex, i) ==(er, Tei)=(ck, El ej T,
=
or (er, Te))=T (2.21)
by using (2.15). We call this the matrix clement of the operator T
between the basis vectors e, and ¢;. It means that if the operator 7 is
applied on e¢;, the resulting vector has a projection 7%; alon¢ the
vector €.
(xit) The scalar product of any two vectors v and Tv of L,
where wand v are the vectors of (2.17a), 1s given by®

(u, TV)=(2 tper, T2 vie)
k i

:(Ellké’k, 2 e T

Ly
= 2 w*v; Tji(ex, e))
i,k
— E llk*l'_i Tk,‘. (222)
i K

(xiii) Since, by assumption, the transformed basis vectors ¢
are each of unit length and orthogonal to each other, we have
(e, e))=38;. (2.23)
It immediately follows that the matrix 7 has the following properties
(see Problem2.2):

n
I Ti* Tu=3 (2.24a)
=1 1<), k<n;
n
Ti* Tri=3k, (2.24b)
i=1
| det T'|=1. (2.24c

These are the well-known conditions for a wnitary matrix. It is

4 The matrix T==[T;,] should not be confused with the operator T appearing on
the left hand side of (2.20). We shali often use the sarne symbol for an
operator and a matrix representing it.

5 Although « and v are not elements of a complete set of basis vectors and there
is no apparent matrix for T here, (u, Tv) is called the ‘matrix element’ of T
between u and v in quantum mechanics.
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often said that all the rows (columns) of a unitary matrix are orthogo-
nal to each other and normalized, which is just what Egs. (2.24) tell.
In the matrix notation, (2.24) can be written concisely as

TT=T-1 or TT'=Tt T'=E, (2.25)

where E is the unit matrix of order » and 77 denotes the hermitian
conjugate of 7.
(xiv) The scalar product of two vectors in L, is invariant under
a unitary transformation: Let u and v be any two vectors of L, and
T be a unitary operator, then
(Tu, Tv)y="{u, v). (2.26)

Tu

FIGURE 2.1 Thescalar product of two vectors is invariant
under a unitary transformation )

Leaving the proof of (2.26) to Problem (2.3), we show the simple
physical interpretation of this result inatwo-dimensional space. In Fig
(2.1), we haveshown the four vectors i, v, Tuand 7, assuming that T
is an anticlockwise rotation through an angle 6 about an axis normal
to the plane of the paper. The validity of (2.26) for the particular
case considered in this figure should be obvious.

(xv) An important operator is the projection operator. This is
an operator which, when it operates on a vectoru € L,, gives the pro-
jection of u along a given basis vector. It can be written in the form

P,‘Eé’,‘ (el, ), (227)
where the notation means that the scalar product is to be taken with
the vector on which P; operates. Thus, if » is the vector of (2.17a),
then

Piu=e; (e, u)
=uie;
=the projection of u along e;. (2.28)
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It should be noted that P; is not a unitary operator.
If we apply the operator P; once more on the resulting vector
ue; of (2.28), clearly, the result is the same vector u;e; again, i.e.,

P; (P,'u)zP,' (u,-ei):ll,-f’;EPg (Ll) (229)
Since this is true for all u € L,, we can write in the operator notation,
P2=Py, (2.30)

which is an important property ot projection operators. In fact, any
operator P, acting on a Hilbert space L,, for which P?2=P, (i.e., P*u
=Pu + u& L,) is called a projection operator. It can be readily
verified that

n .
2 Pi=E, (2.31)

. i=1

where F is the identity operator.

(xvi) We now introduce the concept of the direct sum of two or
more spaces. Considar a vector space L, of n dimensions with a coor-
dinate system (e,, e,,. . ., en), and a vector space L, of m dimensions
with the basis vectors (iy, iy, . . -, Im). Provided that the two spaces have
no common vector except the null vector, the direct-sum space L, isthe
vector space defined by the t=m-n basis vecters (ey, e,,. . ., €,, I, Iy,
.. +»im). These may be relabeled by the r vectors (ky, ko,..., k). If L,
and L,, are complete spaces, so is L,, and any vector v in L, can be
expanded as A

H
= I uki, (2.32)
i=1
where u; are scalars.

As a simple example, consider a two-dimensional vector space
(a plane) with the basis vectors (x, y) and a one-dimensional vector
space (a line) with the basis vector (z), which does not lie in the plane
(x, y). If the null element is common to both the spaces, the direct-
sum space is the three-dimensional vector space with the basis vectors
(x, ¥, 2). .

(xvii) Finally, we consider the direct product (also known as the
Kronecker product) of two vector spaces. Consider, again, the two
spaces L, and L, defined above. The direct-product space ‘is a space
L, of dimensions p=nm defined by the p basis vectors (e,i;, ejiy, . . .,
€lums €3ips. .., €nim). At the first thought, e;ix seems to be a tensor
rather than a vector; but it can be seen, without much difficulty, that
we can identify it with a vector in the p-dimensional space. If we
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make this identification and denote the resulting basis vectors by the
new labels (/}, L,..., [;), then, as before, they form a complete set
in Lpif L, and L,, are complete spaces. Any vector v € L, can then
be expressed as

S/ ]

v; Ij. (2.33)

y

)

J

2.3 Function Spaces

Consider the set of all continuous, ‘square integrable’ functions
/. g h,...), each of which is a function of one independent
sariable x ontheinterval [a, b]. We define the equality of two functions
s follows: Two functions f and g are said to be equal on [a, b],
lenoted by writing f=g, if and only if f(x)=g(x)for all values of x
n the interval [a, b].

Referring to the definition of vector spaces in Section (2.1.1),
ve then see that the set of functions considered above is a vector space
>ver a field Fif we define the addition of two functions and scalar
nultiplication by

(f+8) (x)=f(x)+g(x), ' (2.34a)

(¢f) (x)=cf (x). (2.34b)

Eq. (2.34a) is called the operation of pointwise addition of two

functions. If the functions of the set considered are real, we have a

vector space over the field of real numbers; if they are complex, we

have a vector space over the field of complex numbers. The identity

in either case is a function which is identically zero for all values of x

on [a, b] and the inverse of a function f is the function —f with the

property (—f){(x)=—/(x) (i.e., the value of the function —f at a point
x is the negative of the value of f at x).

As a concrete example, consider the set { f, (x)} of all continu-
ous, square integrable, even, periodic functions of x of period 2/. We
shall allow, in general, complex functions to be included in the set.
Thesum of two functions of this set is also a continuous, square integ-
rable, even pcriodic function of period 2/, and hence belongs to the
set. In fact, it is easy to verify that the set is an abelian group under '
the rule of pointwise addition. Moreover, scalar multiplication by com-
plex numbers as defined in (2.34b) satisfies the conditions(2.1). Hence
it follows thatthe set { f.(x) } is a vector space, which we shall denote
by L..
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A vector space whose elements are functions is also called a furmc-
tion space.

All the concepts developed in Sections (2.1) and (2.2) can then
be applied to function spaces, because, as emphasized in Section 1.8
inconnection with groups, the mathematical definition of a vector space
is quite independent of the exact nature of its elements. This gives us
considerable freedom in handling different vector spaces by the same
abstract methods.

Thus, a function space can be made an inner product space if we
associate with any two functionsa scalarsuch that the conditions (2.3)
are satisfied. This can be easily done if we define the inner product of
two functions f and g by

/, 9= ]" £¥00) g(x) d, (2.35)

where the integral is over the range [a, b] of xon which the functions
of the space are defined. The norm || f|| of a function f is given by®

b I
17IF=n= | 1f e ax 2.36)
A Cauchy sequence of functions is defined as follows: A seque-
nce f;, fao.--5 fn... of functions of one variable x is said to be a

Cauchy sequence on[a, b] if for every real positive number ¢, we can
find a positive integer & such that for all integers n>N and m>N,

[ fa—Sml| <€ (2.37).

in the sense that

[ o () o () 2 v <.

In a similar way (cf. Section 2.1.3), we can define a convergent
sequence and its limit. The definition of a Hilbert space of functions
follows immediately.

A set of nfunctions f}, f,,..., . of a vector space is said to be
a set of linearly independent functions on [a,b] if and only if the
equation’

érlalf.- (x)=0 (2.38)

for all x on[a, b] implies that all the scalars 4;=0 for 1<<i<<n.
Coming back to the vector space L. of all continuous square
integrable even periodic functions of period 2/, we see that any func-

8If the norm of a function is finite, the function is said to be square integrable.
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tion of this space can be expanded in the well-known Fourier cosine
series

f=3 at (/371 ) cos(nx/l). (2.39)

nh=
The infinite set of functions (1/\/7) cos(nnx/l) for 0<<n< oo clearly
serves as an orthonormal basis in this space, for the functions of this
set satisfy the relations

!
} J cos(nmx/l) cos(mmx/l) dx==3,n. (2.40)
-1

Thus the vector space under consideration is denumerably infinite
dimensional.

2.3.1 The dual space. For each function f in the space L., we
have a set of coefficients a(n) for 0<in<too as in (2.39). These can be
obtained very easily by Fourier inversion of (2.39), which gives -

a(n):jl_lf(x) (1/+/1) cos(nmx/l) dx. (2.41a)

These Fourier coefficients are unique, i.e., if we have another function
g€ L. whose Fourier coefficients are

b(ny= Jl_’ g(x) (1/4/1) cos(nmx/l)dx, (2.41b)

then a(n)=>5b(n) for all 0<<n< oo if and only if f=g on [—/, /].

Now we may treat a as a function of the discrete variable n. 1t
is easy to seethat the function corresponding to f+¢ would be a5,
and that corresponding to —f would be —a. In fact, it can be readily
verified that the set of functions (a, b,...) is a veetor space which is
defined over the same field as the space L.. This is known as the dual
space of L. and its vectors have a one-to-one correspondence with the
vectors of L.. It therefore follows that the dual space is also denu-
merablyinfinite dimensional.

It should be clear that this is similar to the space of all n-tuplets
where n is now denumerably infinite. The scalar product of two func-
tions in this space is

(a,b)= % a*(n) b(n). (2.42a)
n=0
By using Egs. (2.41) in (2.42a), we find
@ b= @8 dx=(f.z) (2.42b)



HILBERT SPACES AND OPERATORS 45

In the above equation, we have an important property of the Fourier
transforms that the scalar product of fand g is the same as that of
their transforms ¢ and b.

2.3.2 Direct sum of function spaces. Consider the set { f, (x)}
of all continuous square integrable odd periodic functions of period
21, that is, the set of functions satisfying the relations

Jo (x+20)=f5 (x)
Jo (—=X)=—fo (%). (2.43)

Once again, it can be verified that this set is a vector space’
which we denote by L,. Any function ¢(x) of L, can be expanded in
the well-known Fourier sine series

&(x) = gla(n) (1/4/1) sin(nmex/l). (2.44)

The infinite set of functions (1/4/1) sin(nex/l) for 1<<n< oo can be
chosen as the orthonormal basis functions in this space, because

11 J’ sin(rmx/l) sin(mmex/1) dx=Smm. (2.45)
)

We can now take the direct sum of the two function spaces L,
and L, since they have nocommon element except the function which
is identically zero. We then have a space of all periodic functions with
period 2/, The Fourier expansion for a function of this space is

S(x)= Z aln) (1/4/1) cos(nex/)+ Z a(n) (1/4/]) sin(nnx/l).
n=0 n=1
(2.46)
The basis functions of this space chosenin (2.46) are clearly orthonor-
mal since, in addition to (2.40) and (2.45), they satisfy

H" cos(nmx/l) sin(mmx/l) dx—0 ¥ n, m. (2.47)
_t "

The spaces L., L, and their direct-sum space arc all denumerably
infinite dimensional. The dual space of L, is the set all functions
(e, B,...), each element of which is the Fourier .ransform of an ele-
ment of L,.

It is a fairly easy matter to extend the concepts of this section to
functions of more than one variables.

7 The function which is identically zero for all values of x is even as well as
odd in x. It is therefore common to, and is the ‘zero’ element of, both the

spaces {f, (x)} and {f, (x)}.
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2.4 Operators

In this section, we shall use the symbols ¢.(x) for the orthonor-
mal basis functions of a Hilbert space L of functions,® which may be
finite or infinite dimensional.

An operator T is said to be defined on the space L if the action
of T on any function f € L results in a function which also belongs
to L. Thus,

Tf (x)=g(x) where g € L. (2.48)

To know the action of an operator on any function of L, itis

enough to know its effect on the basis functions of L. Thus, when an

operator T acts on a basis function ¢.(x), the result is some function

of L, say ¢.'(x), which can be expanded in a linear combination of
the original basis functions: '

T $x(x)=¢n'(x)=Z ¢m(X)Toun, n,m=1,2,... . (2.49)
m .

This represents a system of linear equations, one for each value of n.
Written out in an expanded form, this becomes

(¢1’! ¢2ID"" ¢"’ ye - =T(¢l» 952»- L] ¢n) "‘)
=(¢15¢2"'-) ¢n) r T]]_ T]z---Tln-- —I

21 ) 22...T2n..

. (2.50)
Tnl Tnz...Tnn.-

L . N

The matrix [7};] is the representation of the operator T with the

basis {¢n}. It can beseen in analogy with (2.21) that a matrix element
of T is given by

Ton=(¢m bn')=(bm, Tn)

=8¢m*(x) Tn(x), (2.51)

where S denotes summation over the discrete variables and integra-

tion over the continuous variables of the set x on which ¢’s depend

(see footnote 8).
If we introduce the following notation for row vectors

(DE((}SP ¢2" L] (}S"’ . -)a
O=(8, b5+ $n's -2), (2.52)

8 Here, x stands for the set of variables on which the functions of L may
depend.



HILBERT SPACES AND OPERATORS 47

then (2.49) can be simply written in the matrix notation as
O'=0T. (2.53)

2.4.1 Special operators. We shall consider some special ope-
rators in this subsection. An operator T issaid to be a linear operator
if for every fand gin L,

T (¢f+dg)=cTf+dTg, (2.549)
where ¢ and 4 are any scalars of the field over which L is defined. On
the other hand, T is called an antilinear operator if

T (¢f+dg)=c*Tf+d*Tg ~ f, g € L. (2.55)
An obvious example of such an operator is the operator for ¢ “m-
plex conjugation. If we denote it by X it is defined by

Kf=/*, K(¢f)=c* Kf=c*f*. (2.56)
If two operators A and B satisfy the relation
(f 45)=Bf,8) » f,g € L, (2.57)

A is said to be the hermitian conjugate of B, and vice versa, which is
expressed by writing

A=B', At =B, (2.58)
Let
S=Z audn, §=Z buhn. (2.59)
n n
Then, on using the orthogonality of ¢,, (2.57) becomes
2 ay*bnAnm = 2 y*bmBmn®*. (260)
n,m n,m

Since this must be true for all fand g in L, i.e., for all scalars a,
and b, it follows that
' Anm=Bmn*. (2.61)
If the scalars of the space L are reai numbers, (2.58) and (2.61}
reduce to

A=B8, A=B, Anm=Bumn, (2.62)
and A 1s said to be the transpose of B, and vice versa.

If an operator T is its own hermitian conjugate (adjoint), it is
said to be hermitian or self-adjoint. From (2.57), we see that T is
hermitian if and only if

(f, Te)=(1/,8) ~ f, g € L. (2.63)
With (2.59), this reduces to
Toum=Tomn*. (2.64)
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This is just the definition of a hermitian matrix—that is, a matrix
which equals its own hermitian conjugate—and is written as

T=Tt=Ty*=T* (2.65)
Thus a hermitian operator is represented by a hermitian matrix in a
linear vector space.

T is said to be a unitary operator if
TT =TT T=E, (2.66)

where E is the identity operator. It can be readily seen that if T is
unitary, then

(1), Te)=(f. &) v f, g € L. (2.67)
If the scalars of the space are real numbers, (2.66) reduces to
TT=TT=F, (2.68)

in which case T is said to be an orthogonal operator.

2.4.2 The eigenvalue problem. We have already discussed the
operation of an operator 7 on a basis function, which is

T $p=2 ¢m Trmn. (2.49)
m

The choice of the set of basis functions {¢.} is not unique, and, as
such, we would like to choose that set of orthonormal basis functions
{Y,} in L which simplifies Eq. (2.49) as much as possible. Clearly,
the simplest nontrivial case arises when the only nonvanishing term
on the right-hand side is the n-th term, in which case we have

TYn="Thn Yn=tnYn, (2.69)
which defines the scalars ¢,. A nonzero vector {, satisfying (2.69) is
called an eigenvector or an eigenfunction of T corresponding to the
eigenvalue 1,. The problem of obtaining the eigenvalues and the eigen-
functions of anoperator (acting ona Hilbert space) is usually referred
to asthe eigenvalue problem, and (2.69) is often called the eigenvalue
equation.

The eigenvalues need not all be distinct, that is, two or more
eigenvectors may correspond to the same eigenvalue; in this case,
such eigenvectors are said to be degencrate. The multiplicity of an
eigenvalue is defined as the aumber of linearly independent eigenvec-
tors which have the same eigenvalue under consideration.

It is proper to ask whether each operator has eigenvalues and
eigenvectors. If the vector space L is defined over the field of real
numbers. every operator acting on L does not necessarily possess
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eigenvalues and eigenvectors. Thus, consider the operation of a rota-
tion through 90° on a two-dimensional vector space of (real) position
vectors. This operator has no eigenvectors since there is no nonzero
vector in this space which transforms into a real multiple of itself.

However, if L is a vector space over the field of complex num-
bers, every operator on L has eigenvectors. If we count each eigen-
value as many times as it occurs, then the number of eigenvalues is
precisely equal to the dimension of the space L.

The set of the eigenvalues of an operator is called its spectrum.

2.43 Diagonalization. We see from (2.69) that if we choose
the set {{,} as the basis in the space L, rather than the original sct
{¢n}, then the matrix representing the operator T is diagonal, i.e.,

el 0
(2.70)
0 In
- |
The eigenvalues ¢, are the solutions of the N-th order equation
det(T—tE)=0. 2.71)

As we have said, N may be infinite, as is indeed the case in most phy-
sical problems. We are then faced with the problem of solving an
infinite determinant. However, we are usually interested only in a
few lowest eigenvalues in the spectrum of the operator and we can
suitably reduce the determinant to a new determinant of a finite order
N with small error if the subspace is properly chosen.

Once the eigenvalues are determined in this way, the eigenfunc-
tions can be easily obtained. For this, we express an eigenfunction ¢,
corresponding to the eigenvalue /, as a linear combination of the

original basis functions:

lI MZ

Yn= lzﬁ Unn. (2.72)

If both the sets {{.} and {¢,.} are orthonormal, U will be a unitary
matrix. Let us express ¢, in the row vector notation as Yn=(Uta,
Uzn, - .., Unn). The eigenvalue Eq. (2.69) then becomes
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T\an(Uln, Uz, . res UNn) Tll Til - TNI
1w Tz . Ty
Iin Ton ... Ty

=1y (Uln, Uz;,,. aay UNn)- (273&)

where we have used (2.69) in the last step. Note that the matrix of
transformation which appears in (2.73a) is the transpose of that
appearing in (2.49). | This is because in (2.49), T acts on the basis
vectors ¢, (the passive viewpoint), while in (2.73a), it acts on
vectors of the space leaving the basis vectors unchanged (the active
viewpoint).
* ‘Writing the m-th column of (2.73a), we have
N

> Ukn Trk=tn Unn, (2.73b)
k=1

where 1 << n <<N. This is a system of N linear equations for the N
unknowns Unmn (1 <m<C N, fixed n). However, these equations are
not all independent due to the condition (2.71). If the eigenvalue 1,
is k-fold degenerate, it can be shown that the matrix (T'—1t. E) has
rank N—k and hence only N—k equations from (2.73) are indepen-
dent. This means that we can determine at most N—k components
Unmn (fixed n). The general method is then to fix arbitrarily, say, the
first ¥ components and to obtain the remaining N—k components in
terms of them.® Thus there is a considerable arbitrariness which
results from the fact that any linear combination of the degenerate
eigenfunctions is also an eigenfunction with the same eigenvalue,
We may conveniently choose any & orthonormal functions in this
k-dimensional subspace of the full space.

Having obtained in this way a set of N orthonormal eigenfunc-
tions, we can show that the representation of T with the basis {{x} is a
diagonal matrix. We write Egs. (2.49) and (2.72) in the matrix
notation as

TO=0[T], (2.74a)
Y=o U, (2.74b)
where ® and ¥ stand for the row vectors

d>=‘(¢l, q&g,. .y ¢N))
V=), by, - -5 I,

9Joshi (1984), Section 8; Kreyszig (1972), Section 6.9.
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and we have distinguished between the operator Tand the matrix [7].
From (2.72), it is clear that the n-th column of the matrix U just
contains the components of the eigenfunction ¢, i.e.,

U=[ Uy Uy .. Un ... Un 7]
Uy Uy .. Usn ... U : (2.75)
L Ua Unvg --- Unn ... Uwnx

Multiplying (2.74a) from the right.by U, we get
TOU=0UU[T]U.
or TY=Y (U} [T] U). (2.76)
Thus, the matrix U-* [T] U is the representation of the operator T

with the basis {{,}. Now it can be readily verified that, by the cons-
truction of U as in (2.75), we have

U-L[T] U=Tu.

This can be seen by taking the (/, 1)  element of the left-hand side of
the above equation, which gives

) [U—I]lm ka Uk'l =2z [U_l]lm Umn In [by (273b)]

mak m
= Iy 8Im
which is just the (/, n}  element of Ty. Eq. (2.76) then finally gives
us
TY=Y T, @
which is the desired result. This process is called the diagonalization
of an operator.2°

2.4.4 The spectral Theory of operators. We shall restrict
ourselves to the case when the Hilbert space of the operator T is finite
dimensional. Moreover, we shall consider T to be a hermitian opera-
tor or a unitary oparator.!!

Let L, be the n-dimensional (0 < n < o) Hilbert space of T.
We assume that L, is defined over the field of complex numbers, so
that T has exactly n eigenvalues. Let ¢, t,,..., tn be the distinct

10See also Joshi (1984), pp. 95-97

11The discussion of this subsection is, in fact, valid for a more general class
of operators known as normal operators. Anoperator 7 is normal if it com-
mutes with its own hermitian conjugate, that is, if T7t=71T. Hermitian
and unitary operators are clearly normal operators.
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cigenvalues of 7, so that m<C n. If the eigenvalue # is k,-fold degene-
rate, there are k; linearly independent eigenvectors of T in L, which
have the same eigenvalue 7;, These eigenvectors constitute the basis
for a k;-dimensional subspace M; of L,; M, is called the eigenspace
of T corresponding to the eigenvalue #;. Any vector of M; is an
eigenvector of T with the eigenvalue ?,.

We thus have the eigenspaces M,;, M,,..., Mi,..., Mm, corres-
ponding to the eigenvalues #,, #,,.. ., ft;:. ., Im, respectively. If Tis a
hermitian or a unitary operator, then these subspaces are pairwise
orthogonal;!? two spaces are said to be orthogonal if every vector of
one space is orthogonal to every vector of the other. In our case, this
is denoted by writing M; | M, if i#j.

Any vector u€ L, can now be expressed uniquely in the form

_ u= u1+u,+ . Fum, (2.78)
where 4; is in M;. The u’s are therefore pairwise orthogonal. The
operation of T on u then gives

Tu=Tu,+Tug+ ... +Ttm
=t Ftg+ ... Flmlim. (2.79)
This then determines uniquely the action of T on any vector of the
Hilbert space L,. To express the above result in a more convenient

form, we define the m projection operators P; on the eigenspaces M,
such that the action of P; on u gives the projection of u on M;, or

Pu=uy,. (2.80)
Eq. (2.79) then becomes

Tu=t,Piut+t,Pout-... +tmPmu X u € L,
so that we can write

T=1,P,+1,P;+ ...+ tmPm. (2.81)

This expression is known as the spectral resolution of T. For every
hermitian or unitary operator acting on a finite-dimensional Hilbert
space, the spectral resolution exists and is unique.

The concepts developed in this section are closely related to, and
find useful applications in, the eigenvalue problem in physics, because
in quantum mechanics, we are concerned with the eigenvalues and
the eigenfunctions of hermitian operators.

12]n this subsection, we shall state the important results of the spectral
theory w1thout proofs. For proofs, the reader i8 referred to Simmons
(1963).
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28 Direct Sum and Direct Product of Matrices

We now digress a little in this section and consider two important
operations with matrices which are not normally treated in elementary
books on matrix algebra. These are the direct sum and the direct
product (also known as the outer product or the Kronecker product)
of matrices. '

2.5.1 Direct sum of matrices. The direct sum of two square
matrices A=[A;;] of order m and B=[By] of order nis a square
matrix C of order m-+n defined by

C=A®B= [A 07=T du - i -
- 0, , (2.82)

L « Ba ... By
where 0, and 0, are null matrices of order mXn and nxm, respec-
tively. Here the symbol @ stands for the direct sum. This idea can
be easily extended to more than two matrices. For example, the
direct sum of

A=a, B=[ b ¢ ], and C=[ f g h
d e

i j k
I m n
is a matrix of order six given by
D=A®B®C=|a 1o o o o o] . (2.83)
I S -
o b ci10 o o
| |
1 |
0o |d e o o o
|, ';_. _________
0 0 o | f g h
i
0 o 0 E | | k
i
I
0 0 0 / m n
- | .
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Such a matrix, which has nonvanishing elements in square blocks
along the main diagonal and zeros elsewhere, is said to be in the
block-diagonalized form. It has the important properties:

det D=(det A) (det B) (det C), (2.84a)
trace D—=trace A-trace B-trace C, (2.84b)
Dl = 4t @ B-l @ C_‘, (2.84C)

which should be clear from (2.83). Also, if 4, and A, are square
matricejs of the same order, say n, and B, and B, are square matrices
of the same order, say m, then'3

(A4 ®B;) (4:®By)=(4,A)D(B,B,). (2.84d)
2.52 Direct product of matrices. The direct>product of two

matrices A=[4im] of order LxM and B=[B],, of order PxQ isa
matrix C of order IxXJ where I=LP and J=MQ. Itcan be written as

C=AQ®B=[ AuB A,B ... ApB 7, (2.85)
ApB ALB ... AwB

AnpnB ApB ... AiumB
where au ‘element’ A4, B stands for a matrix of order P X Q given by

AImB= r A’,,,Bu AlmBlg “ s Amelo . (2.86)
A[,,.Bu AI",B" o e AIMB,Q
L AlmBPl AimBps ... AmBro

To obtain an element of C in terms of the elements of 4 and B,
we use the notation C=[Cip, mg Where a row of C is denoted by a
dual symbol (/p) and a column 6f C by a dual symbol (mgq), such that
C1py ma=Aim Bpa. (.87)
We may relabel the rows and the columns of C by two new indices
iandj(1<<i<I, 1 <j<J)so that
C=[Cu]=[Cip, mql- (2.88)
This rather complicated notation can be made clear by an
example. The direct product of

@G @
A=) a b ¢, B=()[ & r
<2)Ld e f Q| k s
ORI

8For proofs of various results mentioned in this and the following subsections,
see Joshi (1984), Section 13.
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ie the 6 X 6 matrix

(1) (12) 21) 2) (1) (3
C=AQB=(11) [ ah ar br ch o 7. (2.89)
(12) ak as bk bs ¢k c¢s
(13) al at bl bt c ct
(21) dh dr eh er fh [fr
(22) dk ds ek es fk fs
@3y L dl dt el e fl fr

Note that the rows and the columns of the matrix C are labeled by
different schemes. Thus, while the third row of C is labeled as the
(13) row, the third column is labeled as the (21) column An element
of C is, for example,

Cov sy =Sh=A3Byy,
which is consistent with (2.87). We now relabel the rows and the
columns by identifying each dual symbol with one number, separately
for the rows and for the columns. We then have the matrix
[C 1 =I[Cip, mg] with (ID) — i, (mg) —j and 1< i, j<{6. Thus, in the
above example, C,;, 3y = Cas.

In the general case, the idestification of the dual symbol with the
single running index can be made by letting i=(/—1) P+p and
j=(m—1) @+g; thus,

Crps m=C1i=C-1yptp, (m-1) 0 +2.

The concept can once again be extended to the direct product
of more than two matrices. There is no restriction on the order of
the matrices whose direct product is to be taken.

If 4;, 4,, B, and B, are any matrices whose dimensions are such
that the ordinary matrix products 4,4, and BB, are defined, then
the direct product has the important property )

(4, ® By} (4, Q@ By)=(4:14;) ® (B,By). (2:902)

Further, if F is the direct product of a number of square matrices
A, B,C, ..., thatis, F= A®BRCR®..., then

trace F=(trace A) (trace B) (trace C)... . (2.90b)
The operation of the direct product of matrices is associative, so that
AQBR®C)=(ARB®C=A® BXC. (2.91)

The operation is also distributive with respect to matrix addition,
Thus;,

ARQ(CH+D)=4AR C+4RQ D. (2.92)
Moreover, from (2.90a), we have
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(AB)® (AB)® (AB)=(4AB)® (4 ® A)(B® B))
=(AR® AR A)(BX BX B). (2.93)
Generalizing the above equation, we have
(AB)M=(A4) (B)H, (2.94)
where
A=A RAR AR ... D A (k times). (2.95)
Finally, if 4 and B are square matrices with eigenvalues and eigen-
vectors A;, x; and pj, yj, respectively, the eigcnyalue's of AR B are
Ay and its eigenvectors are x;® y;. That is, if Ax;=Nx; and
Byj=p,y;, then
(4 @ B)(xi @ yi)=Nir; (X @ y)- (2.96)
The proof follows directly from (2.90a).
We shall find these concepts very useful in the next chapter

PROBLEMS ON CHAPTER 2

(2.1) Show that the following sets are vector spaces. Also indicate how
you would choose a basis in each space. What is the dimension of each space?
Which is the field over which each vector space is defined?

(i) The set of all vectors denoting the possible velocities of a free particls
in classical mechanics.

(i) The set of all vectors denoting the possible wave vectors of a free
particle in classical or quantum mechanics (note that this is usually referred to
as the k-space).

(iii) The set of all continuous square integrable solutions of an n-th order
ordinary linear homogeneous differential equation.

(iv) The set of all continuous square integrable functions which depend on
a set of variables.

(v) The set of all real square matrices of order n.

(vi) The set of all complex square matrices of order n.

(2.2) Prove Eq. (2.24).

(2.3) Prove Eq. (2.26). [Hint: Use (2.24).] -

(2.4) State whether the following statements are true or false and explain
your answer:

(i) If all the vectors of a set are pairwise orthogonal, it necessarily follows
that it is an orthogonal set.

(ii) Ifall the vectors of a set are pairwise independent of each other, it
necessarily follows that it is a set of linearly independent vectors.

(2.5) Consider the projection operators P defined in (2.28)..Show that
PP;=0if i»j. (This is expressed by saying that the projection operators are
pairwise orthogonal.)

(2.6) Show that the eigenvalues of a hermitian operator are real and that
those of a unitary operator have absolute magnitude equal to unity.
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(2.7) Show that the functions Py(x)=1and Pi(x)=x are orthogonal on the
interval —1< x<C1. Find scalars ¢’ and b’ such that Py(x)=14-a'x+&'x2 is
orthogonal to both Py(x)and Py(x) on the same interval. In this way, generate
polynomials P,(x)=1+ax+bx24-...+gx" such that P,(x) is orthogonal to
each P, (x),0=<m<n—1,0n the interval [—1, 1]. .[Note that these are the
Legendre polynomials, apart from constant factors.]

(2.8) Obtain the eigenvalues and the cigenvectors of the following matrices:
O 12 0 =332 ) (ii)[ cos 8 sin®

0 1 0 —sin 8 cos® |’
L—J\/J_/2 0 —5/2

(2.9) Obtain the direct sum and fthe direct product of the following
matrices:

OF 2 s 9 and 6 4
1 4 7 [2 7 |
| 3 3 3
G)[ 10 3 -5 and [3 9 o
—9 2 5 5 —7 8
|_ 0 5 -1 4 2 =2

(2.10) Obtain the direct product of the two matrices:

—2 3 4 and [ 9

[ 8 7 —6 ] 6 1.
E

(2.11) In Problem (2.9) verify Egs. (2.84a), (2.84b)\, (2.84c) and (2.90b)-

(2.12) Letp be a prime number and consider the set of the p integers
0,1,2, ..., p—1). Show that this setis a field with addition mod (p) and
multiplication mod (pYas the two binary operations. (A finite field is called
a Galois field.) -

(2.13) If T(A) is the matrix representing an operator T in the vector space
L, and T (B) that representing T in the vector space Ly show that the matrix
representing T in the vector space La(X) Ls is T (A) Q) T (B).

‘Bibllography for Chapter 2

Albert (1956), Chapter 3; Courant and Hilbert (1966), Chapter 1; Halmos
(1958); Helmberg(1969); Jackson (1962); Joshi (1984); Margenau and Murphy
(1966), Chapter 10; Meijer and Bauer (1962), Chapter 1; Meschkowski (1968); von
Neumann (1955); Newingand Cunningham (1967); Schmeidler (1965); Shilov
(1965); Simmons (1963), Chapters 10 and 11; Trigg (1964); Van der Waerden
(1949).



CHAPTER 3

Representation Theory of
Finite Groups

In the first chapter, we discussed some elementary notions of
groups in terms of the abstract concepts of elements and sets. In
Chapter 2, we treated operators acting on their Hilbert spaces and
studied their properties which are relevant to quantum physics. In
physics, we are interested in groups of transformations which-act on
suitable Hilbert spaces of physical systems, each vector of the Hilbert
space characterizing a ‘state’ of the system. In Section 2.2, we have
introduced the concept of a matrix representing an operator in a
Hilbert space. It is therefore natural to combine these two concepts
and to obtain matrices representing all the elements of a group. The
study of such matrices comes under the representation theory of groups.
In this chapter, we shall consider finite groups only, although most of
the results either hold good as they are or can be easily modified to
the case of infinite groups. Continuous groups and their representa-
tions are dealt with in the next chapter.

3.1 Introduction

3.1.1 Definition. Let G={E, 4, B, C, ...} be a finite group of
order g with E as the identity element, Let T={T (E), T (4), T (B),
...} be a collection of nonsingular square matrices, all of the same
order, having the property

' T(A) T(B)=T(4B), (3.1a)
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that is, if AB=C in the group G, then
T(4) T(B)=T(C), (3.1b)
then the collection T of matrices is said to be a representation of the

group G. The order of the matrices of T is called ths dimension of
the representation.

Let L, be an n-dimensional vector space on which the operators
of G act. Let{g;} be anorthonormal basis in L,. The operation of an
element 4 € G on a basis vector is then given by [see (2.19) and
(2.20)] :

n
A di= 3 ¢ Tii(4), (3.2
J=1
where T'(A) is the matrix representing 4 with the basis {¢;}. An
element of the matrix T(A) could then be, in analogy with (2.21),
given by
' Tiu(A)=(¢), A¢). (3.3
We could similarly obtain matrices corresponding to all the elements
of G (with the same basis {¢;}). It is then obvious that these matrices
generate a representation of G, for, on the one hand,

- n n
AB =AY, &Tu(B)= 3. ¢éx Trj (A) Tji (B),
j=1 k,j=1
while, on the other hand, -
n

AB $;= 3 ¢x Tui (AB).
k=1

Since the above two operations must give the same result, we have

n
> Ty (A) Tji (BY=Tw (AB) ¥ 1<i k<n;
=1
or T(A)T(B)=T (AB),
which is just (3.1a).

One may be tempted to jump to the conclusion that 7 is a
group under matrix multiplication. However, one must be careful
here because the matrices of T need not all be distinct. If
each distinct matrix of T is taken only once, the resulting set is cer-
tainly a group under matrix multiplication. Hereafter, whenever we

refer to the ‘group’ T, we shall really mean the set of the distinct
matrices of T. '

If all the matrices of T are distinct, there is clearly a one-to-
one correspondence between the elements of G and the matrices of



60 ELEMENTS OF GROUP THEORY FOR PHYSICISTS

T. In this case, the groups G and T are isomorphic to each other and
the representation generated by the matrices of T is called a faithful
representation of G. On the other hand, if the matrices of 7" are not
all distinct, there exists only a homomorphisn: from G to T and such
a representation is called an unfaithful representation of G.

The simplest representation of a group is obtained when we
associate unity! with every element of the group. Thus, in our exam-
ple of the group C,, (cf. Section 1.1.2), we would have the corres-
pondence :

Element : E C CECE mx my o. o
Representation : 1 1 1 1 1 1 1 1.
The set (1.1, ..., 1) does indeed form a representation of any group
in general. For example, the product of two elements, say, C,mx=o0.
in the above case, corresponds to 1xX1=1 in the considered repre-
sentation. This is known as the identity representation.

The identity representation is clearly an unfaithful representation of
any group. The set of the eight matrices of Problem 1.1(v) is a faithful
representation of C,,, because, as shown in Problem (1.6), it is
isomorphic to C,,. Every group has at least one faithful representa-
tion, the proof of.which is left to Problem (3.14).

3.1.2 Some properties of representations of a group. We note
that the identity element E of G has the property that EA=AFE=A
for all elements A€ G. In terms of the matrices of a representation,
this implies that

T(E)T(4)=T(A)T(E)=T(4). (3.4)
We see that this matrix equation is satisfied only if T (E)=E, the unit
matrix.2 Thus, in any representation, the identity element of the
group must be represented by the unit matrix of the appropriate
order.

On taking A-1for B in (3.12), we see that

TA)T(A)=T(AA™)=T (E)=E,
or T(A)=[T (D] ' (3.3
'This is tosay that the matrix representing the inverse of anelement is
equal to the inverse of the matrix representing the element.

1A constant number is a special case of a matrix—it is a square matrix of
order one.

2In accordance with our convention, we shall use the same symbol E to
denote the identity operator and the unit matrix.
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Suppose we have two representations of a group G given by
Tl:{Tl(E)’ Tl(A)’ . '}9
To={Ty(E), To(A),...}.
If there exists a nonsingular matrix S such that
T(A)=S5"1 T,(4) S, TyB)=S"! T,(B)S, etc., (3.6)
for all the clements of the group G, then 7, and T, are said to be
equivalent representations of G. This means that the matrices of the
first set can be obtained from those of the second set by a similarity
transformation of the coordinate vectors of the vector space in which
both the representations are defined. We express this by writing in
short
T,=81T,S. (3.7
If two representations of a group are not equivalent to each
other, they are said to be inequivalent or distinct representations.

3.2 Invariant Subspaces and Reducible Representations

It is evident that the vector space L, which is used to generate a
representation of the group G has the following property: For every
element A of G and every vector ¢ & L, A ¢ also belongsto L,. We
say that the vector space L, is closed under the transformations of
G or, simply closed undcr G. It means that the operation of any
element of G on any vector of L, does not take us outside L,.

A vectorspace L, is said to be a subspace of another vector space
L, if every vector of L, is also contained in L,. L, is called a
proper subspace of L, if the vectors of L, do not exhaust the space
L,. Thus L, is also a subspace of itself, but, of course, not proper.

The vector space L., which is closed under G, may possess a
proper subspace L,, which is also invariant under G. In such a case,
L,, is said to be an invariant subspace of L, under G, and the space
L, is said to be reducible under G.

3.2.1 Reducibility ‘of a representation. Let, as before, {T(E),
T(A), T(B),...} be a representation of G in* L,. We now state that
if L, has an invariant subspace Lm (m<<n) under G, then in a
suitable basis the matrices of the representation have the form

DA § 0
Ty (A)=[ | ] (3.8)
X (4) | D®)(4)

where D(1Y(4) and D(» (A4) are square matrices of orderm and n—n;
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respectively, X(A) is of order (n—m)xm and 0 is a null matrix of
oeder mxX(n—m). To show this, we use the row vector notation for
the vectors:

#=(0 00...1,0...0), (3.9)
which means that the i~th column has unity and all the other elements
are zero. The labeling of the n basis vectors may conveniently be
chosen in such a way that the first m basis vectors are in Lm. The
operation of A€ G on a basis vector ¢, (1<<p<m) is then given by
Agp=(00..1,0..0)[ Tyy...T1m Nimg1- - Tha ]

Tore--Tom | Trmmire--Tomn

T.+1,1... cene TM+1.R

L Tnl- . -Tnm Tn,m+1 “ee T,.,, _
c =(Tpy Typse - TpmTpsmit.« - Tpn), (3.10y
where we have written T}, for T;; (4) for the sake of brevity. Now,
since Ly, is itself invariant under G, the transformed vector A4, also
belongs to L, ; hence its components along the basis vectors 4;..“,
¢,,.+g,.. ., ¢a must be zero, i.e.,
Ty (A)=0, m4-1<<k<n. .11
However, p is arbitrary, and letting it run from 1 to m, we see that
21l the elements in the rectangular block of order m x (n—m) at the
top right corner of 7(A) must be zero. Hence T(A4) has the form
shown in (3.8).
Let us consider the product of two elements of the group G,
say, AB=C. In terms of the matrices of the representation con-
sidered above, we have T(4) T(B)=T(C), or

by 0 DM (B) ! 0
X(4) b)) || x(B) | D@ (B)

D) (4) D (B) | ’ :| 3.12)
= ! .1
[ X(4) DO (B)+ D (A) X (B) | D (4) DV (B) (

But 7(C) must itself be of the form

D“)(C). 0
o= l: X(C) | D®(C)
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therefore, we have

DO (4) DD (B)=DW (C), (3.13)
D) (4) DB (B)=D™ (C),
and X (4) DV (B)+D® (4) X (B)=X (C). (3.14)

From (3.13), it is clear that the two sets of matrices D™
={DV(E), DN(A), ...} and D¥={D*)(E), D'®(4), ...} also give us
two new representations of dimensions m and n—m respectively for

the group G. It is also clear that the basis vectors {¢;, ¢, ..., ¢m}
are the basis for the representation D! and the remaining n—m
basis vector {¢mty1, . . ., ¢n} for D,

In this case, T is said to be a reducible representation. Thus, we
see that the reducibility of a representation is connected with the
existence of a proper invariant subspace of the full space.

We shall denote the n—m=p-dimensional vector space defined
by the basis vectors {¢mi1,- - -,hn} by Lp.

3.2.2 A theorem on representations. We shall now show that
any representation T of a finite group, whose matrices may be non-
unitary, is equivalent (through a similarity transformation) to a
representation by unitary matrices. For this purpose, we define a
hermitian matrix

H= Y T(A)T1(A), 3.15)
AEG
where the summation is over all the elements ofthe group G. We
invoke a theorem from matrix algebra that a hermitian matrix can be
fully diagonalized by a unitary transformation. If U is the necessary
transformation, then
U-* HU=H,, (3.16)
where H, is a diagonal matrix whose diagonal elements are the (real)
cigenvalues of H. Using (3.15) in (3.16), we have
Hy=U1t Y TA)THAU
AEG
= > UTAUUITI(AU
AEG
= 3 T'(A)T'1(A), ' (3.17)
AEG ' .
where T'(A)=U"T(A)U. Taking the k-th diagonal element of
3.17), we get

(Halie=dr= > 3. Tx;’ (4) Tix't (4)
AEG
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= X X Tu/ (A T'*(4)
AEG

~ L ST ()] (3.18)
AEG
Since each term in this summation is nonnegative, we have d=0.
But di can be zero if and only if T%;'(4)=0 for all values of j and for
all the elements A€ G. This would give a vanishing determinant
for all the matrices of the representation, a case which we have
excluded. Hence dr>>0, that is, dr must be positive.?

As a consequence, it is also clear that Ha is a nonsingular matrix.
We can therefore obtain any power of the matrix Ha simply by taking
the corresponding power of all the diagonal elements of Hy, i.e.,

[(H)*le=(dr)?. (3.19)
where p is any real number, positive or negative.

The required similarity transformation matrix which converts

the nonunitary matrices 7(4) into unitary matrices I'(4) is then
seen to be

V=UH~, (3.20)
giving
LA)=V31T(A)V (3.21)
=Hy "2 U-1T(A) UH,'?
=Hy 2T (A) Ha'i2, (3.22)

To verify that the matrices I'(4) are indeed unitary, we note that
['(A) Tt (A)=[H,72 T’ (A) Ha'?| [H? T't (4) Hq™ P
=Hy 2 T (A Ha T'F (4) Hy 12
=H-'2T" (4) 3. T’ (B) T"t(B)T't (4) H;/\/* by (3.17)
BEG
=H;2 > T (AB)T't(AB) H;7'2
BEG

=Hyg V2 Hy Hi7 2 by (1.9)

—E,
which shows that I'(4) is a unitary matrix.

If the elements of the group G are unitary operators, the similarity

transformation of the.representation 7. to the representation I
has a simple physical m}aain\gf—it implies going over from an

3A matrix all oT\,Wlxose eig;mvalues are positive is called a positive definite
matrix.
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obligue system of coordinate axes to an orthonormal one. The
nonunitary nature of the matrices T(4), etc., indicates that the
basis vectors of L,, chosen as the basis for the representation T, are
not orthonormal, whereas the representation I' by unitary matrices
shows that the basis vectors for the representation I are orthonormal.
We have achieved this transformation from the oblique coordinate
system, say ®=(é, ¢,,....¢n), to the orthonormal coordinate system,
say =y $ar- .. n). by means of the matrix V of (3.20) so that
Y'=a®V. In this light, what we have said in this theoremis really_very
simple and almost trivial: It is possible to choose an orthonormal set
of basis vectors in any finite dimensional vector space, which is
obviously true! The difficulty in extending this theorem to infinite-
dimensional representations or to the representations of infinite groups
is regarding the convergence of the various sums encountered in its
proof. The theorem may none the less be proved to hold for certain
classes of infinite groups known as compact groups which will be
treated in the next chapter.

Owing to this theorem, hereafter, we need to consider represen-
tations by unitary matrices only. Thisnodoubt affords a great simpli-

fication.

3.2.3 Irreducible representations. If the representation 7 consi-
dered above is reducible, the representation I'={T" (E), T (4),...)},
defined by (3.21), is also reducible, since they are defined in the same
space and are equivalent. Moreover, since the matrices of T" are
unitary, they must have the form

F(A)=[ S (4] 0 :I,etc., (3.23)

hremm . ——— I____._
0 | s
where we have the two representations by unitary matrices SV =
{SW (E), SM (4),...} and SP={S® (E), S* (A),...} which are
defined in the spaces L, and L, and hence are equivalent to D™ and
D@ respectively.

It may be possible that the representations S and S are fur-
ther reducible, i.e., thespaces L, and L, may contain furtherinvariant
(proper) subspaces within them. This process can be carried on until
we can find no unitary transformation which reduces al/ the matrices
of a representation further. Thus, the final form of the matrices of
the representation I’ may look like

P
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.

]

i

Tay= :
________ L, 0 yetc., (3.24)

|

with all the matrices of T having the same reduced structure. When
such a complete reduction of a representation is achieved, the com-
ponent representations 'V, T . T are called the irreducible
representations of the group G and the representation T' is said to
be fully reduced.

It may be noted that an irreducible representation may occur more
than once in the reduction of a reducible representation T'. The
matrices of the representation T" are just the direct sum of the matrices
of the componentirreducible representations and this may be denoted
by

I'=q, TO®a, T?D... Da I'
=X q; I (3.25)
{

where, in the last step, the symbol for summation is to be understood
in the sense of direct sum. :

At first sight, it may appear from (3.24) that the number of
distinct irreducible representations of a group is very large and unlimited.
However, for finite groups, this isnot the case, because the irreducible
representations of a group satisfy various conditions which limit their
numberand which are, at the same time, very useful in the applications
of the theory of groups to physical problems. [n the next few sections
we take up the study of such properties of the irreducible representations
As an example, the irreducible representations of Cu, are discussed ir
Section 3.6.
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3.3 The Schur’s Lemmas and the Orthogonality Theorem

There are two theorems of fundamental importance which go
by the name of Schur’s lemmasand which are extremely useful for the
study of the irreducible representations of a group. They also lead
to the orthogonality theorem of the irreducible representations and we
shall now consider them. It is assumed that the space in which the
representations are defined is a complex vector space.

- 33.1 Schur’s lemma 1., If T is an irreducible representation
of a group G and if a matrix P commutes with all the matrices of I'®,
then P must be a constant matrix, that is, P=cE where c is a scalar.

We shall prove this lemma by two methods.

First proof: Let A be any element of the group G; then it is
given that
T'DY(A)P=P T (4) for all ACG. (3.26)

If the dimension of /) is m, P is a square matrix of order n. Since
it has been remarked in Section 3.2.2 that the matrices of a represen-
tation can be taken to be unitary, it follows that each of the matrices
T' (4), I (B), etc., possesses a complete set- of n eigenvectors. Since P
commutes with I'(4), etc., it follows that P also has® n linearly
independent eigenvectors. Let x; be the eigenvectors of P with the
cigenvalues c;, Then we have o

Px;=c;x;. (327)

Multiplying both sides from the left by I'" (4), we get
MO(A)Px;=TU)(4) ¢ x;,

or PP“’(A)JC}=C_; T'Y(4) x;, (3.28)
by using (3.26). This means that I'" (4)x;, for all A€ G, are eigen-
vectors of P with the same eigenvalue c;. Let there be m such indepen-
d‘ent cigenvectors of P having the same eigenvalue ¢;. But the
ggf:nvec.to_rs belonging to an eigenvalue generate a subspace L,, which
is mv‘anant under G. Now if Ln is a proper subspace of L,, that is,
if Ly, is .not the same as L,, then L, has an invariant subspace and as
sho.wn_m Section 3.2.1, the representation I'" must be reducible
which is contrary to the hypothesis. Therefore L,, must be identical

4P is the matrix of some operator in the same space L, in which I'() is
. defined.
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with L, making all the eigenvalues of P equal to each other and equal
to, say, ¢;=c, giving P=cE.

There is one more possibility in the above treatment, that is, the
invariant subspace L,, may contain only the null vector. However,
this case is excluded from consideration because if x is a null vector,
it trivially satisfies the eigenvalue equation Px=cx with an arbitrary
eigenvalue c.

Hence the theorem is proved.

Second proof: We shall first show that any hermitian matrix
which commutes with every matrix of an irreducible representation is
a constant multiple of the unit matrix.

Let H be a hermitian matrix which commutes with all the matrices
of the representation I't, so that

HT9(A)=T"(A4) H for all ACG. (3.29)
Let U be the unitary transformation which diagonalizes H, i.e.,
U-rHU=H,;, UHU-'=H, (3.30)

ere H, is a diagonal matrix with diagonal elements, say d4;, which
:[r%th_e eigenvalues of H. (The matrix His of order n, the dimension
of the representation I').}

Let us suppose that the eigenvalues of H are not all the same.
Let us pick up a certain eigenvalue which is repeated, say, k times
where 1<<k<Cn. By a rearrangement of the columns of U, the order
of the eigenvalues d; in H,; can be changed at wills Let such a re-
arrangement be made to bring the chosen equal eigenvalues in the first
k positions of Hy, so that

' dy=d,=...=dp#dy, k+1<p<n. (3.31)
Multiplying (3.29) from the lefc by U-! and from the right by U, we
have U-THUUI'"(A) U=U-T(4) UU-HU,
or H, T (A)=T""(4) Ha, for all AEG, (3.32)
where I'"(A), etc., are the matrices of a representation equivalent to
'), Taking the (j, w)  element of both sides of (3.32), we find

dj Ty (A)=Tp ' (A)d,,
or (dij—dp) Tyt (A)=0 for all AEG,
By (3.31), dj#d, if 1< j<<k and k+1<p<<n. Hence
[y (4)=0 for 1<<j<k,
’ k+1<p<n, : .
and all AEG. (3.33)
sJoshi (1975), Section 9, p. 96.
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The matrices of '/ therefore have the form

k n—k
by iy
[0
I R (3.34)

[T e—

k
n—-k{

This is of the form (3.8), showing that the representation 'Y, and
hence its equivalent representation I't?, must be reducible. But by
assumption, I'? is an irreducible representation, which is ‘possible if
and only if k=n, that is, if and only if all the eigenvalues of F are
the same. This shows that H=H,and H must be a scalar mat; ix.

Now, let P be any matrix which commutes with all the matrices
of the representation I''). Then, by taking the hermitian conjugate
of (3.26), we have

Pt I’“W(A)=I'(”f (4) PT,
or PO (4 =[T (A PT,
or P (A-)=TW (4-Y) Plforall A€ G. (3.35)
Hence Palso commutes with all the matrices of '), We can define
two hermitian matrices H, and H,, such that
H,=(P+P!)/2, Hy=i (Pt —P)/2; (3.36a)
P=H, +iH,, P =H, —iH,. (3.36b)

If both P and PYcommute with the matrices of I'”, Eqgs. (3.36a)
show that H, and H, also do. As just shown above, H, and H, must
then be constant matrices. From (3.36b) it therefore follows that
P must be a constant matrix, completing the proof.

The importance of this theorem lies in the fact that its converse
is also true. Thus, if no matrix other than a constant matrix com-
mutes with all the matrices of a representation, then the representation

is irreducible. (This fact is used later in Section 4.5.1).

3.3.2 Schur’s lemma 2. If T and TV are two irreducible
representations of dimensions I; and 1j respectively of a group G and
if @ matrix M (of order I;x 1)) satisfies the relation

' (AYM=MTY (A) forall 4 € G, (3.37
then either (a) M =G, the null matrix, or (b) det M50, in which case

D) and T are equivalent representations.
It should be noted that two representatic::: can be equivalent
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only if their dimensions are equal. Hence if /;71), only case (a)applies.

Proof: Taking the hermitian conjugate of both sides of (3.37),

we have
Mt rot (=10t ()Mt forall 4 € G,
or MITWA-Y)=TD (4 )M forall 4 € G.
Multiplying from the right by M, we get
MYT (A=Y M=T (4-) MT Mforall 4 € G,

or MYMTW (AD)=T"(4-) M} Mfor all AE G, (3.38)
by using (3.37). Thus the matrix MTM commutes with ['/)(4-1)
for all A € G and therefore, by the previous lemma, must be a
constant matrix:

M' M=cE. (3.39)
We first ~onsider the case /;=/;=n, say. From (3.39), we have
det (M' M)=det (M) det (M)=c". (3.40)

If ¢#0, then det’M 0 (because det Mt =(det M)*); therefore M-1
exists and‘from (3.37), we have
I (A)=M-T"W(4) Mfor all 4 € G,
showing that ') and I'')’ are equivalent representations. If c=0,
then taking the (i, i) element of (3.39), we find
23 Myt Mu=0,

or ;2. Mi* Mkl=f | Mu [1=0,

which is possible if and only if Mx=0 for 1<<k<<n. But i is arbitrary
and can take any value from 1 to n; hence M=0.

In the second case, when /;7/;, we can assume without loss of
generality that /;</;, We supplement the matrix M by writing
(1;—h) rows of zeros to give a new matrix M':

'y
) — e
M=y }1.
(3.41a)
o }1,_1,
This gives
I L—l

A
M'*=[ w§ 0 ]}1,. (3.41b)
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It can then be easily seen by matrix multiplication that Mt M’'—=
M1t M, and hence

det(M't M")=det(MT M),
or det(M'T)det(M*)=c",
by using (3.40). Here, we have put /;=n. However, by inspection
of (3.41), det (M’)=det (M'T)=0; hence ¢=0, and MT M=0. Once

again, taking the (i, i) elelemt of MT M, we see that M=0.
This completes the proof of the lemma.

333 The orthogonality theorem. As an application of the
above two lemmas, let us construct a matrix M given by

M= X TW(A)XTO (A, (3.42)
AEG

where ') and I'/) are two inequivalent irreducible representations of
dimensions /; and /; respectively of a group G of order g, and X is an
arbitrary matrix of order /; X/; independent of the group elements.
Multiplying both sides of (3.42) from the left by I'P(B), where
BE G, we get

I“”(B)Mr- T (B) Z F‘”(A) X I‘(i)(A_l)
AEG
= > I (BA) X T (A7)
AEG

= 3 I%(C)XTY (C'B) where BA=C

CEG
= > DOC)XTU(CHYTYI(B)
CEG
=MT" (B), (3.43)

for all BEG. Therefore, by the second lemma of Schur, we have that
M=0.
Taking the (k,s) element of (3.42), we obtain

22 32 Tupt(A) Xpg Tyst? (A71)=0. (3.44)
AEG p,q

4

" For our purpose, we now conveniently choose the arbitrary matrix X
to be a matrix all of whose elements are zero except the (m, n) element
which we take to be unity, ie., Xpq=8,m 8,;n. Then, we have, from



72 - ELEMENTS OF GROUP THEORY FOR PHYSICISTS

the above equation
Z Pkm(“ (A) Pn_v"” (A-l)———'o‘

AEG
or 2. Tl (A4) T P* (A4)=0,

AEG

for 1<k, m<Cl, 1<<n, s<<I). (3.45a)
Put in words, this implies thar the product of the (k,m) element of
the irreducible representation T with the complex conjugate of the
(s.n) element of the irreducible representation TV, summed over

the group elements, equals zero.
Next, we construct a matrix N by replacing I'/) in (3.42) by
(), that is,

N= 2 TW(4)XTW (4. (3.46)
AEG '

By a treatment that led to (3.43), we can show that -

'Y (A)N=NTW (A) for all ACEG.
Therefore, by Schur’s first lemma, we see that N must be a constant
matrix, say, N=aF, where FE is the unit matrix of order /;. Again,
taking the (k, s)-th element of (3.46), we get

2 X Trp (A) Xpg Tgst (A1) =adk,. (3.47)
AEG p,q

As before, if we take X,,==3,m 8,4, then
2 Tim™® (A) Tre? (A1) =abdis. (3.48)
AEG

To draw any conclusjen from (3.48), we must first find the scalar
a. For this purpose, we take the traces of the matrices on both
sides of (3.46), giving
I
trace N=alj== 2. 2. 2 Tup" (4) Xpq Dl (47Y),
k=1 A€EGDP, q
=3 Xpg X X T (AT (4)
P.4q AEG k
=3 Xpe 2 qu”)(E)
Py AEG
=g 3 Xpg8pq=g trace X,
p.a

or a= g (trace X)/l. (3.49)
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But, due to our choice of X, trace X=0 unless m=n, in which case
trace X=1. In short, trace X=3,,. Hence, we get from (3.48),
> Tim'?(A) Tus'D (A1) =(g/l) Sks Smn, (3.45b)
AEG
for 1<k, m, n, s<</i. Now we combine the two results (3.45a)
and (3.45b) in one singie equation:
> Tl (A) Tas? (A=Y)=(g/lk) 817 s Bmn,

AEG
(3.50)

or S Trm'? (A) DUV (A)=(g/1;) 81 s Srmm.
AEG
This is known as the great orthogonality theorem for the irreducible

representations of a group and occupies a central position in the theory
of group representations.

3.4 Interpretation of the Orthogonality Theorem

Eq. (3.50) has a very elegant interpretation in the language of
linear vector spaces. Let ¢ be the total number of distinct
irreducible representations of a finite group G={E, 4, B,...} of
order g. Let us think of I'xn!”) as a function of the elements of the -
group G. This function T'x,,! is defined only at the g discrete ‘points’
E, A, B, etc. If we were to plot the function I'v»‘"? against the variable
A, it may look something like that shown in Fig. (3.1).

m
Yol
+1t

FIGURE 3.1 The (k, m} . matrix element of the irreducible
representation I't¥) as a function of the group
elements

We have one such function for every different value of i, k, m
(I<<i<e, 1<k, m<I), and hence the total number of functions
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<
is 3" I, (we have /;*functions for each value of i). All such functions
j=1
define a g-dimensional vector space because a function in this space
can be completely specified by giving its g ‘components’. This space
is generally referred to as the group space.

The left-hand side of (3.50) is then just the scalar product of the
two functions Frx'? and T,,Y [see (2.35)]:

(Tl Trm'?y = 30 TiptD* (A4) TP (A). (3.51)
AEG

Eq. (3.50) then implies that all the different functions such as
I'xm'? ars orthogonal to each other. However, we do not yet know
whether they are complete, that is, whether they span the full space or
not. Nevertheless, since the number of independent vectors in a
vector space cannot exceed its dimension, we have the relation

c

> P<g (3.52)

=1
This is the condition which, as we stated earlier, limits the number of
the irreducible representations of a group G of orderg. We shall
later show that the equality sign holds in (3.52). We shall call Txmt'
the representation vectors in the group space.

This idea of the group space may be a little difficult to grasp in
the first reading. However, to give an analogy, it is very similar to the
two-dimensional spin space of spin functions of a particle with s=1/2.
The basis functions in this space are X'/%(s,) and X-1/2(s,) (where s, isa
component of the spin s), each function itself being defined only at the
two discrete values of its argument s,=-1/2. Any other spinor (a
function in the spin space) can then be expressed as a linear combi-
nation of the two basis functions. In general, if the spin of the particle
is j. then the spin functions define a (2j41)-dimensional space with
the 2j4-1 basis functions X(j;), ¥-1(},), ..., X~4(j,) (where j, is a
component of j), each function being defined at the 2j+1 values of
its argument —j<<j,<<j.

3.5 Characters of a Representation

We now introduce another important idea. We have seen that
the matrices of a representation of a group in a given vector space
are not unique, for they depend on the choice of the basis vectors in the
vector space and even on the ordering of the basis vectors. However,
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all such representations must be related to each other by some simi-
larity transformation and must therefore be equivalent to each other,
for all of them are defined in the same vector space. Now, we know
that the trace of a matrix is invariant under a similarity transforma-
tion. Hence we see that the traces of all the matrices of a represen-
tation would uniquely characterize a representation irrespective of the
choice of the basis vectors.

Let T be a representation (reducible or irreducible) of a group
G. We define the characters of the representation I as the set of the
traces of all the matrices of the representation T, i. e,

X(A) = = Tu(A). (3.53)

Obviously, if the representaiion is one-dimensional, the character is the
same as the representation. Also, the characters of conjugate elements
in a representation are the same, because the trace of a matrix is in-
variant under a similarity transformation. Thus, if 4 and B are con-
jugate elernents, then there exists an element C such that A=C-'BC,
or

I (4)=I (C") I'(B) I'(C);
taking the trace of both sides gives

trace (T" (4))=trace (" (B)),
or L (A)=% (B), (3.54)
where we have used the cyclic property of trace, that is, for any mat-
rices P, Q and R, we have

trace(PQ R)=trace(Q RP)=trace(RPQ).

All the elements in a class thus have the same character in a represen-

tation. The character is therefore a function of the classes just as a re-
presentation is a function of the group elements.

3.5.1 Orthogonality of characters. We can immediately trans-
form (3.50) into an orthogonality relation for the characters of the
irreducible representations of a group. Sectting A=m and s=u in
(3.50), summing over & and s and using (3.53), we get

N (4) A (A):*/Ef 3i h=g 8. (3.55)
AeG i
Here; 4 (A) is the character of the element A inthe representation

T, etc. If ne is the number of elements in the class Cr of the group
then (3.55) reduces to



76 ELEMENTS GF GROUP THEORY FOR PHYSICISTS

3 \/E Y JE Ae* =3y, (3.56)
k g g

where yx'¥ is the character of an element 4 in the class Cr in the
representation I'?, etc., and the summation is over all the distinct
classes of G. _

This is the orthogonality relation for the characters of the irre-
ducible representations of a group and, written in the form (3.56),
once again suggests that (1/nx/g) yx* can be thought of as the ortho-
normal basis functions in a class space whose dimension equals the
number of classes in G. We have one such independent basis function
for each irreducible representation of the group and therefore, as
before, we have the condition

number of irreducible representations of G
<number of classes of G. (3.57)

That, in fact, the equality sign holds in (3. 57) also will be shown in Sec-
tion 3.7. We shall call X¢{9) the charaater vectors 1n the class space.
Taking the equality sign in (3.57), the orthogonality relation (3.56)
can be expressed in an alternative form as®
[
R ACERRY =§ Skz (3.58)
i=1
The sum is over all the inequivalent irreducible representations of -G
and (3.28) denotes the orthogonality of the characters for different
classes. Though it does not contain any new information, it is helpful
in writing down the characters. of a group by inspection.
" We can derive a useful relation for the products of the characters
of an irreducible representation I"®). To this end, we consider the
product of two classes defined in.Section 1.3.1 :

CiCi= %‘au‘k Ce- (1.16)

Let us add the matrices representing the elements of the class C;in the
irreducible representation I® and denots the resulting macrix by
P;a, i.e.,
Pie= 3 T@(4). (3.59)
AEC(; .

6This can be obtained by using the fact that if all the rows of a finite square
matrix are normalized and orthogonal to each other, then its columns must
also be normalized and orthogonal to each other. Thus, if U is a finite
square matrix with UUT =E, then UTU = E.
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Similarly, of course, we can construct the matrices for all the classes
of G. For any BE G, we now have
(M@ (B)7! P> T'® (B)y= 3. [[ ()] '™ (4) T'™) (B)
AE(
= > T'@(B-'4B)
AEL; '
= > TI'®(4), (3.60)
» . AE(;
where we have used (3.5) and the fact that as A runs over the class Ci,
B-' AB also runs over the class (;, It therefore follows that
I'® (B) P=P; T'@ (B) for all B € G, (3.61)
that is, P;* commutes with all the matrices of the irreducible represen-
tation I''®, By Schur’s first lemma, this means that P;* must be a
constant matrix:
P2r=A*E. (362)
Taking the trace of both sides of (3.59), we have
N a=nk'),
or Nt =(nifle)yi' ™. (3.63)
From Eq. (1.16) and from the definition of the matrices P in (3.59),

we have
PeP=3 aiji Pi*.
&

or NEAP= a0 M, (3.64)
k
by using (3.62). Substituting (3.63) in the above, we get

n; . nj . Ny
I_Kl,(u) 1_ Lj(a)::zaijk_l—“/_ku),
o 3 k o

or mnj Y@ U O =1, T qgip ne X', (3.65)
k

Once again, this relation is extremely useful in constructing the
characters of the irreducible representations of a group.

3.5.2 Reduction of a reducible representation. It very often
happens that we have a representation of a group which is, in general,
a reducible one. Such a representation, say I', may be written as a
linear combination of the irreducible representations as in (3.25).
We can find the number of times an irreducible representation I'(9
occurs in the reduction of I'. For this we take the traces of both
sides of (3.25). If X(A), etc., denote the characters of the elements
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in the representation I', then we have
X A)=Z aXt (4), (3.66)
!

for all 4€G. Multiplying both sides by XY'*(A4) and summing
over all the elements of &, we get

SOXRADA(A)=Ya 3 XIX(4) XD (4)

AEG i AEG
=4a,g,
or o=t S 2k (4)%(4), (3.67)
& AecG

This gives a method for obtaining the coefficients in (3.25). The
characters of the irreducible representations are called primitive or
simple characters, while the characters of the reducible representa-
tions are called compound characters. A compound character can be
expressed as a linear combination of the simple characters of a group
as in (3.66).

3.5.3 A criterion for irreducibility. Let T' be a representation
of a group G with the character X. We can write the character X as
alinear combination of the simple characters of G as in (3.66) with
the coefficients a; given by (3.67). Let us multiply (3.66) by its
complex conjugate equation, sum over all the group elements and divide
by g, the order of G. We obtain

LY wmyr=1 T ara) X 2054y (4).
g 4eG & i AEG

=3 IG,'
i

2, (3.68)

Ifthis quantity turns out to be equal to 1 for the representation T,
it follows that all the a;'s must be zero except one, say ax. which
must be equal to unity (remember that the a,’s are nonnegative
integers). It follows that the representation I' must be identical with
(or equivalent to) the irreducible representation I'"*).  We thus have
a very simple criterion for the irreducibility of a representation: The
necessary and sufficient condition for a representation to be irreduci-
ble is that its characters satisfy the equétion

> XX (A)X(A)=g,

AEG

or E ne XX Y=g, (3.69)

where yx is the character of the k-thclass of the group.
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3.6 The Enmpleof Cdv

As an example of our preceding discussion of the representations
and their characters, we now take up the case of the group C,,
treated in Chapter 1. We shall illustrate how to find its irreducible
representations and the corresponding characters. In practice, it is
easier to find the simple characters of a group before its irreducible
representations.

3.6.1 The character table of C,,, We shall take for granted the
equality sign in(3.52)and (3.57) until it is proved in the next section.
Since Cg, has five classes, it must have five irreducible representations,
say, 'V, T T® T and I'®, whose dimensions may be denoted
by L, I, I3, I, and I respectively. These must be connected by (3.52):

LA L2412+ 124 12 =S8. (3.70)
The only possible solution (with integral /) is when four of the J’s
equal 1 and the remaining one equals2. The order of the J;’s is im-
material and hence we conveniently choose |, =hL=I;=I,=1and l;=2.
We can then construct the character table by making use of the ortho-
gonality relations (3.56) and (3.58). 1Itis shown in Table (3.1) for
the group C,.

TABLE 3.1 THE CHARACTER TABLE FOR C,,

classes C, C, Cs C, Cs
(E) (Co C& (CH  (mx my) (ous ay)

characters

x(1) 1 1 1 1 1
X(2) 1 —1 1 -1 1
%(3) 1 —1 1 1 —1
p Al 1 1 1 —1 -1
pAG] 2 0 -2 0 0

The first row is obtained very easily by writing unity for the
character of each class. This corresponds to the identity representation
which we have discussed in Section 3.1. Since the matrix for E
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in any representation is just the unit matrix, its trace or character is I,
the dimension of the representation; and this gives the first column of
the table. For one-dimensional representations, the character is iden-
tical with the representation, and hence, for the representations I'V
through I'*), the characters themselves must satisfy the multiplication
“table. For the elements whose square equals E (such as C,2, mx, ou,
etc.), the only allowed characters are then 4-1. The multiplication
Table (1.2) for C,, shows that mxm,=C,? (or cuo,= C,?). This indicates
that whether my and m, are both represented by +1 or by —1
(remembering that elements in the same class have the same characters),
X{C,% must be +1 in all the one-dimensional representations. This
gives us the characters of C,2in I'®, I'® and I'*4).

For the elements C, and C,3, with (C,)'=(C*)*=E, the one-.
dimensional representations could be the powers? of i=4/—1. But
again, since (C,)2=(C3)*=C3, X(C,) and XC,®) can only be +1 for
T, T and I't). Now we invoke the orthogonality relation; every
new row of characters must be orthogonal to all the previous rows,
and must satisfy the normalization condition (3.60). This can be
achieved by taking +1 for one of the classes C,, C, and Cy in the
representations I'®), I'"® and I'%}, and —1 for the remaining two classes.
This completely determines the characters for the first four represen-
tations. The fifth row is obtained simply by using the orthogonality
relations for the columns [Eq. (3.58)].

"~ The arguments given above for the group C,, are perfectly general
and can be used in finding the character table for any finite group. We
can always easily get the first row and the first column as indicated
above. In the case of one-dimensional representations, the other entries
are determined by using the criterion given in the footnote 7 and an
extensive use of the multiplication table. In the case of irreducible
representations of dimensions more than one, the orthogonality rela-
tions between the rows and between the columns can be used. For
more complicated groups, Eq. (3.59) involving the products of
characters should be used.

Since determination of the character table is one of the most
important exercises in group theory, we shall discuss another example

?In general, if the order of an elem¢nt A is n, i.e. A®=E, its only one-dimen-
sional representations can be powers of exp(2ri/n), since these are the only
numbers whose n-th power equals unity. Moreover, they are ‘unitary’
numbers, that is, numbers whose inverses equal their complex conjugates
respectively,



Flow-chart for delermi'ning the character table of a finite
group

The character table of Cs.

1. The number of irreducible representations of group
equals the number of its classes.

2. The dimensions of the irreducible represeantations are
determined by the' equation

:‘:_‘,lli2=g.

Remembering that /; are positive integers, this equation
has a unique solution, apart from the arbitrariness as to
which of the possible values we choose for /), [, ..., [,
respectively.

3. We now start constructing the character table. We
make a ¢ X ¢ table with classes shown at the top ard the ¢
irreducible representations on the left, denoted by T,
Pz, ey Pc. :

4. Every group has a representation in which each ele-
ment is represented by unity, which is called the identity
representation. This gives one row of the character table,
“say the first row.

1. Since Cs, has four classes, it must have four distinct
irreducible representatons.

2. The dimensions of the four irreducible representations
of Cs, would be given by

124 R2 4+ 124+ 12 =10,

which is satisfied when we choose the four numbers to be
1,1,2,2. Wemay choose I, =L, = 1,5 =L = 2.

3. The four classes of Cs, are (E), (2Cs), (2Cs?), (5m).
We label the four irreducible representations I'y, I';, T's, Ta.
The character table would be a 4x4 table. A blank
character table is drawn showing the four classes at the
top and the four irreducible representations on the left, as
shown below in Step §.

4. We may choose the first one-dimensional representa-
tion I'; to be the identity representation and fill up the first
row of the character table by writing unity below each of
the four classes, as shown in the table below.

18



5. In any representation, the identity element £ is repre-
sented by a unit matrix. Hence the character of the repre-
sentation for the class (E) is the dimension of the

representation. These have already been worked out for -

the irreducible representations in Step 2 above. This gives
the column corresponding to the class (E) in the character
tablc. The character table as obtained so far Jooks as
shown below.

C C C.
; G ®
! T, | 1 1 1
! r, I
r. |1

6. If there are any other one-dimensional irreducible
representations, their characters may now be worked out.
In a onec-dimensional representation, the characters are
identical to the corresponding matrices and hence the
characters must themselves satisfy the multiplication table
of the group. In particular, if A" = E for a certain element
A, then [T(A4)]" = T'(E), and for a one-dimensional repre-
sentation, this leads to [X(A)]" = 1 or X(4) = 1V". Thus
in a one-dimensional representation, the possible characters

_of an element A of order n are the n nth roots of unity.

5. Since the dimensions of the irreducible representations
of Cs, as worked out in Step 2 above are |, 1, 2, 2,. these
will also be the entries in the column for class (E). The
character table as obtained so far looks as shown below.

C, Co Ci (4
C_(n (E) (2C<) (2C52) (Sm)
r, 1 1 1 1
', |1
Ty |2
I's 2

6. The group has one more onc-dimensional representa-
_tion, I',. The reflections of the class C4 are of order 2,
! while all the rotations of classes Cz and C; are of order 5.
. This gives the possible characters for class C4 to be +1,
i and the possible characters for classes ; and Cy to be
‘ x, x2, x3, x4, 1, where x = exp (2w i/5).

: Now consider two distinct reflections from class C4, and
| denote them by my and my (1 < i,/ < 5 withi # j). We
can infer the nature of the product m; m; without know-
ing the full multiplication table of the group. To begin

Then using some multiplication properties of the group
elements and the fact that every new row of characters must
be orthogonal to all the previous rows, all the one-dimen-
sional characters can be worked out.

7. For higher dimensional representations, we must use
the orthogonalily relation, that is, every new row of
characters (in general, complex numbers) must be ortho-

with, m; m; must belong to thc group. Next, the product
of two reflectionsis a rotation because such an operation
leaves the sense of the coordinate system unchanged..
Further, since m;and m, are distinct reflections, their
product cannot be equal to £. This leaves us with the
possibility that m, m; belongs to C, or Cy. In fact, if we
take the product of /m; with the remaining four reflections,
two of them must give the class C; and the other two the
class Ch.

This means that in the representation I';, the characters
must satisfy %, (m) 4, (m)) = %3 (Csyor %3 (C2), i # j. As
determined earlier, the possible characters of m; are + 1,
and m; and m, must have the same character as they
belong to a class. Hence their product must give +1, so that
7ACs) = 72 (Cs®) = 1. In order that I'; may be orthogonal
to I';, the only possibility now remains that 7 (m) = —1.
The character table obtained so far Jooks as shown below.

G | (B) (2C)_2CH _(5m)
r I | 1 ]
I, 1 1 1T -1
r; | 2

Ty 2

7. To proceed further, let us assume that the characters
of I’y are (2 a b c), where a, b, c may be complex numbers.

Orthogonalizing this to the characters of I'y and I'; (using

£8

8



gonal to all the previous rows. It must also satisfy the
normalization condition (criterion for irreducibility), that is
the sum of absolute squarcs of the characters for all
the elements must equal the order of the group. The
orthogonality of the columns of the character table,
Eq. (3.58), can also be used. Also if all the classes of a
group are self-inverse, then all the irreducible represcnta-
tions of the group have real characters (see Problem 3.13).
If these equations are not sufficient, the relation (3.65)
involving product of characters can be used.

‘the other equations,

(3.55) with i = 3and j = 1 or 2), we get

2+2a+2b+ 5 =0,

242a+4+ 26— 5 = 0
giving 1 + a + b = 0, ¢ = 0. Then the normalization of
I'; ((3.55) with i = j = 3 or (3.69)) gives

4 + 2jai? + 2B + Sl = 10 = |a2 + |52 = 3.

If a = ai + ia;, b = b, + ib,, we have so far only three
equations to determine four real numbers. These are

I+a +b =0 Q)
a, + by =0, (i)
a? + a? + b + b = 3. (iii)

We may now use (3.65). If we work out the product of
class (3 = (Cs, Cs*) with itself, we find that
C; Cz = (ng, E, E, CSJ) = 201 + C].
Therefore with i = f = 2, we get the coefficients in (1.16)
as
2, 4.
2+ b, or

ay = 2,8 = 1, ay = Ofork =

Using this in (3.65) with a = 3, we get a®> =

a?—a? =2+ b, (iv)
2a,a; == b,. )
Combining Eq. (v) with Eq. (i), we find @, = — ¢ or.

a; = 0. The first solution a, — 4, when substituted in
leads to @2 = — §/4, which is in-
consistent. Hence we have the only solution a; = 0. This

¥8



leads to b, = 0, showing that a and b are real, and gives
a=(—1x£V5)2,b=(—1FV5)2 )
All the five equations in four unknowns are now consistent.

Apparently there is a two-fold arbitrariness in the choice
of sign of the radical irt @ and b. However, this arbitrari-
ness is only apparent and not real. For we notice that
there is another two-dimensional representation I'y of the
group. If we denote the charactersof "'y by (2p gr), then
the orthogonality of 'y with I'; and I';, the normalization
of Ty, and the class product equation (3.65) give us the
same equations for p, g, r as obtained for a, b, ¢ above.
Thus we get . .

=(=1+£V5)2,9g=(—1F 45 )2,r=0. (vii)
But we will have one more condition, that s should also
be orthogenal to I'y. Moreover, I's and 'y camnot have
the same characters, or else they would not be distinct
representations. All this leads to the fact that we can
choose one sign of the radical in a and ¢, and the other
sign in b and p. We are finally led to the character table
shown below.

Cu [(B)  2C)  (CH  (5m)

| W 1 1 1 1

I'2 1 1 1 -1

Ty | 2 (—1+vV5)2(—=1—=+/5)2 0

Te | 2 (—1=4/5)2(—14+4/5)y2 0
The reader may compare this with the character table of
Cs, given in Table (7.7) which appears in a slightly differ-
ent form.

Here we have explicitly shown that all the irreducible
representations of Cs, have real characters. In fact, by
noting that all the classes of Cs, are self-inverse, we could
have assumed right in the beginhing that the characters
are real numbers. This would have provided some simpli-
‘fication in Stc;_)s 6and 7.
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along with a flow-c¢hart describing the general procedure. The example
we consider is the symmetry group Cs, of 2 regular pentagon contain-
ing the identity, four successive rotations of 2x/5 (Cs and its powers),
and five reflections in planes perpendicular to the 'plane of the
pentagon. The group has the classes (E), (2Cs), (2C2), (5 m) so that
g = 10, ¢ = 4. The flow-chart and the example are discussed on the
preceding pages. One more example, the character table of the cubic
groupO, is discussed in Section 7.4, ’

3.6.2 The Irreducible represemtations of C,,. After bhaving
found the character table, it is easy to find the full irreducible represen-
tations for the group C,,. The first four irreducible representations
are identical to the corresponding characters, as mentioned before.
For I'®), we must choose a suitable set of basis functions. Since C,,
is a group of transformations in a two-dimensional space, it would
be clear that any two independent vectors of this space can be chosen
as the basis to generate I'®, because these vectors would transform
into their own linear combinations under the operations of C,,.
Choosing, for convenience, the two orthogonal basis vectors (x, y),
we can obtain the matrices of I'® very easily. For example, consider
the operation of C, on the basis vectors:

¥ |
C, >x (= — ¥,
' | x { y
x
or Cy(x, y)=(x', y')=(— y, x)=(x, y)[ 0 l'l- 3.7)
—1 0,

Then, by the definition of a representation [see Eq. (3.2)}, we imme-
diately have -

01
x‘m(c.)=|:_l o} G.72)

We can similarly obtain the other matrices of I'®. The complete table
of the irreducible representations of the group C,, is given in Table
3.2).

The problem of finding an irreducible representation of dimension
greater than | is essentially the same as that of finding a suitable set of
I;(equal to its dimension) basis functions which transform into their
linear combinations on operating with the group elements. This is
not always casy. Some methods for obtaining such basis functions are
discussed in the next few scctions.
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TABLE 3.2 THE IRREDUCIBLE REPRESENTATIONS OF C,,

E Cq Cg? Cgd mg my Oy ae
ra 1 1 1 1 1 1 1 1
e 1 -1 1 -1 -1 -1 1 1
re 1 -1 1 -1 1 1 -1 —1
r« 1 1 1 : 1 —1 —1 -1 —1
re [l 07 [ 0 1] [—1 0] [0 ‘-—1] [1 0] [—l 0] [ 0 —l] [0 1

01]l—-1 0 0 —1 1 0JL0 -1 01]L-t oJLlO

3.7 The Regular Representation

We shall now consider an example of a reducible representation
of C,,. The most natural way of obtaining a representation of a
finite group is by an inspection of its multiplication table when it is
written in such a way that an element in the extreme left column (second
operator in the product) is the inverse of the corresponding elementin
the top row (first operation in the product). This is how we have
written Table (1.2) for C,,.

Let nus now construct square matrices of order 8 for all the elements
of C,, in the following way. The matrix for an element is obtained by
replacing the element wherever it occurs in the multiplication table by
unity and placing zeros elsewhere. For example, I'(E) would be a unit
matrix of order 8. Another matri... <2y I'(C,), would take the form

[0O1 000G 00
001 0O0O0O0OO
00010000

TCH=| 1 0 0 0 0 0 0 O (3.73)
000600O0°1
00 00O0O0GTI1O
00001000
L0 00 001 0 0-

Notice that each row or each column contains unity once and only
once, as per the rearrangement theorem.

To show that such matrices do indeed generate a representation
in general, we label the rows and the columns of the matrices by the
group elements themselves, rather than the indices 4, j, etc. That is, we
can think of the g elements of the group G as ‘coordinate axes’ in the
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g-dimensional group space. Since multiplication by an element simply
gives a new arrangement of all the elements (cf., the rearrangement
theorem), the operations by the group elements can be thought of as
rotations of these coordinate axes into one anotherin the group space.
Then the (B, C) element of the matrix for A in this representation
will be given by
I's,c (A)=354,c, (3.74)
where 8p4,c=1 if BA=C (or B-1C=4A) and zero otherwise. Let D,
F and H be some elements of the group G such that AD=F. Then,
if the matrices such as (3.74) are to represent the group G, we must have
I'(4) I(D) = I(F). (3.75)
Taking the (B, C) element of the left-hand side, we find
> Ipu(A) Thec(D)= > 8pandupc
HeG HEG
= 3pap,c
= 8pF,C
= TI'pc(F),
which is the (B, C) element of the right-hand side of (3.75), showing
that the matrices I'(A4), etc., obey the multiplication table of the group.
The representation generated by such matrices is called the
regular representation of the group, and we shall denote it by I'ree
hereafter.
Clearly, the characters of the elements in this representation are
g for the element Eand zero for all the otherelements.  We shall now
find which irreducible representations of G are contained in this redu-
cible representation '8 and how many times, i.e., our objective is to
find the coefficients a; in
Iree=3q; IV, (3.76)
i

From (3.67), we have
G=1 T w4y s (),
8 AEG

where «r¢® js the character of the regular representation. Since
Are8(E)=g and %% 4)=0 for A+E, the above equation becomes
1
a= - X*(E)g,
i 2 (E)g

or a=1;. 3.77)
This shows that every irreducible representation of the group occurs in
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the reduction of the regular representation as many times as its dimen-
sion, so that we have

rree=3 J; T, (3.78)

Taking the traces of both the sides of (3.78) for the element E, we get
yTreg (E): Z Il AL (E)’
i

c
or og= > A (3.79)
I=1

This proves that the equality sign holds in (3.52) and therefore
the representation vectors I'wm'? [see discussion after (3.52)] form a
complete set of orthogonal vectors in the group space.

When we have found the irreducible representations of a group
whose dimensions satisfy (3.79), there exists no other independent
representation vector which is orthogonal to all the representation
vectors of the irreducible representations. This, in turn, implies that
there is no other character vector which is orthogonal to all the charac-
ter vectors of the irreducible representations. Therefore, the charac-
ter vectors of the irreducible representations must also be a complete
set of orthogonal vectors in the class space. Their number must then
equal the dimension of this space, which is equal to the number of
classes in the group. This simple argument shows that the equality
sign holds in (3.57) also.

3.8 Symmetrized Basis Functions for Irreducible Representations

We now come to the real problem of how to reduce a reducible
representation. Hereafter, we shall denote reducible representations
by I'®, T'®), etc., of dimensions a, b, etc., and the irreducible
representations by I''@), I'8) etc., of dimensions /, /5, etc.

In many problems in physics, we have a set of basis functions
generating some representation of a group. However, such a represen-
tation may in general be a reducible representation. . It can be reduced
by a suitable choice of the subsets of basis functions, each subset
constituting an invariant subspace under the operations of the group
elements. We shall now discuss a method for obtaining suitable linear
combinations of the basis functions and demonstrate the use of the
method.

Suppose that the » basis functions {¢,, ¢,, ..., ¢} in the space
L, generate a representation I' of the group. The matrix representing

-
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an element A in this representation is given by
n .
Agi= 3 ¢;T;i(A) (3.80)
J=1
Thus, for example, it can be seen that the eight functions ¢,, ¢,,
.. .» ¢q of the eight positions 1, 2,..., 8 shown in Fig. (3.2) form a
convenient set of basis functions for the regular representation of C;,.
In this figure, the coordinates of the eight points are indicated expli-
citly. The operation of, say C,, on the basis functions can be written
in the matrix equation
(b1, o'y - e )=C, ($15 a5 - s Hs)
=(¢1 b1s b2, 30 $25 Pas bes &)
=($1s 2r - - -5 $5) T8 (C)), (3.81)
where the matrix representing C, in the regular representation is
given in (3.73).

Y
(-Qx,py) (ax, py)
2 8
T I
(-px,qy) 6~ =1 ({px,qy)
X
T(-Px,,qy) 3 -5 (Px,-ay)
| |
7 a4
(-aqx,-py) (ax.-py)

FIGURE 3.2 The eight functions #; of the positions shown
generate the regular representation of Cyy
In order to reduce the representation I' generated in (3.80), we
wish to find a suitable unitary transformation matrix U such that
Ul T(A)U=Treqa (A4), (3.82)
for all A4 in G, where T'rea(A), etc., have the reduced or block-diagona-
lized form as in (3.24). For this, we write (3.80) in the matrix
notation as
AD=0T (A),
where © stands for the row vector
O=(¢y, s - - -» Pa)-
If U is the required transformation, then
AQU=0UU (AU
or A(OU)=(PU) I'rea( A). (3.83)
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This suggests that if we choose the new basis functions
Y=QU (3.84)
in the space Ln, rather than the basis functions @, the matrices of the
representation would be in the block-diagonalized form. In an ex-
panded form, (3.84) is

n
Yi= 2 i Ui (3.85)
j=1
For the purpose of finding the coefficients Uj; and the proper linear
combinations ¢, we shall rewrite (3.85) in a different form as

n
‘Lpl:xa: Z ¢anpmi, (386)
i=1
where {,m* is the m-th basis function for the irreducible representation
"T'®™occurring for the p-th time in the reduction of the representation I'. If
Cc
'= ¥ au I, (3.87)
a=1
then 1 <a<<e, 1<<p<<as and 1<<m<l, (the dimension of T'‘®).
Eq. (3.86) is the same as (3.85); the matrix [Usxpni] is just another
label for the matrix [Uj;}; a set of values of («, p, n1) denotes a
column of U and a value of i denotes a row of U. Similarly, $pn® 1s
just another name for J;. Since the dimension of the matrices on
both sides of (3.87) must be the same, we have
c
n= Y aul. (3.88)
a==]

Now the result of the operation of an element ACG on % is
to give a linear combination of the /I, functions which generate the
irreducible representation I'*®, and which define an /z-dimensional
invariant subspace of the full space £,. Thus

i~
A‘!’pnla: > wpk* ka(z)(-")- ) (3-89)
k=1
In such a case, the function §,.* is said to belong to or transform
according to the m-th column of the irreducible representation T,
Let the basis functions ¢; be orthonormal. Since we wish the
resulting basis functions ¢,,* also to be orthonormal, U must be a
unitary matrix and we have
n
E Uapmi* quki=815 Spq Sk 5
=1
Z Ud.pmi* Uapmi =8ij. (390)

Ay prin
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Operating on both sides of (3.86) by an element A€ G, we get

n
A= S Ads Uspmi.
i=1

Iy n n
or Y '~IJ x* kalz) (A)"“ z z ¢j F_/i (A) Unpm .
=1 i=]1 j=1
Using (3.86) once again in the above equation, we obtain
Iy n n
Z Z ¢': (ja(pks ka(z)A= 2_: ¢j Fji (/4) Ua(pml-
k=1 s=1 ij=1
Since ¢; are independent functions, the coefficients of each ¢; on
both sides must be equal. This gives
Iy n
Z Uapks ka‘a) (A) - Z Fs,(A) U:x/vnli, (391)
k=1 =1
for all AEG, 1<<s<<n and |<<m<Cly,. This is a very important
relation and is of great helpin determining the coefficients Ugpmi, which
then immediately give the symmetrized basis functions® §,,*. This
procedure is very similar to the projection operator technique® in which
symmetrized basis functions are projected out from a suitable function.
Let us apply (3.91) to the special case of the regular representa-
tion of a group. Changing the indices s and / to the group elements’
B and C respectively and using (3.74), we get
o
Y Uapi® Tin® ()= 3. TEE (A) UspmC=Uapm®4, (3.92)
k=1 CEG
for all 4, BEG and 1<=m<</,. Furthermore, if we choose the iden-
tity element E for B, we have
Iy
S UapkE Tim'™ (A)=Uszpm™. (3.93)
k=1
This relation, together with (3.90), helps  determine the matrix U
for the reduction of the regular representation completely.
As an example, we shall apply the above result to the reduction
of the regular representation of C,, (with the bases ¢;, ¢,, ..., ¢q
considered earlier in this section) and to determine the symmetrized

8A similar method has bcen used by Mariot (1962). However, his starting
point is different from ours and his method involves some guessing and
trial-and-error in the final stage.

9Cotton (1971), Section 6.2; Hamermesh (1964), Section 3.18; Tinkham
(1964), Section 3.8.
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basis functions for the various irreducible representations occurring
in '8, Since
Treg — F(l) @ 1"(2) @ 1"(3) @ ]_"(4) @ 21"(5),

we need eight symmetrized basis functions, onc belonging to each of
', T 74 and T, and two sets each of two basis functions
belonging to T8, Eq. (3.93) connects matrix elements Uq x4 belong- -
ing to the same irreducible representation, i.e., coefficients having the
same a and p. We arbitrarily choose one element, say Uapmf=a, and
evaluate the others by letting 4 run over all the elements of the group.
The value of a can be obtained finally by normalization. In the case
of an Ix-dimensional irreducible representation, we need to start with
Iz arbitrary coefficients which can all be found in the end by normali-
zation (up to a signfactor <1, which must be determined by the opera-
tion of A4 on the corresponding symmetrized basis function).

Thus, for obtaining the two sets of basis functions for I'®), we take

UspiE=a, UgpE=b. (3.94)

On using these in (3.93) together with the irreducible representations
of C,, given in Table (3.2), we obtain the following matrix elements:

A  FE C, Ce CE: m, my Cu a,

Upd 1 a —b —a b a —a —b b
Uspsd b a —b —a —b b —a a
If we choose the two sets of constants for p=1 and p=2 as a=a,,
b=b, and a=a,, b=b,, respectively, the orthogonality of all the
distinct rows requires that a,a,+b,b,=0. Apart from this condition,
we can choose the four constants arbitrarily. We must finally norma-
lize each row (or each column).
The matrix U for the reduction of I''®# of C,, obtained in this

way is given below (we have taken a,=b,=1, g,=—b,=1):
« |1 2 3 4 5 5 5 5
p 1 1 1 1 1 1 2 2
m {1t 1t 1 1 1 2 1 =2
[UapmA]: E i + + + + + + + — (395)
Cqy | + - - + - + + +
|
o | _ _ _
% | + o+ o+t +
CPl + - - o+ 4 - - -
m, l + ~ + - + - + -
m, | o+ - o+ - -+ = =
Y + + - - - - F —
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where a factor of (8)-1/2is associated with each positive or negative
sign.

One may wonder whether the order of the operators on the
left (i.e., the ordering of the rows in (3.95)) is arbitrary and whether
one could interchange the rows of the above matrix at will. How-
ever, this is not so, and the order is determined by the following
" consideration. let us, for the moment, denote the g operators of
the group G by A,, A,, ..., A,. Then, starting from a certain basis
function, which we choose to call ¢,, the order of the operators is fixed
by the relation A;4;=¢,, i.e., if an operator brings ¢, into ¢,, we
shall denote that operator by 4,, etc.1® This is why we have labeled the
points 1, 2, ..., 8in Fig. (3.2)in a particular fashion. The order of the
columns of U is arbitrary except that the columns corresponding to
the same irreducible representation (same « and p) must be together.

By our starting Eq. (3.86), we then immediately have the symme-
trized basis functions for I'**¢ of C,,. These are:

r gy t=(+dstdatdatds+dst+d+bs)/v 8,
e dy=(d—dotds—bs—bs—$s+d1+d0)/vV/ 8,
'Y b l=(g— oty —batdst+de—b,— )/ 8,
Tyt =(d+dotdstdi—ds—de—dr—$s)/v/ 8,

L _{¢115=(¢1—¢2_¢3+¢4+¢'s_¢6_¢7+¢3)/\/ 8,
- 4‘125:@’1+¢2—‘f’3_¢4—¢’5+¢6_¢7+¢3)/\/ 8,
L) _{4’215=(¢1+¢'2—¢3‘4”4+¢’5“¢e+¢7’_¢8)/\/ 8,

4‘:25:(_¢1+¢2+ ¢3—¢4+¢5—¢6—¢7+¢3)/\/8~ . (3-96)

Thus, starting from the eight-dimensional function space with
the basis {¢;, ¢s,-.., s}, we have successfully reduced it into six sub-
spaces, each of which is invariant under the operations of C,,. Four
subspaces are one-dimensional and two are two-dimensional. It can
be easily verified that they are indeed invariant subspaces. The opera-
tion of A€ C,, on any of the first four functions of (3.96) has the
effect of multiplying it by 41, whereas a similar operation on U,,8 (fixed
p; m=1, 2) mixes the two functions {,,% and ¢,.,% It can also be seen
that the unitary matrix of (3.95) block-diagonalizes all the matrices
of the regular representation. For example,

10Note that this discussion applies to the regular representation only.
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— -
U
L‘——i“"}
Bl
L——'r-‘——1
Pt
L___}_____)
IR
. L1
U-' Tre8 (C) U= o i (3.97)
| :
! |
|
o o
| 0 1
|
I
|
| 1! l

The blocks will, of course, appear in the order in which the columns
of U have been arranged. :
Let us take the functions ¢; to be of the form
di(ry=exp(ik.r)), (3.98)
where k is a vector of dimenstons (length)~! with components k, and
Ky, ri are the vectors to the eight points shown in Fig. (3.2). It is of
interest to find the behaviour of the symmetrized ¢’s for small x
and y. Thus, for example, consider
Yt o b~ st —di—by—dstdrt s
o exp ik.(px+qgy)—exp ik.(gx—py)+exp ik.(—px—qy)
— exp iK.(—gx+py)—exp ik.(px—qy)—exp ik . (—px+qy)
+ exp /K. (gx+py)-Fexp ik. (—gx—py)
oc sin (ghk,y) sin (phex)4sin (ph,y) sin (gh xx).
Retaining only the first term in the expansion for small x and y, we get
@i o xy. (3.99)
It is then said that the function ¢,,* behaves or transforms like xj.
This is to say that the function x 1s also a suitable basis function for
the irrcducible representation T'*® of C,,; the effect of A=, on
¥, 1s the same as its effect on xp.  In Table (3.3), we have shown
how the basis functions for the various irreducible representations
transform, leaving the verification to the reader.

(&3
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TABLE 3.3 BAsIS FUNCTIONS FOR THE IRREDUCIBLE
REPRESENTATIONS OF Cjy

Irrecil;z;ili}ﬂéresen!a- N re T I T ( T
4v
I R A e

It should be noted that the basis functions {$,,°, ¢,,5} and
{423, 25} of (3.96) are not unique and therefore the matrix U is also
not unique. For example, consider any two linear combinations of
$y,® and §,°:

L=ad,*+bb,?,

Lo=cdyy’® +dby,5,
with the condition adsbe, so that X, and X, are two independent func-
tions in this space [see Fig. (3.3)]. It can be shown that %, and %,
generate a representation of C;, which is equivalent to the represen-
tation T'® [see Problem 3.2]). This provides an excellent example of
generalized transformations in function spaces and the idea can easily

1
Y,

Xy=a ] +b ]
—— -

—L/_//

S
) — s

‘i

/ .
Kemcf +a il

FIGURE 3.3 Any basis can be chosen in a vector space to generate a
representation and all such representations are equivalent

L
r

be. extended to transformations in spaces of more than two dimen-
. . . a b7]. . .
sions. If the matrix of coeflicients l:(\ d:l is a unitary matrix, the

resulting [unctions %, and %, are also orthonormal, and the transfor-
mation corresponds to a combination of rotations and reflections only.
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3.9 Other Reducible Representations

In addition to the regular representation, we can generate other
representations of a group. Such representations are, in general. re-
ducible. Thus, starting fromany given function ¢, in the Hilbert space
of the operators of the group G, wecan operate on it with all the ele-
ments AE G. Again, in general, this will give us g independent functions

|
(=p,p) | {(p. P}
4.—]'»—{1
L
I X

(—f» —p) (p. —p)

FIGURE 3.4 The four functions of the positions shown
generate a representation of Cyy

b, P2 --vs Pg, Which generate just the regular representation of G.
However if ¢, has special symmetry properties, the number of inde-
pendent functions is less than g; in fact, it must be an integral divisor
of g. As an example, let us start from a function ¢, of the position !
shown in Fig. (3.4). Applving to this all the operations of C;,, we
get three more independent functions of the positions 2, 3 and 4 of
Fig. (3.4). Clearly, these four functions generate a representation I' of
C,,, since they transform into each other on the application of the
operators of C,,. The matrices of the representation I"are determined
byl

A (f1, s bas )=(¢1, S, b3y $4) T (A). (3.100)
Since there is no four-dimensional irreducible representation of Cj,,
I’ must be reducible. The characters of the matrices of I" are found
to be'? as given below:

UINote that these are the cight matrices generated in Problem (1. 3).

12n this particular example, these can be obtained quite easily by an inspec-
tion of Fig. (3.4), without having to find all the matrices of T explicitly.
The character of 4 is thus the number of functions ¢; which remain
invariant under 4. However, care: must be taken in using this simple
criterion in other more gencral problems where fractional coefficients may
occur.
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CZ C} C4 Cﬁ
Classes
(E) (Cy C®) (CY (mx, my) (04, 0))
b4 4 0 0 0 2

Using (3.67), we can find a;, the number of times an irreducible represen-
tation is contained inI". We find a,=a,=a,=1 and a,=a,=0, giving
I'=sI'd @ re g re.

In simple cases such as the one we are dealing with, these coeffi-
cients can be found by an inspection of the character table of the group,
without recourse to (3.67). Thus, notice that if we take the classwise
sum of the characters of 7'V, U2 and X® of C,, given in Table (3.1),
we obtain just the characters of T' given above.

Now wecan apply (3.91) to determine the coefficients Uaxym' giving
the symmetrized lincar combinations of ¢y, ¢,, ¢,, and ¢,. These are
found to be

s dyy=(¢;+dotdbst4,)/2,

[ gy =(hy— P+ ds—1)/2,

[ - {‘\[’115:(5{’1'}"}92‘9{’3_“#4)/2,

’ 125=(¢1_¢2—¢3+ 954)/2-

The unitary transformation matrix constructed from the coefficients of
#’s above block-diagonalizesall the matrices of the representation T

Thus, in general, whenever the irreducible representations of a
group are completely known, (3.91) is adequate to determine all the
coefficients Unpm' and hence the symmetrized basis functions. In most
practical cases, the matrices of the reducible representations have only
one nonvanishing element in each row and in each column, leaving
only one nonvanishing term on the right hand side of (3.91). Moreover,
the irreducible representations of all the crystallographic point groups
are at most three-dimensional. This makes the determination of Uxpm!
quite easy.

(3.101)

3.10 Direct Product of Representations

. Consider two representations I''# and I'®' (reducible or irredu-
cible) of a group G. Let ustake the direct product of the corresponding
matrices of the two representations and denote the new matrices by

D(A)=T® (4)QI'® (A), etc. (3.102)
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Let AB=C in the group G, and consider the product
[(4) T(B)=[I"® (A)QT® ()] [["® (B)QT® (B)]

=[T'@ (4) '@ (B)]@ . T? (4) [ (B)]

__:'[\(a) (C)@I‘(b) (C)

=T(C). (3.103)
Thus we see that the matrices obtained by taking the direct product of
the matrices of two representations also satisfy the multiplication table
of the group and hence generate a representation of G. The represen-
tation I' is called the direct product of the representations I and T'®),
and is denoted by I'=T(a@T®),

The direct product of two representationsis, in general, reducible;
it certainly is if either '@ or I'® is reducible. From our discussion
of the direct product of matrices in Section 2.5.2, it is clear that the
characters of the direct product representation T are equal to the pro-
ducts of the corresponding characters of I'(#) and I'®), i.e.,

X (A)=710 (A) 1) (4), etc. (3.104)

Let us first consider the reduction of the direct products of the
irreducible representations of G. We denote this by

p(i)@pm:%xku‘ I, (3.105a)
LD (A) L9 (A)=Z xxiF X9 (A4), &+ AEG, (3.105b)
k

where xii/ are nonnegative integers. Then the direct product of any
two representations

MO =% g; T and T =3 p; I
i i

splits into its irreducible components according to
MOQIO=Z[ = a; b; x,V]T), (3.106)
k i J

This can be easily extended to the direct praduct of more than two
representations. In Table (3.4), we have enumerated the direct
products of all the irreducible representations of C,, in pairs and their
decompositions. We leave its verification to the reader as an exercise.

3.10.1 Basis functions for direct product representations. The
basis functions for the direct product representation can easily be
obtained by taking the products of the basis functions of the consti-
tuent irreducible representations with each other. Thus, let {¢,, $gs - - +»
¢} be the basis for the irreducible representation I'” and {7, X,,..., 71 }
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TABLE 3.4 THE DIRECT PRODUCTS OF THE IRREDUCIBLE
REPRESENTATIONS OF C,,

rw. ® T = F(l);

0®: PO ® [ =T® @ Q PO = [,
I'® ® I =,

[ T @ I@ =W @ ® N = [,
[ @ TW =[O, [ @ ¥ =),

[ PO (@ TE =&, T2 @) T = ),
' @ I8 =[G, W @ [ =6,
T ® I =Tuareg re @re.

for 'Y’. Then the representation I'=TY QT has the ;/; basis func-
tions Ypn=g¢mya (| <m=1, 1=<n<<[;). By the definition of a
representation, we have
AW bz by )=, Yas o0 by ) (IO (4) @ T (4))
From this, the action of 4 on a particular function ., can be written as
Ll
A 4’ng Z H'»’RI{FU) (A) ® Iy (A)]k!: mn
(kD=1
i I
= 2 2 Tt (4) Tt (4) by (2.87)
k=1 I=1
This shows how the operation of an operator on a function of the
direct product space is to be performed. Here the /i/;-dimensional
space spanned by the basis functions {{s..}is the direct product of the
two spaces spanned by the basis functions {¢n} and {4} respectively.
In this branch of abstract algebra, we can also take the direct
product of a space with itself. Thus, consider a space L, with the
basis functions {¢;, ¢s..., ¢s}. The n*-dimensional direct product
space Ly @ L. has the set of basis functions {¢1¢y,....¢idj,. . ..pnbnj.
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However, one has to be very careful at each stage of the algebra and we
must remember that we are dealing with an abstract notation. There-
fore, it is necessary to distinguish between the two direct product func-
tions ¢;¢; and ¢;¢; (i£j), since in this notation, they stand for two
independent vectors in the direct product space. To avoid any ambi-
guity, one could use primed and unprimed basis functions.
As an example, let us consider the direct product

r=rs @ ré=rM @ rm egre o re; (3.108)
(see Table 3.4). We take the set of functions {x,y} as the basis for
%), Then the basis functions for the representation I'are fr,y}
{x', ¥ }=({x% xy, yx, ). The effect of an operator, say C,EC,,
on these functions can be readily found to be

Cxx,xy; yx,yy'y=(yyi—~yxi—xyl xx')

=(xxxy1 yx;yy")[ 0 0 0 1
0 0o —l1 0
0o —1 0 0 (-109)

1 0 0 0
The validity of (3.107) can now be easily checked; thus
C(xp)=(Cx)(Cep)=—yx.
"It can also be seen ihat

0O 0 o 1
0 0 —1 o] o 1 0 1
0 —1 0 ol = Ll o] ® [—1 0]'

1 0 0 0
i.e., the matrix representing C, in I is the direct product of the matrix
representing it in T'® with itself.
The reduction of (3.108) can now be easily obtained by consider-
ing the characters of the representation I'. The symmetrized linear
combinations for the constituent irreducible representations are found

to be Y oY = [(xx’) +0¥)],
g, = [ x¥)+ (yx) 1,
I gy = [(xx) —(yl,
I g, = (Y= (yx') 1. (3.110)

We may mention that the occasion for taking the direct product
of two representations of the same group arises when we have
a number of identical particles in the system under consideration. Thus,
in a two-electron atom such as helium, if the wave function of either
electron transforms according to the irreducible representations of a
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group, then the combined wave function of the two electrons (neglect-
ing the electron-electron interaction) will transform according to the
direct product representations of this group.

311 Representations of a Direct Product Group

In this section, we consider the representations of a group
which is a direct product of two commuting subgroups. Let H=
{E=H,, H,, ...,Hs) and G={E=G,,G,,...,Gg} be two groups of
order /2 and g respectively such that all the elements H; commute with
all the elements G;. Let their direct product group of order k=hg be
denoted by K={E=K,y, Ky, ..., Kig, Koy, ..., Kng}, where an ele-
ment of K is obtained by

Kij=H;Gj. 3.111)
Let HiHn="Hyand G;jG.=G, ; then
Ky Knn=(H; G;) (Hm G»)
:(Hl Hm) (G.l Gn)
=H, G,
=Kpq. - (3.112)
Let T be a representation of H and I(®) a representation of G.
Then
TO(H)) T(Hp)=TW(H,),
(G, T(G)=T1)(Gy).
Taking the direct product of the matrices on the respective sides of the
above equations, we have
TW(Hy) @ T@(G)=ITW (H) T (Hn)] ® [[®(G) I'9(Gy)]
=[T'" (H:) @ T(GHITW(Hm) @ TE(Gn)].

(3.113)
If we define new matrices by ‘
T®(Kp)=T"(H,) @ T(Gy), (3.114)
then (3.113) becomes ~
' TR(Kpg)=T*(Kij) T*(Kmn).- (3.115)

Comparing this result with (3.112), it is clear that these direct product
matrices form a representation of K. Thus the direct product of re-
presentations of two commuting groups is a representation of the direct

product group.
Now, we go on to show that if both I'» and I''® are irreducible
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representations of H and G respectively, then the direct product
MO =T . I'® is an irreducible representation of K. As discussed
earlier [see Eq. (3.69)], the condition for irreducibility gives
ST (Hy) L (H,-)=h,
H,€eH
(3.116)
3 M (G IE*(G)=g,
G,EG
where ZM and 7!®) are the characters of the representations I''*) and
T2 respectively. Taking the product of the respective sides of the
above equations, we find

ek S0 et | [ T 1060 G

H.€eH G;E€C
=5 S [W(H;) L9 (G)] [A9% (H) WL (G))].
H;€H G;ECG

We can easilv deduce from (3.114) that the characters of the
representation I'* of K are the products of the characters of the
respective representations of H and G.  Hence the above equation
reduces to '
k= X R (Kij) 10F (K, (3.117)
Ki ;€K
proving that T is an irreducible representation of K.

Since in the identity representation of any group, each element is
represented by unity, the identity representation of K is the direct pro-
duct of the identity representations of Hand G. It can also be seen
that if either T or I'*® is a reducible representation of H or G, then
the direct product representation of K is reducible.

We shall now prove that al/ the irreducible representations of K
are the direct products of an irreducible representation of H and one
of G. Let the number of the irreducible representations ol H be ¢, and
their dimensions /;'® (1=Zi<C¢y).  Letalso the number of the irreducible
representations of G be ¢, and theirdimensions /;'¢) (1=Zj<<¢,).  Then,
by (3.79), we have

Ch

S [0 =h,
i=1

Cq

2. [L® ] =g.
j=1

The irreducible representations of K which are obtained by taking the
direct products of the irreducible representations of // and G will have
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dimensions /;; ¥ =1, ]; (&) Consider now the sum of the squares of the
dimensions of the irreducible representations of K obtained in this way:
[ S Ch Gy
S OS %P= S X PP @P

i=1 j=1 i=1 j=1

=k ;
Cp Cg
or 3> L% R=k, (3.118)
n=1

where we have denoted the dimension of an irreducible representation
of K by I,\0=];;'. The above equation shows that the direct products
of the irreducible representations of H and G exhaust all the irreducible
representations of K, l.e., there is no irreducible representation of K
which cannot be expressed as a direct product of an irreducible repre-
sentation of Hand one of G. If we denote the number of the irredu-
cible representations of K by ck, then
Ck=CpCq. (3.119)
This is a very important result in the theory of direct product
groups since it helps in constructing all the irreducible representations
of a bigger group K from those of smaller groups if K can be expressed
as the direct product of two or more subgroups. Although we have
given an explicit proof of the result here, the same could have been
proved using Problem 1.23(iv) together with the fact that the number
of irreducible representations of a group is equal to the number of
its classes.

3.11.1 Basis functions for representations of the direct pro-
duct group. The basis functions for a representation I'*? of K (redu-
cible or irreducible) can be constructed by taking the products of the
basis functions of corresponding representations I'® and I'*®), of H
and G respectively, whose direct product is the representation I'<’. In
other words, the Hilbert space of the representation I''%) is just the
direct product of the Hilbert spaces of the representations ' and I''®’.

Let us denote the [/ =g basis functions of '™ by {&,, ¢, ..., da}
and the /®®=p basis functions of T'® by {/,, 7,, ..., %}. Then the
representation DR =T (51 of K has the ab basis functions {(ma}.
where Ym=¢nls and J=Im:Za, 1=7n 7b. If an element of K 15
denoted by K,,=H G, then its operation on a function ;s i given by
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ab
Kpgbom= 2" k1 Thrymnl® (K pg)
(kD=1
ab
= 3> ¢xki [Trm™ (Hp) Tin'® (Gy)]
(k=1
a b
=[ 2 ¢« Tim'™ (Hp)] [ 32 %Tun'® (Gg)l
k=1 I=1
=(H, ém) (Gg¥n). (3.120)

Thus, the operators of the two constituent groups act on functions
of their respective Hilbert spaces only.

We shall now consider a simple example of the direct product of
two groups. Consider the two groups, both of order two, H={Ex, m.}
and G={E,, m,}, where, as before, the operations m, and m, denote
reflections in the xz and yz planes, respectively. We have distin-
guished the identity element in the two groups for the sake of
clarity. Since m, commutes with m,, we can take the direct product
of H and G to give a group of order four with the elements E= ELE,,
A=E.m,, B=m.E,, C=mm,. The irreducible representations of
H and G are as given below:

group H group G

Ex My Ey my
r,» 1 1 | 1 1
I, —1 r,e | 1 —1

The irreducible representations of K can then be easily obtained by

taking all possible direct products of the irreducible representations
of Hand G. These are given below:

group K
E A B C
T =T,k 1 1 1 1
T8 =T ,¢0 I —1 I —1
) =T,,%® 1 I =1 =1
LM =T,,H0 I -1 —1 1

It can be seen that K is isomorphic to the group {E. C.%, my. m,
which s a subgroup of C,,.
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Let us now take ¢, and ¢, as the basis functions for the two
irreducible representations of H# and ¥, and 7, as those for G. The
various operations are then given by

Exp =¢,, mxb= ¢,

Expy=1tby, Mxpy=—e,; .

Eyi =%, myy= X, (3-121)

EXy=X,y, myly=—71,.
An irreducible representation [n'*'=T;'*’ of K will then have the
basis functions

i =ik, i, j=1, 2.

For example, the irreducible representation T, (9 =T",,(*} has the basis
function ¢,;,=¢,4,, which can be easily verified as follows:

E“Plz:(Eﬂf’J (vaz)=¢1x2 = Cr‘l’_”
A¢12=(Ex¢1) (myly)=¢i(—7,) = _‘l‘mv
B o= (mxy) (EsXe)=¢ L, = Y )

Chra=(mx,) (my%y) =¢1(—72)=—¢1a.
If there are two distinguishable particles (such as an electron and
a proton) whose wave functions transform according to some represen-
tations of two different symmetry groups, then the wave function of
the system as a whole will transform accoldmg to the representations

of the direct product group.

PROBLEMS ON CHAPTER 3

(3.1) If the matrix T(A4) of Eq. (3.8) is a unitary matrix, show that the
rectangular matrix X (4) must be a null matrix. [This is the form of the matrix
T (A) of Eq. (3.23).]

(3.2) Let ¢y, ¢s, ..., U, be the basis functions for an n-dimensional
representation I of a group G. Show that any » independent linear combina-
tions of the ;s also generate a representation of G which is equivalent to T,

(3.3) IfT is a representation of a group G, show that I'* (whose matrices
are the complex conjugates of the corresponding matrices of I') is also a
representation of ¢, whereas, I'"1 (whose matrices are the inverses of the
corresponding matrices of T') and I't (whose matrices are the hermitian con-
jugates of the corresponding matrices of I') are not representations of G unless

G is an abelian group.
(3.4) IfT is a representation of a group, show that ' and I'* are both

reducible or both irreducible.
(3.5) Construct the character table and the table of the irreducible

representations for the group Ci,, the symmetry group of an equilateral

riangle.
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(3.6) Derive Eq. (3.58) from Eq. (3.56).
¢3.7) Obtain the character tables and the irreducible representations of

(i) a group of order 3; (ii) a cyclic group of order 4; (iii) a noncyclic group of
order 4; (iv) a group of order 5; (v) a cyclic group of order 6; (vi)anonabelian
group of crder 6; (vii) a cyclic group of order n where » is a positive integer.
(Refer to Section 1.8.)

(3.8) Obtain the character table for the group generated in Problem (1.7).
(It will be noticed that it is the same as that for C4q,. This shows that two
groups having the same characrer tables are not necessarily isomorphic.)

(3.9) Obtain the character table of the alternating group A;.

(3.10) Verify Table (3.4) for the direct products of the irreducible
representations of Cy,. :

(3.11) Let Tt and I'9) be two inequivalent irreducible representations
of a group G. Show that the direct product representation I't¥) (X) 't/ )* does
not contain the identity representation. Show also that the direct product of
an irreducible representation with its own complex conjugate representation
contains the identity representation once and only once.

(3.12) Obtain the direct products of all the irreducible representation of
the group C3, and reduce them into direct sums of the irreducible representa-
tions.

(3.13) Let (;* be the inverse of the class (; [see Problem (1.18)]. If
Ci*={(y, the class (; Is said to be self-inverse. Show that the pumber of real
irreducible characters of a group equals the number of its self-inverse classes,

(3.14) Show that every group has at least one faithful representation.

(3.15) Verify Eq. (3.65) for the characters of Cy, given in Table 3.1.

(3.16) Show explicitly (by operating with all the group elements) that the
functions xy and x2—)2 respectively generate the representations I'(2) and
') of Cyp.

(3.17) Generate representations of the group C,, starting frem the
functions (i) z, (it) x2, (iii) x3, (iv) x2y, (v) €%, (vi)cos (x), (vii) cos (mx)
sin (ny), (viii) exp (@x+by) with a=b. In case the representation is reducible,
reduce it and find suitable combinations of functions which generate the
constituent irreducible representations.

(3.18) Same as Problem (3.17) for the group Ca, with the following
functions: (i) z, (ii) xy, (iil) x2—y2, (iv) x2, (V) x3, (vi) x2y.

(3.19) Construct the regular representation of the group Csi,.
a set of six functions which generate the representation. Reduce this repre-
sentation and obtain six symmetrized basis functions transforming according to
the various irreducible representations of Cgy.

(3.20) Show that two representations I'y and 'y of a finite group G
have no irreducible representation in common if and only if their characters

are orthogonal, i.e.,

Choose

[
2. M Ak Xex*=0,
, k=1
where X33, and Xgx are the characters of the 4-th class in I'y and Ty respectively.
(3.21) Show that the two functions edz+¥) and eH=+¥) penerate the
regular representation of the group (E, m,) where myis a reflection as defined
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in the text. Obtain two linear combinations of these functions transforming
according to the irreducible representations of (E, my).

(3.22) Show that the function exp [i(ax+by)] with axb is one of the four
functions which generate the regular representation of the group (E, C42, mz, m,).
Once again, obtain four symmetrized combinations of these functions trans-
forming according to the irreducible representations of the group.

(3.23) Prove that a one-dimensional representation of a group must
be irreducible,

Bibliography for Chapter 3
Boerner (1963); Burrow (1965)- Dixon (1967); Falicov (1967); Hamermesh

(1964); Kahan (1965); Margenau and Murphy (1966), Chapter 15; Meijer and
Bauer (1962); Murnagham (1963); Tinkham (1964); Wigner (1959).



CHAPTER 4

Continuous Groups and Their
Representations

In Chapter 1, we introduced the notion of finite and infinite groups
and gave a number of examples of both. We saw that infinite
groups may be of two categories—discrete and continuous. We shall
repeat their definitions here: If the number of elements of a group is
denumerably infinite, the group is called discrete, whereas if the num-
ber of clements is nondenumerably infinite it is called a continuous
group. '

Practically all the theory of groups developed in Chapters 1 and 3
for finite groups holds good in the case of discrete infinite groups. it
is when wetreat continuous groups that some modifications are needed.
In addition to these modifications, many new concepts are introduced
which provide a point of contact between the theory of continuous
groups and other branches of mathematics. Whereas the theory of
finite groups stands alone, without relying on any other part of
mathematics, the theory of continuous groups, as remarked by
Wignzr.! often makes extensive use of the theory of ordinary and partial
differential equations, topology, etc. In this chapter. we shall develop
the theory of continuous groups and their representations.

This chapter is not aimed at providing a rigorous mathematical
cxposition of the topic at hand. The objective is to introduce to the
readcr the elementary concepts of continuous groups in an easily com-
prehensible way.

VTalman (#968).
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4.1 Topolegical Groups and Lie Groups

The elements of a continuous group can be characterized by a
set of real parameters ay, a, . . ., an, at least one of which varies conti-
nuously over a certain interval. The set of parameters should be both
necessary and sufficient to characterize all the elements of the group.
In other words, it should not be possible to choose a set containing a
smaller number of parameters which can be used to characterize all/the
elements of the group. Let the number of continuous parameters
be r (1<<r<<n). If this number is finite, the continuous group is said
to be finite and r is called the order of the continuous group.

EXAMPLE 1. The set of all real numbers is a continuous group of
order 1 because any real number can be characterized by one parameter,
say x, taking values on the interval [—co, co].

ExaMPLE 2. Consider a linear transformation of a variable x to x’

of the form
¥'=ax-+b, a, b €[—o, o0}, a#0. 4.1
The set of all such transformations is a two-parameter group, an element
of which can be symbolically denoted by 7'(g, b) such that
T (a, b) x=x'=ax+b. 4.2)
The law of composition can be obtained as follows:
T(ay, by) T (as, by) x==T (ay, by) (agx+b,)
=a, (a3x+by) +b,
=a,a,x+a,by+b,, 4.3)

80 that
T(a,, by)=T(ay, b)) T(ay, by)=T (aya;, a;by+b,); (4.4a)

03=a,a,, by=a,b;+b,. (4.4b)
From this it can be seen that the identity element is T'(1, 0) and the
inverse is given by
T(c, y=T-'(a, b)=T(1/a, —b/a); (4.5a)
c=1/a, d=—b/a. (4.5b)
Note that a, and b, are analytic functions of a,, b;, a,, b, in (4.4b)
and so are ¢ and 4 of a4 and b in (4.5b).

EXAMPLE 3. The set of all displacements in a three-dimensional
real vector space of the form
x'=x+4a, ' =y+b,2'=z+4c, 4.6)
is a three-parameter, continuous group. If we denote the translation
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operator by T'(a, b, ¢), the identity element is T(0, 0, 0) and the inverse
of T(a, b, ¢) is T(—a, —b, —c).

ExampLE 4. Considera linear homogeneous transformatlon of two
variables of the form

X' =a7X+ay,Y,

4.7
Y'=ayx+a,,y,
or, in the vector form
r'=Ar, (4.8)
with .
det A=|a;;|5£0. 4.9

The set of all such transformations, obtained by giving all possible
real values to a;; subject to the condition (4.9), i1s a group. Itis a
four-parameter, continuous group, known as the linear group in two
dimensions and denoted by GL(2). It can be seen that this groupis
isomorphic to the group of all nonsingular matrices of order two
under multiplication.

ExaMmpLE 5. Consider a linear homogeneous transformation of
n variables (a generalization of Example 4):

= 3 aix;, 1<i<n, | a;;|70. (4.10)
j=1
The set of all such transformations is a continuous, n2-parameter
group known as the linear group in » dimensions and denoted by
GL(n). This group is isomorphic to the group of all nonsingular
"matrices of order n under multiplication.

ExaMpLE 6. The set of all rotations about an axis is a continuous
group of order 1, whose parameter may conveniently be chosen to be
the angle of rotation, say 6, taking values on the interval [—m, =] or
[0, 2=]. This group, denoted by SO(2), will be discussed in more
detail in Section 4.2,

ExaMpLE 7. The set of all rotations about all axes passing through
a fixed point in the three-dimensional space is a group whose elements
can be characterized by the Euler angles «, B, v. -The group, denoted
by SO(3), is to be discussed later in Section 4.3.

4.1.1 Topological groups. Owing to the continuous nature of
the group elements, it is desirable to introduce a topology in the group.
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For simplicity, we shall restrict ourselves to groups whose elements can
be put in a one-to-one correspondence with the points of a subset of
an r-dimensional real ianer product space S,. We shall refer to this
subset as the parameter space.
Let? P(x) be the point of S, corresponding to the element x of
the group G. P (x) is said to be the image of the element x.
Considet now a neighbourhood of the point P(x) in S,. This is the
set of all points P’ of §, for which
|P"—P(x)|<e, (4.11)
where € is a real positive number. This is also called the e-neighbourhood
of P (x)and we shall denote it by N, [see Fig. (4.1)]. The points of this
neighbourhood N, are then the images of the elements constituting a
neighbourhood Z, of the element x of G. Symbolically, the neighbour-
hood Z, of x is the set of elements x’ in G for which
l| P(x")— P(x) || <. 4.12)
By using these concepts, we can define the limit and the continuity of
the laws of composition and inversion of the group elements.
Thus, consider a com position of group elements.such as
‘ X Xgm Xy, (4.13)
The law of composition of the group elements is said to be continuous
1n x, if for every €>0, it is possible to find a real number 5, >0 such
that for all x belonging to the neighbourhood Zj, of x, (i.e., all x for

P{x)

FIGURE 4.1 The neighbourhood N, of P(x) in S, 1s the set of the
images of elements in the neighbourhood Z, of x in G

which || P(x)—P(x,) || <3. ). the element x,;x belongs to the neigh-
bourhood Z, of x; (i.e., || P (x,x)—P (x3)||<€). What this means
is that a small change in one of the factors in the product produces

2]n this chapter, we shall denote the elements of the continuous group by x
with primes or subscripts.
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a small change in the product. Similarly, of course, we can define
the continuity of the law of inversion of the group elements [see Fig.
(4.2) and Problem (4.1)], which means that a small change in an
element produces a small change in its inverse.

(b)

FIGURE 4.2 (a) The continuity of the law of composition: for every x&Za.,
the neighbourhood of x,, x;xE2Z, the neighbourhood of xj,
where x;x3=xz. (b) The continuity of the inversion of the
group elements: for every x'€Zs, the neighbourhood of
x, x'"Y&€Z, the neighbourhood of x~1, where xx—1=e, the
identity element

We are now in a position to define a ropological group: it is a
group in which the law of composition and the law of inversion are
continuous in all the group elements.

4.1.2 Connectedness and compactness. Consider any two ele-
ments x, and x, of a topological group G with images P (x,) and P (x,)
in S,. If it is possible to connect P(x,) and P(x,) by one or more
paths lying entirely within the parameter space, the parameter space
is said to be connected; otherwise it is disconnected. Let G be a
group whose parameter space is connected and consider a path con-
necting P (x,) and P(x,). The set of elements of G whose images are
the points of the path connecting P(x,) and P(x,) will be called a
path connecting x; and x,. A group is then said to be connected if
there exists a path connecting any two group elements, or, in other
words, if its parameter space is connected.

As an example, we see that the group of rotations about an axis
is a connected group, as is also the group of proper rotations in three
dimensions.

It is important to note that the property of connectedness is
different from the continuous nature of the group, which depends on
the continuous variation of one or more of the group parameters. Thus
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a continuous group may not be connected, an important example of
which, as we shall see later, is the rotation-inversion group in three
dimensions. As shown in Fig. (4.3), it means that the parameter
space of a continuous disconnected group consists of two or more
disjoint subsets such that each subset is a connected space, but it is
not possible to go continuously from a point of one subset to a point
in another without going outside the parameter space.

FIGURE 4.3 A plausible structure of the parameter space of
a continuous but disconnected group ‘

A continuous connected group may further be simply connected
or multiply connected depending on the topology of the parameter
space. A subset of the Euclidean space S; is said to be k-fold connected
if there are precisely k distinct paths connecting any two points of
the subset which cannot be brought into each other by continuous
deformatiorn without going outside the subset. The structure of
multiply connected spaces is shown in Fig. (4.4). A connected group
is then said to be k-fold connecied if its parameter space is k-fold
connected.

() (©)

FIGURE 4.4 Plausible structures for (a) a simply connected space, (b) a
doubly connected space, and (c) a fourfold connected space.
In each case, the space under consideration is the lined region

If.a topological group has\r continuous parameters and »—r discrete
parameters; its parameter spacg will consist-of n—r disjoint subspaces.
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There is a one-tc-one correspondence between any two disjoint
pieces of the group space and when the analytical properties of the
group are discussed, only the piece (subspace) containing the identity
element is generally implied.

Finally, a topological group is said to be compact if its para-
meter space is a compact space, that is, a closed® and bounded* space.

4.1.3 Lie groups. The dependence of the elements x;, x,. etc.,
of a topological group G on its r continuous parameters can be written
explicitly as x;=x,(ay, @y, .. .,a0r), X,=%,(by, by, ..., b)), etc. Let
X1 X,==Xy (€, Coy - . ., ¢r) and x,7'=x, (d, d,, . ..,dr). The parameters
of xg and x, can be expressed as functions of the parameters of x,
and x,, that is,

(‘,'E(‘,‘(al, .. "a’;bh Cae ey br),

diEdi (al, .. .,ar), (414)
for 1<i<r. A topological group is called an r-dimensional Lie group
if there exists a neighbourhood N of the identity element e such that
the continuous parameters of the product of two elements and those
of the inverse of an element in N are continuous differentiable func-
tions of the parameters of the elements, that is, if ¢’s and dj's of
(4.14) are analytic functions of a;’s and &,’s for elements in N provi-
ded that x, and x, lie in N when x, and x, do. In- addition, there
will be laws for combining the other n—r discrete parameters.

It is convenient to choose the continuous parameters of a Lie
group such that the image of the identity element e is the origin of the
parameter space, i.e.,, e=x(0,0,...,0). With this parametrization,
an element near the identity may be written, due to the analytical
preperties of the Lie group, as

x(0,0,...,¢;,...,0)=x(0,0, .. .,0)+i¢;7;(0,0,...,0), (4.15)

to first order in ¢;. The operator I; can be obtained from (4.15) and
is given by
= lim _l{x(o,...,ej,_..,0)_x(o,0,...,0)}:]. (4.16)
>0 16
All the properties of a Lie group can be derived from the r operators
1; (1< j<r) which need to be defined only near the identity element
of the group. '

3A set is closed if every Cauchy sequence of elements of the set has a limit
element which also belongs to the set. See Section 2.1.4.
4See Simmons (1963), p. 58.
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By the successive application of the product rule, we can arrive at
an element of the group a finite distance away from the identity.
Thus, suppose we wish to generate the element x(0,0,...,4a;,...,0).
Let us write a;=N¢€;, where Nis a large positive integer so that ¢; is
a small quaatity. Then

x(0,0,...,a),...,00=[x(0,0, .. .,¢;,...,0)]¥
=[e+ie; IV
=[e+i(a)/N)I;]V. (4.17)
Allowing N to tend to infinity and using the algebraic identity
lim (14x/N)N=exp (x),
No>w
this becomes
x(0,0, ...,ay ...,0)=exp (ia;1}), (4.18)
which is an exact result. The exponential function on the right-hand
side of (4.18) is to be understood as being formally equivalent to its
expansion in the powers of the operator I;. For a general element of
the group, we can easily extend the above result to obtain

r
x(ay, @y, ...,a)=exp| >. iajIj]. (4.19)
J=1
All the elements of the Lie group belonging to the subset containing
the identity can be obtained by giving various values to the para-
meters a; on the respective prescribed intervals. The operators I,
are therefore called the generators of the Lie group. A Lie group
with r continuous parameters bhas r generators.
The infinitesimal elements of a Lie group themselves constitute
an abelian group. Thus, let
xx=x(0,0, ... ¢k, ...,0)=e+ierl,
] x;=x(0,0,...,€¢;,...,0)0=e+tie;l;.
Then
xrpxj=x;xx=e+i (exlx+€;15), (4.20)
to first order in the €’s, which is again an infinitesimal element of G.

4.1.4 Representation of a continuous group. Let a set of matri-
ces I'(x) generate a representation of the Lie group G. We say that
I' is a continuous representation of G if

I'(x)->T(x") as x—>x'. (4.21)
The group G is homomorphic to the group T of matrices and the
matrices of T' can be characterized by the same parameters as used for
characterizing the elements of G. Eq. (4.21) then means that as the
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values of the parameters are continvously changed from those for x
to those for x’ in the parameter space, the corresponding matrix I'(x)
goes coniinuously to I'(x’).

If we restrict ourselves to the consideration of the continuous
representations of a compact continuous group, then we have the
following important theorems which we shall state without proof.
These are, in a way, extensions of some of the results which hold
good for finite groups to the case of continuous groups:

(a) Any representation has an equivalent represeniation whose
matrices are unitary.We have proved this for finite groups in Section
3.2.2,

(b) Any unitary representation is completely reducible, i.e., can be
brought 1o the form (3.24),

(¢) Any irreducible representation is finite dimensional.

4.2 The Axial Rotation Growp SO(2)

Consider the set of rotations of a circle about an axis normal to
the plane of the circle and passing through its centre. Each element of
this set can be characterized by one parameter which can be chosen to be
the angle of rotation ¢ which takes values on the interval [0, 2x). This
is clearly a one-parameier, continuous, connected, abelian, compact,
Lie group, known as the axial rotation group, and is denoted by SO(2).
Since rotations by ¢ and ¢+ 2=n (n an integer) are identical, the para-
meter space is the subset [0, 2x] of the real line. The group is
infinitely manifold connected because there are infinitely many
paths connecting any two group eclements which cannot be brought
into each other by continuous deformation without going outside
the space. The path which goes around the circle n times is not
identical to one which goes around it n+1 times [see Fig (4.5)].

L 8 x,

FIGURE 4.5 The group SO(2) is infinitely manifold connected
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If we denote an element of this group by T'(¢), the law of compo-
sition is :
' T(¢+06) if ¢+0<2r,
T (¢) T(M)=T(5) T(¢)={ _ (4.22)
T($p+0—2r) if $+40=>2n.
The identity element is 7" (0) and the inverse of T(¢) is T (2t —¢).

The transformations of a cartesian coordinate system (x, y) in
the plane of the circle under the rotations of the group SO(2) can be
used to generate a representation of the group. The operation of an
element 7 (¢) on (x, y) is given by

T@X D= ) =(o ) cosé sing o

[ —sing cosg | (4.2

The matrix of transformation on the right-hand side is an orthogonal
matrix of order 2. With every element 7(¢) of the group can thus be
associated a 2 x2 orthogonal matrix with determinant -+1 and the
correspondence is clearly one-to-one. The set of alf orthogonal matrices
of order 2 having determinant -1 is a group which is isomorphic to
the axial rotation group and therefore provides a two-dimensional
representation for it. This matrix group is also denoted by the same
symbol SO(2).

Since the axial rotation group is abelian, all its irreducible repre-
sentations must be one-dimensional. To obtain all such irreducible
representations, we take the help of the product rule (4.22) and note
that the only numbers (1 X | matrices) which satisfy it are of the form

X($)=exp(ch), (4.24)
where ¢ is a number and %(¢) is the character of T($). But since
T (2r)=e, the identity, and ¢ must be represented by unity in any one-
~ dimensional representation, we have exp (2rc)=1, giving ¢=im where
m is an integer, or

Lm) (p)=exp(ime). (4.25)
For every integral value of m we have an irreducible representation of
SO(2) given by (4.25). The orthogonality theorem (3.55) for characters
becomes in this case

J' A () 1M () A= 25 Sy (4.26)
0

If we allow multivalued representations, it can be seen that x0»
($)=exp(im ¢/2). X (P)=exp(im ¢/3), etc.. can also be used as
representations of SO(2), because it is evident that

exp (im ¢/k) exp (im 0/k)=exp [im(¢+4-6)/k],
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satisfying the group multiplication law; here k is any integer. In
general, x(m (¢)=exp(im $/k) gives us a k-valued representation of
SO(2). However. it is found that in constructing mathematical models
of real physical systems, only single-valued and double-valued
representations occur. Further discussion of such representations
can be found at the end of Section 4.5.3.

4.2.1 Generators of SO(2). Since SO(2)isa one-paramecier group,
it has only one generator. The generator will depend on which
group isomorphic to SO(2) is under consideration. Weshall illustrate
this by considering four examples.

ExaMmpLE 1. The group of the complex numbers {exp (im¢)} for
0<¢<2x, fixed m. This group is clearly isomorphic to SO(2). By
(4.16), the generator is given by

I= 1;210 {% [exp(im¢)— 1)}
=m. , (4.27y

By (4.18), any element of the group can be written as exp (im¢), which
is trivially true in this case.

ExampLE 2. The group of all orthogonal matrices of order 2 with
determinant +1. We have seen that a typical element of this group can

be written as C.OS¢ sing ] The generator is therelore
—sing cos¢ .
_ el cos¢ sing 10
=inle {[—sinqs cos¢ ]‘[0 1]}]
0—i
= ; o | (4.28)

which is one of the Pauli spin matrices commonly denoted by o,. Any
2 x2 orthogonal matrix with determinant -|- 1 can then be written as
cos¢ sing | .

[ oig cor | exptisen), (4.29)

a verification of which is left to Problem (4.4).

ExaMPLE 3. Consider a circle of radius @ and let x measure the
distance along the circumference. Let f=f(x)and let T (¢) stand for 2
rotation of the function f through an angle ¢ about an axis normal to
the circle and passing through its centre. Since fis defined onlyon the
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circle, I'(¢) bas the effect of translating it by a distance a¢, i.e.,
T(¢) f(x)=f (x+a¢). Thegenerator Jisthen an operator whose effect

on f(x)is
1) (x)=])im {—1 (T() f (x)—ef (X)]}
¢->0 ip

= lim {%[f (x+ag)—f (¥)] }

=—ija of/ox. (4.30)
Thus, the operator is proportional to the quantum mechanical momen-
tum operator p.= —ihad/dx and is given by

I=ap,/h. (4.31)
An operator of the group can then be written as
T($)=exp (i¢ apx/h). (4.32)

EXAMPLE 4. Let f=f(x,y) and let the operator 7(¢) stand for an
orthogonal iransformation of the coordinate systemas in (4.23). The
operation of T (¢$) on f then gives '

T($) f(x, y)=f(x cos¢+y sing, —xsing-+y cosg). (4.33)
The generator can be found out as follows.
1

17 (5, 9) = lim 2o [f (s cosgty sing,—x singy cos)—(x, 3]
(1 _
~lim {,—¢ [y $os/ox —X¢Bf/3y]}
— —i(y2]ox—x0/2y) f (x, y)- (4.34)

Hence
: I=—L./h, (4.35)

where L; is the component of the angular momentum operator normal
to the plane (x, y):
L.=i%h (y0/dx—x8/3y)=xp,—ypx— —ihd/e$. (4.36)
An orthogonal transformation of the coordinates in the two-dimen-
sional plane (x, y) is then given by
T(¢)=exp (—ipL:/h). (4.37)

4.3 The Three-Dimensional Rotation Group SO(3)

Consider the set of all orthogonal transformations in a three-
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dimensional real vector space (i.e., a space defined over the field of real
numbers). It is a group which we shall denote by O(3). It canalso
be alternatively defined as the group of all 3x 3 orthogonal matrices.
The two groups are isomorphic to each other,

If R is an orthogonal matrix, it satisfies the equation

RR=RR=E (4.38)
where E is the unit matrix and R is the transposed matrix of R.
Taking the determinants of both the sides of {4.28) and noting that
det R=det R, we have

(det R)*=1=>det R=+1. (4.39)
The matrices of the group O(3) are thus divided into two sets—one con-
taining the matrices with determinant 41 and the other containingthe
matrices with determinant — 1. It can be easily checked that the first
set is a group. We shall denote this group—the group of all real
orthogonal matrices of order 3 with determinant 4+ 1—by SO(3).
Considering the isomorphism of the orthogonal matrices with the
orthogonal transformations, we see that an orthogonal matrix with
determinant 4 1 corresponds to a pure rotation or proper rotation of
the coordinate system. An orthogonal matrix with determinant — 1
corresponds to an orthogonal transformation which can be expressed
as the product of a proper rotation with the inversion. Such trans-
formations are called improper rotations. The matrix corresponding to
the operation of inversion is the negative of the unit matrix:

J=[ -1 0 0 (4.40)
0—-1 0
0 0 -1

The inversion and the identity constitute a group of order 2. Since

inversion commutes with all the rotations,® we have the important
relation

o03)=S03) @ (£, J). (4.41)
The group (E, J) has only two one-dimensional irreducible represen-
tations. The representations of O(3)can thereforz be easily obtained
from those of SO(3) by the theory of the direct product of groups. We
shall therefore consider below the irreducible representations of SO(3)

only. The group O3) iscalledthe three-dimensional rotation-inversion
group.

5In the matrix group, J is a constant matrix.

Hence it commutes with all
square matrices of order 3.
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The parameters of SO(3) can be chosen in various ways. Let us
choose a cartesian coordinate system (x, y, z) in the space under consi-
deration. We may denotea rotation throughan angle ¢ aboutanaxis
u by R, (). It requires two parameters to fix a direction with respect to
the coordinate system. For example, we may choose the two para-
meters to be the angular polar coordinates (8, ¢) of a point on the
axis u. Thethree group parameters 6, ¢ and ¢ are shown in Fig. (4.6).

X
FIGURE 4.6 The three parameters 6, ¢ and ¢ of SO(3)

An alternative method is to express the rotations in terms of the
Eular angles. This is a more convenient way for developing the theory
further. A rotation through the Eular angles (e, B, v) denoted by
R(a, B, v) consists of the following three successive rotations: (i) a
rotation through a about the z axis, followed by (ii)a rotation through
3 about the new y axis, followed by (iii) a rotation through y about the
transformed z axis. Thus,

R(a, B, )= Ra(y) Ry(E) Ro(). (4.42)
The matrix of transformation corresponding to the element R(a, 8, y)
can be easily found out. Consider first the element R: («); its matrix
of transformation is clearly

cosae sina O
—sine cosae O
0 0 1

Writing down similar matrices for R, (8) and R:(y) and taking the
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product in accordance with (4.42), we obtain®

R(a’ B, Y):
COSa COSP COSy —Sina siny
—cosa cosf3 siny—sina cosy —sinx cosf3 siny+4-cose cosy —sing siny (4.43)

—cosa sinf3 —-sine sinf3 —cosf

sina cosf cosy+cosa siny sinf cosy

This isan orthogonal matrix with determinant 41 and gives the general

element of the matrix group SO(3).

The generators of SQ(3) can be obtained by considering an infini-
tesimal rotation through an angle e aboutan axis u. The group of rota-
tion R, (4) for 0<<$<2=, which is a subgroup of SO(3), is isomorphic
to SO(2) and hence, in the manner in which we obtained (4. 35), we get

I,=—L,/h, (4.44)

N
where L, =L-u is the component of the angular momentum operator

~ . . . .
L alongu, u being a unit vector along u. Since any rotation can be ex-
pressed as the product of three rotations about the cartesian coordi-
nate axes, we see that we need the three operators

I.=—L./h, ,=—L,/h, I.=—L:/h. - (4.45)
Any rotation operator can -then be written as
Ry(#)=exp [—i¢ (L-T)/h]. (4.46)

While expanding the exponential, it should be remembered that the com-
ponents of the angular momentum operator L do not commute with
each other.

The full rotation-inversion group O(3) has four parameters which
may be taken to be («, B, v, 4), where «, B, and y are the parameters
of SO(3) and d denotes the determinant of an element and can take
values + 1. The parameter space of O(3) thus consists of two discon-
nected regions. It is therefore a four-parameter group, three of which
are continuous. It is a continuous, compact, Lie group which is,

however, not connected.

4.3.1 Irreducible -representations of SO(3). As usual, it is
easier to find the characters, rather than the actual matrices, of the
irreducible representations of SO(3). As discussed at the end of
Secticn 3.6.2, the problem is to find a suitable set of basis functions

6For more details, sce Messiah (1965), Section C.10; Ziman (1969), Section
7.9. 3
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which transform into their linear combinations on operating with the
clements of SO(3). It is wellknown that the set of the 2/-- 1 spherical
harmonics ¥/ 0, §), where /=0, 1, 2,3,..., and —/<Im=/, transform
into their own linear combinations on rotating the coordinate system.
If the transformation properties of Y, (6, ¢) under rotations are known
then, of course, we immediately have the matrices of the irreducible
representations generated by the 2/+ 1 functions Y™ (6, ¢). Weshall
take this up later, indicating at present a method to determine the
characters of the irreducible representations generated by Y™ (6, 4).

Let. us first consider the class structure of the group SO(3). Consider
the two operations R, (z) and R, («) which denote rotations through the
same angle a about two distinct axes u and v (both passing through the
origin). Since there exists in SO(3) an operation which can bring tne axis
u into the axis v, by rule (iti) of Section 1.3 for finding classes, we see
that R, («) and R, (x) must belong to the same class. In other words, if
Ry (B), say, is the rotation which brings the axis u into the axis v, then
Ry (2) and Ry () are related through a similarity transformation

Ry(@)=[Ry (B)! Ry (=) Ry (F)- (4.47)
It should be clear thatp is the angle between u and v and w is per-
pendicular to both of them. We thus have the important result: In the
group SO (3), rotations through a given angle about all axes belong to
a class. In any representation, therefore, characters of the elements of
SO(3) depend only on the angle of rotation, not on the axis of rotation.
"It is thus not necessary to know the complicated transformation
properties of the spherical harmonics under all rotations. We may
choose the axis of rotation to be the z axis; the operation of Ri(a)ona
spherical harmonic ¥/ (8, ¢) is then known to be

Re() Y7 (0,4)=Y™ (8, 4—a)=exp (—ima) Y0, ).  (4.48)
The matrix representing R, (x) with the basis {¥=(5, §)} (for
—I<m<]) is therefore a diagonal matrix given by’

Ri(x)= e’™ (4.49)
e~tu-la 0O

0 t‘(l—l)l
L e”ﬁ

7Although the operator R (a) has a diagonal representation in (4_.49), it should

not be thought that this is a reducible representation. A rotation a_lbout any
other axis except the z axis will be representoed by a nondiagonal matrix because
.of the mixing of the spherical harmonics.
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The character of R:(x) is ther easily found to be
!
X(”(O‘) — Z pima

. om=—1

— (’“ill(l-l—e"“—{—e‘-“-{—_ . __{_ei'ilz)
_expl/ ({+Hal—exp[—i(l+)a]

- explio/2)—exp(—ia/2)
_sin{l+})a

T osin(e/2) (4.50)
Coming to the actual representations, we have
1
R(a,B, V) Y6, ¢) = > Y/(6, §) D (o, B, ¥). (4.51)

m=-—1
The spherical harmonics generate a (2/+41)-dimensional irreducible
representation. The identity element is R(0,0,0), and from (4. 50), we
see that X0 (0)=2I/+1, as itshould be. The representation is denoted
by D!, For /=0,1,2,..., these give all the continuous and single-
valued irreducible-tepresentations of SO(3). A method to obtain the
matrices DY (a, B, v) 1s discussed in Section 4.5.3.

4.3.2 Connectedness of SO(3). We have seen that every
rotation of SO(3) can be characterized by a vector whose length is
equal to the angle of rotation and whose directionis along the axis of
rotation. The end-points of all such vectors thus fill a sphere of radius
n. Every element of SO(3), except those denoting rotations through =,
has associated with it a2 unique point inside the sphere. However, .
since the rotations through = and —n about an axis denote the same
element, we must identify all diaraetrically opposite points of the sphere
under consideration, that is, we must think of two diametrically opposite
paints as being the same point. This introduces some important topo-
logical connectedness properties in the group SO(3).

Consider two elements R, and R, of SO(3). There are two distinct
paths connecting the images of R, and R, in the parameter space as
shown in Fig. (4.7); a direct path (a) from R, to R, and a path.(b)
which first goes to the point x on the surface of the sphere, makes a jump
to the diametrically opposite point x" and then goes to R,. The path
(b) cannot be made tc coincide with the path (a) by & continuous
distortion because aswe move the point x on the surface of the sphere
its equivalent point x’ also moves remaining always diametrically
opposite to x.
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(a) (b)

FIGURE 4.7 Two distinct paths connecting the image points of Ry and Ry:
(a) a direct path and (b) a path which makes a jump across .
diametrically opposite points

We can now show that any other path connecting R, and R, can
be brought into coincidence with one of the two paths of Fig. (4.7) by
a continuous distortion. Thus consider a path R,xx’yy’R, which
makes two- jumps across the surface of the sphere as shown in Fig.
(4.8). Inthisfigure, it is shown that this path can be continuously dis-
torted tomake ita path of type(a). Aswe let x approach y on the sur-
face of the sphere, x’ approaches y’. Finally, as x and p coincide, so do
x"and y’, and the path is clearly of type (a). Similarly, it can be shown
that a path which makesn jumps across the surface is of type (a) or (b)
depending on whether # is even or odd.

The group SO (3) is therefore doubly connected.

y'. x. xl‘ yl
X
xy Xy

FIGURE 4.8 Continuousdistortion of a path making two jumps across the
surface of the sphere to a path of type (a)

4.3.3 The group O(n). It should be clear that the set of all real
orthogonal matrices of order n is a group. This group is denoted by
O(n) and is a continuous, compact, Lie group, which is, however, not
connected. It can be alternatively thought of as the set of all
orthogonal transformations ina real n-dimensional vector space. If
x; are the orthonormal basis vectors in this space, a transformation
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n
of O(n) leaves the quadratic form 3> x;% invariant. The parameter
i=1
space of O(n) consists of two disconnected pieces, one corresponding
to matrices with determinant +1 (proper rotations) and the other to
matrices with determinant —1 (reflections). The subgroup containing
proper rotations is a connected, n(n—1)/2-parameter,® Lie group,
denoted by SO(n). O(n) has one discrete parameter in addition to
the n(n—1)/2 continuous parameters of SO(n).

For example, O(4) is the group of all orthogonal transformations
which leave the quadratic form x*43%4-z2+u? invariant. If we regard
x,y, z, u as the cartesian coordinate axes in a four-dimensional
" Euclidean space, the six parameters of SO(4) can be thought of as
representing rotations in the six coordinate planes. From the theory
of SO(2) and SO(3) [Eqs. (4.34) and (4.45)], it can be seen that the
six generators of SO(4) can be conveniently taken to be

A, =—i(y0/0z—20]0y), Ay=—i(28/0x—x0]0z),

Ay=—i(x2]ay —yo/ox),

B, = —i(x8/ou—ud[0x), By=—Ii(yd/ou—ud[dy),

Baz—i(zfﬁau—uajaz). 4.52)
The commutators of these generators with each other are found to
be '

[4,, A2]=14,, [By, By]=id,,
[A4,, B;]=0, [A4;, By]=iB,,[A,, Bj]=—iB,, (4.53)

and others obtained by cyclic permutations of the indices in each of
the above.

Changing to a new set of linearly independent generators defined
by

Ji=% (A1+B), Ki=% (4—B), I=1, 2, 3, (4.54)

we see that the commutators become
Uy, Jal=iJs, [Ky Kpl=iK,, (4.552)
71, K=0, 1,j=1,2, 3, (4.55b)

with permutation of indices in (4.55a). This shows that each of the
sets (J,, Ja, Jg) and (K, K,, K;) generates the group SO(3), so that
SO#4) is isomorphic to the direct product of SO(3) with itself. A
physical application of this group is discussed in Section 5.8.1.

8An orthogonal matrix of order n has n(n—1)/2 independent elements.
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4.4 The Lorentz Group

It is of interest to consider the group of transformations which
leave the quadratic form x,24x,24 ... 4+X,2—x,4,2—...—x:2 (0<p
<n) invariant. These groups are known as the pseudorotation groups.®
Although some authors!® also refer to all such groups as the Lorentz
group, it is customary to restrict the phrase Lorentz group to the case
of the above quadratic form with n=4, p==3, i.e., x>+ x,2+x,2—x,?,
owing to its importance in the special theory of relativity, where the
four-dimensional space-time continuum is described by the metric

ds?=dx?+dy*4-dz2—cds®. (4.56)

The pseudorotation group is denoted by the symbol O, »_p, and
there is no loss of generality in choosing p>n—p. The simplest of
the pseudorotation groups occurs when p=1, n=2, that is the group
0,, ), which leaves the quadratic form x2—y? invariant. A general
transformation of O,,, is of the form

x'=x cosh 0+ y sinh 6,

y'=x sinh 6+ cosh 6, (4.57)
where 6is real and —o0 <6< 0, so that
x'2—y=x2y2 (4.58)

Each element of the group can be characterized in terms of a real
parameter 0, and the set of matrices

cosh6 sinh 6
sinh® cosh6 |

gives a two-dimensional representation of the group. In addition,
the group O,,, also contains reflections (such as x——x, y->y), the
matrices corresponding to which have determinant —1. It is there-
fore a continuous, one-parameter, Lie group. which is noncompact
because the parameter space is unbounded, and not connected because
the parameter space is divided into two disjoint subspaces. Also
note that the transtormations of the pseudcrotation group are not
orthogonal. '

In analogy with Example 4, Section 4.2.1, the single geuerator
of the group can be found to be

B= —i(x3/0y+ yo/ox). (4.60)
If we put y=iv, so that x2—y>=x2+y*, a transformation which leaves

— o0 <b< o, (4.59)

9Englefield (1972), Section 1.9.
10Hamermesh (1962), p. 307.
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x®—)? invariant also leaves x24-v* unchanged. But the group of the
quadratic form x2-4-v% is just the group SO (2). with transformations
given by

x'=x cos O+ v sin 0,
V'=-—x sin 6+ vcos 0. (4.61)

If we put a=i0, (4.61) reduces to (4.57), so that the pseudorotation
group can be thought of as a group of rotations through iwaginary
“angles or as a group of rotations of coordinate axes where one of
the coordinates is imaginary.

Coming to the quadratic form x*4-y>—z% we see that this will be
invariant under ordinary rotations [of the form of (4.61)] in the
xy-piane and under Lorentz rotations [of the form of (4.57)] in the
xz- and yz-planes. Thus, the group of the quadratic form x2+y%—z2,
that is, the group 0,, ,, is a three-parameter, continuous, noncompact,
Lie group. The three generators of the group can be chosen to be

B,=—i(yd/oz+28/0y), By= —i(x8/0z+1z0/0x),

A,=—i(x2/0y —ydlox). (4.62)
Their commutators with each other are easily worked out to be
[B,. B,]=iA,, [B,, Ay]l=—1B;, [A4, B|]=—IB,. (4.63)

The negative sign in the last two commutation relations of (4.63) is
characteristic of the fact that B, and B, generate imaginary rotations.
Finally, let us consider the group which leaves the quadratic form .

x2+y?+z*—u? invariant. This Lorentz group evidently contains as a
subgroup the group O(3) of real orthogonal transformations in the
three-dimensional space (x, y, z). In addition, it also contains
imaginary rotations in the xu-, yu- and zu-planes. Thus, it is a six-
parameter, continuous, noncompact, Lie group. The six generators
can be chosen to be 4; and By, j, k=1, 2, 3, where

A, =—i(y0/9z—208/dy), Ay=—1i(20/0x—x8/0z),

Ay=—1i(xd/y0—y0/0x),

By=—i(x0/0u-+ud|ox), By=—i(yd/du-tud/dy),

B,=—i(20/0u+ud/oz). (4.64)
The commutation relations among these generators are found to be
identical to those of (4.53) except that the second equation of (4.53)
shows a change in sign; they are given by

[A), A5]=idy, [By, Byl=—ids,
[4,, B,]=0, [A;, By]=iB,, [4,, B]=—1IB,, (4.65)
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with others obtained by cyclic permutation of the indices in each of
the above.
For further reading, the reader is referred to the literature. !

4.5 The Special Unitary Group SU(2)

Let u and v be a pair of vectors in a two-dimensional vector
space defined oyer the field of complex numbers. A rotation in this
space transforms u and v into their linear combinations:

W =au-t+bv, vV =cutdv; - (4.662)
or (W, v]=[u, vi[ ac 7, (4.66Db)
[ bd

where a, b, ¢, d are complex numbers and hence the transformation
matrix invelves 8 parameters. If we consider only those rotations
which leave the quadratic form wu*+-vv*=|u[*+|v|* invariant, we see
that the matrix of transformation in (4.66b) must be a unitary matrix.
In other words, if we require that |2+ |V |*=|u|?+4|v[?, then from
(4.66), we obtain the conditions
aa*+cc*=1, bb*+dd*=1, ab* + cd*=0. (4.67)
Since the scalars are complex, the last of Egs. (4.67) is equiva-
lent to two conditions. These conditions thus reduce the number of
parameters in (4.66) from 8to 4. By using (4.67), itcan be deduced
that the most general unitary matrix of order two involving four real
parameters can be expressed in the form!?
cosh eix sinb e” s (4.68)
—sinB eitE-"  cosh ¢itB—o ]
whose determinant is exp(iB). Here a, B, v and 6 are the four real
parameters.

The set of all such transformations is the group U(2) which is
isomorphic to the group of all unitary matrices of order 2. It is a
4-parameter, continuous, connected, compact, Lie group.

The subgroup of U(2) which contains all the unitary matrices of
order 2 with determinant +1 is of particular interest in physics. It
is the set of matrices whose general element is

a —b* . * «
[b >, | with aa*4bpe=1. (4.69)

11Wybourne (1974).
12See Eq. (5.50) of Joshi (1984).
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it is known as the unitery unimodular group or the special unitary group
and is denoted by SU(2). Owing to the additional condition on the
determinant, SU(2) is a three-parameter group. In what follows, we
shall denote the general element (4.69) of this group by R(a, b).

4.5.1 Irreducible representations of SU(2). The matrices of
(4.69) themselves provide us  with a representation of SU(2). Other
representations.can be obtained by considering the transformations
of the following 2j+1 symmetric products of u and v of degree 2;:

. uj+m vj—m
Jim = [G+mt (G—m)! 22

where m=—j, —j+1,...,j—1,j. and j is an integer or half an odd
integer. Because v and v transform into their linear combinations as
per (4.69), it is clear that the 2j+1 functions of (4.70)also transform
into their own linear combinations under the transformations of SU(2).
This provides us with a (2j+1)-dimensional representation of SU(2)
whose matrices can be obtained by applying R(a, b) on f;* and using
(4.69):

(4.70)

1

Rt D5 = [Gm T G=m ]

1 (@UA-bYY T (—b*u+-a*v)i—m.
_ (4.71)
Expanding the brackets by the binomial theorem, we find

” ! (j+m)!
R b) /i = A,Z, (JE=m)(—m) 1] kY (+m—k) !

X (au)i+m—k (by)k To=m= 8:2)_'3, (—b*u)yi-m=l(a*v)!

[t G=m) LP2 e sy
R Gm =Rt It (j—m—® " @)

X BR(—b¥ymmel ikl ykt 4.72)

Although the upper limits of k and / in the summation are j4+m
and j—m respectively and the lower limit for bothis zero, we need not
mention these explicitly. We can take account of it by saying that k and
I take all integral values which keep the arguments of all the factorials
in the denominator nonnegative.

We can now express the right-hand side of (4.72) as a linear
combination of f7"’s. If we make a change of variables by defining
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m'=j—k—I, we have 2j—k—I=j+m’, k+I=j--m', and (4.72)
becomes
J

R((J, b) f}m: S jljm' Dm'm(j) (a:b), (4738)
mi=—j
with
Do (@, b) = 3 [(G+m)! (G—m)! (G+m I (G—m")]'E

P (J+m—k) kW j—m' —Kk)(m' = m+k)!

X ql+m=k (g¥yl-m'=k bk (—p*)m'=mtk (4. 73b)

Here, again, k takes all possible integral values so that none of the fac-
torials in the denominator has a negative argument (for given values of
j, m and m’). Thelimits of k may thus be different for different values
of m and m’. If we kept track of the limits while making the change of
variables, we would arrive at the same result. Thus the lower limit of
k is determined by the value of m—m’. If m'—m<0, the.lower limit
of k is m—m’, while if m'—m >0, the lower limitof k£ i1s0. Similarly,
the upper limit of k is governed by the two factors j+m—kand j—m'—
k and is equal to the smaller of the two integers j4+m and j—m'.

The functions f;” defined in (4.70) clearly constitute a set of
2j+1 independent functions in the (2j+ 1)-dimensional Hilbert space
L,;4, which is the space of the representation D) of (4.73). We
note that

|uj+m v_]-m|2

m (2 — -
> =2 T ey

m=—j m
But theright-hand side is the binomial expansion of ( |u]2+|v[})%//(2j)! ;
hence we have

)3 lff"|2=(§—j)!( 2+ v[2)2/. (4.74)

Since |u[?+|v? is invariant under the transformations of SU(2),
Z |fym* is also invariant, showing that our representations DU) are
m

unitary.

~ We can show that the representations DU) are irreducible. We
shall use the converse of Schur’s first lemma to prove this, that is,
we shall show that if a matrix P commutes with DU) (a, b) for all a
and b (with aa*4-bo*=:1) then P must be a constant matrix. To this
end, we work out the matrices ol D'V for two particular cases. Choos-



CONTINUOUS GROUPS AND THEIR REPRESENTATIONS 133

ing first a=exp(iz/2), b=0 with « real, we find that only the term
with k=0 in (4.73b) survives, giving _

D) (&2, 0) =<8 s mei ™=, 4.75)
Secondly, if we let m’=jin the general matrix element (4.73b), we see
again that the only allowed value of k is 0, giving

Dm0 (a, b)=[m(>2vj<)f:;) s]* alm(—btym (4.76)

Now, if P commutes with all the matrices of DU) of the form (4.75),
which are all diagonal with distinct clerneunts, then P must also be a
diagonal matrix,!? i.e., Pk=pidi. Considering the (j, m) element of
ihe matrix equation PDYXa, b)=DUXa, b)P and using (4.76), we find
that p;D;jmV’=D;nU)pm. Since DmY’ (a, ) is not identically equal to
zero, it follows that p; = pm, that is, P must be a constant matrix,
" Thus no matrix other than a constant mairix commutes with all the
matrices D'P (a, b). It therefore follows that D'/’ is an irreducible
representation. It turns out that D'/ is the only irreducible representa-
tion of SU(2) of dimension 2j + 1. Moreover, since the dimensions of
the representations D'’ differ for different values of j, they are not
equivalent to one another. In other words, the group SU(2) has one and
only one inequivalent irreducible representation of every integral order.
The characters of DU) can now be easily found out. To this end,
we shall first determine the class-structure of SU(2). In fact, we shall
show that all those elements of SU(2) of the form (4.69) which have the
same real part of the parameter a belong to a class of SU(2). This can be
done by obtaining the eigenvalues of a general element of SU(2). If
A isan eigenvalue of the unitary matrix (4.69), it can be deduced that
A satiafies the quadratic
At—(a4-a*) A4 1=0.
The two eigenvalues are thus

A =[B+@—1Y2, A =[B - (" —4)"]/2, 4.77)
where B=a+4* is a real number. Now from the condition ag®+
bb* =1, it is clear that — 1<{Re(a)< 1, where Re (a) is the real part
of a, so that —2<B<C2. Eqgs. (4.77) then show that A,=),*.
Moreover, it is also clear from (4.77) that A, A,=1. It follows that
A, =g = 1. Hence, defining « by the relations

cos («/2)=B/2, sin (a/2) =(1--B3/4)}/3,
we find that the two cigenvalues become
A =exp (izf2), Ay=exp (—ix/2). (4.78)
13See Joshi (1984), Example 3.1, p. 31.
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Since —2<f<c2, we have —1<cos (¢/2) <1 and 0 <(sin («/2) <1.
This gives 0<<a<<2n. Since the eigenvalues depend only on the
real part of g, all elements of SU(2) having the same Re(a) will
have the same eigenvalues and hence will be conjugate to each other.
Every real value of « on the interval [0, 2x] thus determines a class
of SU().

Now we can obtain the character of a class (characterized by a)
in the irreducible representation DU, Since all the elements in a class
have the 'same character, we can obviously choose the simplest element
in the class under consideration to obtain the characters. Considerthe
element R(a,b) of SU(2) for which a=exp (ix/2), b=0. The matrix
representing this element in DU) has already been found outin (4.75).
The trace of this matrix gives the character of the element under consi-
deration. Thus, : J ,

X (e*2,0)= 3 D (ei*2,0)
m=—j
J

— Z ¢ ima

m=—j
__sin (j+3) «
= Sm@2) “4.79)
This is analogous to the characters (4.50) of the rotation group
S0(3), with the important difference that for SU(2), jcan take nonnega-
tive integral as well as half-odd-integral values, whereas for SO(3), Ican
take only nonnegative integral values.

4.5.2 Homomorphism of SU(2) on SO(3). Consider the functions
of (4.70) for the particular case j=1. We have the three functions

X, =1 =3V 2, Xo= 0=y, x,= 1=V 2. (4.80)
Their transformation by a general element R (a, ) of SU(2) gives
X" = R(a, b) x,=a* x,+abx,+b? x,,
x,’ = R (a, b) x,=—2ab* x,+(aa* —bb*) x,+2 a* bx,, (4.81)
X3 = R (a,b) x;=5b*2 x,—a* b* x,+a*? x,.

Defining three new variables

X =X,—Xg, y= —i(.)'cl-}—x,), z=X,, (4.82a)
and their inverse transformation
X, ={x+iy)2, xy=2, xg=(—x+iy)/2, (4.82b)

with similar expressions for the primed variables, we see that (4.81)
becomes
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X'=} (@@ b b X o (@2 —a* B —b") )
+(ab+a* b*) z,
y;:_,%(HZ_aiz_b2+b*2) x‘i‘% (a2+a*2+b2+b*2) y

—i (ab—a* b*) z,

z'=—(a* b+-ab*) x+i(a* b—ab*) y+(aa*—bb*) z. (4.83)

We notice that all the coefficients in (4.83) are real. Moreover,
remembering that aa*+bb*=1, it can be shown that x'?4)'" Lz'2=
x2+4y%+ 22 Starting from a unitary matrix R(a, b) of order 2 with deter-
minant 41, we have thus succeeded inassociating with it a real ortho-
gonal matrix of order 3 with determinant -1, which corresponds toa
pure rotation in the three-dimensional real vector space of (x, y, z) and
hence is an element of SO(3).

We shall now show the converse, that is, that all the rotations of
SO(3) are associated with one (or more ?) element of SU(2). Any general
rotation through the Euler angles («, B, y) can be expressed as the pro-
duct of three rotations in accordance with (4.42). Choosing first a uni-
tary transformation with a=exp (i«/2), b=0, Eqs. (4.83) give

X'=x cosa—y sina,)y’ =x sinatycosa, z'=:z, (4.84y

the element R(ei*/2,0) of SU(2) corresponds to the rotation through
@ about the z-axis of the group SO(3), or

R(eie2, 0)= > —sin « cos « O | (4.85)

ei/2 0 7 cos a sin o O
J 0] 0

0 e—ix/2

Similarly, choosing a=cos (/2), b==sin (B/2), we see that

cosE —sin I cosf O sinf
B . B 2 2
R| cos bR sin 5 | = g — 0 I 0
- sin‘T cos%~ ‘_——sinB 0 cosB
(4.86)

By using (4.85) and (4.86) in (4.42) we then find that the unitary
transformation

. B
el 0 cos = —-sm[—2 PIEIL] 0

L 0 e 2 | siny  cos: 0 emix2
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corresponds to the rotation R («, B, y) of SO(3), or

cosg pi(a+y),2 —sin [_23 pity—a)i2

N —R(x, B, y). (4.87)
SinE ei(x-vi2 0059(,~i(‘;’.+‘,)[2

2 2

We must now examine whether this correspondence between
SU(2yand SO(3)isanisomorphism or homomorphism. We have already
seen in (4.83) that cach unitary matrix of SU(2) corresponds to a unique
rotation of SO(3). We must now determine how many matrices of SU(2)
are associated with each rotation of SO(3). We notice from (4.87) that the
two rotations R(0,0,0)and R(0, 2=, 0), both of which denotc the iden-
tity element of SO(3), have associated with them the two unitary matrices

ri 07 -1 0
E——L 0 1 _Jand —E—l: 0 — :I
In fact, we no‘ice that the operations R{«, B,v) and R(«, B+2w, v),
which represent the same element of SO (2), correspond to two distinct
unitary matrices of SU(2), one of which 1s the negative of the other.
There is thus a 2-to-1 homomorphism of SU(2) on SO(3).

4.5.3 Representations of SO(3) from representations of SU(2).
While discussing the irreducible representations of SO(3) in Section
4.3.1, we really obtained cnly their characters in (4.50), but did not
obtain the complete matrices D'V (a, 8, v) for the irreducible represen-
tations which appearin (4.51). We can obtain these from the irreducible
representations DY of SU(2) generated in (4.73). Since we have just
proved that ST/(2) is homomorphic on SO(3), we could obtain a repre-
sentation of SO(3) by starting from a representation of SU(2) and
picking out cnly those matrices which correspond to the clements
of SO(3). Eq. (4.87) shows that the unitary matrix of order 2 of
SU2) for which

a=cos (B/2) !, b=sin (B/2) ¢i®-i2,

corresponds to the element R(x, B, v) of SO(3). Hence a representation of
SO(3) can be obtained by associating the matrix which represents the
element R(a, b) of SU(2), i.e., the matrix DU (a, b) with the element
R(a, B, v) of SO(3). The required matrix is thus

DyrmD (a, 8, Y)EDm'm(/)( cosg- ei@MIE sin g eitz-v)2 )
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=3 (—1)Tmtk [(+m)! G—m)! (j+m) (j—m') PR
(J+m—k)t(j—m'— k) k! (m"—m—+k)!

2 2

We notice from (4.85) that the element R(e#*/2,0) of SU(2) corres-
ponds to the element R(x, 0,0) ¢t SO(3). The characters of the elements
of the rotation group SO(3) can therefore be obtained from the special
form (4.79) with f=y=0;

sin (j+3) «

1@ == wr2)
We thus see that for integral values of j, these characters coincide with
those of D obtained in (4.50). In other words, the represcntations
DU for integral j are identical to the representations D). However,
for half-odd-integral values of j, each rotation of SO(3) is the image
of two matrices -+ DU) (., 8, v) due to the 2-to-1 correspondence noted
at the end of the previous subsection.
Thus, for example. the identity element E is the image of the two

matrices
1 0 —1 0
(o 1]me] 75 7]

Another element, say a rotation through = about the y axis (B=m,

, 2j+m—m' =2k i m'—m+2k
s glampim’y (cos E) / ( sin E) . (4.88)

(4.89)

1 0
[ ] because R (0, 3r,0)is identical to R(0, =, 0). Let us, for

the moment denote R(O w, 0) by C,. If we choose the representative
matrices to be

D(E):[ (1) (1) ] and D(C2)=[ (1) e ]
then we find that
pE)D(C)=[ | Ty |-@D@®-D(C,

a=vy=0; R(0, =, 0)), is the image of the two matricesl: 0 —1 ] and

but
peypcy=| Ty ] Jr-pea——nm. @0
In general, if R and S are two rotations of SO(3), we would have
DD(R) DU S)= - DUXRS) (4.91)
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for half-odd-integral values of j. Such representations are known as
double-valued representations.

The origin of this ambiguity in sign is easy to trace. Consider
the two elements R(a, b) and R(—a, —b) of SU(2). From the form
of the matrix elements (4.73b), it is easily seen that

Do) (—a, —b)=(—1)¥ Dy, (a, b),
8o that
DWW (a, b) for integral j,
DU (~a, —b)={ —DW(a, b) for half-odd-integral j.

Thus, in the irreducible representations with integral j, the elements
R(a, b) and R(—a, —b) are represented by the same matrix while in
those with half-odd-integral j, they are represented by two matrices
one of which is the negative of the other. In particular, when j=%, we
just have the matrix group SU(2) with

—b* — *

R(a b)==|: , ﬁ, ] R(—a, —b)=|: ~r _Z, ]
When we consider wie homomorphism of SU(2) on SO(3), we would
have an ambiguity in sign as in (4.91). We may conclude that the
representations DY) of SU(2) with integral j are the single-valued rep-
resentations of SO(3) identical to D considered earlier, whereas the
representations DU of SU(2) with half-odd-integral j are the double-
valued representations of SO(3).

The ambiguity in the sign can be removed by considering a group
which has twice the number of elements of SO(3). Inthe new group, a
rotation through 2w about any axis is not identical to the identity
element but only a rotation through 4= is the identity. We thus define
a new element K to mean the rotation through 2= about, say, the z axis.
The group we have constructed then has all the rotations of SO(3) plus
the products of £ with all the elements of SO(3). It should be obvious
that the representations D) for half-odd-integral values of j are single-
valued representations of the new group. The new group is said to be the
double group of SO(3) and is often denoted by SO’(3). It is isomorphic
to SU(2). But notice that SO(3)is not a subgroup of SO'(3);in fact the
elements of SO(3) now do not constitute a-group because these are now
not closed under multiplication. Consider, for example, an element C» of
SO(3) denoting a rotation through 2n/n (n a positive integer) about
some axis. Then the n-th power of this element is not equal to the iden-
tity element; it equals the element E which we bhave defined above, and
which does not belong to SO(3). It is only (C,)?" which equals the
identity of the group SO’(3).
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It should be pointed out that such cases arise in physics whenever
we are dealing with particles or systems of particles which have spin an-
gular momenta. For example, the orbital angular momentum ofelec-
trons is an integral multiple of & while the spin angular momentum is
3h. Thus, if we are dealing with a system containing an odd number of
electrons the total angular momentum i{s a half-odd-integral multiple
of K. Itis well-known in this case that the wave function of the system
does not return to its original value after a rotation through Zx but be-
comes negative of its original value, returning to its original value only
aftera rotation through 4=, Inthelanguage of group theory, this means
that the symmetry of the wave function is governed by the irreducible
representations of the corresponding double group rather than those
of the original symmetry group. We shall deal with some more double
groups in greater detail in Chapter 7.

It should be realized that the existence of the double-valued re-
presentations of SO(3) is a consequence of its being doubly connected.
In general, if G is a k-fold connected continuous Lie group, then it has
single-valued, double-valued, triple-valued, . . ., and k-valued represen-
tations. If C, denotes an n-fold rotation about some axis and is an
element of G, then ()" is theidentity element E inthe group G. Letus
now construct a group G' in which only a rotation through 2k=w, and
not a rotation through 2x, about any axis is the identity element. Let
us define E; as a rotation through 2=, E, as a rotation through 4w,
..., Ex-yasa rotation through 2 (k—1)r and, finally, E,as a rotation
through 2k= which is the identity element of G’. Thenit is clear that

G'=GUE,GUE,GU. ..U Ex1G.

The set G, which is a subset of G, is not now closed under multiplication,
because (Cn)"=E; is not the identity element and does not belong to
G. The group G’ is homomorphic to G with a k-to-1 correspondence.
Every representation of G’ therefore gives a representation of G. How-
ever, some of these will be single-valued, some double-valued, ...,
and some k-valued representations of G. The group G’ is called the
universal covering group of G. Although such groups are of topological
interest by themselves, no physical situation has yet been found to
require the use of more than doubly connected groups.

4.5.4 Direct product of representations of SU(2). It is of
interest to obtain the direct products of the irreducible representa-
tions of SU(2) and to reduce them into linear combinations of the
irreducible representations. Consider the direct product D= DU)RQDU"
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of two irreducible representations of SU(2). Let the characters of D
be denoted by 7; these are then the products of the correspending
characters of DU) and D). Thus,

r

J J
W) =10 () IO (@)= 3 ee 3 cins
M=— m'=—j
J 7
= Z Z elm+m’o
m=—jm=-—j
jtJ J jt+i’
= X 2. eMe= 50 U (a). (4.92)
=l | M==J =12

This gives a very simple formula for the direct product of two irreduci-
ble representations:
J+J
DU & DUY= S DU, (4.93)
S=1j=j'|

showing that each representation occurs at most once in the reduction
of the direct product. Moreover, only those irreducible representations
are contained in the reduction whose *J’-values satisfy the triangular
inequality |j—j'|<<J<{j+j’. Eq. (4.93) is known as the Clebsch-
Gordan sceries. :

4.6 Generators of U(n) and SU(n)

The grecup of all unitary matrices of order » is known as U(n),
whereas the group of all unitary matrices of order » with determinant
+1 is denoted by SU(n) (SU stands for special unitary). Clearly,
SU(n) 1s a subgroup of U(n). Since a unitary matrix of order » has n?
independent elements, U(n) is a continuous, connected, n?parameter,
compact, Lie group. The elements of the group SU(n) have one more
condition to satisfy (that their determinant be +1), so that SU(n) is a
continuous, connected, (n2—1)-parameter, compact, Lie group.

It is fairly easy to obtain the n® generators of U(n). For this we
note that if A is a hermitian matrix, exp(iH) is a unitary matrix. The
converse is also true, i.e., if U is any unitary matrix, then it can be
expressed in the form

U=exp(iH), (4.94)
where H isa hermitian matrix. New any linear combination of hermi-
tlan matrices with real coefficients is again a hermitian matrix.14 Hence

14Note that the set of all hermitian matrices of order n is an n2-dimensional
real vector space.
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there can be at most n? independent hermitian matrices of order n. Let
H,, H,,...,Hybea setof n? independent hermitian matrices of order
n, where we have denoted N=n? for the sake of convenience. Let
a; (1<<j<<N) be n? real iﬁdependcnt parameters. Thenit is clear that
any unitary matrix of order » can bc written as

U= exp[ ZaJH (4.95)

or, in other words, all the elements of U(n) can be generated from
the right-hand side of (4.95) by givingall poss1ble values to the NV real
parameters a;. The N independent hermitian matrices Hjare thus the
generators of U(n). Obviously they'are not unique, and any N inde-
pendent linear combinatious of these could equally well be used as the

generators of U(n).
If A is any square matrix, it can be easily seen that1s

det (eA)=etraced, (4.96)
Using (4.94), we therefore see that
det T/=det (e!H)=exp (i trace H). 4.97)

All the diagonai elements of a hermitian matrix are real and
hence trace H=o is a real number. This shows in passing that
det U=exp(ix) is a number of unit magnitude.

Coming to SU(n), we make use of the fact that its elements have
their determinants equal to --1.° Thus if we denote an element of
SU(n) by U,=exp (iH,), then it follows from the condition det Uy=1
that trace H,=0. Now, as before® there can be at most n2—1 inde-
pendent traceless hermitian matrices of ordern, and these can be con-
veniently chosento bz the gznerators of SU(n) along with n2—1 real
independent parameters.

It is convenient to choose the n?—1 generators of SU(n) first
and then add to this set the unit matrix of order n to obtain the n?
generators of U(n).

As an example, the three generators of SU(2) can be chosen to
be the Pauli spin matrices

60 1 0 —i 1 0
Gx—‘[l 0]; G_V_[i 0]9 61_[0 _1] E] (4‘98)
which are a set of three independent traceless hermitian matrices of
15See Joshi (1984), Example 12.12. p. 134.

13The set of all traceless hermitian matrices of order n is an (n2--1)-dimen-
sional real vector space.
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order 2. For the generators of U(2), we could then choose the set
(E, 6y, 6y, 67) where E is the unit matrix of order 2.

4.7 Lie Algebra and Representations of a Lie Group

Consider a Lie group with r continuous parameters ax having the
r generators I, Iy,..., I. We have seen that any element of the Lie
group can be expressed in the form

r
X (ay, ay, . . .,a,):exp(i > aklk). (4.19)
=1

In the case of a finite group, we have seen that all the properties of the
group can be obtained from the structure of jts multiplication table.
What is the equivalent of the multiplication table for a continuous
group? We can show that for a Lie group, the commutators of its
generators determine thestructure of the group.

Thus, consider two particular elements of the Lie group of the
form

x(0, 0,.. .,ax,...,0)=exp (iaxlx),
x(O, 0, e Qe ,O)ZCXp (ia,I,).
The product of these two elements, exp(iarlx) exp(ia;l;), must belong to
the groupand hence must be expressible in the form (4.19) with some
values of the parameters ax. Now since the generators of a Lie group do
not, ingeneral, commute with each other,17 there is no simple way of
writing this product element. We may, however, use the fact that such
a product involves the commutator of Ir and I,. For the product
exp(iarli) explia)l;) to belong to the group, it therefore follows that the
commutator [Ix, £;] must be a linear combination of the generators, i.c.,
r
e, I]= 3 exf I, 1<k, I<r; (4.99)
j=1

where cx)/ are certain coefficients. The commutators of pairs of generators
of a Lie group determine the structure of the Lie group completely in
analogy with the multiplication table for a finite group. The coeffi-
cients cx/ are therefore known as the structure constants of the Lie
group. They are a characteristic property of the Lie group and do
not depend on any particular representation of the generators. How-
ever, they are not unique, since the generators of a Lie group are
themselves not unique.

17They commute only when the Lie group under consideration is abelian.
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As we have remarked before, any linear combination of the
generators with real coefficients can also be used as a generator of the
group. It is then clear that the r generators of a Lie group are the
bases for an r-dimensional real linear vector space. A

Eq. (4.99) takes us one step further—it provides us with a law
of composition between any two elements of the vector space such
that the resulting vector is also an element of the vector space. The
set of real linear combinations of the generators of a Lie group is,
in fact, a Lie algebra (see footnote 2 in Chapter 2).

Quite generally, a Lie algebra is a real r-dimensional vector space
L with elements (x, y, z, ...) endowed with a law of compositic 1 for
any two elements of L denoted by [x, y] such that

0 [xye L

i) [x, yl=—I[y, x],

(i) [x, [y, zll+[y, [z, x]i+[z, [*, y]]=0,
for all x, y, z& L. The law of composition [x, y] is known as the
commutator of x and y. A set of r independent vectors of L is called -
a basis of the Lie algebrain analogy with the basis for a vector space.

Since the commutators of the generators of a Lie group defined
in (4.99) satisfy the above properties, we obtain the following relations
among the structure constants:-

ckl=—cu,
r
Z [exs™ Cjm® ;™ Crm®+ €™ cim®1=0. 4. 100)
m=1
Moreover, since the generatérs I are hermitian, (4.99) shows that
the structure constants cx,/ are purely imaginary.

The importance of the Lie algebra lies in the fact that we may
generate a representation of the Lie group by considering a matrix
representation of the Lie algebra. Thus, if we are able to find a set of
r square matrices all of order p, say, such that they satisfy the com-
mutation relations (4.99) with the given structure constants, then
using these for the /t’s in (4.19), we would generate a p-dimensional
representation of the Lie group. We can therefore take it as a general
rule that a representation of a Lie algebra can be used to generate a
representation of the associated Lie group. ‘

As an example, we shall apply the above discussion to SU(2).
Its generators given in (4.98) satisfy the commutaiion relations

[o), 0k]=2i Z €;ui 0y, (4.101)
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where €z, is the fully antisymmetric tensor of rank 3 whose only non-
vanishing elements are

€193 =Cgy) =€y)3 =g g =—E gy =€ = L. (4.102)

The indices, j, k,! stand for any of x,y,zor for 1,2,3. Hereafter, the six
equations in (4.102) will be abbreviated into a single equation and will
be written as ‘ej,,==1 and all permutations with proper signs’. The
componenis of the tensor €, multiplied by 2/ are evidently the struc-
ture constants of SU(2). The Lie algebra of SU(2) is thus the set of’
all real linear combinations of o5, a, and o;.

Let us now look at the following three matrices:

010 0 —i 0 1 0 0
A=l 100 [a=f i 00 [a=|0 -1 o
000 lo 00 0 0 0

(4.103)

It can be easily verified that they satisfy the same commutation rela-
tions as the generators a’s, i.e.

A, A]=2i ? Grr N (4.104)

The A’s thus generate a representation of the Lie algebra of SU(2)
and can therefore be used to generate a three-dimensional representa-
tion of SU(2) itself.

The maximum number of mutually commuting generators of a
Lie group is called its rank. The rank of SO(3) is thus 1 because no
two of its generators L., L, and L, commute with each other. The
rank of SU(2) is also 1.

An operator which commutes with all the generators of a Lic
group is krown as a Casimir operator for the Lie group. Aecording to
atheorem due to Racah, the number of indepzndent Casimir operators
of a Lie group is equal to its rank. It was recognized by Casimir him-
self that one such operator could always be constructed by taking a
suitable bilinear combination of the generators.

The one and only Casimir operator of SO(3)is thus L*=L,*+L,?
+ L3, which commutes with each of Ly, L, and L.. The only Casimir
operator of SU(2) is similarly ¢*=o0,+ 0,2+ 6,2

Since the Casimir operators of a Lie group can be diagonalized
simultaneously with its generators, the eigenvalues of the Casimir opera-
tors may be used to label the irreducible representations of the Lie group.
Thus, the Casimir operator L% of SO(3) has the eigenvalue /(/4+1),
where / takes on all nonsegative integral values, and hence the irre-
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ducible representations of SO(3) may be labeled by the index / as we
have already donein Section4.3. We have seen that the dimension of
the representation D® is 2/+1. Similarly, the Casimir operator o2
of SU(2) has, in general, the eigenvalues j(j+1) where j takesall non-
negative integral and half-odd-integral values (the representation (4.98)
for the generators is a special case withj=4). The irreducible representa-
tions of SU(2) can therefore be labeled by j. These are the representa-
tions DY) considered earlier and are of dimension 2j+1.

4.8 The Special Unitary Group SU(3)

Asshould beclear from the name, SU(3) 1s the group of all unitary
matrices of order 3 with determinants + 1. It has 32— =8 generators.
which are usually denoted by A, A,, ..., A Although these can be
chosen in many ways, it has become a convention to use the following
traceless matrices as the generators of SU(3):

01 01 0 —i 07 1 00

AM=[ 100 | A=l i 00 | A=l 0 —1 0 |
| 00 0 | 0 00 0 00
0 0 17 00 —i T0 0 0

M= 00 0 [ A=[ 00 0| A= 001
1.0 0 | i 0 0 01 0
00 0 1o 0N

M= 00 —i | A= 010 | (4.105)
[0 i 0 00 -2 |

Their commutators can be worked out and are found to be
A, A]=2i Z fira Ny _ (4.106)
1

where the only nonvanishing components of fjx, are
Srza=1,
S1a0= 516~/ 248 :f257=f145:f637=%s
fus:fsva:\/?’/z)
and all permutations with proper signs. (4.107)
It must be realized that these structure constants are a characteris-
tic property of SU(3)and do not depend on the particular representa-
tion chosen in (4.105).
We see from (4. 105) thatA; and A;are diagonal matrices and hence
commute with each other. Wecan verify (from the structure constants
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(4.107)) that no other matrix of (4.105) commutes with both A; and A,.
‘The rank of SU(3) is thus 2. \
The group SU(3) therefore has two Casimir operators. One of them
is a quadratic combination of the generators:
8
Ci= 2 N (4.108)
i=1
It can be verified without difficulty that C/commutes with all the gene-
rators, i.e., [Cy, Ai]=0for 1<{i<C8 (see Préblem 4.7). The other Casimir
operator is a complicated trilinear combination of the generators.

The eigenvalues of the two Casimir operators of SU(3) may be
labeled by two running indices pand g, and then an irreducible represen-
tation of SU(3) may be denoted by (p, q), where p and g take all non-
negative integral values. The dimension of this irreducible represen-
tation is found to be!®

d=(14p)(1+9)2+p+9)/2. (4.109)
It has become a convention to denote an irreducible representation
merely by its dimension. That is, instead of specifying it by (p, q), we
-denote it simply by d or d* according as whether p<<gor p>¢q. If p=g,
there is only one irreducible representation of the corresponding dimen-
sion denoted by d. »
Thus, the lowest order irreducible representation of SU(3) is that
for which p=¢=0, or (0, 0)=1. Some of the other irreducible representa-
tions are (0, 1)=3, (1, 0)=3%, (0,2)=6, (2, 0)=6*, (1, 1)=8, (0,3)=10,
etc. The direct products of these irreducible representations cdn be
taken and reduced in terms of the irreducible representations. Without
going into detail ® we list below a few particular cases of decomposi-
tion:

33 = 6@3",
33 =8@1,
333 = 1008@8a1. (4.110)

4.8.1 Physical applications or SU(2) and SU(3). Just as the
orbital wave functions of an electron (spherical harmonics) generate,
or transform according to, the irreducible representations D® of
SO(3) in accordance with (4.51), we can see that the spin functions of

18See Fonda and Ghirardi (1970) for a detailed treatment of SU(3).
18For the rules for reducing the direct products of the irreducible repre-
sentations of SU(3), see, for example, Fonda and Ghirardi (1970).



CONTINUOUS GROUPS AND THEIR REPRESENTATIONS 147

an electron would generate the representations of SU(2). Consider &
single electron with a spin angular momentum s=4% K¢ where d=(oy,
oy, az) and o; are the Pauli spin matrices. The two orthonormal spin
functions may be denoted by X() and x(—1) which are simultaneous
eigenfunctions of s® and s,. Under an orthogonal coordinate trans-
formation, these spin functions undergo a unitary transformation in the
complex two-dimensional Hilbert space of X3 and x(—) This space
is known as the spinor space and any vector (which is any linear combi-
nation of the two basis functions) of this space is called a spinor. The
spin functions X() and X(—1) thus generate a two-dimensional repre-
sentation of SU(2) which we recognize to be D)

Let us now consider the case of two electrons. Since the spin
functions of each electron transform according to D), the spin func-
tions of the combined system will transform according to the direct
product representation DY @ DW) . Thisis a four-dimensional repre-
sentation of SU(2). From the decomposition law (4.93) for the direct
products of irreducible representations of SU(2), we see that

W ® D —pm @ DO, 4.111)

If we donote the spin functions of the first electron by X, (4)
and X,(—), and those of thesecond electron by %, (4 )and X, (—), then
the basis functions for the direct product representation of (4.111)
are clearly the four functions [X, (+) % (4), % (+) %, (=), %, (=)
X, (4), % (—)Xg(—)]. By using the standard methods, we can obtain
four symmetrized linear combinations of these functions such that
one of them will generate the representation D® and the

remaining three will generate D). These, when normalized, are
found to be

J T () 1 ()= (=) L ()

$i1=X (-H) % (),
DO s Ly = Do () % () (=) T ()L
Wi —1=% () % (=) (4.112)

The total spin of the system in the state ¢y, o is zero (a singlet state),
while in any of the three states §y,, $y.0, and ¢;,, it is & (the triplet
state).

The SU(2) finds another important application in the isotopic
spin formalism of elementary particles. In the Jong list of elementary
particles, it can be seen that there are a large number of pairs such that

DO - *‘I"o»o:
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the two members of a pair have practically identical properties except
their electrical charges. An obvious example is a proton and a neu-
tron, all of whose properties are almost the same except their electro-
magnetic properties. We may then treat the proton and the neutron as
the two states of a single nucleon field. We denote the two states by |[p>
and Jn> and define an operator t; whose eigenstates they are with the
eigenvalues +3 and —4} respectively, i.e.,

Ty p>=%|p>, nln>=—%|n>. (4.113)

The states | p> and |n> now span a two-dimensional Hilbert space in
which the operator t; would have the same representation as thatof
o given in (4.98). Inanalogy with the electron spin problem, we make
the hypothesis that there exists an operator z, to becalled the isotopic
spin operator, which is given by
£2=Tli+72:+ra’,

whese t,, T, and v, are the components of the vector operator . All
physically observable states must be simultaneous eigenfunctions of t2
and 7,. The states [ p> and |n> thus generate the two-dimensional irre-
ducible representation D®) of SU(2). The charge of the nucleon in
any of the eigenstates is Q=3%+r1,.

The formalism is mathematically exactly analogous to that of the
electron spin problem. Just as we do not treat an electron with spin
‘up’ and an electron with spin ‘down’ as two different types of particles
but regard them merely as two states of a single entity called ‘electron’,
we must teach ourselves to regard the proton and the neutron as the two
states of a single ‘nucleon’. It must be realized that the coincidence
between the two cases is not merely accidental. It emerges from the
fact that in quantum mechanics, unlike in classical mechanics, the an-
gular momentum is a purely mathematically defined operator which
corresponds to some physical observables.?® Thus, the isotopic spin
operator is as much an angular momentum as the operator for orbital
or spin angular momentum of an electron. _

The study of elementary particles has shown that there are cer-
tain groups of particles which can be assigned further quantum num-
bers—such as baryon number, strargeness, hypercharge, etc.—in addi-
tion to the isotopic spin angular momentum. It was therefore suggested
that the symmetry group of these particles may be larger than SU(2) and
may, in fact, be SU(3). Thus, there are a number of groups of parti-

BFor the quantum mechanical definition of angular momentum, see Section
6.4.1.
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cles whose states transform according to the irreducible representations
of SU(3), that is, they are degenerate with each other for strong inter-
actions but are distinguished by their electrical charges and strangeness.
The basic triplet transforming according to the irreducible represen-
tation 3 of SU(3) is (p,n, A), where A is a hyperon. It is well-
established now that there are groups of eight and ten elementary
particles which correspond to the irreducible representations 8 and 10
of SU(3). In fact, when Gell-Mann?! proposed the SU(3) scheme, he
could fit only nine of the then known elementary particles into the
ten states of the representation 10, leaving one gap. The particle
with properties predicted by Gell-Mann was soon observed in the
laboratory and named (. The story is essentially parallel to that

of Mendeleev’s periodic table with gaps which were later filled by the
discovery of new atoms.

PROBLEMS ON CHAPTER 4

(4.1) By referring to Fig. (4.2b), state the definition of the continuity of
inversion for a topological group.

(4.2) Show that the following sets are groups:

. 1
(a) The set of matncm[ 0 T :I with —e0 Ca< oo ;
(b) The set of matrices

A= [ (1—u2fc2)-112 —u(1—u2jc)-12
Tl —ucr(—wtfcyuz (1—u2fcy1r2 ]
with —c<<u<Cc, where ¢ is a real positive constant. Use the relativistic law of
addition of velocities, w=(u+v)/(1+4iv/c?).

(4.3) Show thatthe sets of transformations (a) x'=ax, y’=by; (b) x’=ax,
y'=yla, am0, are Lie groups and obtain their infinitesimal generators.

(4.4) Prove Eq. (4.29). [Hint: Expand the right-hand side in the formal
exponential series and use the property of the Pauli spin matrix that o 2= E.]

(4.5) What is the group U(1)? Show that U(my=SUnYRXU().

(4.6) Show that in an even-dimensional real vector space, inversion is
equivalent to a proper rotation. -

_(4.7) Show that the operator of (4.108) is a Casimir operator for SU@3),

i.e., that [C}, 2/]=0 for 1<<i<8,

(4.8) Let H be a hermitian matrix of order n and let U=exp(iH). Let H

be expanded with a suitable number of rows and columns of zeros to give a
hermitian matrix of order m:

L, Ho
wa[ 50]

Ne‘eman and Gell-Mann (1964).
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Uuo
(a) Show that exp(iH’)=[ 0 E ], where E is the unit matrix of order

m—n.
. U o
(b) Show that the set of matrices [ 0 E :I, where U is any unitary

matrix, is a group isomorphic to U(n). [In this sense, it is often said that U(n)
is a subgroup of U(m) if n<m.]

(¢) Show that, inthe above sense, SU(n) is a subgroup of SU(m) if n< m.

(4.9) Let a{" and a; denote the operators for the creation and the ani-
hilation of a nucleon respectively, where i stands for p(proton) or n (neutron).
These operators follow the boson commutation relations:

la:, aﬁ 1=8:;, [a., a,-]=[al;+ R a,-+ 1=0.

(a) Show that the operaters 7x=ap1’ a,,-l—a,,'r ay, 1,,-:—1'((1,,1' ap—a,t ay),
-r,=a,,Jr a,,—a,,T a, satis{y the commutation relations (4.101). [They therefore
generate the algebra of SU(2). This is the neutron-proton isospin algebra.]

(b) Show that the operator E=a,,1L az,—{—n,,'r a, commutes with all the <'s.
[The operators E, <z, 1. 1, thus generate the algebra of U{2)]

(4.10) A system contains three electrons each with spin {h. Show that the
system can exist in a quartet state (with spin S=3%/2) and two distinct
doublet states (each with spin S=}H). Obtain the symmetrized spin functions
for these states.

(4.11) The transformation of a vector r=(x, y, z) under rotations is
determined by the matrix R («, B, vy) given in (4.43). If we define the spherical
or standard components of r by

rn=—(x+i)/V2, ry=z,r_1=(x—ir)/v2,
show that these components transform according to
+1
ry’= N reDmnV (@ B, y), n=—1,0,1,
m=-—|
where the elements Dy, (1 (2, B, y) are defined in (4.88). [See-also (6.77) for
the case j=1.] - : ’
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CHAPTER 5

Group Theory in Quantum
Mechanics. |

The fundamental problem of quantum physics is to investigate the

Schroedinger equation

Ily=EY, (5.1)
where J{ is a linear hermitian operator suited to the problem at hand
and Y and E are its eigenfunction and eigenvalue respectively. The ope-
rator # may correspond to any physical observable such as position,
momentum, angular momentum (spin or orbital), energy, and so on. In
general, there are several solutions-which satisfy (5.1) and which may
be denoted by ¢; with the corresponding eigenvalues E;. The number
of eigenfunctions of 4/ in most quantum mechanical problems is in
fact infinite. It is an axiom of quantum mechanics that the set of all
eigenfunctions of a hermitian operator is a complete set. These
eigenfunctions define a Hilbert space on which the operator acts.

In general, it is very difficult to find the exact eigenfunctions and
eigenvalues of anoperator, except in some very simple ‘exactly solvable’
cases. However, the problem can be considerably simplified by using
group theoretical methods. In this chapter, we shall establish the
connection between group theory and quantum mechanics by showing
how the use of group theory helps in (a) simplifying the eigenvalue pro-
blem, (b) classifying the various eigenfunctions of an operator by the
irreducible representations of the symmetry group of the operator, and



152 ELEMENTS OF GROUP THEORY FOR PHYSICISTS

(c) descgibing their general properties by the consideration of the sym-
. metry properties of the operator.

5.1 Hil.bert Spaces in Quantum Mechanics

Before we begin applications of group theory, we shall illustrate
in this section that with every hermitian operator corresponding to a
physical observable, there is associated a Hilbert space on which the
operatcr acts. We shall do this by considering a few typical examples.

5.1.1 One-dimensional square-well potential with perfectly rigid
walls. The potential is of the form V(x)=-+4 o0 for | x| > a and
V(x)=0 for | x |<a, where a is some finite positive constant. The eigen-
functions of this problem are known to be! {,(x)=sin (nnx/2a) for
even n and $n(x)==cos (nmx/2a) for odd n, where n takes all positive
integral values and x takes values on the interval | —a, a). Itis clear that
these eigenfunctions constitute an orthogonal set on [—a, a] and hence
can be chosen to be the basis functions of the Hilbert space of the
Hamiltonian of the problem. Let us denote thisspace by L.

One might jump to the conclusion that this is the direct sum of the
. spaces L,and L, discussed in Section 2.3.2. A little reflection, how-
ever, shows that this is not so because only alternate values of n are
allowed in thesineand the cosine functions. How can we then describe
this space in words? It is not the space of all periodic functions with
period 4a. A little thought again tells us that it is the space of all con-
tinuous, square integrable functions which vanish at the boundaries?
| x |=a. Any function in this space L can beexpanded as a linear com-
bination of the complete set of basis functions as follows.

d(x)= Y CnPn(X)

n=1

= Y ansin(nrx/a)+ > ba cos [(2n+1)rx/2a]. (5.2)

n=1 n=0
Consider now the case when the potential is not constant in the
region | x |<{ a but still has perfectly rigid walls at | x|=a. The eigen-
functions will no longer be simple sine or cosine functions but must still
satis(ly the same boundary conditions,® that is, they must vanish at| x|

1Schiff (1968), p. 39. _ _

2This shows in passing thé importance of boundary conditions in quantum
mechanics. i

3Schiff (1968), Section 8.
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=a. This implies that the eigenfunctions of the new problem must also
belong to the Hilbert space L of the original problem and therefore can
be expanded* as in (5.2). As is well-known, a function such as ¢(x) of
(5.2) denotes a wave-packet (whose spatial extension depends on the
relative magnitudes of the coefficients a,and b,) and this is just what we
expect to obtain for the problem at hand.

~ 5.1.2 The hydrogen-like atom. The Hamiltonian of an elec-
tron in a hydrogen-like atom in the centre of mass coordinates is

_ H=—0>V*2u+W(r), (5.3)
where V(r)==—2Z¢¥r, Z is the charge at the nucleus, e the electronic

charge, r the radial distance from the nucleus and p the effective
mass. The eigenfunctions of this problem are known to be®

Yuim (1) =Ry (r) Y™ (9, ¢), (5.4
where Rn(r) is the solution of the radial Schroedinger equation,
Y0, ¢) is a spherical harmonic and r=(r, 0,¢) in spherical polar
coordinates. These functions are orthonormal if the functions R, are
normalized; thus

J-H')n/m (r)L.I)*n’l'm’ (l") dﬂ":gnn’ 8Il'Bmm’- (55)
These eigenfunctions therefore constitute the basis functions for
the infinite-dimensional Hilbert space. The boundary conditions here
are that each eigenfunction Gum (v)—0 as r—>o0. Any function (conti-
nuous and square integrable) satisfying these boundary conditions can
be expanded as a linear combination of the bound state eigenfunctions
of (5.4). One must bear in mind, however, that this is nof the full Hilbert
- space of the Hamiltonian (5.3); the full Hilbert space would include
the eigenfunctions corresponding to the continuous eigenvalues in
addition to those of (5.4).

5.1.3 Angular momentum. If J denotes the angular momen-
tum operator of a physical system, it is known that its components
do not commute with each other but that J2 commutes with all the
components of J. The problemis therefore to construct simultaneous

4This is the philosophy ‘behind the precept in perturbalion theory that the
eigenfunctions of the perturbed problem can be sxpanded as lincar combi-
nations of the eigenfunctions of the unperturbed problem, provided the
boundary conditions are the sare.

5We have disregarded the spin of the electron and have restricted ourselves
to the bound energy levels.
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eigenfunctions of J2and, say J..Itis pot nécessary to obtain the éxplicit
eigenfunctions. The eigenfunctions may be characterized by two indices®
jandp and an eigenfunction may be denoted in the Dirac notation
by|ju>. The set of all such eigenfunctions for j=0,3, 1, ,..., and
p=—j,—j+1,....j—1.j-is a complete set in the infinite-dimensional
Hilbert space of the angular momentum operator. The action of
the components of this operator on a basis function is given by
I ju>=j(j+ DB ju>,
Jolin>=pk |ju>,
(U +id) o> =G+ D—p (e + DR, p 1>,
(Je—id ) jp>=[f(+D—p (e=DI' Rl j, p—1>. (5.6)
Egc. (5.6) show that the infinite-dimensional Hilbert space of J
splits into a direct sum of an infinite number of finite-dimensipnal
Hilbert subspaces. - The dimension of a subspace corresponding to a
particular allowed j-value is (2j+1) and the corresponding basis
functions ar: | ju>for —j<<u<{j. This is the familiar spin space of a
system whose angular momentum is j h and is the space in which the
representation DY) of SU(2) is defined. '

5.1.4 Electron in a periodic potential. Let us finaily consider an
electron in a crystal lattice. The eigenfunctions of the Hamiltonian in
this case can be put in the Bloch. form

Ynk (ry=exp (i ker) unk(r), (5.7

where unk(r) 1s a periodic function with the periodicity of the Jattice. The
~ boundary conditions hereare the periodic boundary conditions. The
number of the allowed values of thevectorkis equal to the number.of
unit cells in the crystaland » is the band index which takes all positive
integral values (and also takes account of the states in the bands ob- |
tanined from the core levels). These eigenfunctions constitute a basis
for the infinite-dimensional Hilbert space of the crystal Hamiltonian
and any function with the same periodic boundary conditions can be
expressed as a linear combination of functions in this complete set.
The examples of Sections 5.1.1, 5.1.2 and 5.1.4 show that when
the operator under consideration is the Hamiltonian, its Hilbert space
is determined by the boundary conditions rather than the actual form

of the potential.

6Schiff (1968), Section 27; Messiah (1965), Section 13.1
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5.2 'Transformations of a Function

Let R be an operator referring to a transformation of the coordi-
nate system ey, i.e.,
Re;=¢/, i=1,2,3,.. ., (5.8)

where ¢;’ are the axes of the transformed coordinate system. Eq. (5.8)
can also be written in full as
e'= 2 e; Ry, i=1,2,3,..., (5.9
J

where [R;;] is the representation of the operator R with the bassis {e;}.
We are interested in knowing how the form of a function (defined
in the space of {e;}) changes when the coordinate system undergoesa
transformation. To begin with, let us considera simple function of one
variable (one-dimensional space) such as f(x)=cos x. For the coordi-
nate transformation, we take the translation of the origin of the
coordinate to the point x=a. If we denote this transformation by R,
the new coordinate can be denoted by
x=>x'=Rx=x—a. (5.10)
It is then obvious that the inverse transformation will be R-! x=x+a,
What happens to the function f(x) in the new coordinate system?
Let us denote the transformed function of x* by f;(x") and denote by Pz
the operator corresponding to R operating on functions of? x. Then we-
can write algebraically

Prf(x)=fi(x"). (5.11)
In our case, with f(x)=cos x, it would be clear from Fig. (5.1) that
the transformed functiontakes the form fi(x")=cos(x’+a4). Dropping
the primes, this can be written in the form fi(x)=cos(x+a), or
Pgrf(x)=cos (R} x). (5.12)
The same result would be obtained if we kept the coordinate sys-
tem fixed and moved the function f(x)=cos x by a distance a to the left
(the active point of view). Asdiscussed in Chapter 1, this shows in gene-
ral that a transformation of the coordinate system e is equivalent to
the inverse transformation applied on the function /. Generalizing this
result to the three-dimensional space of position vectors, this means that
the value of the transformed function f; ata pointris the same as the
value of the original function f at the point R-r. We therefore have

Ji(®=Prf()=f(R"1). (5.13)

"Note that the operator R acts on the coordinate x only.
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f(x)= cos x

VARV

(a)

x.J

fi(x')= cos (x"+2)

1
]
| T/p —a

v —a Ov Y
(b)
FIGURE 5.1 (a) The function f(x)=cos x; (b) The coordinate transfor-

mation in which the origin is shifted to the point x=a, so
that x’=x—a and f; (x")=cos (x'+a)

Since this transformation is very important, it would be worth
considering one more example in the three-dimensional space. Let us
take the function to be ‘

J(O)=exp i (kyx,+koxotkyxy), : (5.14)
where (x,, x,, x;) are the components of r in the orthonormal system
{e;} and k; are scalars of dimensions (length)-!. Let R be a rotation
of the coordinate axes through 90° about e,. that is,

R(ey, exe)=(e/’, &', ¢;)

=(ey, €,, €,) 0 -1 0 . (5.15)
1 00
0 0 1

The function f(r) has the value given by (5.14) ata point P=(x,. x,, X5).
In the primed system, the point P (see Fig. (5.2)) has the coordinates
(x/, x,". x3"). where x,"=x,, x,”=—Xx,, x,/=x;. Since the value of the
function /'at the point P has not changed during the transformation
(or, in other words, the value of the function fatthe point P isindepen-
dent of the coordinate system), the form of the transformed function
must be
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Si(xy=exp i (—kyx)'Fhyxy"+hgxg'). (5.16)
Since r’ isonly a label for the argument of f;, we may drop the primes
and write

Si(m)y=exp i (—kyx,+kox,+KkgXs). ¢.17)

)}‘:- e,
e,
/ pp= § CrXes)
/ I (X", x"s)
/ !
/ i
1
// :X 3=X,
/
1
/ H ,
| 7 0@,
1 /
17,
| /R =Ry
1/
__________ 7
X 1= Xy

FIGURE 5.2 The transformation of the coordinate
system e; to e;’

This form of the transformed function can evidently be obtained by the
operation
R (x4, Xg X3)=(—Xg, Xy, Xy)
=(x,, X3, Xg' 01 07 (5.18)
-1 00
0 01

The matrix obtained in the above equation is the inverse of that
obtained in (5.15). Hence, once again we have
Si(®)=Prf(D)=f(R1),

which is just (5.13). Here it should be emphasized that the function
JSof (5.14) is identically the same as the function f; of (5.17); the only
difference is that in (5.14), the position r is measured in the original
coordinate system, whereas in (5.17), it is measured in the transformed
system.

Consider now the effect of the successive transformation of the-
coordinate system by the application of the operators Rand S. Let Pr
and Ps be the operators which act on functions of r and which corres-
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pond to R and S respectively. The result of the first operation, by
(5.13),is :
Prf(t)=f(R 1)=F(r), (5.19)
which defines the function F(r). Now the result of the operation of Pg
on F(r)is
Ps F(r)=F (S~ ). (5.20)
On replacing r by S~'rin (5.19), we get
F(S n)=f(R1S51r).
sing (5.19) and (5.20) in the above equation, we have
Ps Prf(r):==f(R-! S 'r). (.20
Note the interchange in the order of the inverse operators inthe argu-
ment of the function f on the right-hand side of the above equation.

5.3 Space and Time Displacements

5.3.1 Space displacements. Consider a physical system repre-
sented by a wave function §(r). Let the physical system be displaced
through a vector ¢. Since thisis Qquivalent to displacing the coordinate
system through —e, the wave function representing the physical
system, according to our previous discussion, will be

¢ =4 (—p). (5.22)

If we denote the corresponding translation operator by P,(P) (the
subscript r stands for space displacements), then we have

PAe) $ (=Y (=4 (r—2). (5.23)

Our aim now is to obtain an expression for the translation opera-
tor P, (¢). We first consider the particular case when the displacement
is parallel to the x axis. Since the wave function of a physical system is
a continuous and differentiable function at all points of the space, we
can expand ¢(r—p) in a Taylor series:

4‘ (I_E)Eq)(x—f]: Vs Z)

0 ot 22
={1—-p a—x+% T .}up(x,y?z)
=exp (——paix)cb(x,y, z). (5.24)

Extending this to any general displacement p, we have
Y (r—p)=exp (—£+ V) $(r)
=exp (—if p/B) §(r), (5.25)
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where p=—ih V is the quantum mechanical operator corresponding to
the linear momentum of the system. Comparing this with (5.23), we
find

P (P)=exp (—i2-p/B). (5.26)

Since ¢ isrealand p is a hermitian operator, P,(P)isa unitary operator.

It now remains to verify whether the displaced function still cha-
racterizes a possible state of the system. For this, we first note that the
function §(r), being a wave function of the system, satisfies the time-
dependent Schroedinger equation

P80 ()= (1), (5.27)

where 4{ is the Hamiltonian of the system. We now calculate the time
derivative of the displaced function which gives

i5§¢' M=ik P: () a%¢(r)=f’r () I (r)

=Pr () S Pt ()¢ (). ’ (5.28)

Itis then clear that the function ¢’(r) satisfies the time-dependent
Schroedinger equation with the same Hamiltonian 4{if and only if
Pr(P) P @)=, or [Pr(p), H]=0. (5.29)
On looking at the form of the unitary operator P, (¢) given in (5.26),
we note that (5.29) holds for all vectors ¢ if and only if p commutes
with 4. This implies that if the physical system is invariant under all
space translations, its linear momentum is a constant of motion, or is
conserved.
The set of all translation operators P(p) (for all values of ¢)
clearly is an abelian, continuous, connected, three-parameter, non-
compact group. The law of composition for this group is simply

P, () Pr(D)=P;(3) P, (&)=Pr(e+3).

This is the symmetry group of the physical system under consideration.

It would be instructive to consider two simple examples of the
concept discussed here. Consider first the case of a free particle whose
Hamiltonian contains only the kinetic energy part: 4=-—12V2/2m
=p?/2m. Its wave function is of the form exp(ik-r) where k denotes
the wave vector of the particle. If we displace the system through a vector
¢, the new function exp [ik-(r— f)] also represents a possible state of the
free particle. This must be true for any vector ¢ because the momentum
of the particle commutes with 9 and is therefore a constant of
motion (p=1k). :
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Consider next the case of an electron in a hydrogen atom. The
wave function of the electron is of the form R (r) Y/ (6, $). Here the
position vector r is measured ina coordinate system whose origin is at
the nucleus. If we displace the system through some vector so that the
nucleus is no longer at the origin of coordinates, the displaced function
cannot be put in the standard form and hence does not denote a possible
state of the system. The linear momentum s therefore not a constant of
motion for an electron in a hydrogen atom which is of course a well-
known result.

5.3.2 Time displacements. In analogy with the space displace-
nment of a physical system considered above, we may displace a system
in time and try to find out whether the displaced function represents
a possible state of the system.

Thus, let §(f) be the wave function® of a physical system and let
P, (<) denote the operator for translating the functions of time by an
amount t. We then have

P (D) 4(O=Y ()=d(t —7). (5.30)
We may expand the function $(r—=) in a Taylor series about the -
point ¢ and we then find that
P, () d(r)=exp(—T0/at) Y (1). (5.31)
We therefore have
P, (v)=exp(—o/er). (5.32)
Now, the quantum mechanical energy operator is given by
H=ina/ot. If 4 is itself independent of time, that is, if the energy is
a constant of motion, then we can replace 2/g¢ in the exponential in
(5.32) by 4 and obtain
P (x)=exp (it H/B), , - (5.33)
which is a unitary operator because = is real and 4 is hermitian.
This again shows that if a physical system is invariant under a//
time displacements, then the energy of the system is a constant of
motion. The transformed function in this case still obeys the Schroe-
dinger equation. All the time translation operators P,(r) commute
with the Hamiltonian, i.e.,
[P, (x). H]=0,all . - (5.34)

The set of all time translation operators is again an abelian, conti-

8We are not interested in the other variables on which » may depend;
these are therefore suppressed here.



GROUP THEORY IN QUANTUM MECHANICS. 1 161

nuous, connected, one-parameter, noncompact group which is the
symmetry group of the physical system.

Once again, we may consider the example of the hydrogen atom.
If we have an isolated hydrogen atom, with no perturbations, its
Hamiltonian is invariant under all time displacements. If the atom is
ina particular state at a given instant of time, it will continue to remain
in the same state for afl time and the total energy of the system will be an
invariant. On the other hand, if we apply a time-dependent perturba-
tion, the Hamiltonian is no Jonger invariant under time translations,
the atom may make transitions from one state to another and the
energy of the atom does not remain a constant of motion.

5.4 Symmetry of the Hamiltonian

In the previous section we have seen by means of two examples
that when a system possesses a certain symmetry, there is a corres-
ponding physical observable which remains a constant of motion. We
shall develop this concept here in its complete generality. We shall
hereafter use the operator 4 of (5.1) to mean the Hamiltonian (the
energy operator) of the system.

The Hamiltonian 4 is itself a function of the various parameters
of the system such as the position vector, time, momentum, angular
momentum, etc., and it reflects the symmetry of the system it des-
cribes. Its familiar form in the single-particle approximation is

272
3{=_EV

+7, (5.35)

where the first term is the kinetic encrgy operator for the particle it des-
cribes and ¥ contains all the other terms. The Laplacian V2isinvariant
under all orthogonal transformations of the coordinate system (that s,
under the rotation-inversion group O(3)). Hence, the symmetry of (s
essentially governed by the symmetry of the function V. Thus, if (5.35)
refers to an electron in a hydrogen atom, the potential energy of the
electron is spherically symmetric, and 4 would be invariant under
the group O(3); if it refers to an electron in a crystal, 4 would be
invariant under the symmetry transformations of the crystal (that is,
the operations of the space group of the crystal, to be discussed in
Chapter 7).

Let us consider the operation of Pg, which corresponds to some
‘coordinate transformation R, on the Schroedinger equation (5.1):

Pr Y Y=Pr EY,
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or | (P 9P (Prd)—EPxb,

or H' (PrU)=E(PrY), (5.36)
where
I'=Pr I Pr? (5.37)

is the Hamiltonian referred to the transformed coordinate system. If

the operator Pris such that 4('=4{, which means that the form of the
" Hamiltonian function in the new coordinate system is the same as its
form in the original one, then from (5.37), we find that

9 Pr=Pr I : (5.38)

This shows that the Hamiltonian commutes with all the operators
under which it is invariant.
" The set of all transformations R which leave the system invariant
is a group. The set of the corresponding transformations Pgr leaves
the Hamiltonian of the system invariant and bence also is a group.
The two groups are isomorphic to each other and they will both be
denoted by the same symbol G. It is known as the symmetry group
of the Hamiltonian or the group of the Schroedinger equation. (See Pro-
blem 5.7.)

The commutation relation (5.38), when used in (5.36), implies that

Y (Pry)=E(PrY), (5.39)

‘thatis, Pryisalso an eigenvector of 4 with the same eigenvalue E. The
function Pgry is thus degenerate with ¢, unless it is a multiple of ¢.

5.4.1 Symmetry and degenéracy. Starting from a given eigen-
function ¢, of 4 with the eigenvalue E, we can generate a set of
independent eigenfunctions ¢,, ¢,, ..., ¥ (n<g, the order of G) by
operating with all the elements of the group G. These functions forma
basis for a representation of G which may be reducible or irreducible.
However, if all possible symmetry transformations which leave the
Hamiltonian invariant have been included in the group G, then the repre-
sentation generated by the degenerate eigenfunctions must, in general,
be an irreducible one. Conversely, the eigenfunctions belonging to an
irreducible representation of G (occurring for a particular time) can be
transformed into each other by the operations of the elements of G,
and hence they must be degenerate, as is clear from (5.39).

Now we may ask the question: Do the eigenfunctions trans-
forming according to different representations of G always have diffe-
rent eigenvalues? In general, they should. This is due to the fact that if,
for example, & and ¢ are functions belonging to different irreducible
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representations of G, then there isno operation of G which mixes them.
But it may happen that we have failed to include all the symmetry trans-
formations of the Hamiltonian in the group G, in which case, the
representation generated by the degenerate eigenfunctions may be
a reducible one. The basis functions belonging to two or more consti-
tuent irreducible representations may then be degenerate. However,
if this happens consistently, that is. if we find that the basis functions
belonging to two or more irreducible representations of G are always
degenerate, we may conclude that we have overlooked some symmetry
of the Hamiltonian. When we have considered all possible symmetry
transformations of the Hamiltonian, the basis functions belongingto
different irreducible representations of G must, in general, have different
eigenvalues.

We can, however, hardly ever be certain in practice that we have
discovered all the invariances of a physical system. An excellent exam-
ple of this will be found when we discuss the dynamical symmetry of
physical systems in Section 8 of this chapter.

It may still happen that for certain values of the parameters (such
as the nuclear charge, the electronic mass, the interatomic distances in
molecules and crystals, etc., on which the eigenfunctions depend),
two or more eigenfunctions belonging to different irreducible represen-
tations have the same energy eigenvalue. This degeneracy is not
demanded by the symmetry of the system and cannot be inferred
from group thedretical considerations. This is called accidental degene-
racy as against the essential degeneracy which arises due to the symmetry
of the system and which we have hitherto discussed. The essential de-
generacy can be removed by lowering the symmetry of the system. On the
other hand, the position of the accidental degeneracy changes on chang-
ing the parameters, which have no effect on essential degeneracy:

To take an example, consider a simple two level Fermi system shown
i Fig. (5.3). Both the levels 4 and B are doubly degenerate, i.e.,

Al
A1
A
A2
- A2, BI
> B1 >
B -
B2
B2

FIGURE 5.3 The splitting of levels under a magnetic field
and the accidental degeneracy of 42 and Bl
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each level car accommodate two fermions, one with spin ‘up’ and one
with spin ‘down’. If we apply a magnetic field, each level splits into
two. The separations between the two levels A1 and A2 and between
Bl and B2 increase linearly on increasingthe intensity of the magnetic
field. Fig. (5.4) shows the variation of the energies of the four levels
with the intensity of the magnetic field. It is clear that for some
value of the magnetic field, the energies of the two levels 42 and Bl
will coincide, such as at the point P in Fig. (5.4).

Energy (Arbitrary Unlts)

Intensity of magnetic field
(Arbitrary Units)
FIGURE 5.4 The double degeneracies at 4 and B are
essential whereas the double degeneracy at
P is accidental

The double degeneracy of the two levels A and B in the absence
of the magnetic field is due to the symmetry of the system. The “up’ spin
is not distinguishable from the ‘down’ spin in the absence of a magnetic
field, and hence it i1s an essential degeneracy. On the other hand, the
double degeneracy at Pin Fig.(5.4) fora particular value of the magnetic
field is an accidental degeneracy, as it is not warranted by symmetry
considerations. The essential degeneracy at 4 and B isremoved only by
lowering the symmetry of the system but the position of the accidental
degeneracy can be changed by changing the charge or the mass of the
fermions (or even by changing the velocity of light, since the Bohr
magneton depends on it).

We shall come across a number of other examples of the two types
of degeneracy while treating various problems in the remaining part
of this book.
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5.4.2 Good guantum numbers. Let us come back to our discussion
about the connection between the dimensions of the irreducible
representations and the degeneracies of the energy levels. The impor-
tance of this result, as we shall soon see, is that it provides a means
of labeling the energy levels and the eigenfunctions of the system by
the irreducible representations of its symmetry group and determines
the various degeneracies to be expected.

Thus, if Upn® is an eigenfunction belonging to the m-th column of
the «-th irreducible representation occurring for the p-th time in the
energy level scheme, then o and p are suitable indices for labeling the
eigenvalues which may be denoted by Ex,. For example, the Hamil-
tonian of an electron in a hydrogen atom has rotational invariance. The
eigenfunctions of the problem are R,; ¥, (6, ¢) and the energy levels of
the electron can be labeled by the indices n and / (n corresponds to p
here). Anticipating the result of our further discussion, we may consider
the example of an electron in a periodic lattice. The irreducible represen-
tations of the group of the Hamiltonian in this case are characterized
by a wave vector k, and therefore, we may denote the eigenfunctions
by ¢, (r) and the energy eigenvalues by E,(k), where n is now the
band index. )

This is indeed the group theoretical explanation of good quantum
numbers. Thus, for an electronin a hydrogen atom, n and / are good
quantum numbers; for an electron in a crystal, n and k are good
quantum numbers. A good quantum number is that characteristic of
the eigenfunction of the physical system which remains invariant under
the symmetry transformations of the system, and is, therefore, the
most suitable variable to label the eigenfunctions and the eigenvalues
of the system. '

In the light of this discussion, the time-independent Schroedinger
equation for any system can be put in the most general form

I E = Fap b, (5.40)

pm
where a, p and m are the good quantum numbers. While the eigen-
function is characterized by these three parameters, the eigenvalue
depends only on « and p. The degeneracy of the level Ey, is therefore
the number of values m takes which is the dimensjon of the «-th
irreducible representation.

'5.5 Reduction Due to Symmetry

If an arbitrar'y choice of basis functions is made, the Hamiltonian
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would in general have nonvanishing matrix elements between any
pair of basis functions. The Hamiltonian matrix would then have
diagonal as well as off-diagonal elements. However, we shall see in
this section that with asuitable choice of the basis functions, the Hamil-
tonian matrix can be put in a block-diagonalized form, considerably
simplifying the problem of obtaining its eigenvalues.

5.5.1 Orthogonality of basis functions. As a first step towards
our objective, we shall show that if the elements of a group are
unitary operators, then the basis functions belonging to different
irreducible representations of the group or to two different columns
of the same irreducible representation are orthogonal.

Let ¢m* be a basis function transforming according to the m-th
column of theirreducible representation I'® (of the symmetry group G)
occurring for the p-th time in the energy level scheme. Let also ¢,.?
be a basis function transforming according to the n-th column of the
irreducible representation I'®? occurring for the g-th time in the energy
level scheme. Since the scalar product of two functions is invariant
under a unitary transformation, we have

(bpm*, $gnP)=(A bpm® Adenf), . (5.41)
for all A€ G. Writingexplicitly the operation of 4 on the basis functions
in the right-hand side of the above equation, we have

I Is
(bpm™, 4‘qna)=( 2 Y@ Tim @ (4), 3 g I‘,,.(ﬂ’(A)) (5.42)
k=1 I=1.
Ia lﬁ
=3 3 Tan®* (4) Tin® (A4) (4%, ai)- (5.43)
k=1 I=1

Let us restrict ourselves to finite groups for the moment. Since the left-
hand side of the above equation is independent of the group element A,
we may sum the right-hand side over all the group elements and divide
by g, the order of G. By using the orthogonality relation between the
irreducible representations, we then find

Ia I
(o™ U >—l S Y S Ten®* (4) Te® (A) (Ui b
k 1 I=1 AEC
Iy g . i
—Sasbmn () TS S (G, bitP). (5.44)
k=1 [=1

This shows that the basis functions ¢,.* and ¢,,® are orthogonal if )



GROUP THEORY IN QUANTUM MECHANICS. I _ 167

a#p or m¥n,
However, if a=B and m=n, we find from the above equation that

Ia
(b, b= 2 (i ). (5.452)
* k=1

Since the right-hand side is independent of m, we have an important
result that

(bom®, bam™)=(bpe%, bg®), (5.45b)

for 1<<m, k<<ls, i.e., the scalar product of two basis functions both
transforming according to the same column of the same irreu 1cible
representation, is independent of the column index.

Although we have derived these results for a finite group, it would
suffice to say that they hold good for compact continuous groups also.

_ Thus, if we have a number of basis functions transforming accord-
ing to the various irreducible representations of a group, the only
scalar products that are likely to exist are those between basis functions
transforming according te the same column of the same irreducible
representation. ?

We have obtained the above restilt for the basis functions of the
irreducible representations of any group in general. However, if we are
considering the eigenfunctions of the Hamiltonian. which are at the
same time basis functions for the irreducible representations of its
symmetry group, then we can go one step further. It is known from
elementary quantum mechanics that if {,m* and ¢ .8 are two eigen-
functions of 4{ having two different eigenvalues E., and Ejg,, then
they must be orthogonal. Combining this with the above orthogonality
relation (5.44), we see that the set of ull eigenfunctions of the Hamil-
tonian, if they are chosen so as to form basis functions for the irre-
ducible representations of its symmetry group. is an orthogonal set.
In other words, the matrix representing 4 with such eigenfunctions
for the basis is a diagonal matrix. '

5.5.2 Block-diagonalization of the Hamiltonian. The situation
discussed above when the Hamiltonian is fully diagonalized is really
only an ideal case and obtains when we know the eigenfunctions of
the Hamiltonian. However, in practice, we do not know "the eigen-
functions of the Hamiltonian beforehand. We may, nevertheless, con-

9FEven these may vanish, of course, in particular cases due to reasons other
than those of symmetry.
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struct a set of approximate eigenfunctions generating the various
irreducible representations of the symmetry group of the Hamiltonian
and use them as a starting point towards determining the rcquired
eigenfunctions. We can show that if we construct the matrix represent-
ing the Hamiltonian with these basis functions. it will be in a block-
diagonalized form. though not in the fully diagonalized form,

Thus. as before. let v,,* and &,,° be two basis functions as defined
in the previous subsection. Theseare now not necessarily the eigen-
functions of the Hamiltonian. Our object is then to find the matri
element of the Hamiltonian between these two states, i.e., ($pm®, H
$.f). Since 4 is invariant under all operations of its symmetry
group, it is easy to see that the function 9§, has the same symmetry
as Ygf. For, let 4 be a symmetry element in the group, so that

A 41,,,.ﬁ=:2 Uaif Tin'® (4) ¥ AEG. (5.46)

Now consider the operation of 4 on the function 9 ¢,me. Using
the fact that A commutes with 4, we have

A (H P =9 A %nf’:}l: () Til®(A) v AEG.  (5.47)

This shows that 4 ¢,.? also transforms under the symmetry group
according to the n-th column of the irreducible representation TI'®).
Hence the scalar product of §,m* with {8 will involve factors like
Sag 8mn in accordance with (5.44). The only nonvanishing matrix
elemerts of H will thus be between functions of the form ¢,»* and
bem® 1€,

(q’pma, j[lpqrxs)=8aﬂ 8mn (L]mea, j[kpqm“). (5448)

The Hamiltonian matrix would therefore be in a block-diagonalized
form the dimensions of the blocks being equal to the number of
values the index p takes; these are the numbers ez defined in (3.87).
The dimension of the biggest block will be the maximum number of
times an irreducible representation occurs in the energy level scheme,
i.e.. the largest of the az’s. The problem is then considerably simpli-
fied because it has essentially been reduced to that of determining the
eigenvalues of the blocks separately.

To illustrate this by an example, let us consider a very simple case
of a Hamiltonian which is invariant under the inversion operatorJ.
Let U, be the unitary operator corresponding to J which operates on
functions of the position vector. As we have seen before, the operator
U, then commutes with 9( :

‘ Uy H=9U;. (5.49)
Applying the operator U; to both the sides of (5.1) from the left
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(where ¢ is an unknown eigenfunction of 4) and using (5.49), we get

H (U $)y=E (U, 4). (5.50)
Let ¢ be an eigenfunction of U,; then
Usp=c4, (5.51)

where c¢ is the eigenvalue of U, corresponding to ¢. Since the double
operation of J leaves the coordinate system invariant. we have

(U ¢=cU,d=c*¢=¢;
hence
c=41. (5.52)

In fact, any physically acceptable function which is purely even or
purely odd under coordinate inversion will be an eigenfunction of U,
. with the eigenvalue +1 or —1 respectively.

Let the eigenfunction ¢ of 4 be written as the sum of an even
function and an odd function. Thus, let

$=gc+ g, (5.53a)
where :
pe =(y+Us$)/2, do =(4—Us¥)/2. (5.53b)
If ¢ is neither purely even nor purely odd under inversion, U, would
be independent of ¢ and both would be degenerate eigenfunctions of
9. Any two independent linear combinations of ¢ and U;{, such as
#e and @y, will then also be eigenfunctions of 4 with the same eigenvalue
E. In the language of group theory, we see that ¢e and ¢, are the
symmetrized basis functions for the irreducible representations of the
inversion group (£,J). It would obviously be convenient to work with
the eigenfunctions ¢. and ¢, rather than with ¢ and U,{, because the
matrix element of 4 between ¢. and ¢, would be zero.

We must extend the above result to include al/ the eigenfunctions
of . Let {{,, Ys . . ., $n} bethe eigenfunctions of . defining a Hilbert
space L, where n may be finite or infinite. From the above discussion, it
follows that every eigenfunction must be either (i) purely even or purely
odd, or (ii) degenerate with another eigenfunction. In case of degeneracy
we can choose two suitable linear combinations which are purely even
or purely odd. Hence we can choose all the eigenfunctions of 4( to be
purely even or purely odd under coordinate inversion, that is, which
are simultaneous eigenfunctions of 4{ and U;.1® We therefore see that

10This is in confofmity with an important result in quantum mechanics that
simultaneous eigenfunctions can be found for two commuting operatcrs (or,

in matrix algebra, simultaneous eigenvectors can be found for two commut-
ing matrices).
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each eigenfunction of the Hamiltonian, which has space inversion
symmetry, has a definite parity which is even or odd depending on the
action of U; on the eigenfunction.

Except in the case of very simple systems, the exact solution of
(5.1Yis very difficult; that s, it is difficult to find the exact eigenfunctions
of 4{. However, in general, we can choose a set of # suitable basis func-
tions ¢; which form an invariant subspace of the infinite-dimensional
Hilbert space of .9(. These basis functions {; are not necessarily the
eigenfunctions of .9( and, therefore, we may write the operation of 4
on a function ¢, as '

Hyi= 3" b I (5.54)

j=1

As in the discussion of Section 2.4.2, ouraim now is to find the eigen-
functions of 4 as correctly as possible by constructing linear combina-
tions of §’s. If we are able to find all the » eigenfunctions X; of 4,

then, as in (2.69), we have
HYi=EiXi. (5.55)

But as we have just mentioned, it is difficult to obtain the exact eigen-
functions. We can still construct approximate ‘zeroth order’ eigen-
functions X;( by taking suitable linear combinations of {;’s, such that

in the equation

n
HELO= T 1,0 4 (5.56)
j=1

the off-diagonal elements 4 (j4i) are much smaller than the
diagonal elements 4;;. Wher this has been achieved, we say that we
have obtained the eigenfunctions and the eigenvalues of 4{ to a certain
order of approximation which depends on how small the off-diagonal
elements are compared to the diagonal elements. To this erder of
approximation, we may write the above equation as

GO =E(® X0 EO)=4(;. (5.57)

Group theory is of great assistance in this process. Thus, in the
example consideréd earlier in this subsection, a great deal of simpli-
fication would te obtained by using the invariance of 4/ under inversion
and by choosing the approximate eigenfunctions of 4 to be simul-
taneous eigenfunctions of U, Let these n basis functions be arranged
in such a way that the first m are even and the remaining n—m are
odd. Then the matrix representing 4 with these basis functions will
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appear in the block-diagonalized form

ﬁ*—. 0—_} m
=l ..... S (5.58)
o: }"—'"

It should then be clear that by considering all the symmetry trans-
formations of [, we can further diagonalize the matrix for 4.
Group theory tells us, as we shall see in Section 5.7, which elements
of the .4-matrix ought to be zero on the grounds of symmetry, although
it does not tell us anything about the nonvanishing elements.

It may be mentioned here that the expansion (5.54) in terms of the
n basis functions {; is itself an approximation. In principle. # should
be infinite: but for practical reasons, we take it to be finite. We are
usually interested only in the Jowest few eigenvalues of 4 and these
are not much affected if n is chosen to be sufficiently large and the
corresponding n-dimensional subspace is chosen properly. The
approximation of taking n to be finite is then a very good one.

5.6 Perturbation and Level Splitting

As is well-known in elementary quantum mechanics, only a few
problems are exactly solvable. In the general case, a considerable
simplification ensues if the Hamiltonian can be split into two parts
such as

A=+ V., (5.59)

where the first part % issimple so that its eigenvaluescan be obtained
relatively easily and the second part ¥ has a small effect on the eigen-
values of ¥, '

Let G be the group of symmetry transformations of 9, In gene-
ral, all the operations of G will not leave ¥ invariant, or in other words,
the group K of symmetry transformations of V will be smaller than
G. We shall assume that the group K is a subgroup of G. The full
Hamiltonian 4 remains invariant only under the symmetry transfor-
mations common to both 4, and V. This implies that K is also the
symmetry group of 4. _

By assumption, the eigenfunctions of 4, are known. As dis-
cussed before, these can be grouped into invariant subsets (according
to their degeneracy) where each subset forms the basis for an irredu-
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cible representation of G. Let us denote the eigenvalues of 4, by Ey'9,
which is /.-fold degenerate so that there are /; independent eigenfunc-
tions {{¢,, $u, . ... ¥}, all having the same eigenvalue Eu(®. These /x
eigenfunctions form a basis for an irreducible representation '@ of
G. If we now imagine that the perturbation V is ‘switched on’, the
group of symmetry of the system will be reduced to K. Since K is a
subgroup of G, the functions {{;} will still generate an /,-dimensional
representation of K; but this representation will in general be a reducible
one. We can then reduce this representation by the standard technique
discussed in Chapter 3. Thus, we get new subsets from the set of func-
tions {{;} such that a function in a subset mixes only with the functions of
the same subset under the operations of the group XK. These subsets
must all belong to different eigenvalues (except in the case of acciden-
tal degzneracy) and hence the original energy level E.(® ‘splits’ into a
number of energy levels due to the lowering of symmetry.

We shall illustrate this by an example. Consider a simple two-
dimensional square molecule or a crystal having a square lattice. The
group of symmetry of the system is our group C,,. Suppose the crystal
is compressed along one of the edges of the square. The symmetry of
the resulting system (a primitive rectangular lattice) is lower than that

TABLE 5.1 THE CHARACTER TABLE OF C,, AND THE CHARACTERS OF
THE ELEMENTS OF C,, IN THE IRREDUCIBLE REPRESENTATIONS OF C,,

E Cy® mg ny
Character table of Cy, Dy 1 1 1 1
Dy 1 1 —1 -1
Dy 1 -1 1 -1
Dy 1 —1 -1 1
L)
Characters of the ele- rm 1 1 1 1
ments of Ca, in the
irreducible represen- ') 1 1 -1 -1
tations of Cyy .
r® 1 1 1 1
r¢ 1 1 —1 —1
e 2 -2 0 0
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of the square. In fact, the symmetry group of the compressed lattice
is K={FE, C&, mx, m,} which is denoted by C,, in crystallography.
We shall see how the levels corresponding to the various irreducible
representations of C,, split on applying the perturbation.

The group C,, has four elements and it is an abelian group. It
has, therefore, four irreducible representations, all one-dimensional.
In Table (5.1), we have shown the character table of C,, and the
characters for the elements of C,, in the irreducible representations of
the group C,,.

Since the levels belonging to the irreducible representations ')
of C,, for 1<Ci<C4 are nondegenerate, they cannot split further.
On examining Table (5.1), we find that a basis function transforming
according to '™ or T® under C,, will transform according to D, under
the operations of C,,. Similarly, a basis function transforming accord-
ing to I'® or I'® under C,, will transform according to D, under the
operations of C,,. Lastly, a level belonging to the irreducible represen-
tation T'® of C,, must be split on compressing the crystal as there is
no two-dimensionel irreducible representation of C,,. Let the two
degenerate functions ¢,® and ¢,5 be the basis functions for I'®. These
functions now generate a representation of C,, whose characters are
given in the last row of Table (5.1). By inspection of the characters,
it can be easily seen that, as far as the group C,, is concerned, we can
symbolically write

I'®—>D,® D,. (5.60)

The basis functions for Dy and D, are simply ¢,° and {,° respectively,

as can be readily verified by operating on these functions by the ele-

~ments of C,,. Thus, any level belonging to I'® in the molecule or lattice

splits into two nondegenerate levels belonging to the irreducible re-
presentations Dyand D, in a crystal having the symmetry group C,,.

One of the most important and celebrated cases— the splitting of

the electronic energy levels ofan atom in acubic crystal field—will be
treated in Section 7.6,

5.7 The Matrix Element Theorem and Selection Rules

Let the Hamiltonian of a system be given by (5.59) and let us as-
sume that, to begin with, the perturbation V has been switched off. Let
Y,m* denote the eigenfunctions of 4; these describe the stationary
states of the unperturbed system. Thatis tosay, if the system is insome
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state §,»* at a given instant, it will continue to remain in the same state,
provided there is-no perturbation on the Hamiltonian %, The applica-
tion of a perturbation of lower symmetry not only splits the energy
levels of the system as discussed in the previous section but also induces
transitions of the system from one eigenstate of 4, to another.
Thus, there is a nonvanishing probability that after some time the
system may be found insome other eigenstate of 4{,. The grouptheore-
tical matrix element theorem allows us to predict which transitions are
forbidden purely on the grounds of symmetry of the eigenfunctions and
the perturbation. We shall now take up this study.

5.7.1 The matrix element theorem. Let ¢,»* and ¢,.° be two
eigenfunctions of 4{,, whichare also among the basis functions genera-
ting the irreducible representations of the group of 4. Let the pertur-
bation ¥ be now applied to the system. We can use the eigenfunctions
of 4, to generatea representation of the operator V. This is easily ob-
taired by considering the operationof ¥ on an eigenfunction, say {pm?,
and expanding the resulting functionin a complete set of all eigenfunc-
tions of 9, Thus,

VLIJ‘;,,._“Z Z 4)4"a C(a,p, m; B’ qr'n)’ (561)
B,q,n

where c(«, p, n1; 8, q, n) are scalars. These coefficients can be determined
by taking the scalar product of V{,,* with some other eigenfunction
and using the orthogonality between the eigenfunctions. This gives
C(d, p’ m; B? q) n)=(4'qna’ V(p!”ﬂm)) (562)
which is just the matrix element of the perturbation V' between the basis

states §..f and ¢,n* With these coefficients, (5.61) becomes
V‘Ppmu: Z "Pqﬂﬂ (41‘,,.5, V‘;’pmu)- (5~63)

B) q'n ’
The transition from the state ¢,,* to thestate {,,f under the perturba-
tion V will be forbidder if the matrix element of V given in (5.62)
vanishes. .

It is seen from (5.63) that the function ¥{,,* is not a function of
‘pure’ symmetry, butis alinear combination of a number of basis func- -
tions. We therefore have the matrix element theorem: If the function
Vipm® does not contain a part transforming according to the n-th
column of -tke irreducible representation T'®), the matrix element
(5.62) must vanish (for all values of q). This means then that in this
case the transitionn between the states $,»* and ¢,.f under the action
of the perturbation }” is forbidden.

We may use the function V{,m* itselfto generate a representation
of the symmetry group G of 4, Such a representation, say T,
would in general be a reducible one, because V'{,»*is not an eigenfunc-



GROUP THEORY IN QUANTUM MECHANICS. I 175

tion of 4(; (unless ¥ commutes with ).

The perturbation V itself is a function of the coordinates (or, it
acts on the coordinates)and hence can be used to generatea represen-
tation, say I'y, of the group G. The function F{,,2, considered as a
product of the two functions V and ¢,;,%, therefore generates a represen-
tation which must be the direct product’ of I'y and I'(? i.e., :

r=ry@re= 3 ayT'O), (5.64)
Y
where we haveexpressed I" as the direct sum of the irreducible represen-
tations of G. Itis thenclear that the matrix element (5.62) will vanish
if the direct product Ty @ I'® does not contain the irredu:ible
representation I['¥),

Note that this is a weaker condition than the one stated earlierin
the matrix element theorem. Thus, in order to determine whether a cer-
tain element such as (5.62) survives, we should first apply the weaker
but simpler condition to find out whether I'y ® I'® contains I'®). If
this gives a negative result, there is no need to apply the stricter condi-
tion. Butifthis givesa positive result, we must go further and find out
whether V{,,* contains a part transforming according to the n-th
column of T'®.

An equivalent condition can be obtained by taking the direct pro-
duct of I' with I'®*. The condition is that the matrix element of V' be-
tween Y,.f and §,,* vanishes if the representation I'"®*® I'y @ I"®
does not contain the identity representation of G.12

Thus we see that the symmetry of the system forbids certain transi-
tions. Group theory, however, does not give any information about
the matrix elements of V' which do not vanish due to symmetry. It must
be emphasized that such matrix elements may also vanish due to some
other reasons or merely by accident.

5.7.2 Selection rules for electric dipole transitions. To illus-
trate the working of the matrix element theorem, we shall consider the
selection rules forelectric dipole transitions of an electron in a molecule
with the symmetry group C,,. Another example will be treated in
the next chapter where we shall obtain the selection rules for electronic

11As a special case, we can see that (g is invariant under all operations of G, so
that it generates the identity representation of G. Hence J(y $,m® has the same
symmetry as dpm®.
i2Note that the equivalence of the two conditions is 2 consequence of the
result of Problera (3.11).
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transitions in isolated atoms. The electric dipole moment operator is
B=er; it is a vector operator with components e(x, y,z). This will be
the operator V of the above theory and it can easily be seen that it gene-
rates the representation I'y=TM@I'® of C,, (the operator ez gene-
rates "V and thes two components e(x, y) generate I'®). Suppose we
wish to find out whether the transition between two states belonging
respectively to ' and I'® is allowed or not; we then work out the
direct product I'y @ I'®=(I'® @ I'®) @ I'P=T® @ I'®), by using
Table (3.4). Since this does not contain TI'(*); we conclude that the
transition I'MeT'® under the influence of the electric dipole radiation
is forbidden.

Working out the selection rules for all possible transitions in a
similar fashion, we find that the allowed transitions for electromagnetic
radiation polarized in the z direction (the component ez) are [DesI>
for 1<<i<CS. The allowed transitions under electromagnetic radiation
polarized in the (x,y)-plane (the components ex and ey) are ['"DesI'® for
1<{i<C4. The remaining transitions are forbidden under the influence of
the electric dipole moment operator; these are [(«I'®, T3, ['®);
I'®eT®, T and T'®eT'®.

Consider now the selection rules for the matrix elements of the
electric dipole moment operator between two states of given symme-
tries. Applying the weaker condition on the direct product of theirredu-
cible representations, we have seenabove that the transitions D®)es'® -
and I'®«I'® are allowed. But suppose we now wish to find out
whether the transition from a state {,,5 to a state {,* or §,,*is allowed
or not (the notation here is obvious). The matrix elements under
consideration are (Yq,% £ Yp,%) and (Y4 & $,,5). Now ¢,,° transforms
according to the first column of I''® like x and g has three compo--
nents which transform according to ['"’ and the two columns of '),
The product function pi,’ therefore has three parts which may be
denoted by x¢,%, y,1° and z¢,,5. By operating with all the elements
-of Csy, we then clearly see that the function z{,* which is like
zx transforms according to the first column of I, the function
Wiy like xpy transforms according to I'® (See Table 3.3) and
x5 like x2 is one of the two functions which generate the re-
presentation T™ @ I'® (see Problem (3.17)). The function K¢,,° thus
does not contain any part transforming according to I' or to the
second column of I'®. Both the matrix elements under consideration
therefore must vanish and the corresponding transitions are forbidden.
On the other hand, it should be obvious that a transition between,
say, $p,° and .0 is allowed because B, contains a part transforming
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according to the first column of I'®. This should make it clear that
when the weaker test gives a positive result, the stronger test must
further be applied to check whether the transition is really allowed.
The working out of the selection rules for magnetic dipole transi-
tions 1s left to Problem 5.2. We may only mention that the magnetic
dipole moment operator is an axial vector. Its x and y components
therefore still generate I'® but its!® =z component generates I').

5.8 Dynamical Symnietry

We have so far discussed symmetries of physical systems which
may be termed geometrical symmetries (except the time translation
symmetry) because they referto the external geometrical structure of
the system. These include rotations, reflections and inversion. In this
section, we shall consider a different type of symmetry which is known as
the internal symmetry and which relates to the particular form of the
force law orthe interaction between different parts of the system.

We have discussed earlier in this chapter the relation between
symmetry and degeneracy and have learnt to expect some kind of sym-
metry or invariance associated with a physical system if the eigenvalue
spectrum for its observables shows degeneracy. For example, the Hamil-
tonian of an electron in a hydrogen atom is invariant underall rotations
so that the geometrical symmetry group is O(3). Our discussion of the
previous chapter tells us that the irreducible representations D) have
dimensions 2/+1 so that these would be the expected degeneracies of
the energy levels of the electron. But we know that in fact all the levels
with a given value of the principal quantum number # and all values
of [ between 0 and n—1 are degenerate. The actual degeneracy is
thus

n—1
> Q24D=n (5.65)
1=0
As we shall soon see, these degeneracies arise from the internal
symmetry of the hydrogen atom.

The operators of the geometrical symmetry group are those under

13An axial vector has the same rotational properties as a polar vector but is
invariant under inversion. A reflection can be thought of as a rotation
through = abouta line normal io the plane of reflection followed by inver-
sion. Theeffect of m,, my, s, and g, onthe z componentof an axial vector
is therefore to multiply it by—1L.

14We have neglected the spin degeneracy here.
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which the potential energy of the particle remains invariant. However,
there are other operations whichinvolve simultaneous transformation
of the coordinates and the momenta and which leave invariant the
Hamiltonian as a whole. These are usually called dynamical symmetries.
We shall consider two rather simple cases, the hydrogen atom and the
isotropic harmonic oscillator, and see that their dynamical symmetry
groups are O(4)and SU(3), respectively. The dynamical symmetry group
of a system ol course contains its geometrical symmetry group as a
subgroup.

5.8.1 The hydrogen atom. An electron in a hydrogen-like atom
with nuclear charge Ze experiences a potential energy given by
Vir)=—2Zér, (5.66)
where e is the electronic charge and r is the distance of the electron form
the nucleus. The potential energy, being spherically symmetric, is
invariant under the geometrical symmetry group O(3). The full Hamil-
tonian of an electron in a hydrogen-like atom is

pi‘. 2
A=y~ (5.67)

In classical mechanics this is the familiar Kepler’s problem and the
classical orbit for a particle with the potential energy (5.66) is known
to be an ellipse with the centre of attraction at one of the foci. It must
be recognized that the mere spherical symmetry of the potential is not
sufficient to make the orbit of a particle closed, though it is sufficient to
make it lie in a plane. It is only when the potential is Coulombian
that the orbit becomes a closed ellipse; see Fig. (5.5). In case of the
Coulomb potential, therefore, we have an additional invariant such as
the vector O4 or OP. In quantum mechanics, it is known that the
vector :

I__l Zer
M =, (PxL—Lxp)—=", (5.68)
P
@) A
(5)

FIGURE.5.5 The orbit of a classical particle around a centre of force O with
(a) an arbitrary spherically symmetric potential, and (b) a
Coulombian potential of the form V(r)e=1/r
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known as the Runge-Lenz vector, is a constant of motion. that is, it com-
mutes with the Hamiltonian. Here, Lis the orbital angular momentum
operator which is normal to the plane of the orbit. From (5.68) we can
easily see that

‘ M'.L=0, (5.69)

so that M' is a vector in the plane of the orbit. The orbital angular
momentum also commutes with the Hamiltonian and is a constant
of motion. We thus have
[M’, 9 |=0, [L, 9|=0. - (5.70)
Using the commutation relations between the components of r and
p, we can show, after a somewhat lengthy calculation, that
M'2=%%(L2+ﬁ2)+22e‘. (5.71)
We now have six operators (three components each of L and M")
which correspond to the invariants of the problem at hand. We may
use these operators to generate unitary transformations?s (as in (4.19))
under which the Hamiltonian would be invariant because of (5.70).In
accordance with the theory of continuous groups outlined in the previous
chapter, we therefore work out the commutation relations between the
components of L and M’ with each other. There will be fifteen com-
mutators which are given below in five equations, each standing for
three equations obtainable from it by cyclic permutation of x, y and -.
[Lx, Lyl=ih L, [M)', L]=0,[{M.), L,)=ikh M.,
2ik
N
The components of L by themselves constitute a closed algebra
and, as seen in the previous chapter, can be used to generate the Lie
group O(3). But, as Eqs. (5.72) show, the six operators L and M’
do not form a closed algebra because of the appearance of a new
operator, the Hamiltonian 4, in the commutator of the components of
M'. However, let us work with a particular bound state energy level
(E<0) of the hydrogen atom and restrict ourselves to the invariant sub-
space (of the full space) whichcorresponds to the eigenvalue E. In this
subspace, we can replace by E, and define a new operator by!®
M=(—p/2E)} M". (5.73)

(MY, L]=—ih M), [M), M, ]=— YL (5.72)

* 15This was first suggested by Pauli.
16The operator M acts only on the invariant subspace corresponding to the
eigenvalue E.
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In the first four commutators of (5.72), the components of M simply re-
place those of M’. Thelast commutator, however, takes the form

[Mx M)|=i% L. (5.74)

The algebra of the six operators L and M is then cbviously a closed
one. These can therefore be used to. generate a six-parameter Lie group
which will be the dynamical symmetry group of the hydrogen atom.

To show that this group is O(4), we define six new operators by
writing

JU:% €ijk Lk; for I-:j) k=x;}’,2; (5753)

Jiw=—J =M (5.75b)

Here, €« is the fully antisymmetric tensor of rank three. The commu-
tation relations between these operators can be worked out and are
found to be

[J,\'y, J_)'z]:i h sz, [wa, Jyz]=0,

[wa; J:x]:i h sz [Jmeyw]=i h ny>

[wa, Jvr]=1 ﬁ Jyw, (576)
where, again, each equation stands forthree equations obtained from
it by cyclic permutation of x, y and z. The six operators Jiq (p, 0=x,
¥, 2z, w) are the infinitesimal generators of a group whose operations
leave the quadratic form x2+4)%+42z2+4w? invariant, i.e., the group of
all real orthogonal transformations in a four-dimensional vector
space, or O(4). We have one operator for generating rotations ineach

of the six coordinate planes.
It is particularly convenient to construct the following linear

combinations of L. and M:
A=} (L+M), B=}(L—M), (5.77)
so that the commutation relations between the components of A and B
are :
AxA=ih A, BxB=ih B,
[A41, Bj]=0 for i, j=x,y,z2. (5.78)
Moreover, since L and M both commute with 4, it follows that A and
B also do. Theabove equations then show that the Lie algebras of A
and B are separately closed, so that each of them can be used to
generate the SU(2) group. This tells us that O(4) is homomorphic to
SUQ) ® SUQ).
The rank of O(4) is seen from (5.72) to be 2; we may choose the
two commuting generators to be any onecomponent of Aand any one
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component of B. There are therefore two Casimir operators which
commute with all the six generators. These are obviously A* and B> or
any two independent linear combinations of these. Their eigenvalues,
in analogy with the theory of SU(2), may be written as
A’=a(a+1) R*, B?=b (b+1) B?, (5.79)
where a and btake all nonnegative integral or half-odd-integral values.
Taking the sum and the difference of A% and B? we find that
C=A’+B*=} (L*+M?), C’=A"-B*=L.M. (5.80)
Using (5.69) and (5.73),the second of the aboveequations shows that
C’=0, so that our physical system (the hydrogen atom) corresponds
only to that part of O(4) for which A2=B? or a(a-+1)=b(b+1). This
givesthetwo solutions a=b and a=—(b+1); the second solution must,
however, be discarded since aand b are restricted to nonnegative values.
This tells us that only those representations of O(4) represent the states
of the hydrogen atom for which a=b, i.e., representations of the form
(a, a).
The eigenvalues of the Casimir operator C then become
C=2a(a+1) k. (5.81)
Using Eqgs. (5.71),(5.73) and (5.80), we then have that

C= I: L: -J‘— {E(L2+ﬁ2)+2264}:|

:_;[ Rey “Z’f”‘] (5.82)
Using (5.81) in the above equation, this finally gives
_ pZ % ' (5.83)
T 2R*QRa+1)E

" If we make the identification n=2a+ 1, so that n takes all positive in-
tegral values, (5.83) agrees with the more familiar quantum mechanical
result for the energy levels of an electron in a hydrogen atom. Since the
dimension of the irreducible representation (a, a) of O(4) is (2a+1)?
=n?, this also explains the n2-fold degeneracy of the levels.

"We have remarked earlier in this chapter in Section 5.4.1 that the
degeneracies of the eigenvalue spectrum of a physical system are related
to the dimensions of the irreducible representaiions of its symmetry
group. We have also mentioned that if the eigenfunctions belonging to
different irreducible representationsof a group are always degenerate,
we may conclude that we have overlooked some symmetry of the system
and the symmetry group must be larger than the one that has been
found. The present case provides an excellent example of this situation.
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On the basis of the group O(3), the expected degeneracies were only
2/+1. But we findin actual practice that all the levels of an electron
with different values of /, but with same n, are always degenerate,
1.e., for each value of n, the levels with all allowed values of / are
degenerate. This fact itself would suggest that the symmetry group
of the hydrogen atom is larger than O(3). We have now found that the
Hamiltonian of the hydrogen atom is invariant under O(4) and we
then get the correct degeneracies for the energy levels.

5.8.2 The isotropic harmonic oscillator. It is known that the
energy levels of a three-dimensional isotropic harmonic oscillatorare
highly degenerate and the degeneracy of each level is larger than that
required by the geometric symmetry group O(3). Once again, we shall
see that this is due to the fact thatthe dynamical symmetry groupofa
three-dimensional isotropic harmonic oscillator is SU(3).

The Hamiltonian of an isotropic harmonic oscillator is

p? k2
= % + >
3
(it pte’rs?), (5.84)
j=1
where w?=k/pwand p; and r; are the cartesian components of p and r
respectively. We shall work with the raising and lowering operators for
the eigenvalues of 4{ defined by
1

ajzm(p,-—zwp.rj),

T2

(5.85)
a;t =———(2{L]hm); (pj+impr;).
Using the commutation relations between p; and rj, the commutation
relations between a; and a;t can be found to be
lai, ajt] = dij, (5.86)
[(l,‘, a,-] = [Gi'r N aﬁ]zO.
Inverting the transformation (5.85) and substituting in (5.84), the
Hamiltenian becomes

IJl=%oX(a;t a_i+%)=j2i° Z{at,a;}, (5.87)
i J
where {4,B}=AB+ BA denotes the anticommutator of 4 and B.

The commutators of the raising and the lowering operators with
the Hamiltonian turn out to be
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[ Y, ait l=hoat [ H, a]=—Bewa;. (5.88)
The occupation number operator a;t a; has eigenvalues n;, where n; can
take any nonnegative integral value. The eigenvalues of the Hamil-
tonian (5.87) are therefore

3
Ea= (n+5) Ko, (5.89)
where
n=n;-+n,+ny; n,n,n,=0,1, 2,.... (5.90)
The degeneracy of the level E, is then easily seen to be!? (n+1) (n+42)/2.

The angular momentum operator can be worked out by using the in-
verse transformation of (5.85) and is found to be

. 3
Lj=(rx l))f=17ﬁ > G (mat —ait ap). (5.91)
k=1

We can further show that operators of the form a;ta; commute with
the Hamiltonian. The operator a;t a; has the effect of transferring a
quantum from the j-direction to the i-direction and hence leaves the to-
tal number of quanta unchanged. There are nine such operators and
it can be shown that they generate the algebra of U(3). We see from
(5.87) that the operator for the total quantum number is given by
3 I3

and hence it commutes with all the operators a;t a;. Eight other inde-
pendent linear combinations of the operators a;t a; can be constructed
which generate the algebra of SU(3). These are

(5.92)

rn=a,t ay+a,T a,, A= —i(a,t a,—a,t ay),
A=a,t a,—a,t a,, A=a,tayta,t a,,
A=—l(a,t ay—at a)), Ng=a,t ayta,t a,,

1
A= —i(a,t a;—ayt ay), A= ﬁ(“ﬁ a,+a,t a,—2agt ay) (5.93)

It is left as an exercise to show that they satisfy the commutation
relations (4.106). The dynamical symmetry group of a three-dimen-
sional isotropic harmonic oscillator!® is therefore SU(3).

17This is the total number of distinct ways in which a positive integer can be
split into the sum of three nonnegative integers.

18The dynamical symmetry group of an n-dimensional isotropic harmonic
oscillator is SU(n).
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59 Time Reversal and Space Inversion Symmetries

In this chapter, we have so far considered some of the important
continuous groups such as the groups of space and time translations
and of generalized rotations in an n-dimensional (real or complex)
vector space. In the present section, we shall consider two more
symmetries which many physical systems possess. They are the time-
reversal symmetry and the space inversion symmetry.!® These sym-
metries have some very interesting consequences.

59.1 Time-reversal symmetry. Many physical systems con-
tain an invariance under the reversal of the direction of propagation
of time. This is true of classical systems as well as quantum mechani-
cal systems. Thus, - in classical mechanics, a system which has only
conservative (velocity-independent) forces is invariant under the
operation of time-reversal. Since the force is mass times accelera-
tion and the acceleration is the second derivative of the position vector
with respect to time, the force is unchanged if ¢ is replaced by —t.
However, if a particle is moving ina medium with friction or viscosity,
the medium exerts on the particle velocity-dependent forces; if thes¢
involve an odd power of velocity, the motion of the particle is not
invariant under time-reversal.

In a system with time-reversal symmetry, the path of a particle
remains the same after time-reversal but the direction of propagation
of the particle is reversed. The velocity itself, being the first derivative
of the position vector with respect to time, is reversed. For example,

v(t)

Acceleration
Acceleration
Vrrv(!)
(a) ) (b)

FIGURE 5.6 The path of a planet around the sun S. The velocity of
the planet after time-reversal in (b) is given by v,,,(f)=—v(1),
where v(1) is its velocity before time-reversal in (a). The
acceleration is invariant under time-reversal

19Some authors also call this space reflection symmetry.
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in the classical Kepler problem of the motion of a planet around the
sun, the orbit of the planet would remain the same if the direction of
propagation of time were reversed, but the direction of motion of the
planet will be reversed (see Fig. 5.6). This is also true of a charged
particle in an electric field since the force on the charged particle due
to the field is gE (where g is the charge and E the electric field) which is
independent of the velocity of the particle (see Fig. 5.7). In a magnetic
field, however, the motion of a charged particle is not time-reversal
invariant. This is because the magnetic field exerts a force proportional
to v H (where v is the velocity and H is the magnetic field) which
involves the first power of velocity (see Fig. 5.8).

y £

y E
> _—
vit)
P P
A

Acceleration Vr:& Acceleration

o] x > 0 X
(2) (b)

FIGURE 5.7 (1} The path OAP of a charged particle in an electric field E which
is along the x axis and the particle has a constant velocity compo-
nent along the y axis. (b) The particle traverses back its path along
PAO when the time reversal is applied at the point P.

B

vXH

()

FIGURE 5.8 A charged particle executes a circular path 4BC in a magnetic

field H (normal to the plane, denoted by (®)). When time-
reversal is applied at C, the instantaneous velocity is reversed,
reversing the direction of the force viH. The particle does

not retrace its path and the system is not invariant under time-
reversal.
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592 Time-reversal operator for spinless particles. Consider
a particle in a static potential V(r). Its classical Hamiltonian is

I (p, )= + V=9 (—p, 1) (5.94)

Since it depends quadratically on the momentum, and hence on velocity,
it is invariant under time-reversal. Itis then clear that if r=r(¢) is a solu-
tion of the equation of motion, r,., (£)=r(—1) is also a solution of the
equation. The position of the particle at time ¢ in one solution is the
.same as its position at time —z in the time-reversed solution. The
velocity and the momentum of the particlein one solution are opposite
to those in the time-reversed solution.

We are thus led to define a transformation of the dynamxcal
variables under which r and p go respectively to r and —p. This trans-
formation, called the time-reversal, will be denoted by T and it has
the following properties:

TeTt=r, TpTt=—p. (5.95)

Consider now a quantum mechanical system described by the
time-dependent Schroedinger equation

2
iﬁ% Y(r,1)= {— v + V(r)} Wr, 1). (5.96)
Replacing ¢ by —¢ and taking the complex conjugate of both sides of
the above cquation, we have

tﬁ-—v.[: (r,— t)={— 2’:;+ V(r)} $*(r, —1). (5.97)

This shows that $*(r, —¢) is also a solution of the Schroedinger equation
if (r, 1) is. The state ¢*(r, ¢) thus develops in the -+ direction exactly
as the state {(r, t) develops in the —¢ direction.

For spinless particles, we thus see that the complex conjugation
operator, which we shall denote by K, has the effect of reversing
the direction of propagation of time. This can also be seen from the
fact that in the usual representation of wave mechanics, the matrices
for r and p are respectively real and purely imaginary, so that the
complex conjugation operator K has the following effect onrand p:

Krk'=r, Kp Kt=—p. (5.98)

For spinless particles, therefore, the time-reversal operator is just the

complex conjugation operator apart from a phase factor. If we
choose the phase factor to be unity, we have i

T=K. ' (5.99)

The operation of T on a wave function gives its complex conjugate;

thus,

T Y(r)=4*(r). (5.100)
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The invariance of the Hamiitonian under the transformation p— —p
is then equivalent to saying that it commutes with 7, i.e.,

[T, 4] =O. (5.101)
Remembering that p=—i kY, we see that(5.101) will hold if .4 does
not contain any odd powers of p, i.e., if 4 is real, as is the case for
stationary physical systems.

The time-reversal operator is clearly not a linear operator. It is,
in fact, an antiunitary operator (whichis the combination of an anti-
linear and a unitary operator). Thus, an operator T acting on a vector
space L is said to be antiunitary if for every ¢, € L,

(T$, TY)=, $)=($, V)*, (5.102a)

T (a¢+by)=a* T+ b* TY, (5.102b)

where @ and b are scalars. The complex conjugation operator XK fs
also an antiunitary operator.

593 Time-reversal operator for particles with spin. If we
desire to extend the concept of time-reversal to the most general case
of particles having angular momenta, we would require: the trans-
formation properties of angular momentum under the time-reversal
operator. From (5.95) we see that the orbital angular momentum
transforms according to

T(@xp) T'=—(xp), (5.103)
i.e., the orbital angular momentum anticommutes with the time-rever-
sal operator. Since the spin is an angular momentum, we expect that
it will also anticommute with T’; thus if 8 and j are the spin angular
momentum and the total angular momentum operators respectively,
we have
TsT ' =—s, TJTt =—j. (5.104)
In the standard (r, s:) representation in which the z component of the
angular momentum operator is taken to be diagonal, the matrices re-
presenting sx and s: are real whereas the matrix representing sy is purely
imaginary.?® Under the action of the complex conjugation operator, we
therefore have

stKf =Sy, .KSyK* =—3y, stK* =53 (5.105)
For a particle with spin, we therefore write
T=UK, (5.106)

20SCchiff (1968), p. 203.
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so that, since K? equals the identity, we have
TK=U, (5.107)
where U is to be determined. Since Tand X are both antiunitary opera-
- tors, their product U must be a unitary operator. Referringto Eqs.
(5.95),(5.98),(5.104) and (5.105), we find that the effect of the unitary
transformation U is given by
UrUt=r, UpUT =p,
Usy Ut =—s,, Us, Ut =s,, Us: UT =—s.. (5.108)
Since U commutes with both r and p, U has an effect only on the
spin variables of the particle. The last three equations of (5.108) in
fact show that U corresponds to a rotation through = about the y
axis in the spin space of the particle, The operator for such a rotation
can be written in accordance with (4.46) as
U=exp (—irs,/h), (5.109)
giving
T=exp (—insy/R) K. (5.110)
In the particular case of a spin-§ particle, s,=¢}%o, and it follows
from (4.29) that ’
exp (—inoy[2)=—iay, (5.111)
so that
T=—ias, K. (5.112)
The above resultcan be easily extended to a system of n particles
having arbitrary spin angular momenta. If s; denotes the spigﬁmgu-
lar momentum operator for the i-th particle, then we may write T as
the product of the U’s for each particle and K. Thus,

T=exp (—ins,y/B)...exp(—insny/B) K, (5.113)
where s, is the y component of s;. Since each sy, is purely imaginary,
each exponent in (5.113) is real and hence commutes with X. More-
over, the s,’s also commute with each other, for the operator s,
acts on the spin variables of the i-th particle only. The order of the
factors in (5.113) is thus immaterial.

59.4 Kramers' theorem. Taking the square of the operator in
(5.113), we get

T?=exp (~—2ins,y/h). . .exp (—2insasy/h). (5.114)

Each factor on the right-hand side of the above equation denotes a

rotation through 2r. The i-th factor will be equal to +1or —1
according as the spin of the i-th particle is an integral or a half-odd-
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integral multiple of K. 7?2 is thus equal to 41 or —1 depending on
whether the number of half-odd-integral spin particles in the system is

even or odd.
As discussed earlier in thissubsection, if ¢ is an eigenfunction of

the system (which has time-reversal symmetry), then T'¢ is also an
eigenfunction. Assuming that ¢ is a nondegenerate eigenfunction, we
see that T'¢ must be a multiple of ¢, say,

Ty=cy. (5.115)

Operating once again by T, we have
T2=T[cy]=c*Ty=c*c}. (5.116)
Thus, if 72=4-1, then | c¢|?*=1 and ¢ is just a phase factor. But if
T?=—1, there is no number ¢ for which |c¢|*=—1, so that the

eigenfunction T4 must be linearly independent of ¢. Since both ¢
and T¢ have the same eigenvalue, we have at least twofold degeneracy.
Since ¢ and T ¢ are independent eigenvectors, and since T?y=—1{ is
a multiple of the original eigenvector ¢, the net degeneracy of the
level must be even. We therefore have the Kramers® theorem which
states that every energy level of a system with an odd number of
electrons in the presence of any electric field but no magnetic field is
evenfold degenerate. This is known as Kramers’ degeneracy.

We can further show that when T2=—1, ¢ and 7¢ are ortho-
gonal. For this, we replace ¢ by T in (5.102a) to get

or —'(41, T\P):(‘L, Tq"))
since 72=—1. This shows that (, T{)=0, so that ¢ and T are
orthogonal.

It must be emphasized that Kramers’ degeneracy is removed
by the application of an external magnetic field. This introduces terms
like v H, L-H ors-Hin the Hamiltonian, and these are not invariant
under time-reversal. An external magnetic field thus destroys the time-
reversal symmetry.

One is likely to ask the question: What is the effect of the internal
magnetic fields? A system containing moving charged particles
always has internal magnetic fields. Do they destroy the time-reversal
symmetry of the system? The answer is no. The reason is that when
the time-reversal is applied on such a system, the velocities of all the
charged particles are reversed, reversing the currents and therefore the
directions of the internal magnetic fields. This leaves the termssuchas
vx H,L-H or s- H (where H is now the internal magnetic field) invariant
under time-reversal. Thus the internal magnetic fields need not bother
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us while considering the time-reversal symmetry.2! It is forthis reason
that interaction terms such as spin-orbit and spin-spin interactions do
not destroy the time-reversal symmetry of the Hamiltonian.

5.9.5 Space inversion symmetry. The operator of space inver-
sion has the effect of reversingthe position coordinates of all the parti-
cles of the system under consideration and has no effect on the angular
momentum variables of the particles. We have already introduced this
operator earlier in Section 5.5.2 where we denoted it by J. We have
seen there that if the Hamiltonian ofa system has inversion symmetry,
the eigenfunctions can be chosen to be purely even or purely odd;
in other words, the eigenfunctions have a definite parity.

Let (r) be an arbitrary function and ¢’(r) the function obtained
after applying the space inversion. Then

P'(Jr)=wi(r), (5.117)
where w is a number to be discussed soon. The fact that the number w

appears in (5.117) but notin (5.22) or (5. 30) is a consequence of the dis-
crete nature of the transformation of space inversion. We also have

Usg@)=4'(r)=wh(—r), (5.118)
where we have used (5.117) in the last step and U, is the operator
defined in Section 5.5.2. One more application of Uy on (5.118) gives

UAYm)=wU; $(—r)=w? {(r). (5.119)
Two inversions restore the original coordinate system, so that the
norm of the function ¢(r) cannot cnange on the application of U,%;1t
may at most be multiplied by a phase factor of unit magnitude. Thus w2,
and hence w, must be a complex number of unit magnitude. We shall
now show that w?=-41 or —1 according as the spin of the system is
integral or half-odd-integral. ~
Suppose that G is the symmetry group of the system (excluding
the space inversion symmetry) and that §(r) is one of the basis functions
for generating a certain representation of G. If the net spin of the
system is integral, the representations of G are single-valued and the
dentity element E is represented only by the unit matrix. Therefore,
,2(r)=EY(r)=1y(r) and it follows from (5.119) that w?=1 or w=H1.
However, if the netspin of the system is half-odd-integral, the group
7 also admits double-valued representations. The identity element in
‘his case corresponds to two matrices, the unit matrix and the negative

21Whether a magnetic field is to be treated as internal or external, of course,
simply depends on how we define our physical system.
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unit matrix. We therefore have U,2{(r)=E{(r)=11{(r), so that wr=
41 and w=1,—-1, /, or —Ii.

We expect each kind of particle to have a definité value of w. We
note that all the results of physical significance such as selection rules,
etc., are unaffected by the choice of w because all the physically observ-
able quantities contain products like §;*¢; (where ¢; and ¢; are diffe-
rent states of the particle), which have a factor w*w=1.

If a function remains invariant under space inversion (w=+1),
it is said to be of even parity and a particle represented by such a function
is called a scalar particle. On the contrary, if a function changes sign
under space inversion (w=—1), it is said to be of odd parity and the
particle represented by itissaid to be a pseudoscalar particle. As per the
current convention, the nucleons are assigned even parity while the
pions are assigned odd parity.

PROBLEMS ON CHAPTER §

(5.1) What are the generators of the group of space displacements and of
tho group of time displacements? .

(5.2) Find the selection rules for the magnetic dipole transitions if the
symmetry group is Cgy.

(5.3) Find the selection rules for the electric and the magnetic dipole transi-
tions if the symmetry group is Cag.

(5.4) (a) Prove the commutation relations (5. 88).

(b) Show that a;t a; commutes with the Hamiltonian (5.87).

(5.5) Show that the operators in (5.93) satisfy the commutation rules (4.10¢)
of SU(3) with the same constants as given in (4.107)

(5.6) Show that the dynamical symmetry group of a two-dimensional
isotropic harmonic oscillator is SU(2).

(5.7) Let G=(R, S, T,...) be the group of transformations which leave a
physical system invariant. Let Pr, Ps, etc., be the corresponding operators
which act on functions and leave the Hamiltonian of the system invariant.
Show that the operators Pg, Ps, etc., also constitute a group which is isomor=
phic to the greup G. [Hint: Using (5.21), show that if Pgr corresponds to R
and Ps to S, then Pr Ps corresponds to RS.]
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CHAPTER 6

Group Theory in Quantum
Mechanics. 11

The symmetry properties of atoms play a very important role in
the study of their structures. Since in atoms, we have to deal with a
number of identical particles, the electrons, one of the obvious symmetry
elements is the permutation symmetry. The same is true of nuclei
where we have a system containing a number of identical nucleons. It
is well known that this has led to the postulate of Heisenbergand Dirac
that the wave functions of a system of identical fermions must be
antisymmetric under the interchange of two identical particles, enabling
us to express the wave functions in the form of Slater determinants.
In addition to the permutation symmetry, atoms also possess rota-
tional invariances; they are invariaut under all operations of the
group SO(3) in the single-particle model.” Although many atomic
problems can be solved without its aid, group theory becomes almost
inevitable when the system contains a large number of atoms, such
as in molecules and crystals. Even in atomic physics, group theore-
tical methods provide a touch of elegance and generality and the
various results can be better understood in the light of the group
theoretical interpretation.

In this chapter, we shall study mainly three topics—symmetries
of atomic systems, the problem of addition of two angular momenta
and irreducible tensor operators.
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6.1 Atomic Symmetries

We shall consider in this section the important atomic symmetry
groups, which as we have mentioned, are the three-dimensional rotation-
inversion group and the symmetric group. We shall work in the single-
particle model assuming that each electron in the atom moves in the
average potential of the nucleus and the rest of the electrons. The
potential is then spherically symmetric so that the Hamiltonian of an
electron in an atom is invariant under the rotation-inversion group.

6.1.1 The rotation-inversion group. We have already discussed
in Chapter 4 the three-dimensional rotation group SO(3) and the
rotation-inversion group O(3). In this subsection, we shall consider
the irreducible representations of O(3).  We have seen that

0(3)=S0(3) ® (E,J), (6.1)
where J is the inversion operator. Let us denote the two irreducible
representations of the group (E,J) by I’ and I'(~, where

[ X)=41, X=F or J;

IO(E)=+1, I'(J)=—1. (6.2)
I'®) is clearly the identity representation of the group (E, J). The
irreducible representations of O(3) are then the direct products of the
irreducible representations of SO(3) with thoseof (E, J). If we denote
the irreducible representations of O(3) by D), then

D&HI=p" & T'©, (6.3)
where o stands for 4 or —. Since I'®) are one-dimensional represen-
tations, the dimension of D9 is the same as that of DV, i.e., 2I41.
The group O(3) thus has two distinct irreducible representations of
every odd order. .

To obtain the actual matrices of the irreducible representation
DWo), we note that the elements of O(3) can be divided into two
categories, { X'} and {JX}, where X runs over the group SO(3). The
matrices of DU> %) are therefore given by

DB EX)=DW(X)® T E)=DW{X), (6.42)
D9 JX)=DW(X) ® T'oX(J), (6.4b)

so that
DUHD(JX)=DW(X), DBL=YJX)=—DWO(X), (6.4¢c)

forall X € SO(3). The classes of O(3) are quite simply related to
those of SO{3). In fact, each class {R, («)} of SO(3)gives two classes

of O(3)—{ER,(x)} and {JRy(x)}. The character of a class in the
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irreducible representation D> 9 can be found by using (6.4). This
gives
L 9 (Ea)=AD(),

Yl ) (Ja)=AD(a), X =) (Ja) = — XD (@), 6.5)
where X () is given by (4.50) and we have denoted the classes of
O(3) by (E«) and (Ja) for brevity; theclass (E«) contains all rotations
through « while (Ja) contains the elements denoting all rotations
through « followed by inversion.

The eigenfunctions of an electron in an atom may thus belong to
any of the irreducible representations D> 9). Ifan eigenfunction belongs
to D), it remains invariant under the inversiop and is said to be of
even parity; the corresponding spectral term is said to be positive or
even. If an eigenfunction belongs to D¢>-) it changes sign under the
action of Jand is said to be of odd parity and the corresponding spectral
term is said to be negative or odd. The parity of a wave function of a
system of particles depends only on the space coordinates of the particles
and not on their spins. The spin angular momentum (or any angular
momentum) is invariant under the inversion of the position coordinates.

It is, however, found that not all the irreducible representations
DU 0 occur in a one-electron atom. This is due to the fact that the one-
electron wave functions are homogeneous polynomials of degree /in
x,y and z, where /is the orbital quantum number. Sucha polynomial
clearly gets multiplied by (—1)! on coordinate inversion which takes x
to —x,y to —v and zto —z. The only irreducible representations that
occur are thus D ), DO =) D@ +) DB~ etc., corresponding to the
spectral terms s, p, d, f, etc., which alternate in parity. This is nottrue
in a many-electron atom as we shall see below. Table (6.1) shows
the various electronic levels along with the irreducible representations
to which the eigenfunctions of the one-electron atom belong,.

In a many-electron atom, the parity of the combined wave function
of all the electrons is (—1)* where k = ?h and /; is the orbital quan-

tum number of the i-th electron. Total orbital and total spin quantum
numbers denoted by L and S are obtained respectively from the
individual /; and s; of the electrons by vector addition method, with
My = Zmyi and M, = Zmy. Here my and ms are respectively
the quantized projections of I; and s;. The spectral term of the atom is
characterized by the value of L; L=0,1,2,3,..., correspond respec-
tively to the lables S, P, D, F,... .

Unlike the case of a one-electron atom, the S, P, D, etc., func-
tions of a many-glectron atom may have either parity. For example,
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whereas the p functions of a one-electron atom must have an odd parity,

the Pfunctions of a many-electron atom can have either even or odd

parity depending on whether X/; is even or odd. Thus, consider the
H

case of two electrons. If both the electrons are in the p shell, their
wave functions transform according to D¢!»-). The product wave func-
tion therefore transforms according to the direct product representation

DS @ DLI=Dlo+) @ DL @ DB ), (6.6)

TABLE 6.1 THE ELECTRONIC LEVELS IN A ONE-ELECTRON ATOM
Nomenclature ! Parity Representation Degeneracy!

1s 0 even D(0, +) 1

2s 0 even D@, +) 1

2p 1 odd DA 3

3s 0 even DO, +) 1

3p 1 odd D(1,-) 3

3d 2 even D +) 5

4s 0 even De.+) 1

4p | odd D(1,-) k)

4d 2 gven D+ 5

4f 3 odd D@®,~) 7

This shows that the atom can have L=0, 1 or 2, and in any of these
states, its parity will beeven. On the other hand, if one electron is in
the p shell and one in the d shell, the product wave function would
transform azcording to

" D) ® D H=DL )@ D)@ DS, =), 6.7)
i.e, the atom can have L=1, 2 or 3, and in any of these states, its
parity is odd. From this consideration, we havea very important rule:
Whereas the parity of a one-electron wave function is linked to its orbital
quantum number |, the parity of a many-electron wave function is indepen-

1We have disregarded the clectron spin here. If this is taken into account, the
appropriate symmetry group is SU (2) rather than O(3) and the degeneracies
must be further multiplied by 2.
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dent of the total orbital quantum number L but depends on the I values of
the constituent electrons. We shall find this ofgreat utility in obtaining
the selection rules later in this chapter.

6.1.2 Angular symmetry of wave functions and spherical‘ har-
monics. We have seen in Chapter 4 that the 2/+41 spherical harmonics
Ym0, $) for —I<<m <l generate the irreducible representation D'
of SO(3). The eigenfunctions of a one-electron atom are of the form
Ru(r) Y8, ) where Rn(r) is spherically symmetric. The angular
dependence of the eigenfunctions is therefore completely contained in
the sphetical harmonics ¥;™. For the sake of completeness, we shall
list in this subsection the first few spherical harmonics and the corres-
ponding atomic eigenfunctions. Table (6.2) gives the symmetry of the
cigenfunctions for /=0, 1, 2 and 3 and their angular parts which
are obtained by using the transformation

x=rsin 0 cos ¢, y=rsin § sin #, z=rcos 0, (6.8)

TABLE 6.2 THE ANGULAR SYMMETRY OF THE ATOMIC
EIGENFUNCTIONS FOR /=0, 1, 2 AND 3

/ Symmetry of the Angular part of the
eigenfunction eigenfunction
0 s:1 constant
x sin® cos ¢
1 pily sin 9 sin ¢
z cos 0
~ xy sin2 0 sin 2¢
yz sin 6 cos 6 sin ¢
2 d:R zx sin 6 cos 6 cos ¢
x2—y2 8in2 § cos2¢
| 222 x2—y2 3 cos2 01
(22337 (x24)%) - r 5coss 6—3 cos 6
x (422 — x2—y?) sin 0 (5 cos26—1) cos ¢
y (42— x2—y?) sin 6 (5 cos2 6—1) sin ¢
3 fid z(x2—y?) sin2 0 cos 6 cos 2¢
xyz sin2 6 cos 0 sin 2¢
—3xy2 sin3 6 cos 3¢
( 3x2y—y3 sin3 0 sin 3¢
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which is valid on the surface of a sphere of radius r. Table (6.3)
gives the linear combinations? of these functions which are proportional
to the spherical harmonics of degree / and order m. The Y/™’s form a
complete orthonormal set of square-integrable functions on the unit
sphere.

TABLE 6.3 THE STANDARD SYMMETRIZED COMBINATIONS WHICH
GENERATE THE REPRESENTATIONS DU oF SO(3)

D The linear is proportional to the

combination spherical harmonic

D 1 Yl=1/4/4n

x+iy Y *l=F 3 sin 0 exp(+ig)
D I 1 8x ° P(x
z vo= [Z cos 8
L 1 4r
r 0 I
222—x2—y2 Y, '= Ton (3cos26—1)

IX2) { . el F . .
’ zx+iyz Yy *1=F 8, Sin 8 cos 6 exp(+ig)
| (x2=y2) + i2xy) Y, *%= E sin2 6 ex 2id)

l_ - 2 32 p(:t ’¢
[ 0 7
2233z (x2+y2) Y= 16 (5 cos% 63 cos 6)
(x £ iy)(422—x2—y2) Y3‘1=:FA/§;— sin 6 (5 cos? 6—1)
TC
D®|

-

z(x2—32) 4 2ixyz

(x3—=3xy2) 4 i(3x2y —»3)

xexp(tig¢)

Y, *2= /@ in29 9 :
3 N/321: sin? 6 cos 0 exp(+-2i¢)

-~ 135
Ya*az‘FlJﬁ 5in3 6 exp(+3id)

6.1.3 The symmetric group. We have introduced the symmetric
group in Section 1.7. We shall consider here a few additional pro-
perties of these groups.

2For the shapesof these functions, see White (1934), p. 63.
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Firstly, we shall discuss the class structure of the symmetric group
Sk. There is a particularly simple way for obtaining the number of
classes- of Sy; the rule is that the number of classes of S, is equal to
the number of ways in which the integer #n can be partitioned into a
sum of positive integers. Each of these ways is related uniquely to a
class of S. . ‘

Thus, for n=3, we can write 3 as 3, 241 and 1+ 11, so that the
number of classes of S, is 3. The class corresponding to (3) contains
elements in which all the three objects undergo cyclic permutations;
these are the elements 4 and B defined in (1.36). The partition 241
gives us a class containing the elements which denote the cyclic per-
mutation of two objects (transposition) leaving the third object un-
changed; such elements of .S; are C, D and F. Finally, the partition
‘14141 gives us the element in which each object is unchanged—the
identity eletaent. The classes of S, are therefore (E), (4,B) and
(C,D,F). '

For, n=4, we have five ways of partitioning: 4, 3+1, 242,
24141, 14+141+1. The last partition gives the ‘identity element.
The class corresponding to the partition 2-4-141 contains elements
which involve one transposition leaving the remaining two objects
unchanged; there are 6 such elements. The partition 24-2 means two
interchanges in pairs; this class contains 3 elements. The elements in
the class corresponding to the partition 341 consist of cyclic permuta-
tions on three objects leaving the fourth unchanged; these are 8 in
number. Lastly, the class corresponding to the partition 4 consists of
the remaining 6 elements.

Example. We shall consider the group S4 and obtain its classes. We
shall employ 2 simpler notation than that used in Section 1.7,
although the definition of an operation will remain the same. Thus,
an element of Sy, say (2 4 3 1), will mean that the second object is
to be brought to the first position, the fourth to the second position,
the third remains where it is, while the first object is to be taken to
the fourth position. For example, the operation of the permutation
(243 1)on (231 4), according to the above definition, will be

2431)(2314)=(3412).

We can now directly write the classes of Sy by the rule given above.
The partition 1 + 1 + 1 + 1 gives the permutation in which each
object is in its own position, that is, the identity element E = (123 4).
The next partition 2 + 1 4 1 gives a class of six elements 4;, ] i < 6,

each of which consists of a transposition between one pair of objects, !
leaving the other two unchanged. These six transpositions expressed
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as products of the generators (1 2), (1 3), (1 4) are
A;=(02)=(Q2134),
Ay =(13)=3214),
Ay=(14H=@4231),
As=23) =324 =U2)(13)(2),
As—(24) =(1432)=(12)(14)(2),
=0B34)=(1243)=13)(14)(13).
The next partition 2 + 2 gives the class (B, By B;) each element of
which consists of two transpositions in pairs. The elements are expli-
citly given by

B =(12)34H=2143)=(12)(13)(1413,

B=(13)24=0GB412)=131(12)(14)12),

By=(14)(23)=4321)=01412)13)(12).

The partition 3 + 1 gives eight elements, in each of which one object
is kept fixed and the other three are cyclically permuted :

C,=(1342),C,=(423),C3=(3241),Ci=(4213;

Cs=(2431),Cs=4132),C; =(2314), Cz=(3124).
Finally the partition 4 gives us the permutations having the property
that no object remains in its own place, nor do any two objects
undergo a simple transposition. This gives the six elements

D =(12341),D,=(2413),D;=(3142),
Di=(3421),Ds=(4123), Dg=(4312).
It is left as an exercise to express the elements of classes (C;) and (D)
as products of generators. We see that the classes (E), (B;) and (C))
consist of even permutatlons while (4;) and (D;) consist of odd
permutations.

We thus see that the groups S; and S, have 3 and 5 classes res-
pectively. These will also be the number of their distinct irreducible
representations. Their dimensions can then be found by using the con-
dition (3.79). This gives the dimensions of the irreducible represen-
tations of S, to be 1, 1 and 2. For §,, we find the dimensions to be 1,
1, 2, 3 and 3.

The classes of S, for any value of n canin general be found by
the same method. It turns out that for every value of n, S, has two,
and only two, distinct irreducible representations of dimension one. One
of them is obviously the idertity representation in which each element of
Sx corresponds to unity. In the other one-dimensional representation,
the even permutations of S, correspond to +1 while the odd permuta-
tions to — 1. We shall denote this irreducible representation of S, by I'oaa-
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This is a very important result for us, because we can immediately
recognize that it is connected with the construction of symmetric and
antisymmetric wave functions of a system of n identical particles.
Thus, let §(1, 2,...,n) denote a particular state of the system and
let us construct the wave function

Yoven= Y, AY(l,2,..., n). (6.9)
AESn
It is then clear that the operation of any clement of S, on Weyen leaves
it unchanged, ie.,
AY¥even=%even ¥ AE S (6.10)

The wave function Weven therefore generates the identity represen-
tation of S,. On the other hand, if we construct the wave function
Yoaa= Y. (—1)2 AY(1, 2,..., n). (6.11)
AES,
where a is the number of transpositions in the element A4, then we
find that
AYoqa=(—1)2 Yoda. (6.12)

The wave function Weqq thus changes sign under a transposition of
"any two elements.

If we have a system of n identical bosons, its wave function must
be of the form Weven Which generates the,identity representation of
Sx. A system of n identical fermions, on the other hand, must be
represented by a wave function of the form Woqq which generates the
representation Iogqa of Sa. If we assume thatthere are no interactions
between the particles, the state function (1, 2,...,n) can be expressed
as the product of single-particle eigenfunctions according to

Y(P1s Pas- - -» Pay=Ur(P2) U3(Py). - -tin(Pa). (6.13)
where u;( pj) is the wave function of the j-th particle in the i-th single-
particle orbital. Here p; denotes all the coordinates (position and
spia projection) of the j-th particle. The antisymmetrized wave func-
tion of the system transforming according to I'saq is then the Slater
determinant

(1) u(2) ... u(m
. 1 uy(1) uy(2) . .. uy(n) .
Yosa=—75 | - . (6.14)

l'l,.( 1) ua(2) . .. us(n)



GROJP THEORY IN QUANTUM MECHANICS. 11 201

For example, if we have three identical particles whose coordi-
nates and spins are symbolized by 1,2 and 3, and three spin-orbitals,
then the wave function of a pamcular state of the system may be
written as

Y(Prs Pas Pa)=1 (P1) Us (P2) U (Pa), (6.15)
where each p, can take values 1, 2 or 3 and no two p;’s can have the
same value. The antisymmetrized basis function is then

n()  w(2) %(3)
Vosa=—z| 0:() 1) ()
u(1)  uy(2)  uy(3)

=[¢(12 =42 1 3)+$(23 H—(32 1)
+4(3 12)—4¢(1 3 2)]/1/6. (6.16)

6.2 Selection Rules for Atomic Transitions

We have seen that the states of a many-clectron atom may belong
to all the irreducible representations of O(3) but that the states of a
_ one-electron atom belong only to some irreducible representations of
O0(3). 1t istherefore natural that the selection rules for the two systems
would be different. We shall consider the two cases separately.

6.2.1 A many-electron atom. We shall first obtain the selection
rules for electric dipole transitions of a many-electron atom. The
electric dipole moment operator k=¢(x, y, z) is.a polar vector (which
changes sign under inversion) and it clearly generates the representa-
tion D& -) of O(3). The transmon of a many-electron atom from a
state D9 to a state:D'Y» D under the electric dipole radiation would
then be allowed if the direct product representation DC. ) ® Do)
contains D'L>®, Now, we have

DL~1, —0) @ DL —0) @ DL+ ~0)

D =) @ DLso)= if L3£0.

DO, -0) if 1=0. 6.17)
The second part of the above equation shows that the transition
between two states with L=0is forbidden. The representation DL’ 0)
appears in the direct product if

L’={ L, L41if L0,
1 if 2=0; (6.18a)

and o'=—a.
If we denote L'— L= AL, this gives us the selection rules for electric
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dipole transitions:
AL=0, +1 (0<«/—0); parity change. (6.18b)

Since the electric dipole moment operator does not act on the spin
variables of the atom, we also have the selection rule AS=0.

6.2.2 A one-clectron atom. It is well known that the spectral terms
of one-electron atoms like hydrogen and the alkalies are particularly
simple. Once again, we examine the direct product Dt» 9 ® D =) for
obtaining the selection rules for electric dipole transitions. This gives
us an equation similar to (6. 17) with L replaced by I. However, we must
now take into account the fact thatthe parity of a one-electron atomic
wave function is linked toits/value. Thus, if thereisa state of the atom
belonging to the representation D 9), there cannot be anystate of the
atom belonging to D> -9 butthere are states belonging to DV+L-a),
This therefore forbids transitions for which /’=/ and gives us the
selection rule

Al=+1, parity change. (6.19)

On the other hand, the magnetic dipole moment operator gene-

rates the representation D>+ and we have, for /50,

D )@ Dits )= PUi-1, )P D> O DU+ ), (6.20)

The only allowed transition among these is therefore D 0)es Db 0}
and we have the selection rule
A!=0, no change in parity. (6.21)

Moreover, since the magnetic dipole moment operator also does not
act on the spin variables, we have
As=0. (6.22)

6.3 Zeeman Eﬁect

In this section, we shall study the Zeeman effect which stems from
the splitting of the atomic energy levels in a magnetic field.

Consider an atom in a statej having a (2j+1)-fold degenerate
energy level E,;. If the atom is placed in a steady uniform magnetic
field H, assumed to be along the z axis, the degeneracy of the level Ey; is
totally lifted and it splits into 2j+1 riondegenerate levels. This result
can easily be obtained group theoretically.

Let ¢,;m be the 2j41 degenerate eigenfunctions (for —jgmgj)
for the level E,;. The symmetry group of the atomis SO(3)if jis integral
and SU(2)if jis half-odd-integral. If the group is SO(3), §,” contains
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the spherical harmonic Y;™ (0, ¢), while if the groupis SU(2),{,” has
the same transformation properties as the function fy” defined in
Section 4.5.1. Ineither case, a rotation through &« about the z axis has
the effect

R} =exp(ima) Y;™. (6.23)
Let AV be the perturbation arising from the applied magnetic field,
where A is a parameter.® The perturbation AV and therefore the per-
turbed system (i.¢.,atom+ magnetic field) are invariant only under ro-
tations aboutthe z axis. The symmetry group of the physical system is
thus SO(2), whichis a subgroup of SO(3) or SU(2). Since SO(2)is an
abelian group, it has only one-dimensional irreducible representations.
This is sufficient to show that the function ¢, cannot remain degenerate
for all values of m between —j and ;. The function ¢,” now belongs to the
m-th irreducible representation of SO(2) and thus the (2j+1)-fold
degeneracy is completely lifted by the magnetic field.

The operation of the perturbation ¥ on an eigenfunction ¢;” of
the unperturbed system is, in general, to mix all the degenerate eigen-
functions. We can therefore write:

J
Viim= 3 9" Vmm, (6.24)
mms—)

where Vmm=(y;”', V&™) is the matrix element of } between two
-degenerate unperturbed eigenfunctions. The matrix element of V be-
tween two nondegenerate eigenfunctions &, and ¢;” will be identi-
cally zero because the operation of ¥ on {7 does not mix any function
with different j value. Since V is invariant under SO(2), V' {,;™ hasthe

same transformation properties under SO(2) as ;7 i.e.,
R a)(V &™)y =exp(ima)(V &;™m). (6.25)
Thus, the function V& also belongs to the m-th irreducible represen-
tation of SO(2) and, by the matrix elément theorem, we see that

(¥, V™) will be proportional to 8,m, or

Verm=Vm Sm'm- (6.26)
which defines v,, as being the expectation value of ¥in an unperturbed
state &7, The matrix representing V with {{;”} as the basis is thus
diagonal and v, are its eigenvalues. The new energy levels are then

clearly given by

3The parameter A is being used here to facilitate the separation of the vari-
ous orders of perturbation. This is the usual and well known technique

in perturbation theory.
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Epjm=Enj4+Am,—j<<m=j. (6.27)

This is as far as we can go with the help of group theory. The
actual calculation of v,’s will depend on the explicit nature of the
perturbation and the exact atomic eigenfunctions.

The number of components into which a line splits under a mag-
netic field helps determine the j value of the unperturbed state. It
was by this method that Sommerfeld originally suggested that j must
be given integral as well as half-odd-integral values.

6.4 Addition of Angular Momenta

It is often necessary in many quantum mechanical problems to
couple two or more angular momenta and obtain the angular momen-
tum of the combined system. We may be dealing with a single particle
with two angular momenta (orbital and intrinsic) or with a system of
two particles (such as two electrons in the same atom). Our aim in
this section would be to obtain the possible values for the total
angular momentum and its quantized projection and to obtain the
eigenstates of the combined system as (symmetrized) linear combina-
tions of the separate eigenstates of the two angular momenta.

Before going to the proper problem of addition of angular
momenta, we shall discuss in the first subsection below the quantum
mechanical nature of angular momentum. This subsection is included
here merely for the sake of completeness although its results have in
fact been used previously in this book.

6.4.1 Angular momentum in quantum mechanics. In classical
mechanics, the angular momentum is an easily comprehensible entity.
It is defined as L=rxp where r is the position vector and p is the
linear momentum and is related to r by p=m dr/dt where m is the
mass of thesystem. The angular momentum depicts the rotational
properties of the system, For example, if a system has rotational
symmetry about an axis, the component of angular momentum along
that axis is a constant of motion. If the system is invariant under all
rotations, the angular momentum L is conserved.

Although these results hold good in quantum mechanics also, it
is not possible to take the former definition of angular momentum
over to quantum mechanics. This is because in accordance with the
basic axioms of quantum mechanics, r and pare themselves nor
classical quantities but the position vector operator and the linear
momentum operator, respectively, related to each other by p= —ihVy
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or r=—ifiYp. We may, of course, still define L=r xp and call it the
angular momentum operator. 1f the system possesses full rotational
symmetry, the operator L would commute with the Hamiltonian and
would therefore be a constant of motion. However, this is not the
only invariant of a quantum mechanical isotropic system, A quantum
mechanical system possesses other degrees of freedom (the intrinsic
spin angular momentum, the isotopic spin angular momentum, etc.)
the observables corresponding to which are invariants if the Hamil-
tonian is invariant under rotations in its Hilbert space. These addition-
al degrees of freedom have no classical analogue.

As the whole structure of quantum mechanics is based on opera-
tors corresponding to observables, we will have to-define angular
mcmentum in quantum mechanics abstractly and mathematically. For
this, we shall first define an angular momentum operator.

An operator A with Cartesian components Ay, A, and A: is said
to be an angular momentum operator if

(1) the operators A; (i=x, y, z)correspond to physical observables,

(i) they transform under rotations like the components of a vector
(i.e., the matrix associated with the transformation is the same
as (4.43)), and

(iii) they obey the following commutation relations:

[Ax, Ayl=iBAz, [Ay, Ad=ifidy, [Az, Ax]=iKA,. (6.28)

The physical observable associated with the operator A will then be
called an angular momentum.

The operator L=rxp is a particular example of an angular mo-
mentum operator, because it satisfies the above three axioms. The
observable associated with it is called the orbital angular momentum.
The intrinsic spin angular momentum operator S and the isotopic spin
angular momentum operator T are other examples of an angular mo-
mentum operator. The physical observables associated with them are
respectively called spin angular momentum? (or simply spin) and charge.

Hereafter, we shall frequently call the angular momentum opera-
tor simply the angular momentum and denote it in general by J.

The square of the angular momentum J*=J,24+J,2+J,% commutes
with each of the components of J as can be verified from (6.28).
However, (6.28) shows that no two components of J commute with
each other. In any representation, therefore, not more than one com-
ponent of J can be diagonalized at a time. By convention, we choose

4[t is a mere fantasy to imeagine that a particle having spin angular momentum
is really rotating about itcelf; spin is merely the name given to the additional
degree of freedom possessed by many particles such as clectrons, neutrons,
etc., and by many composite systems such as nuclei, atoms, molecules, etc.
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basis states for representation which are simultaneous eigenstates of J?
and J,. It is found that J% can have eigenvalues j(j +1)h? withj=0,4,1,2,

2,...,and J:can have eigenvalues mh where m=—j. —j+1,...,J.
A common eigenstate of J? and J; can be denoted by | jm> with
J2 | jm>=j(j+ 1) R? | jm>, J: | jm>=mh | jm>. (6.29)

Normally, there would be other operators too which commute
with both J2and J:. Correspondingly, the system would have good
quantum numbers other than j and m. We should strictly denote a
common eigenstate of all the commuting operators by | Njm> where
N is the set of all the other good quantum numbers. These quantum
numbers are, however, not relevant to the rotational properties of the
eigenstate | Njm>.They govern, for example, among other things, the
radial dependence of the eigenstates. We shall often drop these, except
where necessary, and write an eigenstate simply as | jm> although its
dependence on the other quantum numbers would be implicit.

Thetwo operators J=J, 41/, which are hermitian conjugates of
each other have respectively the effect of increasing and decreasing
the z component of the angular momentum by unity. Thus,?

ol jm>=[j(j+D—m(m+ D} 8 | jym+1>,
(6.30)

J_| jm>=[j (j+1)—m(m—D}i5 | j,m—1>.
The coefficients in the above equations are the elements of the matrices
representing J, and J_ with the basis { | jm>}. The representation of
J? and its components (Jx, J, and J; or J; and J) with this basis is
called the standard representation of angular momentum. It is evident
that in this representation, only the matrix for J, is purely imaginary
while all the other matrices are real. The matrices for J? and J; are,
of course, diagonal whereas those for Jy,J,, J+ and J_ are block-
diagonalized with blocks of dimensions 2j+1. The states {|jm>}
generate the representation DY) of SU(2) under generalized rotations

in the Hilbert space of the operators J* and J, so that we have

Ur |jm>=2 | jm' > D9 (R), (6.31)

where we have denoted a "rotation such as Ru(¢) orR («, B, y) of
SO(3) by Ug for brevity and convenience.

In particular cases, it is not necessary that all the allowed values
of j should occur. For example, if the orbital angular momentum L2
is under consideration, its allowed eigenvalues are /(14 1) where [ takes
only nonnegatxve integral values, excludmg all the half-odd-integral

5Sec Heine (1960), Section 8; Schiff (1968), Section 27.
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values. Moreover, for a given value of j, there may be more than one
sets of (2j+ 1) linearly independent eigenfunctions corresponding to it
(for different values of the remaining quantum numbers N).

6.4.2 Addition of two angrlar momenta and symmetrized com-
binations of eigenstates. Let J, and J, be two angular momenta. If
each component of J, commutes with every component of J,, then it
can be shown that J=J,+J, is also an angular momentum. Thus,
consider the commutator

[T, =[x A Tons JyytJoy]
:[Ju, le]+ [Joxs Jz)']
=i B (JyotTo2)
=ihJ;, (6.32)

which is identical to the first of Eqs. (6.28). Similarly, by cyclic per-
mutations of x, y and z, we find that [J,, J:]=ihJ, and [J2, Jx]=ih J,,
so that J is an angular momentum. The commutators of J with J,
or J, are found to be

[st',ix]:[Jlx‘!‘sz, Jix]=0;
e Jiy] =1t Toxs Jiy]=i Bz, (6.33)
[-]x, Jiz]=[J1.\:+J2x, Jiz]= _iﬁ-]iy’

with /=1 or 2, and similar equations obtained by cyclic permutations
of x, y and z. . ‘

Let | jm;> be the eigenstates of J;2 and Jy. and | jym,> those
of J,2 and J,,. The combined eigenstates of these four mutually
commuting operators are just the products of the individual eigenstates
which may be denoted by | jm; > | jomy>=|jm,, j;m,>. For given
values of j, and j,, these are altogether (2j,+1)(2j,+1) in number,
and have the properties

| jumy, oty > =i (i +1) B2 | jymy, jo my>,
Jiz | jimy, Jsmy >=miR | jimy, Jamy>. (6.34)

The (2j,+1)(2/,71) eigenstates transform according to the represen-
tation DY) ® DY) of SU(2). This representation can be reduced to
a sum of irreducible representations asin (4.93) where each irreduciblc
representation D¢ occurs once for values of j between | j,—J, | and
Ji-+j. Each representation DY) has associated with it (2j-+1) states
which are just linear combinations of | jm,, jum,>. The number of
these states is
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Jitha
2 Q2j+D=2j+D 2 ja+ 1 (6.35)
j=1h—J2]
as it should be.

In order to construct the new eigenstates, we note that the square
of the total angular momentum J*commutes with both J,?and J,?% and
so does J;. For obtaining these eigenstates we choose the set of linearly
independent mutually commuting operators to be (J,% J,2, J3, J;) instead
of the set (J,% J,:,J,% J,z). The eigenvalues of J2 may be denoted
by j(j41)h? where |j,—j,| <j<j,+J, and a common eigenstate of
the former set of operators may be denoted by |jm> where mh is the
eigenvalue of J; in the state |jm>. We express this state as a linear
combination of the states |j, m,, j, m,> in the form

J1 J2
[jm>= 2. 2 hmyjamy>C(jymy, jymy; jm). (6.36)
my=—Jy My=—J2
The coefficients of expansion® can be obtained by taking the scalar
product of the above equation with some state, say [j, m,’,j,m, >,
and using the orthonormality of these states. This gives

<jymy',jam, |jm>:CU1 my’, j,my’;jm). (6.37)
Eq. (6.36) then becomes
Fm>= 3 |jymyjomy><jy my,jo my|jm>. (6.38)
my,mg

These are the eigenstates we are secking and have the properties
Plim>=j(j+ DR |jm>, J:|jm>=mh |j m>, (6-39)
Ji2 | m>=ji(ji+DR® |j m>, i=1, 2.

The coefficients < j, my,j, m, |j m> are called Clebsch-Gordan
coefficients or Wigner coefficients or vector coupling coefficients. Opera-
ting on the state (6.38) with J.=J,:+J,:, we have

mB|jm>= > (m+m)B|j my,j, m.>
my.my
X < jy Myfo Ma | J m>. (6.40)
Using (6.38) once again onthe left-hand side of the above equation, we
get
ST (m—m,—my)R |j; my s, my> < my, g 1, [J m>=0. (6.41)
my,mg
Since the states |/, my,Jj, m,> are linearly independent for different

5[t can be shown that these cocfficients are independent of the other quantum
numbers N;see Messiah (1965), Section X111.27.
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vaiues of m, and m,, the above equation is satisfied if and only if

(m—my—my)<j, my,j, my |j m>=0. (6.42)
This shows that
< jy my, jy My} j m>=0 unless m=m,+m,. (6.43)

This shows that the z component of the total angular momentum must
be equal to the sum of the z components of the individual angular
momenta.” In short, the conditions for the nonvanishing of the C-G
coefficient® < j, m,,j.m, |j m> are

'jl ""le IS.I é.]-1'+'j'2’ m=m1+m21
and [m|<]j. (6.44)

The C-G coefficients of (6.38) are just the elements of the trans-
formation from one basis to another in the (2 j, +1)(2 j, + 1)-dimensional
Hilbert space. If the set of initial states {|j, m,,j,m,>} and the
set of final states { |jm>} are both assumed to be orthonormal, the
matrix of these elements is a (2j,+1)(2/,+1)-dimensional unitary
matrix.

The largest value of m isj,+j,, and this can occur only when j
also has itslargest value equal to j, 4 j,. Thus, if j=m=}, +/,, it can be’
seen from the rules (6.44) that the only C-G coefficient in (6.38)to be
different from zero is that for which m,;=j, and m,=j,, giving

Uy FJedi > =i defe™> < Jijvdede i Hia Ju > (6.45)

Now, since both the states |j,+j,,j,+/,> and |jj,j,/,> are
normalized, the C-G coefficient in the above equation can at most be a
complex number with unit magnitude. By convention, we choose the
phase such that this coefficient is +1:

<Jrivdeda i ties 1 Hie>=1. (6.46)
We shall see that with this and a similar convention explained later, all

the C-G coefficients turn out to be realso that the unitary matrix of -
transformation in fact reduces to an orthogonal matrix.

6.4.3 Calculation of Clebsch-Gordan coefficients. We shall show
that the (2j;+1)(2j,+1)-dimensional matrix of the C-G coefficients

7This rule is quite general and holds good for theaddition of more than two
angular momenta also.

8We shall write ‘C-G coefficients’ instead of ‘Clebsch-Gordan coefficients'
for the sake of brevity.
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reduces to a direct sum of smaller matrices with one block correspond-
ing to each allowed value of m=m,+m,.

Since the matrix of transformation in (6.38) is unitary and since
all the elements are real by the phase conventions, we have

<Jymy,jomy |j m>* =< jymy, jy my [j m>, (6.47a)
J1t+ie J i

> 2 <jymy, Jomg | j m><jy my', jomy' | jm>

j=1h—=je| m=—j

. =8y my’ Sy my's (6.47b)
J1 Jr

> > <jp My, Jo g | Jm><jymy,famy | jm'>

my=—j; mg=—js
=8mm’ Sy, (6.47¢)

Notice that the rows and the columns of this matrix are labeled by
different schemes. Each row is labeled by the dual symbol (m,, m,),
while each column is labeled by the dual symbol (j, m). For exam-
ple, for given values of j; and j,, the first row would be called the
(Jy, Jo)-row (because m,=j,, my=j,), while the first column would
be (j,4js Jji+j)-column (because j=m=j,+j,). For this reason,
it is not easy to write down the transpose of an element <j, m,,
Ja my | jm>. In other words, it is not true that the element <j m
| 1 my, j, my> is the transpose of < j, m,, j, m, | j m>. By conven-
tion, we shall mean by both these symbols the same element, i.e.,

<jm|jymy jg my>=<jymy, jamy | jm>, (6.48)
both of which stand for an element in the (m,;, m,)-row and the
(J, m)-column.

We have already shown that the largest vaiue of m occurs when
j=m=j;+j, and only one C-G coeflicient survives in this case.
The next largest value of m is j,+/j;—1 and this may occur in two
ways: when j=j,+j, or j=j,4j,—1. Also, since m=m;+m,, we
must have either m,=j,, m,=j,—1, or my=j,—1, m,=j,. This
shows that the two final states | ji+j,, ji+j:—1> and | j,+j,—1,
Ji+Jj.—1> are both linear combinations of only the two initial states
| Jy J1s Jo Jo—1> and | j, j;—1, j,j,>; or, in accordance with (6.38),
we can write .

| j1+j2, j1+j2—1 >
= | i JuJe Je—1><jijy ja o= | 1 H e i+ie—1>
+ | hh—b s> <iiiv—N Jado | it H—1>,
Virtia—1 gy Hje—1>
= [ hJvieje—1><jijujo a1 | Atia—L i+i—1>
+ | jl jl_l’jz j2><j1 jx"l’ jzjz | j1+j2—1;j1+jz"l>-
(6.49)
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Thus, in the second and the third rows and columns of the C-G
matrix, there would be only two nonvanishing coefficients. As we
proceed further, we can see that if the columns are labeled in decreas-
ing order of m, the C-G matrix would be in a block-diagonal form.
The dimensions of the blocks increase to begin with from unity
onwards and then again decrease to unity for the lowest value of m
which occurs when —m=j=j,+j, and m,=—j;, my=—j,.

To obtain the C-G coefficients explicitly, we shall first obtain their
recursion relations connecting one to the others, from which the
coefficients can be calculated knowing one of them. For this, we apply
the raising operator Jy=J4++J,+ to both the sides of {6.38), use
(6.30) and divide by h throughout to obtain

U G+D)—m(m+1) | j, m+1>
= > Al Gyt )—my (my+DR | jy my+1, jo my>
my, my
+z Gat1)—my (my+ DR | jy my, j, my+1>}
X< jy My, Joamy | j m>. (6.50)
On the left-hand side, we substitute for | j, m+-1> again from (6.38).
On the right-hand side, we change the variable of summation to
m,’=m;+1 in the first term, leaving m, unchanged, and to m,’=m,+1
in the second term, leaving m, unchanged. The first term, for example,
then becomes
A+t J2 '
> > i (j1+l)_(m1’—1) mll]* 1y mys Jjamy>
my=—j1+1 my=—jp
X<jm'—=1, jamy|jm>.
Now, it can be seen that for m,’=j, - 1or —j,, the radical in the square
brackets above vanishes. The range of summation over m,’ can there-
fore be replaced by —j,to j,. Dropping the prime in m,’ finally, the
first term becomes
I J2
Z_ 2 [ Gh+bH—m, (my— DR | jy my, jp my>
my=-—J1 Me=—]3
X< jimy—1, jom, | jm >.
The second term in (6.50) is treated in a similar fashion. Then, noting
that the states | j, m,, j, m,> are orthogonal, we equate their coefficients
on both the sides and obtain
CUED—m (m+1)]‘ <JyMys jomy | j, m+1>
=[j; (j1+1)_m1(m1_'1)]* <hm—1j,m|jm>
Fje Ga+D)—my(m,— D} < jy my, jym—1 | jm>. (6.51)
Similarly, operating on both sides of (6.38) by the lowering operator
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J_%J{:+Jz_ instead of J4 and following the same procedureas above,
we can obtain another relation given below.
[/ G+ D—mm—=D} <j, my, j, my | j, m—1>
=[jy Uy +1D—m, (m+DIF <jy my+1,jomy | jm>
+ja Ut 1)—my (my+ DI} <jy my, jo my+11im>.  (6.52)

These two recursion relations are sufficient to obtain all the C-G
coefficients by starting from the first coefficient (6.46) which is the only
coefficient with m=j,+j,.

Suppose, for example, that next we wish to obtain all the C-G
coeffieients with m=j,+j,—1. Putting m,=j,, my=Jj,—1, j=j,+Jj, and
m=j;+j, in (6.52) and using the selection rules (6.44) together
with (6.46), we obtain '

<jiJu e o= | jitje atia—1>=[/(i+iD]t - (6.53)
Similarly, if we put m,=j,—1, m,=j, and j=m=j,+j, in (6.52), we find
<jrh—=V Ja Jo | i tie i tie—=1>=[j/(i HiDlE (6.54)

These are the two C-G coefficients with j=j, +j, and m=j,+j,—1.
There aré two more C-G coefficients with m=j,+j,—1 and both of
these have j=j,+j,—1. These can be calculated by using the orthogo-
nality relations (6.47). To clarify the procedure, we have shown in Table
(6.4) the matiix elements under consideration, where we have denoted
the matrix elements of (6.53) and (6.54) respectively by a and b. The
elements to be calculated are denoted by ¢ and 4. The normalization of

TABLE 6.4 THE CALCULATION OF C-G COEFFICIENTS

I +js f1+]a Ji+ia-1 ¢ tt
Iitis hi+ia-1 irtl2-1 L
o | -
1 0 0 1] .
e .
N 12—1‘ 0 : a c Lo e .
| f
|
fi-1 iz 0 E b d 1 0 . .
e L
. I
° 0 0 0 ! °
L] ) l
/ L3 . - L ]
L[] L - . 3 [ )
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the (j,, j,—1)-row gives a®+-c*=1, which, by using (6.53) for a, gives
A=jl(1+))- (6.55)
Similarly, the normalization of the (j;—1, j,)-row together with
(6.54) for b gives
a*=j,[(jr ). (6.56)
‘The orthogonality of the two columns under consideration requires
ac+bd=0 or c¢=—d (b/a)y=—d(j,[j)} . This shows that ¢ and d are
‘both real and have opposite signs. Here, again, there is an arbitrary
choice for the sign which is fixed according to the convention that the
first of these elements, for which j=m and m,=j, and which has the
general form << j, jy, jo j—Jj; | Jj>, 1s real and positive. This gives
c=<jyjus JeJa—1 | =1 i+ i —1>=[j /U, +i)]t, (6.57a)
d=<ji—1s Jodo | ntio— L it —1>=—[jo/s i)} - (6.57b)
Next, we consider the value m=j,+j,—2. This will give a 3x3
submatrix of C-G coefficients for j=j,+/,, j,+j,—1, ji+j,—2 and for
(my, my)=(j1, ja—2), (Gy—1, ja—1), (j1—2, j). The first two columns
(for j=j;+Jj, and j,+j,—1) can be obtained by using (6.53), (6.54) and
(6.57) in (6.52). The last column (for j=j,+j,—2=m) is obtained by
the orthonormalization of the rows. The process of normalization
again leaves an arbitrary sign which is fixed by the convention that
the first element of the last column is real and positive.
A repetition of this procedure determines all the remaining blocks
of the desired matrix. The matrices of the C-G coefficients for some
particular small values of j, and j, are given in Table (6.5).

TABLE 6.5 THE MATRICES OF THE C-G COEFFICIENTS
(a) j1=j2=§

1 0 0o —1
. — - -
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The Wigner's 3-j symbols which are related to the C-G coefficients,
have been extensively numerically tabulated in the literature® for a
large number of cases.

6.5 Irreducible Tensor Operators

In addition to the transitions of a physical system caused by
electric and magnetic dipole radiation, there may be higher order transi-
tions due to electric or magnetic quadrupole, octupole, etc., radiation.
Although their intensities are small, they become important when the
electric dipole transition is forbidden. The matrix element theorem of
Chapter 5 can easily be applied to find the selection rules for the
higher order transitions. A theorem due to Wigner and Eckart, to be
dealt with in the next section, further gives us the ratios of the various
transition probabilities without havingto calculate the matrix elements
explicitly. These calculations are best performed by using the concept
of irreducible tensor operators which is the subject of this section.

The rotational properties of an operator are determined by its com-
mutator with total angular momentum operator J. To see this, let
R($) denote a rotation of the coordinates where the vector ¢ has the
magnitude of the angle of rotation and is parallel to the axis of rotation.
Let Ugr(#) be the corresponding operator which acts on functions.
Let P be any operator before transformation and P’ the same operator
after the rotation. Then

) P'=Ugr($)t P Ur($). (6.58)
The rotation operator Ugr(#¢) has the form
Ur($)=exp(—i ¢-J/1). (6.59)

For rotations through infinitesimal angles, (6.58) becomes, to first
order in ¢,

P'o(14i$-J/K) P (1—i#-J/E)
gp+% [¢-J, P). (6.60)

We shall now define scalar and vector operators and then tensor
operators in general.

6.5.1 Scalar operators. We say that a quantity is a scalar if it is
invariant underallrotations. Obvious examples of scalar quantities are
mass, length, energy,etc. Similarly, an operator S is said to be a scalar
operator if it isinvariant under all rotations. For example, the Hamil-

9Rotenberg et al. (1959).
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tonian of an isotropic systemsuch as an atom isa scalar operator. The
spin-orbit interaction operator LS is also a scalar operator. A scalar
operator thus generates the representation D) of the rotation group.
By the matrix element theorem, we then see that all the matrix elements
ol a scalar operator between states belonging to different irreducible
representations or to different columns of the same one of SO(3) must
vanish. Moreover, it can be shown that the matrix element of a scalar
opetator between any two states transforming according to the same
column of a certain irreducible representation of SO(3)is independent
of the column index.

Thus, if S is a scalar operator, it is invariant under all rotations,
so that S'=S. By looking at (6.60), with Preplaced by S, we see that
this is possible if § commutes with all the components of the total
angular momentum J of the system; or

[J, S1=0. 6.61)
Let | Njm> be the set of the common eigenfunctions ‘of J? and J..
Our object is to consider the matrix element of S between any two of
these eigenstates, 1.e., <N'j m' |S| N j m>. Since S commutes with
J. the operation of J? and the components of J onthe vector S|N jm>
is the same as their operation on | N j m>. The vector S| N j m> thus
transforms according to the m-th column of the j-th irreducible repre-
sentation of the rotation group. By the orthogonality of the basis
functions (see Section 5.5.1), we then have
<N'jm|S|Njm>=88uw <N jm|S|Njm>. (6.62)
Replacing m by m—1 in the first of Egs. (6.30), we can write
|Njm>=[{j (j+D—m(m—=1)} R*LJ | Njm—1>. (6.63)
By using this, the matrix element on the right-hand side-of (6.62) becomes
<N'jm|S|Njm>
=[{j(+D—mm—=1)} R Y < N’ jm|SJ | Njm—1>
=[{j(J+D=—mm—1}RY < N jm|J .S|Nm—1>. (6.64)
Taking the conjugate of the second equation of (6.30), we have
<Njm|J, =< Njm—=1|[j(j+D—m{m-=1)] 1. (6.65)
Substituting this in (6 .64), we finally obtain
<N jm|S|Njm>=< N jm—1|S| Njm—1>, (6.66)
showing that the matrix element is independent of 7 and depends only
on j and the other quantumnumbers.” We therefore define the quantity
SywHI=< Njm|S| N jm>, (6.67)
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which is called the reduced matrix element of the scalar operator S.
Eq. (6.62) then becomes

< Njm|S| N'j m'>=8; Smms Snnr'. (6.68)

6.5.2 Vector operators. Once again, it is expedient to examine
what we understand by a vector. Apartfrom having a magnitude and
a direction, a vector is characterized by its transformation under rota-
tions. If r is a vector and r' the vector- obtained after an infini-
tesimal rotation ¢ , it can be seen from vector algebra that

r'=r+¢ Xr. (6.69)

A vector operator is defined in exactly the same way by its trans-

formation properties. An operator V with three cartesian components

(Vx, Vy, Vz) issaid to be a vector operator if after an infinitesimal rota-
tiond , the transformed operator V' is given by

Ur($)tV Ur(®) =V'=V4 ¢ xV. (6.70)

Comparison with(6.60) shows thata vector operator V must satisfy the
commutation relations

i[é.J,V]-=-éxv. 7 6.71)

We note in passing that if V is replaced by J, the above equation becomes
an identity, a proof of which is left to Problem (6.9). The angular
momentum operator J is thus a vector operator. Other examples of
vector operators are the quantum mechanical operators for position,
linear momentum, orbital angular momentum, spin angular momentum,
isotopic spin angular momentum, electric and magnetic dipole moment
operators, etc.

It is convenient to work with the spherical componems (also known
as the standard components) of the vector operator V rather than the
cartesian components. These are defined by

Vi=—VetiVy)|V2, Vo=Vi, Vo =(Va—iV))[\/2.  (6.72)

Using these in (6.71), we finally get the following nine commutators
between the components of J and those of V:
[Ty, V3]1=0, (V] =v2 8V, [J V]=hV,,
[Jo Vil=vV2E Vo, [ ) Vo410, [Jey Vo 1=—F8 Vo,
[Jon Vol=v2E Vildo, Vol=v28 Vo [y Vo]=0. (6.73)
These commutation relations can be further condensed to the form

[J4. Vel=[2—q (g DR & Voy,,

[/, Val=g & Vg5 9=1, 0.—1. (6.74)
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These equations serve as an alternative definition of a vector operator:
V is said to be a vector operator if its components satisfy the commu-
tation relations (6.74) with the components of the total angular
momentum.

As a third alternative, we can use the fact that the spherical
componenls of a vector r transferm under a finite rotation R(«, R, y)
according as

i
R(a, B, ¥) rm=rm’ = 3 For Do V(e By ¥); (6.75)
m=—1
(see Problem4.11). We then say that V is a vector operator if its
components are operators transforming according to
]
U($) Vi Us(@)=Vm'= 3 Vow Do D, B,Y),  (6.76)
m=—1
where Ug(#) corresponds to the rotation R(e, B, y).

For the sake of ready reference, we shall give here the explicit
form of the matrix D®(a, B, y) obtained from (4.88) with j=1, It is
found to be

D (a, B, y)
I Cosz% o lat?) _1/1__? sin B el sinz-g'e“?‘“’ ]
V%sin Bei* cos B —v—]?sin Beia | (6.77)
L sinz—g—e““—” -\/—l_ sin B e~¥ cos2% e~ilaty) ]

It can be verified that it is a unitary matrix.

We have defined earlier the two types of vectors-—polar and axial.
Both have the same transformation properties under pure rotations
but a polar vector undergoes achang: of sign under inversion whereas
an axial vector is invariant under inversion. The same definition is
taken over for polar and axial vector cperators. Thus, with U; deno-
ting the inversion operator, we have

) —YV for a pelarvector operator,
Ut vu,= { _ . (6.78)
4V for an axial vector operator.
A polar vector (operator) belongs to the representation DY--) whereas
an axial vector (operator) belongs to D™ ™) of O(3). Among the
examples mentioned above in this subsection, the operators for position,
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linear momentum and electric dipole moment are polar vector opera-
tors while the angular momentum operator (orbital, spin or isotopic
spin) and magnetic dipole moment operator are axial vector operators.

6.5.3 Tensor and irreducible temsor operators. If u and v are
two vectors, then it is known from elementary tensor algebra that the
nine quantities wnv, (wherem, g=—1, 0, 1)constitute the components
of a tensor of rank two and transform under rotations according to

+1
R(a, By y) tmVg=ty’ vq' = S Ut Do (2, B, ) D1 (2, 8, ).
n [=—1

. (6.79)
Similarly, the nine operators U,V g4, where U and V are vector opera-
tors, are said to be the components of the tensor operator UV of rank

two if the transformed components
Un' Vi =Ur' Un V, U (6.80)
can be expressed in terms of UV, as in (6.79). The tensor operator
UV isthe Kronecker or direct product of the vector operatorsUand V.

It is clear that the nine components of the tensor UV generate a
nine-dimensional representation DM @ D of SO(3). This represen-
tation can be reduced to the form D® @ DM @ DM, 1t follows that it
1s possible to construct suitable linear combinations of the nine
components of UV such that one of these is invariant under all rota-
tions, three of them generate D™ and the remairing five combinations
generate D®. The invariant linear combination is obviously the trace
of the matrix!® UV which is

1
TA=U.V.+ UV, 4-U-V,= > (=IUL V. (6.81)
m=—1
T, is therefore a scalar operator which generates the representation
D |t is clearly equal to U-V, the scalar product of the two vector
operators U and V.

The three linear combinations which generate D® can be seen
to be the components of the vector product T =Ux V. This has the
cartesian components
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