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To MADHUBALA 
and MANJARI 

That is infinite, this is infinite; from that infinity 

emanates this infinity. Taking away this infinity 

from that infinity, infinity still remains behind. 

Ishavasya Upanishad 





Preface to the Third E.dition 

Several small changes and modifications have been made in 
bringing out this edition. These have been prompted by the feedback 
received from students during my courses and by the suggestions 
received from several teachers. 

It has been found that determination of the character tables even 
of simple groups is a hurdle most students find difficult to cross. 
Therefore Chapter 3 of this edition contains a now-chart explaining 
step by step the method of determining the character table of a group. 
along with a parallel-running example illustrating the procedure in 
full details. An Appendix on mappings anc functions has also been 
added': Temptation to add material of advanced nature has been 
resisted. ' 

Thanks are due to several readers for helpful suggestions. 

Simla, March 1982 A.W. Joshi 



Preface to the Second E.dition 

It gives me great pleasure to bring out this second edition. It was 
very gratifying to see that the first edition of this work was generally 
liked by physicists. I have continued to give courses on group 
theory during this period and the response from students has been 
very encouraging. 

Many little changes have been made here and there in this 
edition in an attempt to improve the treatment and presentation. 
Sections I. I, 1.2, 1.6, 2.4, 4.1 and 4.2 have been considerably 
rewritten. A section on Lorentz group has been added in Chapter 4. 

I am grateful to Dr. R. Vasudevan, now in the Department of 
Mathematics, Regional Engineering College, Thiruchirapalli, for useful 
discussions clarifying m:lIly mathematical subtleties. to Dr. Bipin 
Kumar Agarwal, Department of Physics. University of Allahabad, 
and to Dr. Tulsi Dass, Department of Physics, Indian Institute of 
Technology, Kanpur, for frvitful correspondence. I am thankful to 
a number of reviewers and readers who took great pains to go 
through the first edition and made suggestions for its improvement. 

A.W. JOSHI 

Meerut, October 1976 



Preface to the First E.dition 

One main reason has prompted me to write this book-there is 
hardly any self-contained book at present on group theory for physicists 
at an introductory level. It is my own experience that in my student 
days, I had to refer to over half a dozen books to obtain a rudimentary 
knowledge of group theory and representation theory. At the 
introductory level , it is desirable that a beginner should be able to get 
most (preferably all) of the relevant material in a single book which 
can then serve as a textbook for a course on group theory for the 
graduate student in physics. It is with this aim that i have tried to 
collect diverse material such as vector spaces, Hilbert spaces, operators. 
direct product of matrices , topological groups, connectedness and 
compactness. etc. These are pure mathematical topics and a physics 
student would invariably have to go to the mathematics department 
to master these concepts . 

Having included such relevant topics which are sine qua non for 
understanding every step in the applications of group theory in physics 
in general, some of the most itnportant and illustrative applications in 
quantum mechanics, atomi..: physics and solid state physics have been 
taken up. For example. the general applications in quantum mechanics 
include symmetry and degeneracy, good quantum numbers, matrix 
element theorem, level splitting and selection rules, dynamical symmetry, 
time-reversal symmf!try, etc. In atomic physics, the applications of 
group theory to selection rules, Zeeman effect, addition of angular 
momenta, irreducible tensor operators and the Wigner-Eckart theorem 
have been treated. The crystal field splitting of atomic leveis, Brillouin 
zones and the electronic structure of crystals are discussed as exemplary 
applications in solid state physics. 

It has been one of my major aims to keep the book at an introductory 
level. I have often sacrificed rigour in favour of c:arity. Attempt 
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has been made to make sure that the student grasps the fund amenta l 
principles throughly at every stage of his progress. Havin g grasped 
these, the student is left to himself to develop his knowledge in any 
desired direction. For example, Chapter 4 on continuous groups pro­
vides, 1 presume, a fairly sound base for elementary particle physics. But 
only the basic principles of SU(2) and SU(3) are discu~sed and I have 
stopped as soon a~ we really approach elementary particle physics. 

Although a few special topics have been dealt with in the ' appen­
dices , I am aware that it large number of applications of group theory 
are still left out. One could think of the role of symmetry in molecular 
vibrations . various physical properties of crystals, crystal field theory, 
lattice dynamics, higher symmetry schemes for ~lementary particles, 
and numerous other applications. However, I believe, only a specialist 
is likely to refer to these topics; the purpose of the beginner should 
be welI served by this book in its present form. 

At present, very few Indian universities have courses in group 
theory for M.Sc. (physics) students . [t is my sincere hope that the 
easy availability of an elementary book such as this would accelerate 
the process of inclusion of group theory in the M. Sc. (physics) syllabi 
by 'more and more universities. While giving courses based on the 
material of this book for the last three years, [have tried to appreciate 
the difficulties of the students and have modified the presentation of the 
material accordingly to remove the obstacles. I hope this book will 
be equally useful to teachers and students. 

A large number of problems has been provided at the end of every 
chapter. These serve a twofold purpose. Firstly, they enable the 

. student to test his understanding, providing at the same time a better 
and firm grasp of the principles involved. Secondly, some of the 
problems can also be looked upon as extensions of the material treated 
in the respective chapters. The results of such problems have quite 
often been used in succeeding chapters. 

I am thankful to the referees of this book for making valuable 
suggestions ' for improving the manuscript. I am very grateful to 
Mr. Sudarshan Kumar Bahl for help in proofreading. I shall be glad 
to receive any comments and suggestions from the readers. 

A.W. JOSHI 

Meerut, August 1973 
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CHAPTER 1 

Abstract Group Theory 

The concept of groups had its origin more than 150 years ago, 
in the beginning of the nineteenth century. The early development 
of the theory of groups was due to the famous mathematicians Gauss. 
Cauchy, Abel , Hamilton, Galois, Sylvester, Cayley, and many others.l 
However, till the advent of modern quantum mechanics in 1925, it 
did not find much use in physics. The advantages of group theory 
in physics were soon recognized and the new tooi was put to use in the 
calculations of the atomic structures and spectra by, to name only 
a few, H.A. Bethe, B.P. Wigner and others. Group theory has now be­
come indispensable in most branches of physics and physical chemistry. 

Although a mathematician is generally more interested in the 
formal 'development of abstract group theory, a physicist finds the 
representation theory of groups of direct use in quantum physics and 
other branches of physics. In this chapter, we shall discuss only those 
aspects of abstract group theory whi~h will be needed for under­
standing the representation theory; this will be taken up in Chapter 3 
for finite groups and in Chapter 4 for continuous groups. 

1.1 What is a Group? 

Consider the set lofall integer:s,l= { ... , -3, -2, -1,0,1,2, ... }, 
and consider the iollowing four properties of this set: (a) The sum of . 
any two elements of the set I is again an integer and henee belongs 

lBell (i965). 
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to the set 1. (b) The set contains an element 0, called zero, which has 
the property that for any element mEl, m + O=O+m=m. (c) For 
every element m of I, there exists a unique element n also belonging to 
I, suchthat m+n=n+m=O; evidentIY,n=-m. (d) Ifm,nandpare 
any three elements of I, m+(n+p)=(m+n)+p ; this means that the law 
of addition is associative. 

Consider another set, the set U(n) of all unitary matrices of order 
n, where n is a fixed finite positive integer. This set has the following 
four properties: (a) If U and V are any two unitary matrices of order 
n, their product UV is again a unitary matrix of order n and hence 
belongs to the set U(n). (b) The set contains the unit matrix / which 
has the property UI=/U=U for every UE U(n). (c) If U is an 
element of U(n), there exists a unique element V also in U(n) such 
that UV= VU=l. (d) If U, V and Ware any three elements of the 
set, U(VW)=(UV)w. 

It will be noticed that the. four properties satisfied by the above 
two sets are very much similar in nature. In fact, these properties 
define a group and both the sets discussed above are examples of a 
group. 

Abstractly, a group is a set of distinct elements, G={E, A. B, C, 
D, ... }, endowed with a law of compositIOn (such as addition, 
multiplication, matrix multiplication, etc.), such that the following 
properties are satisfied: 

(a) The composition of any two elements A and B of G under the 
given law results in an' element which also belongs to G. Thus, 

A 0 BEG, BoA E G, (1.1) 
where we have denoted the composition of two elements of G by the 
symbol o. Symbolically, 

A 0 BEG \f A, BEG. 
This property is known as the closure property of the group and the 
set is said to be closed under the given law of comQosition. 

(b) There exists an identity element EEG such that for all AEG, 
Eo A=A 0 E=A. (1.2) 

. Symbolically, 
3EE G3 EoA=AoE=A \f A E G. 

E is known as the identity element of G. 
(c) For any element AEG, there exists a unique element BEG 

such that 
AoB=BoA=E. (1.3) 

Symbolically, 
\f A E G 3 BEG 3 A 0 B = BoA ==E. 
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B is called the inverse of A, and vice versa. 
(d) The law of compositiop. of the group elements is associative, 

i.e. , for any A, B, CEG, ' 
A 0 (B 0 C)=(A 0 B) 0 C. (1.4) 

Symbolically, 
A 0 (B 0 C)= (A 0 B) 0 C 'V- A , B, C E G. 

The number of elements in a group is called its order . . A group . 
containing a finite number of .elements is called a finite group; a 
group containing an infinite number of elements is called an infinite 
group. An infinite group may further be either discrete or continuous: 
if the number of the elements in a group is denumerably infinite 
(such as the number of all integers), the group is discrete; if the 
number of the elements in a group is nondenumerably infinite (such 
as the number of all real numbers) , the group is continuous. 

Some more examples of a group are : 
(i) The group of order two consisting of the real numbers 1,-1, 

with ordinary multiplication as the law of composition. 
(ii) The group of order four consisting of the complex nll1!lbers 

1, i, -1, -i (where i 2=-I), under multiplication. . 
(iii) The discrete infinite group of all real integers discussed above. 

The law of composition is addition and the identity element is O. 
(iv) The set of all real numbers under addition. This is a 

continuous group with 0 as the identity element. The inverse of a 
number b is its negative -b. 

(v) The set of all positive (zero excluded) real numbers under 
multiplication. The identity element is 1 and the inverse of x is its 
reciprocalljx . 

. (vi) The single point set containing just the unity is a group of 
order one under multiplication . . 

(vii) The set of the two matrices [~ ~ J' and [-~ _ ~ ] under 

matrix mUltiplication. 
(viii) The set of all nonsingular square matrices of order n (n 

a positive integer) under matrix multiplication. 
(ix) If k is a positive integer, the set (~ 1, 2, ... , k-l) of k 

integers isa group under2 addition. modulo (k). The identity element is 
zero and the inverse of an element r is k-r. 

2A number n Illodulo (k) is defined as the remainder obtained on dividing 
n by k . Thus,10 modulo (6) =4, 3 modulo (3) =0, etc. Let k=6 in Example 
(ix) ; then 3+4=1, 5+1=0, etc. 
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(x) If p is a prime number greater than 1, the set (1, 2, . . . , p -':" l) 
of p-l integers is a group under muItipliCation3 modulo (p). 
The identity element is 1 and the inverse of an element r is (sp+ I)/r 
where s is the smallest positive integer which makes sp+ I an integral 
multiple of r in the ordinary sense. 

(xi) The set of all matrices of order m X n under matrix addition. 
The identity element is the null matrix of order m X n and the inverse 
of an element A is its negative - A . 

In the above examples, we come across two basic laws of 
composition- additioq and multiplication-each referring to scalars 
and matrices. When the law of composition of a group is addition , the 
inverse of an element is called the additive inverse; when it is 
multiplication, the inverse is called the multiplicative inverse. Thus, if 
x is a number, - x is its additive inverse and l/x the multiplicative 
inverse provided x :f: O. If A is a matrix,-A is its additive inverse and 
A-I the mUltiplicative inverse provided A is nonsingular. Similarly, in 
the case of a group of numbers , ° is the additive identity and I the 
mUltiplicative identity ; in the case of a group of matrices, the null 
matrix (of appropriate order) is the additive identity while the unit 
matrix (of appropriate order) is the multiplicative identity. 

Hereafter, the symbol 0 will be dropped and, for example, AB 
will be written for A 0 B. Similarly, Wf! shall often replace the word 
'composition' by 'multiplication' or 'product' of group elements. 

The product of the group elements is not necessarily commutative, 
i.e., in general, AB:f:BA. If all the elements of a group commute with 
each other, it is said to be an abelian group. Such groups have impor­
tant consequences as will be seen later. All the groups considered 
above, except the group U(n) of all unitary matrices of order nand 
the group of all nonsingular matrices of order n, are abelian groups. 

1.1.1 Group of transformations. The groups of particuinr 
interest to a physicist are the groups of transformations4 of 
physical systems. A transformation which leaves a physical system 
invariant is called a symmetry transformation of the system. Thus any 
rotation of a circle about an axis passing through its centre and per­
pendicular to the plane of the circle is a symmetry transformation for 
it. A permutation of two identical atoms III a molecule is a 
symmetry transformation for the molecule. 

3See footnote 2. In this Example, if p = 7, then 3.4=5, 2 .5=3, etc.; the 
inverse of 4 is 2, since 4.2= 1. 

'Such as rotations, reflections, permutations, translations, etc. 
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We shall now show that the set of all symmetry transformations of 
a system is a group. First we observe that if we perform two symmetry 
transformations of the system successively, the system remains 
invariant. Thus the composition of any two symmetry transformations 
of the system is again a symmetry transformation of the system, i.e. , 
the set considered is closed under the law of successive transformations. 
We can define an identity transformation which leaves the system 
unchanged; and this obviously belongs to the set. Given a symmetry 
transformation, we see that there exists an inverse transformation which 
also belongs to the set. Finally, the successive transformation )f the 
system obeys the associative law. This proves that the set consi.jered 
is a group. 

The group of aII symmetry transformations of a system is called 
the group of symmetry of the system. 

1.1.2 The group of symmetry of a square. Suppose we have 
a square cut out in . a piece of cardboard as shown in Fig. (1.1). 
Let us label the various points of the square as shown in the figure: 
the corners by a, b, c, d; the centres of the edges by e, j~ g, h; and . 
the centre of the square by o. The points marked I, 2, ... ,8 are fixed 
on the paper (they are not marked on the square). Now suppose we 

r-:;---_6:r:--__ ----" 2 
\ :f b' 

, I /. 

" I // 

" I / , I // 
5 e ______ '--'*~ _____ ~ 7 

.0', ', 
/ , 

// ! " 
// I " 

/ I '" 
·d 'h c' 

4 8 
3 

FIG URE 1.1 The axes and the planes of symmetry of a square 

rotate the square through a right angle about a line perpendicular to 
the square and passing through o. But for the labeling G, b, . ..• h. 
we would not notice any change in the square. Consider all such 
symmetry transformations of the square (such as rotating or reflecting 
it, without bending or stretching) which leave the position of 
the boundaries of the square unchanged but give a distinct labeling of 
the marked points a, b, ... , h. Before listing all such transfor­
mations, it would be proper to say .a few words about the notation we 
shall be using. 
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If a rotation through an angle 21t/n (n a positive integer) about 
some axis leaves the system invariant, the axis is known as an n%~~ld 
symmetry axis of the system and the corresponding operation is 
denoted by C". Its integral powers, which' will. also be symmetry 
transformations of the system, will be denoted by Cnk; this repre­
sents k successive operations of Cn on the system, or a rotation of 
21tk/n about the axis. A reflection in a plane will be denoted by 
m or (J with a subscript specifying the plane of reflection. The 
identity transformation will be denoted by E. . 

While enumerating all the symmetry transformations of a square, 
which are listed in Table (1. 1), we · shall use the shorthand notation 
'reflection in a line' to mean 'reflection in a plane perpendicular to the 
square passing through the line' . 

It can be seen that the operations listed in Table (1.1) exhaust 
the symmetry transformations of a square, i.e. ,- there is no other trans­
formation w~ich leaves the square in the same position and yet gives 
a distinct labeling for the points a, b . .. . , h. One may tbink of in­
version through the centre 0 ; but it can be readily verified that it is 
identical to C,2. 

cr. 

FIGURE 1.2 The cquivalance of the transformations of a square 
with those of a cartesian coordinate system 

It is interesting to note that these eight transformations correspond 
to the eight different ways in which we can choose a cartesian coordinate 
system with axes parallel. to the edges of the square. These are shown 
in Fig. (1 .2). We either consider that the coordinate system is held 
fixed while the square is transformed, which is known as tbe actil'e 
l'iewpoint, or that the square is neld fi xed while the coordinate 
system is transformed. which is known as the pafsil'c riellpoint. It 
should be noted that a transformation in the active viewpoint is 
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TABLE 1.1 SYMMETRY TRANSFORMATIONS 
OF A SQUARE 

Symbol Operation Result 

E The identity. '02 
4 d c 3 

C, A clockwise rotation through 900 about '02 
an axis normal to the square and passing 

4 c : 3 through o. 

'02 

C,2 A rotation through 1800 about the above 

4: • 3 
axis . 

C 4
3 A clockwise rotation through 

the same axis. 
2700 about '02 

4 • ; 3 

Reflection in the line 5-7. 0 mx 5 7 
a b 

6 

Reflection in the line 6-8. D my 

c d 
8 

Cu Reflection in the line 1- 3. '0 k '3 

a. Reflection in the line 2- 4. 0
2 

4 d a 
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equivalent to the inverse transformation in the passive viewpoint. 
Thus, if in the active viewpoint, we define C, as a clockwise rotation 
of the square, in the passive viewpoint, C, would mean an anticlockwise 
rotation of the coordinate system. lhis convention will be used 
throughout this book and is illustrated explicitly in Fig. (1.2). 

It can be readil¥ verified that the set of the eight transformations 
listed in Table (1.1) is a group which is the group of symmetry of a 
square. Thus, consider the operation of C4 followed by that of au on 
the square. This can be found as follows: 

D· b DaDe Db ~ =~ = =~ . 
dec b a b de 

(1.5) 

In the operator notation, we can write this as 
a uC,=111x , . (1.6) 

meaning thereby thaI the operations of all C4 and of tnx on the square 
or in fact, on any system, give the same result. 

The inverse of an operator is that operator which nullifies the 
effect of the first. Thus, consider the successive operation C,3C, on 
the square: 

Db Da' C.3C. =C. 3 _ 

dec b Db Db = E • (1. 7) 
d cdc 

The same result would be obtained if we operate by C, and C,3 
in the reverse order. Thus, by (1.3), C, is the inverse of C,3 and vice 
versa. In the operator notation, we may write this as 

(C,)-1=C43 or C4C43=C,3C4 =E. (l.8) 
It is left as an exercise to verify that each of the eight symmetry trans­
formations has an inverse which is just one of these eight transfor­
mations. 

Finally, the transformations obey the associative law. Hence 
the set of the symmetry transformations of a square is. a grouP .. This 
symmetry group of a square of order eight is denoted by C,v in crys­
tallography5. 

SThe crystallographic point groups are dealt with in Chapter 7. If instead of 
the reflections, we consider rotations through 1t about the four lines of Fig. 
(1.1). we have the group D, which is also .the symmetry group of a square and 
has the eight elements (E, C" C,2, C,3, CS7' Cu. CI 3, Cz,) where C57 

denotes a twofold rotation about the line 5-7, etc. See Chapter 7 for more 
details. 
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1.2 The Multiplication Table 

Let us consider the following operations 

C, mx=au, au C,3=lny, 

Gu uv=C,2, and so on. 

All such products of the group elements can be represented by a table, 
known as the group mult iplication table. It is shown in Table (1 .2) for 
the symmetry group of a square, C4V • Note that in a successive 
operation such as ABC . .. , the order of operation is from right to left. 
Thus, in the product C,lnx, Inx is the first operation and C, the second 
operation. The entry for C,mxwould therefore be found in Table (1.2) 
in the column corresponding to mx and the row corresponding to C,. 

TABLE 1.2 THE MULTIPLICATION TABLE 
FOR THE GROUP C4• 

SECOND ,FIRST 
OPERATION OPERATION 

E C, C,2 C,3 nix my Gu G_ 

E E C, C,2 C,3 mx my Gu u_ 
C3 • C,3 E C, C,2 0_ au mx my 

C,2 C,2 C,s E C, my mx G. Gu 

C, C, C,2 C,3 E G" a_ my mx 

II1x III .. a v my Gu E C,2 C,3 C, 
my my Gu mx Gv C,2 E C, C,s 
Gu Gu IIIx a v my C, C,3 E cz , 
Gv Gv my au mx c.a C, C,2 E 

The ordering of the rows and the columns in writing down the 
multiplication table of a group is immaterial. We have chosen a diffe­
rent ordering for the rows and for the columns:the ordering is such 
that an element in the first column (second operation) is the inverse 
of the corresponding element in the first row (first operation). If the 
multiplication table is written in this way, the principal diagonal 
contains only the identity element E. The advantage of this arrange­
ment will be clear in Section 3.7. 

1.1.1 The rearrangement theorem. It will be noticed from the 
multir!ication Table (J.:n that each element of the grour oc~urs once 
and only once in e;lch colu'mn. This is kno\\'n as the rellrra llg, 'II/c 'lIi 

" 
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theorem. The arrangement of elements in a row (column) is different 
from that in every other row (column). 

To prove this theorem, we first show that no element can occur 
more than once in a row or a column. For, suppose an element D 
occurs twice in a column corresponding to the element A. This means 
that there exist two elements, say Band C, such that 

BA=DandCA=D. 

MUltiplying from the right by A-I, we get 

B=DA-l, C=DA-I, 

showing that B=C, which is contrary to the hypothesis . that the 
group elements are distinct. The same line of argument can be used 
to show that no element can occur more than once in a row. 

The second part is now easy to prove: since no element can 
occur more than once in a row or in a column and since the number 
of places to be filled in each row or each column is equal to the 
order of the group, each element must occur once and only once in 
each row and in each column. This completes the proof. 

An important conseqhence of this theorem IS that if f is any 
function of the group elements, then 

~ f(A)= ~ f(AB), (1.9) 
AEG AEG 

where B is an element of the finite group- G and the sum runs over 
all the group elements. 

1.2.2 Generators of a finite group. It is po.;sible to generate 
all the elements of a group by starting from a certain set of elements 
which are subject to some relations. Consider the smallest set of 
elements whose powers and products generate all the elements of the 
group. The elements of this set are called the generators of the group. 
We shall restrict ourselves here to finite groups only and illustrate by 
means of two examples. 

EXAMPLE 1. We wish to generate a group starting from an element 
A subject only to the relation A"=E such that n is the smallest 
positive integer satisfying this relation. 

Since A is an element of the group, all its integral powers must 
also be in the group. Thus, we generate new elements A2, A3, . .. , of 
the group and the process stops at An=E. The bigber powers of A do 
not give us new elements because A<,+k=Ak. The desired group is thus 
(A, AZ, A3, •. 0, An-I, An==E), whose order is n . 

. , 
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EXAMPLE 2. We wish to generate a group from two elements A 
and B subject only to the relations A2=B3=(AB)2=E. 

The group must contain the elements E. A, Band B2, since A2=E 
and B3=E. But then it must also contain all the products of A. B 
and B2 among themselves. Hence we get two new elements of the 
group, AB and BA. It can be shown that A and B do not commute, 
since if they do, then from the relation (AB)2=E, we have 

E=ABAB=A2B2=B2, 
which is not true. Therefore AB and BA are distinct elements. We 
have thus generated the six elements of the group E , A, B, B2, AB, 
BA. 

It can now be shown that this set is a group, i.e., it is closed 
under multiplication. Suppose we wish to show that the product 
(AB)B=AB2 belongs to this set. From the relation (AB)2=E, we 
have (AB)-l=AB or B-IA-l=AB or AB=B-IA since A2=E. But 
from B3=E, we have B-I=B2. Hence AB=B2A. Using this. we 
find that 

(AB)B=B2AB=B2B2A=BA, 
which indeed belongs to the set. Similarly, it can be verified that 
the inverse of each element of the set also belongs to the set. Hence 
the desired group is (E, A , B , B2, AB, BA) . whose order is six. 

The generators of a group are not unique; they can be chosen in a 
variety of ways. Thus, for example, the group of order six of 
Example 2 above may be generated by anyone of the following sets 
of generators: (A, B), (A , B2), (A, AB), (B. AB), etc. See Problem 
(I. ?oS) 

1.3 Conjugate Elements and Classes 

Consider a relation such as 
A-1BA=C. (1.10) 

where A, Band C are elements of a group. When such a relation 
exists between two eiements Band C. they are said to be cOlljugate 
elemeilts. The operation is called a similarity trallsformatioll of B by 
A. It is clear that 

(I . 11) 
It is not difficult to find such relationships among the element s of. 

the group C4v' Thus, 
C4-lmxC4 = lIIy. (1 . 12 1 

showing that IIIx and Illy are conjugate to each other. 
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It is a simple exercise to show 'that if B is conjugate to C and B 
is also conjugate to D , then C and D are conjugate elements ; or 
B, C and D are all conjugate to each other. 

It immediately follows that we can split a group into sets such 
that all the elements of a set are conjugate to each other but no 
two elements belonging to different sets are conjugate to each other. 
In fact, such sets of elements are called the conjugacy classes or simply 
the classes of a group. The identity element E always constitutes 
a class by itself in any group, since, for any element A of the 
group, A-IEA=E. It is left as an exercise to show that the classes 
of C4• are 

(1.13) 

In case we are dealing with groups of transformations consisting 
of rotations, reflections and inversion of a physical system, there are 
some simple rules which allow the determination of the classes of a 
group without having to perform explicit calculations for all the ele­
ments. These are: 

(i) Rotations through angles of different . magnitudes must 
belong to different classes. Thus C, and C,2 of C,v belong to different 
classes (see Problem 1. 17). 

(ii) Rotations through an angle in the, clockwise and in the 
anticlockwise sense' about an axis belong to a class if and only if 
there exists a transformation in the group which reverses the direction 
of the axis or which changes the sense of a cartesian coordinate 
system (i.e., takes a right-handed system into a left-handed one or 
vice versa). Thus, C, and C, 3 of C,v belong to the same class because 
a reflection (such as mx or C:;u) changes the sense of the coordinate 
system. 

(iii) Rotations through the same angle about two different axes 
or reflections in two distinct planes belong to the same class if and 
only if the two axes or the two planes can be brought into each other 
by some element of the group. Thus, mx and my belong to the same 
class since the line 5-7 of Fig. (1.1) can be brought into the line 6-8 
by the application of C,; au and mx do not belong to the same class 
since there is no operation in C4V which can bring the line 1-3 into 
the line 5-7. 

These simple criteria are very useful in obtaining the classes of 
the molecular and the crystallogarphic point groups simply by 
inspection. 
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1.3.1 Multiplication of classes. We now define the product of 
two classes as~follows. Let Cj=(A 1, A 2 , • •• ,Am) and Cj=(B1 , B 2 , • •• , 

Bn) be two classes (same or distinct) of a group containing m and n 
elements, respectively. We define their product as a set containing all 
the elements obtained by taking the products of each element of Cj 
with every element of Cj. We keep each element as many times as it 
occurs in the product. Thus, 

C; Cj=(A1B1, A 1B 2 , • •• , A/Bk, . .. , AmBn). (1.14) 

We can easily show that the set C; Cj consists of complete classes. 
It would be enough to show that if an element A/Bk belongs te· the 
set C/ Cj, then any element conjugate to A/Bk also belongs L. the 
set. Consider an element conjugate to A/Bk with respect to some ele­
ment X of the group G: 

X-l(A.tBk)X=(X-lA/X) (X-IBkX) 

=ArB., say, (1.15) 
where, by the definition of a class, Ar belongs to Ci and B. belongs 
to Cj. Hence ArB. belongs to the set CiCj. 

We can then express the product of two classes of a group as 
a sum of complete classes of the group: 

C/ Cj="'L.aijk Ck, (1.16) 
k 

where ajjk are nonnegative integers giving the number of times the 
class Ck is contained in the product Ci Cj, and the sum is over all 
the classes of the group. 

1.4 Subgroups 

A set H is said to be a subgroup of a group G if H is itself a 
group under the same law of composition as that of G and jf all the 
elements of H are also in G. 

As an example, consider the four elements (E,C4 , C42, Cl) of 
C4V ' It is easy to see that this set satiGfies all the axioms defining a 
group; hence it is a subgroup of C4v' Some more examples of the 
subgroups of C4v are (E, C42, mx , my), (E, au), etc. 

Every group G has two trivial subgroups-the identity element 
and the group G itself. A subgroup H of G is called a proper sub­
group if H=i=G, i.e., if G has more elements than H. 

If we work out the classes of the two subgroups (E, C4 , C42, 

C43) and (E, C42, mx • my) , we find that in both of these groups every 
element constitutes a class by itself (see Problem J. 12). The 
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elements C, and C,J do not belong to the same class in the group 
(E, C" C£2, C43) because there is no operation in this group which 
changes the sense of the coordinate system. Similarly, mx and my 
do not belong to the same class in the group (E, C42, mx, my) because 
there is no operation in this group which can take the x axis into 
the y axis. It is therefore important to note that elements belonging 
to a class in a larger group may not belong to a class in a smaller 
subgroup. 

1.4.1 Cyclic groups. If A is an element of a group G, 
all integral powers of A such as A2, A3, ... , must also be in G. If G 
is a finite group there must exist a finite positive integer n such that 

An=E, (1.17) 

the identity element. The smallest positive (nonzero) integer satis­
fying (1.17) ;s called the order of the element A. 

The group (A, A2, A3, ... , An-E), which we have already 
discussed in Example 1 of Section 1.2.2, has the property that 
each of its elements is some power of one particular element. Such 
groups are called cyclic groups. A group generated by a single ele­
ment is a cyclic group. Clearly, cyclic groups are abelian, while the 
converse is not necessarily true. 

1.4.z1 Cosets. Consider a subgroup H=(H1=E, H2 , ••• , Hh) 
of ord~r h of a group G which is of order g. Let X be any element 
ofG. Construct all the products such as XE, XH2 , etc., and denote 
the set of these elements by6 

XH=(XE,XH2J XH3, •• • ,XHII)' (1.18) 

Now there arise two cases-X may be in the subgroup H or X may 
not be in H. If X is a member of H, the set X H must be identical 
to the group H by the definition of a group. In the set XH, we 
only have a rearrangement of the elements of H. We may denote 
this by writing 

XH=H if XEH. (1.19) 

On the other hand, if X does not belong to H, it can be shown that 
no element of the set X H belongs to H. This we do by starting 
from a contrary assumption. Thus, suppose that XHi for some 
value of i (1 S iS h) belongs to H. Now since H is a group, HI-l 
also belongs to H. Hence it follows that (XHj) Hj-l=X is in H, 

6This is the multiplication of a set by an element . We have previously 
discussed the product of two sets,in Section 1.3.1. 
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contrary to the hypothesis that X is not a member of H. This 
proves that Hand XH have no common element. We say that H 
and X H are disjoint sets and express it, in the set theoretic notation, 
by sayIng that the intersection of H and X H is the 'null set rp: 

H n (XH)=r/>. (1.20) 

The set XH is called the left coset of H in G with respect to X . 
Similarly, we can define the right coset of H in G with respect to X as 
the set of elements 

HX = (EX , H 2 X , H 3 X , .. . ,HhX), (1.21) 

which will also be disjoint 't o H if X is not in H. All the elements 
of the left coset and the right coset must of course belong to the 
bigger group G since X as well as H j belong to G. 

1.4.3 A theorem 00 subgroups. We are almost half-way through 
to prove an important theorem: If a group H of order h is a subgroup 
of a group G of order g , then g is an integral multiple of h. 

To prove this, let H=(E,H2 , H 3 , • • • ,HI!) be the subgroup of 
G. As before, form the left coset of H with respect to an element 
X EG which does not belong to H. All the elements XHj (1 ~ i <h) 
belong to G but none of them is a member of H , as already shown 
above. Thus, we have h new elements of the group G. We have so 
far generated the following 211 members of G: 

(1.22) 

If this does not exhaust the group G, then pick up an element Y 
from the remaining elements of G such that Y belongs neither to H 
nor to XH. Again, forming the left coset YH, we see by the pre­
vious argument that all the elements YH must belong to G, but that 
no element of YH can belong to H . That is, the sets H 
and ' YH are disjoint. We now prove that the sets YH and XH are 
a lso disjoint. For, if an element YHj were to be identical to an 
element, say, X Hj (l < i , j < h), then we have 

YHj=XHj, 

or Y=XHj Hj-l=XHk, say, (1.23) 

wi th I < k < h, showing that Y belongs to X H, contrary to the 
hypothesis. Thus we have a set of h new elements of G, making 
a ltogether the 3h elements ' 

H U XHU Y H 

= (E, H 2 , •• • , Hh, X, XH2 , ••• ,XHii, Y, YH2 , ••• ,YHh). (1.24) 
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If this still does not exhaust the group G, then we pick up one 
of the remaining elements of G and continue the process. Every 
time we generate h new elements, they must all belong to G and 
hence the order of G must be an integral multiple of h. 

The integer g/h is called the index of the subgroup H in G. 
If an element A of a finite group G is of order n, we have 

seen that the set (A, A2, ... , An _E) is a subgroup of G. Hence it 
follows that the order of every element of a finite group must be"an 
integral divisor of the order of the group. 

1.4.4 Normal subgroups and factor gro-ups. If the left and 
the right cosets of a subgroup H with respect to all the elements 
X E G are the same, then H is called a normal subgroup or an inva­
riant subgroup of G. This condition can be written as 

XH=HX, 

or X-IHX=Hfurall XEG. (1.25) 
We can also express this condition alternatively by requiring that 

every element of XH be equal to some element of HX, or 

XH/=HjX, ' " 
which gives 

(1.26) 
But this is just the conjugation rdation between the e ents H, 
and Hj and shows that if an element H, belongs to a normal s bgroup 
H of G, then all the elements conjugate to H, also belong " to H. 
This is often expressed by saying that a normal subgroup consists of 
complete classes of the bigger group. The converse also holds, i.e., jf 
a subgroup H consists of complete classes of G, then H is a normal 
subgroup of G (see Problem 1.26). This may therefore be taken as 
an alternative definition of a normal subgroup. For example, (E, C42, 

mx , my) is a normal subgroup of C,. whereas (E, mx ) is not. 
We now introduce another important concept, that of a factor 

group. We shall illustrate this first by an example and then follow 
with a general discussion. 

Consider a normal subgroup of C4., say K 1=(E, C42), and form 
aJl its distinct cosets with respect to various elements of C41>' There 
are four such distinct co sets including K t : 

K1=(E, Cl), K 2=(C" C,3), 
K3=(mX' my), K,=(l1u, cr.). (1.27) 

We can make this set of cosets a group if we define the product of 
two cosets as follows: The multiplication of two co sets is a set 
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obtained by multiplying each element of the first coset with every 
element of the other, repeated elements being taken only once. 7 In 
general, the product of two cosets will depend on the order of 
multiplication. Thus, we consider 

K 2 K3=(C4 , C.3) (m;x, my) 
(1.28) 

It can then be seen that the set K=(K1 , K2 , Ka, K4) is closed under 
coset multiplication defined above. Similarly, it can be verified that 
this set also satisfies all the other requirements for being a group~ 
Hence it follows that the set K, where each coset K, is considered an 
'element' on a higher plane of abstraction, is a group under the given 
law of composition. This group K is called the factor group ofG with 
respect to the normal subgroup K1 • 

Quite generally, if H is a normal subgroup of G, the set of all 
the distinct cosets of H in G, together with the coset multiplication 
defined above, is called the factor group or the quotient group of G 
with respect to H and is denoted by 

K=G/H. (1.29) 
If g is the order of G and h that of H, then it is easy to see that the 
order of K is g/h, the index of H in G. 

1.5 Direct Product of Groups 

The direct product of two groups H=(Hl=E, HI, H s,"" H,,) 
of order hand K=(K1_E, K 2 • K3, . .. , Kt ) of order k is defined as a 
group G of order g=hk consisting of elements obtained by taking 
the prod ucts of each element of H with every element of K, provided 
(i) that Hand K have no common element except the identity E and 
(ii) that each element of H commutes with every element of K. 
The direct-product group is denoted by 

G=H(f!)K=(E, EK2 , EK3,·.·, EKk, H 2Ks,"" 
H 2Kk, . .. , HhKk). (1.30) 

Clearly, both Hand K are normal subgroups of G. The subgroups of 
C.v afford a simple example of this concept. Thus, 

(E, m;x)(f!)(E, my)=(E, C42,m;x, my). (1.31) 
Taking the direct product of groups provides the simplest 

method of enlarging a group. This concept finds .its immediate use 
in the study of symmetry of physical systems such as atoms, molecules, 

7Note that this is different from the class multiplication defined earlier. 
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crystals, nuclei and elementary particles. To take an example, 
suppose G is a group of symmetry (of a system) consisting of proper 
rotations only. Suppose we later discover that the inversion, J, is 
also a symmetry transformation of the system. The inversion ope­
rator J along with the identity E constitutes a group of order 2, 
(E, J). Since the inversion commutes with all the rotations, we can 
take the direct product of G with (E, J) to obtain a bigger symmetry 
group for the system which is now G® (E, J). Although it is not 
possible in reality to tell whether we have found all the symmetries of 
a given system, it is naturally desirable to know as many of them 
as possible. We shall discuss this concept in more detail when we 
come to the applications of group theory to quantum mechanics 
in Chapters 5 and 6. 

1.6 Isomorphism aDd Homomorphism 

A group multiplication table, such as that shown in Table (1.2) 
for the group of a square, characterizes the group completely and 
contains all the information about the analytical structure of the 
group. Ail groups having similar multiplication tables have the same 
structure-they are said to be isomorphic to each other. 

Mathematically, there is an isomorphism between two groups 
G={E, A, B, C, ... } and G'={E', A', B', C', .. . }, both of the same 
order g. if there exists a one-to-one correspondence between the elements 
of G and G'. In other words. if the one-to-one correspondence is 
denoted by A_A', B_B', C-C', etc. , then a multiplication such as 
AB=C in the group G implies that A' B' = C' in the group G'. The 
multiplication table of G' can thus be obtained from that of G simply 
by replacing the elements of G by the corresponding elements of G'. 
It should be noted that the identity eloment of one group corresponds 
to the identity element of the other group under isomorphic mapping. 

As an example, it can be seen that the group {I , i, -1, -i} of 
numbers is isomorphic to the group {E, C" C,2, C,3} of rotations 
under the mapping 

l_E, i_C,,-I_C,2,-i_C,3. 

Thus, for example, the product (-1) (-i)=i in one group 
corresponds to the product Cl C,3=C, in the other. We shall come 
across many other examples of isomorphism later. 

Very often we come across a many-to-one correspondence or 
mapping from one group to another (or one set to another, in 
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genera]). We say that ther'e is a homomorphism from a group G1 to 
another G2 if to each element A in G1 there corresponds a unique 
clement 4> (A) of G2 such that 4> (AB)=4> (A) 4> (B). The mapping 4> must 
be defined for all elements of G1• The element 4> (A) of G2 is called the 
image or map of the element A of G1 under the homomorphism. 
Although each element A of G1 is mapped onto a unique element 
4>(A) of G2, several elements of G1 may be mapped onto the same 
element in G2• Thus it may happen that 4> (A)=4> (B) even jf A-::j::B. IT 
n elements of G1 are mapped onto each element of Gz, we say that 
there is an n-to-l mapping or homomorphism from G1 to Gz• It is 
evident that if n= l, the mapping reduces to isomorphism. 

Let us develop a slightly different notation to make the concepts 
more clear. Let G={E, A, B, C, ... } be a group of order g and let 
G' = {E1• E2, ••• , En, AI' Az, •.• , An, •.. } be a group of order 1Ig 

(note that only one element, say E1, is the identity of G'). Suppose 
that it is possible to split the group G' into g sets (E,), (A,), 
etc., each containing n elements such that the elements of G' can be 
mapped onto the elements of G according to the scheme 

E1, E2, ••• , En-E; 
AI' Az, •.• , An~ A; etc. (1. 32) 

Then the group G' is said to be homomorphic to G if the mapping is 
such that the product 

(1. 33) 
in G' implies AB = C in G, and vice versa, where C is the image in G 
of the elements Ch Cl ••.• Cn of G'. We say that there is an n-to-I 
homomorphism or mapping from G' to G. 

Again the subgroups of C,'1 provide a simple example of 
homomorphism. Thus, the group (E, C,2, m;x, my) is hop:lOmorphic to 
the group (E, m(t) with the following two-ta-one mapping: 

(1.34) 

1.6.1 The set (E,) is a normal subgroup of G'. It can be shown; 
quite generally that the set (E,) of G', whose elements E1 , Es, ... , E,. 
are mapped onto the identity element E-of G, is a normal subgroup 
of G'. To prove this, we first show that the set (E,) is a group. In the 
group G, we have EE=E; therefore, by the definition of homomorphism,,; 
the product of any two elements E, and EJ of G' must belong to 
the same set (E,). Thus, the set (E,) is closed under multiplication. 
Now we must show that the identity element, which we denote by 
/;. , for a moment, belongs to the set (E,). Suppose E' belongs to 
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some other set of G', say, E' E (AI); then for any element B,. E G', 
we must have E'B,.=B". ' By homomorphism, we must then have 
AB=B in G, which is possible only if A=E, i.e., only if E' E (E/). 
It is now almost trivial to show that if Ej E (E,), then Erl also 
belongs to the set (EI). Thus we have proved that (EI) is a group. 

To prove the second , part, that (EI) is a normal subgroup of 
G', we consider its left and right co sets with any other element, say 
A, ,E G', i.e., we consider Aj(E)) and (Ej)A j. Because EA=AE=A 
in G, any product element such as EjAI or AjEj of G' must belong 
to the set (Aj). Moreover, the products of AI with all the n elements 
EJ of the set (Ej) ~xhaust tre set (AI). To put it briefly, evcry element 
of (AI) must occur once ahd only once in the product AI (Ej); the 
same will clearly be true for (Ej) A j • Thus, we have 

J AI (Ej)=(Aj), 

I (Ej) Aj=(A j ), (1. 35) 

showing that (EI) is a normal subgroup of G'. 
The set (E,) of G' which is mapped onto E of G is called the kernel 

,of homomorphism. The above theorem can therefore be stated briefly 
by saying that the kernel of homomorphism from G' to G is a normal 
subgroup of G' . 

The identity element furnishes a trivial example of homomorphism. 
There is a homomorphism from any group G onto the group ~of 
order one containing only the identity element, which, in turn, ~ a 
normal subgroup of any group. 

1.7 Permutation Groups 

These groups /are of considerable importance in the quantum 
mechanics of identical particles. Consider a system of n identical 
objects. If we interchange any two or more of these objects, the 
resulting configuration is indistinguishable from the original one. 
We can consider each interchange as a transformation of the system 
and then all such possible transformations form a group under which 
the system is.invariant. Since there are altogether n! permutations on 
II objects, the group has order n!. It is known as the permutation 
group of n objects or the symmetric group of degree n and is usually 
denoted by S".. 

Taking a specific example of three identical objects, we see that 
there are six. possible ~rmutations which may be denoted as: 
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E_(1 2 n· A=(; 2 D· B=G 2 ~). - 1 2 3 1 

;). 
(1.36) 

C=G 
2 ~), D=G 

2 ~). F-C 2 
1 2 - I 3 

The labels 1, 2 and 3 refer to the positions of the three objects rather 
than to the objects themselves.s The system itself has six possible 
'states' which may be denoted by 

Ih =(1 2 3), 1)12=(2 3 1), 1)13=(3 1 2) •. 
(1.37) 

1)1,=(2 3), 1)15=(3 2 I), tjI.=(1 3 2). 
The six operators of (1. 36) tl-: · n act on any of the above six states 
and their operations are to be .nterpreted as follows. The operation 
of A, for example, on any state tjI/ means that the object in position 
2 is to be put in position I, that in position 3 to be put in position 2, 
and that in position 1 to be brought to position 3. Thus, 

Al)ll=G ~ i) (I 2 3)=(2 3 1)=tjl2; (1. 38a) 

Ctjl2=G 2 . D (2 3 1)=(3 2 1 )=tjl6' (1.38b) 

It can be readily shown that the set of the six permutations of 
(1 . 36) is a group. The successive operation of two permutations OD 

a state can be easily worked out. Thus,operatingon (1. 38b) from the 
left. say. by A, we find -

A (Cl)IlI>=G ; n (.3 2 )=(2 1 3)=~.. (1.39) 

But we also have . 

F~2=C ; D (2 3 1)=(2 1 3)=1)1,. (1.40) 

Thus, we have 
ACI)I2=FI)I.. (1.41) 

It will be seen that if we start from any other state, the result is the 
same, i.e., 

ACtjI,=FI)I/, l~i~6. (1.42) 
Therefore. in the operator. notation, we can write 

AC=F. (1.43) 
It is left as an, exercise in Problem (1.19) to work out the mul­

tiplication table of Ss ' 

lin quantum mechanics it is futile to try to· label identical particles! 
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Coming back to the general case of n identical objects, we see, 
tbaJ each permutation of these objects can be expressed as the 
succelssive interchange or transposition of two objects taken at a 
time. We define a transposition (mk) on n identical objects as 
the operation in which the objects in the positions m and k are to 
be interchanged leaving all the other objects where they are. It 
can then be verified that the symmetric group Sn of degree n (n 
finite) can be generated by the n-l transpositions (12), (13), ... , (In). 

As an example, a set of generators of Sa are the two transpo­
sitions (12) and (13). All the elements of S~ can be written as 
suitable products of these generators. Thus, B=(13)(12), F=(13) 
(12)(13), C=(12), etc., where, as per the convention, the order, of 
operation is from right to left. 

If a permutation consists of an even number of transpositions, 
it is called an even permutation; if it consists of an odd number of 
transpositions, it is called an odd permutation. Thus, the operators 
E, A an~ B of (1.36) are even permutations, while C, D and Fare 
odd pernhltations. 

The Iproduct of two even or of two odd permutations is an 
even permutation, whereas the product of an even permutation with 
an odd permutation is an odd permutation. It then immediately 
follo,,"s that the set of all even permutations among the group S,. 
is a subgroup,8 This is known as the alternating group of degree nand 
is usually denoted by A". Its order is clearly n !/2. Thus, the 
alternating group of degree 3 is As=(E, A, B), where the elements 
have been defined in (1.36). 

Some more discussion of the permutation group and its classes is 
given in Section 6.1.3. 

U Distinct Groups of a GiYeD Order 

We have already mentioned that isomorphic groups have 
identical analytical structures. A number of isomorphic groups 
may stand for altogether different physical situations, but it is 
luf6cient to study only one of them mathematically. The elements 
of a number of isomorphic groups may be matrices or permutations 
or coordinate transformations; it suffices to study a group which is 
isomorphic to all of these and its ' elements need not have any 

IA similar result does not hold for the set of aU odd perml.tations. Why? 
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'meaning' and may be treated in the abstract sense. Notice that 
the whole theory is based on the four fundamental group axioms 
which are quite independent of any particular interpretation given 
to the group elements. This part of the theory is therefore called 
abstract group theory. We may 'put in' any interpretation for the 
group elements demanded by the physical situation at hand and 
'take out' the corresponding results. 

It is therefore desirable to enumerate the distinct (nonisomorphic) 
groups of a given order ". It is particularly easy to do so for 
small values of n. We list below the possible structures of groups 
of orders upto n=6. 

(i) n = l. There is only one distinct structure: a group having 
only the identity element E. 

(ii) n=2. Again, there is only one distinct structure: a group 
(E, tf), where, because the group is of order two, At must equal E. 

, Any, group of order 2 must be isomorphic to (E, A). Examples are 
(E, mx), (E, au), (1,- 1), etc. 

(iii) n=3. This case also has only one structure: a group 
generated by an element A of order 3, i.e., (A, AI, AS=E.). 

(iv) n=4. This is the lowest order for which there are two non­
isomorphic groups. If we denote the group by (E, A, B, C), then 
the two possible structures are discussed below. 

As discussed at the end of Section 1.4.3, the elements A, B 
and C can be of order 2 or 4. If anyone element, say A, is of 
order 4, it follows that the remaining three elements must be equal 
to the powers of A and we get the structure 

(1.44) 

This gives us the cyclic group of order 4. (A, AI, AI, A'=E). 
In the second case, when no element is of order 4, it follows 

that all the elements (excluding the identity) are of order 2; henc:o 
A2=B2=CI=E. (1.45) 

The result of Problem (1.11) then shows that the group must be 
abelian. Now consider the produc,t AB; the two possibilities arc 
AB=£ and AB=C. ~ut AB-E implies that B is the inverse of 
A, wliereas, from (t. 45). we see that A is its own inverse. In 
other words, AB=E 9$uld imply B=A; therefore the only possibility 
is AB¢:~. 

The two nonisomorphic structu~s are then 
(a) a ,?yclic group of order 4, (A, AI, AS, A'=E); 
(b) a' noncyclic abelian IrouP o( o!der ~ (E, A, B; C) with 
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the structure A2=B2=C2=E, 'ABd:C, BC=A, CA=B. This is the 
lowest order noncyclic group. 

Any group of order 4 must be isomorphic to one of these two 
groups. 

(v) n=5. Only one distinct structure is possible in this case: 
the cyclic group of order 5, (A, At, A3, A', AS=E). 

(vi) n=6. There are again two distinct (nonisomorphic) 
groups. We shall prove only a part of this statement to illustrate 
the argument involved. 

Let us denote the group by (E, A, B, C, D, F) . As before, we 
note that the orders of all the elements except E must be 2, 3 or 6. 
If the order of anyone elements is 6, it follow that we have a cyclic 
group of order 6, (A, A2, AS, A', AS, A6=E). Therefore, to find the 
second possible structure we exclude this case. 

Now we shall show that not all the elements A, B, C, D and 
F can be of order 2. For if they are, then by Problem (1.11), the 
group is abelian. Then consider any two elements, say A and B 
with A2=Bz=E, and let AB=BA=C. It is clear that the set 
(E, A, B, C) of four elements is a subgroup of order 4. But this 
is not possible, because it violates the fundamental theorem on 
subgroups that the order of a subgroup must be an integral divisor 
of the order of the group. Hence we conclude that at least one 
element is of order 3. 

The remaining part of the proof is left to the reader. The two 
resulting structures are: 

(a) a cyclic group (A, A2, AS, A', AS, A6= E) ; 
(b) a noncyclic group (E, A, B, C, D, F) which is also nonabelian 

and has the structure A3=B3= E, C2=D2=P=E, B=A·, 
AC=F, CA=D, BC=D, etc. This is the lowest order nonabelian 
group and is isomorphic to S3' 

It is not easy, although possible in principle, to go on in this 
way to higher values of n. The number of nonisomorphic groups 
would increase, in general, with increasing n. However, two comments 
are worthy of note: 

(i) For every finite value of n, there is always a cyclic group 
generated by an element of order n, i. e., (A , A2, A3, . .. , Ah=E). 

(li) If the order n of a group is a prime number, there is only 
one possible structure, i . e., the cyclic group of order n. 

We conclude this chapter with one solved example. 
I 

EXAMPLE. Prove that a set of a group G is a system of generators of 
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G if and only if no proper su bgroup of G exists which contains all 
the elements of the set S. 

Choose a subset of the group G such that S is a system of 
generators of G. To begin with, let us assume that there exists a 
proper subgroup H of G such that SC.HC.C. ~ illce H is a group · 
and S is contained in H , the ·powers and products of the elements of 
S give dements belonging to the group H alone, not G, which 
contradicts the assumption that S is a system of generators. of G. 
Hence, if S is a system of generators of G, lhere ex ists no proper 
subgroup of G which contains S. 

Now, assume that there exists no proper subgroup of G which 
contains S. Let us generate a group by taking all powers and products 
of the elements of S. Suppose this gives rise to the group K; evidently, 
KC. G. But, by assumption , G contains no proper subgroup which 
contains S. Hence it follows that K=G, showing that S is a: system of 
generators of G. Thus if no proper subgroup of G exists which contains 
S, then S is a system of generators of G. 

The desired result follows immediately on combining the above 
two results. 

PROBLEMS ON CHAPTER 1 

(1 .1) Show that the following sets are groups under the given laws of com-
position and classify them according to their properties: 

(i) the set of all rational numberslO under addition ; 
(ii) the set of all nonzero rational numbers under scalar multiplication; 

(iii) the set of all complex numbers under addition; 
fiv) the set of all nonzero complex numbers under scalar multiplication ; 
(v) tho set of the eight matrices 

{[I 0] [ 0 I] [-1 OJ [0 -1] [I 0] [-10] [ 0-1] 
o 1 . -1 O. 0-1. 1 O. ° -1. ° 1. -1 o· 

under matrix multiplication ; 
[~ ~]} 

(vi) the set of all unitary matrices of order" under matrix multiplication; 
(vii) the set of all even integers under addition; 

(viii) the set of all complex numbers of unit magnitude under scalar multipli­
cation. 

(1 .2) Show that the following sets are not groups under the given laws of' 
composition. Which of the group axioms do they fail to satisfy? 

(i) The set of all real numbers under multiplication; 

lOA rational number is one which can be expressed as the ratio of two 
integers, p/q. A real number which cannot be expressed as the ratio of two 
integers (such as ";2) is called an irrational number. 
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(ii) the set of all nonnegative real numbers under addition; 
(iii) the set of all odd integers under (a) mult iplication, (b) addition; 
(iv) the set (1,2, ... , p-1) of p-1 integers under multiplication modulo (p) 

where p is not a prime number. 
(l .3) (a) Do the three matrices 

E=[l 0 0 OJ' A=[O 0 0 1J' B=[O 0 1 OJ o 1 0 0 1 000 000 1 
0010 0100 1000 
000 1 001 0 0 1 0 0 

form a group (under matrix multiplication)? Add a minimum number of 
matrices ~o this set to make it a group. Find these necessary additional matrices 

and write down the multiplication tablo and classes. Is tbis aroup isomorphic to 
(E, C" C,2, C,3) or to (E, C,2, m~, "'v).pr to both? 

(b) To tbD group obtained in the above problem, one more matrix i, 
added: 

[H! n 
1 0 0 0-

Again, add to tbis set of matrices a minimum number of matrices to make it a 
group. Show that the resulting group has order eight and that it is isomorphic 
to C, •. (This fact will be used in Section (3.9) 

(1.4) Show that the n lI-th roots of unity, i.e., exp (ihkln ) for ] ~k <n, 
form a cyclic group of order 11 under ~lar multiplication. Show that if m is aD 
integral divisor of n, then the said aroup has a subaroup of order m' 

(1.5) Construct the group multiplication tables for the groups of 
Examplo (ix) of Section 1.1 for k-4 and 5, and for those of Example (x) for 
p-5llnd 7. 

(1.6) Write down the multiplication table for the group of the eight matrices 
of Prob~em 1.1 (v). Obtain the classes and all the subgroups, Which of 
them arc normal subgroups? Show that tbis group is isomorphic to the group 
C, •. treated in this j:baptor by finding a suitable one-to-one correspondence. 

(1.7) Generate the matrix group two of whose clements arc 

[_~ ~] and [~ ~l 
Show that the group ~ of order 8 and bas 5 classes, but is not isomorphic to 
C, .. (Hint: Sbow t~t t~ matrix group ~erated here has six dements of 
order 4 whereas Ct. lias only two such elements. The multiplication tables caD 

tberclorc not be identicat.) (This shows that lwo groups 0/ 1M MIIM ord" /un..,.. 
lite MImI! number 0/ c1aues are ltOl neceuorily Iwmorphic.) 

(1.8) Obtain the prodUcts of the various classes of the aroup C,. and 
express them as su,ms of c1a5S0S in accordance with Eq. (1,16). 

(1.9) Generate a aroup from two olements A and B subject only to tbe 
rolatiODS AI_Bi_(AB)z.,.E. where k is a finite integer greater than 1, and find 
out its orde~. (Sqch groups arc known as the diltedral groups and arc denoted 
by D •• ) . \. \ 
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(1.10) What are the generators of the groups C,,, and Sa? What are the 
gene(ators of the matrix group of Problem 1.1 (v)? 

(1.11) Show that a group in which each element except the identity is of 
order 2 is abelian. 

(1.12) Show that an element of a group G constitutes a class by itself if and 
only ifit commutes with aU the elements of G. Hence show that in an abelian 
group every element is a class. f 

(1.13) Let H be a subgroup of a group G and let S be an arbitrary su~t 
ofG. 

(i) Let C (,)" ; H) be the set of elements of H each of which commutes with 
overy element of S. i.e., 

C(S; H)=(X e HI XA=AX ¥ A e S). 

Show that C (S ; H) is a group. (This group is known as -the centralizer of S 
in H.) 

(ii) Let N(S; H) be the set of elements of H such that for all X e H. X-I 
SX=S, i.e .• 

N(S ; H)=(X e H I X-I SX=S). 

Show that N(S ; H) is a group. (This group is known as the normalizer of 
S in H). 

(1.14) Show that the group generated by two commuting elements A and B 
such that A2=-B3=E is cyclic. What is its order? 

(1.15) Let H be a subgroup of G and let XH be a coset of H which is 
disjoint to H. Let Y be an element of G belonging neither to ,H nor to XH. 
Show that the set YXH need not be disjoint to both Hand XH. (Hint: Show 
that if YXH were disjoint to both Hand XH. then in the proof of the theorem 
in Section 1.4.3, we would arrive at the erroneous result that the integer 
g/h must be an integral power of 2.) 

(I.16) Show that every subgroup of index 2 is a normal subgroup . . 
(1.11) Show that all the elements belonging to a class of a group have the 

same order. Show, by giving a contrary ex~mple, that the converse is not 
necessarily true. 

(I .18) Let c, be a class of a group and let Co· be the set of elements which 
are the inverses of those of C,. Show that C,· is also a class. (The class C,· is 
usually called the inverse of the class C,.) 

(1.19) Construct the multiplication table of the symmetric group Sa and 
obtain its classes. 

(1.20) Show that the symmetric group S,. of degree n is homomorphic to 
the symmetric group S. of degreo 2. 

(1.21) Construct the symmetry group of an equilateral triangle (tnls group 
is denoted by C8tl in crystallography). Write down its multiplication table, 
classes. subgroups and normal subgroups. Show that Ca" is isomorphic to Sa. 

(1.22) Construct the alternating group of degree 4, A,. Write down its 
multiplication table and obtain its classes.ll 

(1.23) If G-H ® K, show that~ 
(i) both Hand K are normal subgroups of G; 

(ii) the factor group GrH il isomorphic to K; 

lISco Falicov (1967), p.14. 
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(iii) G is homomorphic to both Hand K; 
(iv) the number of classes in G is equal to the product o f the numbers of c1alses 

inHandK. 
(1.24) Show that the group C.., is homomorphic to the group (1, -I) 

undor multiplication. Also show that this 4-to-l homomorphic mapping can be 
established in three distinct ways. 

(1.25) Given that A2=B3=(AB)2=E, . generate groups starting from the ele­
ments (i) (A. AB), (ii) (B2. BA). Show that in both the cases, you get the same 
group as that obtained in Example 2 of Section 1.2.2. 

0.26) If a subgroup H of a bigger group G consists of complete c1asres of 
G, show that H is a normal subgroup of G, that is, the left and tho right 
cosets of H with respect to any element of G are the same. 

0.27) Consider the symmetric group S, of degree 4 with generators (12), 

(13) and (14). In the notation of the text, thismeans that(12)=(; i ~ !). etc. 

(a) Express the two permutations 

(I 2 3 4) (I 2 3 4) 
A= 4 3 2 1 and B= 3 1 4 2 

.as products of the generators. 
(b) What is the order of each of the two elements A and B? Find the 

number of transpositions in each of these elements. 
(c) Obtain both the products AB and BA of these two elements. 
(d) Obtain the invorse of each of the two elements. 
(1.28) Find the subgroup of the symmetric group S, which leaves the 

polynomial x1x2+x3+x, invariant. (Such a group is called the group of the 
given polynomial.) . 

(1.29) Find the group of the polynomial X1Xz+XaX, and verify that it 
contains as a subgroup the group obtained in Problem 0 . 28). 

(1.30) Prove that the group of all positive numbers under multiplication is 
isomorphic to tho group of all real numbers under addition. (Hint: The 
isomorphic mapping is set up by taking logarithms.) 

0.31) Let G denote a cyclic group of order 12 generated by an element A 
and lot H be a subgroup generated by the element A3. Find all the cosets of H 
in G and obtain the multiplication table for the factor group G/H. 

(I. 32) Consider the set of the following six functions: 

/1 (x)=x, II (x)=l-x, 13 (x)=x/(x-l). 

I, (x)=l/x, 15 (x)=l/<I-x), I. (x)=(x-I)/x. 

Let the operation of composition of two functions be defined as the substitution 
of a function into another (that is, 'function of a .function'). Thus for example. 

(/5fa)(x)=f5(/S (X» =/5 (x/(x-l})-= 1/(1-x/(x-l» 
= l-x!!!/2(x), 

so that/s f3=/1' etc. Show that the set is a group under this law of composi­
tion. 3how that 

(/5)-1=1 •• and (/i)-1=11 for ;=2, 3,4. 
Finally, show that the group is isomorphic to Sa or Ca... 
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(1.33) Determine the symmetry groups of a regular penta~on and a regular 
hexagon. Also find their classes. 

Blblloarapby for Chapter 1 
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Hall (1968); Hamermesh(l964); Jansen and Boon (1967); Margenau and Murphy 
(1966), Chapter 15; Meijer and Bauer (1962); Schenkman (1965); Tinkham (1964); 
Wigner (J 959). 



CHAPTER 2 

Hilbert Spaces and Operators-

It is an axiom of quantum mechanics that to every physical 
observable, there corresponds a hermitian operator and that the­
set of all eigenfunctions of a hermitian operator is a complete set. 
The Hilbert space of the operator is the set of all linear combinations 
of the eigenfunctions. Each state of the system is represented 
by a vector of the Hilbert space on which the operator acts . We then 
proceed to expand 'any' function as a linear combination of all the 
eigenfunctions. Sometimes this can be dangerous and misleading 
unless we know that the function under consideration belongs to 
the Hilbert space and the conditions under which such an expansion 
is possible. In this chapter, we shall develop the concepts of 
Hilbert spaces and operators and prepare the ground for the appli· 
cations of group theory in quantum mechanics. In most respects, 
this chapter is independent of the first one. None the less, these two 
chapters will form the basis of all the remaining chapters. 

2.1 Vector Spaces and Hilbert Spaces 

In this section, we shall introduce the idea of Hilbert spaces. 
Some of their important properties will be described in the next 
section. We are very familiar with the ordinary three·dimensional 
vector algebra. To a mathematician, however. the familiar three­
dimensional space is just a particular example of the generalized 
concept of a vector space of arbitrary dimensions This purely abs­
t ract concept of II-dimensional spaces (II a fiJllte real positive 
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integer or infini t'!j indeed becomes essential in many problems in 
modem physics and mathematics. 

Bdore we begin, it will not be out of place to define in brief 
a field. Let F be a set of elements (a, b, c, d, .•. ) and suppose that 
two binary operations are defined for the elements of F: an operation 
denoted by + (called addition) and an operation denoted by. 
(called multiplication). Then F is afield if 

(i) F is an abelian group under addition, with an identity 
element denoted by 0 and called zero, and 

(ii) the set of the nonzero elements of F also is an abelian 
group under multiplication. The identity element of this group is 
dc!noted by 1 and is called the unity. 

We shall quote only three examples of a field to which we shall 
frequently refer: -

(a) The set of all real numbers, commonly denoted by R; 
(b) The set of all complex numbers, commonly denoted by C; 
(c) The set of all rational numbers, commonly denoted by Q. 
Loosely speaking, the fields are the number systems of mathe-

matics. An example of a finite field is given in Problem 2 . 12. 
The elements of a field are called scalars. 
We shall now define a vector space and the subsequent subsections 

will be ste.ps towards defining a Hilbert space. 

2.1.1 Vector space. A set L of elements u. v. w, .. . is called 
a vector spacel over a field F if the following two conditions are 
fulfilled: 

(a) An operation of addition is defined in L. which 'we 
denote by +. such that L is an abelian · group under addition. The 
identity element of this group will be denoted by O. 

(b) Any scalar of the field F and any element of L can be 
combined by an operation called scalar multiplication to give an 
element of L such that for every u. vEL and a, bEF, we have 

a(u+,v)=au+avE L, 
(a+b)u=au+buEL, 

a(bu)=(a.b)u, 
lu=u,Ou=O. (2.1) 

Note here that 0 is an element of the field F, whereas 0 is the 'null' 
element of L. 

lThe names vector space, linear vector space and linear space are all synoni. 
mous. 
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The elements of a vector space are cal1ed vectors. The 'multi­
plication' of two elements of a vector space is not necessarily defined.2 

Henceforth, we shall not distinguish between the two zeros 0 
and O. 

Examples of a vector space are: 
(i) The familiar three-dimensional space of position vectors 

over the. field of real numbers. In the sophisticated mathematical 
language, this should now be described as 'the set of all position 
vectors together with the operations of ordinary vector addition and 
multiplication of a scalar by a vector'. 

(ii) The set of all n-tupJets of numbers such as u_(uI , U2, u3' 

••• ,Un) over a field to which the scalars Uj belong. Thus, the set of 
all n-tuplets of complex numbers is a vector space over C; the set of 
all n-tuplets of real numbers is a vector space over R; the set of all 
n-tuplets of rational numbers is a vector space ove! Q. Two 
elements u and w=(wI , W 2 , ••• , wn) of this set are said to be equal if 
and only if U/=W/ for alll< i< n. We denote this by writing U=W • 

. The addition of two vectors u and v-(vl' \'2" •• , vn) of this space and 
scalar multiplication are defined by 

(UI ' u2,· •• ,Un)+(v1, 1'2'" .,Vn)=(U1+V1, U2+1'2'" .,Un+Vn), 

C(1I1' U2,. •• ,UIl)=(CUI , CU2' ••• ,cun). 

Moreover, if llj=O for ] < i<n, we say that u=O. 

(2.2) 

Example (i) above is clearly a special case of the example at 
hand-it is the set of all triplets of real numbers. 

(iii) The set of all real numbers. 
(iv) The set of all complex numbers. 
(v) The set of all rational numbers. 
]n the last three examples above the scalars and the vectors are 

the same. If a vector space is defined over the field of re.al numbers, 
it is called a rcal vector space; a vector space defined over the field 
of complex numbers is called a complex vector space. 

2.1.2 Inner product space. A vector space L defined over a 
field F, where F refers to the field of complex numbers or of real 
Bum bers, is further called an inner product svace if its elements satisfy 
one more condition: 

(c) With every pair of elements u, vEL, there is associated 
a unique number belonging to the field F-denoted by (u, v) and 

'If the composition of two elements of a vector space is defined and also belongs 
to the space (with a few more conditions ·on the product). we have an algebra. 
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called the inner product or the scalar product of u and v-for which 
the following properties hold. 

(u, v)=(v, u)*, 

(au, bv)=a*b (u, v), (2.3) 

Cw, au+bv)=a(w, u)+b(w, v), 

where the asterisk denotes the complex conjugate. 
The linear space of all n-tuplets of complex numbers becomes 

an inner product space if we define the scalar product of two elements · 
u and v as the complex number given by 

n 
(u, v)= ~ U;*l 'i' (2.4) 

i=1 

The ordinary three-dimensional space of positIOn vectors is 
also an inner product space with the familiar rule for taking the 
scalar product of two vectors. The vector spaces mentioned as 
examples after (2.2) are all, in fact, inner product spaces with suit­
able rules for taking the inner product. 

Taking the inner product of an element with itself, we find, 
from (2.4) 

n 
(u, u)= ~ I u112, 

[=1 
(2.5) 

where II denotes the absolute magnitude of the .number enclosed. We 
introduce the notation 

IIuW = (u, u). (2.6) 

and the nonnegative square root of this real number, denoted by 
IIull, is called the norm of the vector 1I. Clearly, in the familiar lan­
guage, this corresponds to the length of a vector. It is easy to see ­
that the norm has the following properties: 

(i) [lull> 0, and IIull=O if and only if Il=O; 
(ii) IIu+vll :S:; IIull+llvll; this is the usual triangular inequality; 

(iii) lIaull=lal IIull· 
Before we go a step further and define a Hilbert space, we must 

consider what a Cauchy sequence is. 

2.1.3 Cauchy sequence. lf with each positive integer n we can 
associate a number Cn (in general, complex), then these numbers 
cI , c2' c3' ••• , Cn, ••• are said to form an infinite sequence or, simply, 
a sequence. 

A sequence cI ' cz, ... , Cn , ••• is said to converge to a number c, 
or to be convergent with the limit c, if for every real positive number 
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_, however smaU, there exists a positive (fiDite) inteaer N such that for 
every integer n>N, 

I C,,-c I < f. (2 .7) 

The number c is called the limit of the sequence. 
A sequence cl' c2•••• is said to be a Cauchy sequence if for 

ewry real posit ive number f . however small, we can find a finite 
positive integer N such that for any two integers n>N and m>N, 

I Cn-Cm I < f. (2.8) 
Examples of convergent, and therefore Cauchy, sequences are: 
til the sequence of the real numbers whose terms are 

cn= 2+S/n, i.e. , 
7, 9/2, 11 /3, 13(4, 3, 17/6, .. . , (2n'+ S)/n, . .. , with the limit 

c=2; 
(ii) I, 1/2, 1/3, .. . , l/n, ... , with the limitc=O; 

(iii) 1.9, 1.99, 1.999, 1.9999, • .. , with the limit 2.0 ; 
(iv) the sequence of the complex numbers whose terms are 

cn=(Sn+3)/4n+i (2n-8)/3n with the limit c=S/4+ i 2/3; 
The following sequences are divergent: 
(i) the sequence of numbers whose terms are cn=pn for p> 1, 

(ii) the sequence of positive integers, 1, 2, 3, 4, ... , n,... . 
Although, in the above discussion, we have defined a sequence 

with reference to numbers (real or complex), it should be clear that 
we can easily extend the idea to sequences of arbitrary entities 
provided they are all of the same nature. Thus, we may speak of a 
sequence of vectors in a two- or a three-dimensional space, a sequence 
of n-tuplets in their vector space, etc. Of course, in each case, we 
must suitably interpret the quantities Icn-ci and Icn-cml while stu­
dying their convergence. This will be illustrated with reference to a 
sequence of n-tuplets because all the other examples follow as special 
cases of this one. 

Consider a sequence of elements in the vector space of all n-tup­
lets (real Qr complex) whose terms are denoted by u(ll, U(2), ••• , u lk ), • •• , 

where 
ulkl-(U1(k), U2

Ik ), ..• , Un
lk». (2.9) 

We 'say that tbis is a Cauchy sequence if for every positive number 
E there exists a positive integer N such that for any two integers 
k>N and m>N, 

I U(k) _u lm ) I < f (2.10) 
in the sense that 

1"/kl_U/ml I < f for l::;:i::;:n. 
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Similarly, the sequence is said to converge to a limit u=(u1, Ut , ... , Un) 

if for every real positive number E, we can find a positive integer N 
such that for all integers m>N, 

I uCmJ_ul < E (2.11) 

in the sense that 

2.1.4 Hilbert space. We are now ready to define a Hilbert 
space. We shall restrict ourselves to the field of real or complex 
numbers. Consider an inner product space L. If every Cauchy sequence 
of elements belonging to L has a limit which also belongs to L, 
the space L is said to be complete. A complete inner product space 
is called a Hi/bert space. 

Examples of Hilbert spaces, as well as contrary examples, are 
easy to construct. All the inner product spaces discussed above, 
except the vector space of all n-tuplets of rational numbers 
(which includes, as a special case for n= 1, the set of all rational 
numbers), are also Hilbert spaces. The space of all rational numbers 
is not complete because we can construct a Cauchy sequence in this 
space whose limit is an irrational number, which does not belong to 
this space. For example, the sequence of the successive approxima­
tions to the square root of 2, i.e. , 1.414, 1.4142, 1.4142 1, 1.414213, .. . , 
is a Cauchy sequence whose limit '\12 does not belong to the set of 
rational numbers. A similar argument shows that the set of all n-tup­
lets of rational numbers is not a Hilbert space. 

2 .2 Coordinate Geometry and Vector Algebra in a New Notation 

In what follows, we shall treat Hilbert spaces in general. We 
shall denote a Hilbert space of n-dimensions (the dimensionality 
is defined below) by Ln. Although drawing pictures or diagrams [or the 
sake of understanding an argument sho uld- not be encouraged in 
modern pure physics and mathematics, it may be advisable to take 
some specific examples wIth n=2 or n=3 to make the ideas clear. 
Some important concepts and properties are enumerated below. 

(i) In the ordinary three-dimensional space of position vectors, 
we need a set of three axes, and any point in this space can then be 
located by means of three coordinates measured along the three axes. 
Similarly, in an II-dimensional vector space, we would need a set of 
n 'independent' vectors '1' r2,. •• , rn to 'span' the whole space. . 
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Two vectors r, and rJ of L" are said to be linearly independent of each 
other if one is not a constant mUltiple of the other, i.e. , it is impossible 
to find a scalar c such that r,=cr). In the familiar language, this means 
that r, and r) are not 'parallel'vectors. In general, m vectors of Ln are 
said to be a set of linearly independent vectors if and only if the equation 

m 
k a,rt=O (2.12) 

i=1 

is satisfied only when all the scalars QI=O for l:::;;;i:::;;;m. In other words, 
the m vectors are linearly independent if it is impossible to construct 
the null element of the space by a linear combination of the vectors 
with at least one nonzero coefficient. Or again, the set of m vectors 
is linearly independent if none of them .can be expressed as a linear 
combination of the remaining m-l vectors. A simple test for the 
linear independence of a set of vectors is to construct the determinant 
of their scalar products with each other as 

(rl' r1) (rl ' r2) ... (rl' rm) 
r= (r2' r1 ) (r2' r2) ••• (rl' rm) 

I('m: ',) ('m-'.J ... ('m. 'm) 
known as the Gram determinant. If r=o, it follows that one of the 
vectors can be expressed as a linear combination of the remaining m-l 
vectors, so that the vectors are linearly dependent; if r*o, the vectors 
are linearly independent. 

(ii) In an n-dimensional complete v~ctor space, or Hilbert space, 
Ln, a set of n linearly independent vectors is called a complete set in Ln. 
If the number of vectors chosen is less than n, they are called an incom­
plete set in Ln; clearly they are not enough to span the full space. On 
the other hand, ifmore than n vectors are chosen in L n , they form an 
overcomplete or redundant set in Ln. They cannot all be linearly 
independent and it is possible to find at least two nonvanishing scalars 
a, such that 

m 
k alrl=O, m>n. (2.13) 

i=1 

(iii) . The dimension of a vector space is the maximum number 
of linearly independent vectors in the space or the minimum number 
of vectors required to span the space. In other words, the dimension 
is the number of linearly independent vectors which are both necessary 
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and sufficient to span the full space. Thus, in the ordinary three­
dimensional space of position vectors, we can find at most three 
linearly independent vectors; three is also the minimum number of 
linearly independent vectors required to span the space. 

A set of n linearly independent vectors in an n-dimensional vector 
space is called a basis, and the vectors a re called the basis vectors. 
Clearly, the choice of the basis vectors is not unique; they can be 
chosen in an infinite number of ways. 

(iv) Any vector u in Ln can now be expanded in terms of a 
complete set of basis vectors rj, i.e., 

n 
u= l: Uiri, 

i=! 
(2.14) 

where u/ is the component of 1I along rj. We say that the space Ln 
can be fully spanned by the basis vectors. This result holds only if 
{rl} is a complete set. The scalars u/ are also called the Fourier 
coefficients of u and (2.14) is called the Fourier expansion of u. 

(v) We choose a unit for the norm of the vectors in the space 
Ln (in the familiar language, a unit for the 'length' of the vectors). 
A vector 'Of unit norm is called a unit vector or normalized vector. 
Rather than choosing the basis vectors rj of arbitrary norm, we then 
choose a basis consisting of the unit vectors e1, e2 , • •• , en in Ln. 

(vi) So far, we have not assumed any relationship among 'the 
basis vectors except their linear independence. But now, for the sake 
of convenience and to make our algebra simpler, we will choose a com­
plete set of orthogonal basis vectors , without loss of generality. In the 
ordinary three-dimensional space, this means that we choose cartesian · 
coordinate axes rather than oblique ones. If ej are the orthonormal 
basis vectors, we have 

(el' e,)=a/j, 
where ali is the Kronecker delta given by 

a. _{I ifi=j, 
,j- 0 if i=lI 

(vii) The scalar product of two vectors 
n n 

u= ~ ule/ and 
i=l 

1'= l: Vlej 
i=l 

is then easily found to be 
n 

(u, V)=(I', u)*= l: u/* 1'/. 
. i=l 

(2.15) 

(2.16) 

(2. 17a) 

(2. 17b) 
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,. 
Also II u IIt ={u, u)= E I u,I'. 

1=1 
(2.17c) 

(viii) A linear transformation in the space L~ can be defined by 
an operator T such that T acting on a vector uE L" gives a vector J', 

also belonging to Ln. The operation is denoted by 
. Tu=v. (2.18) 

When this happens, that is, when Tu E Ln for all u E Ln, the space 
L .. is said to be closed under the action of T. 

Note that tbis is the active view point of transformations dis­
cussed in Section 1.1.2. 

If the vector Til is unique for all ' u E Ln and if the inverse trans­
formation is also uniquely defined, Tis said to be a one-to-one mapping 
of the space Ln onto itself. 

We shall be mainly concerned with transformations which pre­
serve the Euclidean properties of the space L", such as the norms of 
the vectors and the scalar product of -two vectors. Rotations, reflec­
tions and inversion are obvious examples of such transformations. 

(ix) In the passive view point, we can define transformations of 
the basis vectors e, (keeping everything else fixed) resulting in a new 
set of basis vectors e/ as follows: 

n 
ei-e/=Te,= I ej Til, l~i~n, (2.19) 

}=1 

where Tjl is a scalar denoting the component of ej along ej. Trims­
formations which take one orthonormal set of basis vectors into an­
other orthonormal set are called unitary tran~formations; the operators 
associated with them are caIled unitary operators'. Hcan be seen that 
tbis definition amounts to preserving the norms and the scalar products 
of vectors, 

(x) Eq. (2.19) is in fact a set of n linear equations which can be 
written explicitly as 

T(e1,e2 , ••• ,eH)=(e1'.e2', ... , e,,') 
=(e1 , e2 ,· •• , en) r 

I 
I 
L 

(2.20) 

3 If the vectors of the space Ln are real, i.e., if Ln is defined over the field of 
real numbers, these reduce to orthogonal transformations and orthogonal 
operators, respectively. 
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The square matrix4 [T/j]=T of order n on the right hand side is called 
a representation of the operator T in the basis (ei). 

(xi) Consider a vector e;' of (2 . J 9). If we take its scalar pro­
duct with any of the original basis vectors, say ek, we get 

11 

(ek' e;')= (e,,, Tei) = (ek, ~ ej T ji), 
j=l 

or (ek' Tei)=Tki (2.21) 

by using~2.15). We call this the matrix element of the operator T 
betwee'1 the basis vectors ek and ('j. It means that if the operator T is 
applied on ej, the resulting vector has a projection Tk/ alon! the 
vector (:k' 

(xii) The scalar product of any two vectors 1I and TI' of L n , 

where u and I' are the vectors of (2 . 17a), is given by5 

(u, Tv)=(~ Ukek , T~ riei) 
k i 

=(~Ukek, ~ l'/ej Tji) 
k i,j 

= ~ Uk*ri Tji (ek, ej) 
i,j,k 

= ~ tik*I'1 Tki. 
i, k 

(2.22) 

(xiii) Since, by assumption, the transformed basis vectors c;' 
are each of unit length and orthogonal to each other, we have 

(e;', e/)=8;j. (2.23) 

It immediately follows that the matrix T has the following properties 
(see Problem 2.2): 

(2.24a) 

(2.24b) 

I det TI=1. (2. 24c) 

These are the well· known conditions for a unitary matrix. It is 

4 The matrix T;a[T;;l should not be confused with the operator T appearing on 
the left hand side of (2.20). We shall often use the same symbol for an 
operator and a matrix representing it. 

5 Although /I and v are not elements of a complete set of basis vectors and there 
is no apparent matrix for There, (/I, Tv) is called the 'matrix element' of T 
between /I and v in quantum mechanics. 
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often said that all the rows (columns) of a unitary matrix are orthogo­
nal to each other and normalized, which is just what Eqs. (2.24) tell. 
In the matrix notation, (2.24) can be written concisely as 

Tt =T-1 or TTt =Tt T=E, (2.25) 

where E is the un it matri x of order 'n and Tt denotes the hermitian 
conjugate of T. 

(xiv) The scalar product of two vectors in Ln is invariant under 
a unitary transformation: Let 1I and v be any two vectors of Ln and 
T be a unitary operator, then 

Tu 

Tv 

u 

FIGURE 2.1 The scalar product of two vectors is invariant 
under a unitary transformation 

(2.26) 

Leaving the proof of (2.26) to Problem (2.3), we show the simple 
physical interpretation of this result in a two-dimensional space. In Fig 
(2 . 1), we have shown the four vectors lI , 1', Ttl and Tr, assuming that T 
.is an anticlockwise rotation through an angle 0 about an axis normal 
to the plane of the paper. The validity of (2.26) for the particular 
case considered in this figure should be obvious. 

(xv) An important operator is the projection operator. This is 
an operator which, when it operates on a vector u E L n, gives the pro­
jection 'of u along a given basis vector. It can be written in the form 

Pj=ej (el' ), (2 .27) 
where the notation means that the scalar product is to be taken with 
the' vector on which PI operates. Thus, if u is the vector of (2 . 17a), 
then 

P/lI=ei. (ej, u) 

=u/e/ 

=the projection of u along e/. (2.28) 
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It should be noted that P, is not a unitary operator. 
If we apply the operator P, once more on the resulting vector 

u,e, of (2.28), clearly, the result is the same vector u,e/ again, i.e., 

Pi (PiU) = Pt (Uje,)=Ujej=Pt (u). (2.29) 

Since this is true for all u E L n , we can write in the operator notation, 
Pi2=Pt, (2.30) 

which is· an important property of projection operators. In fact, any 
operator P, acting on a Hilbert space L n, for which P2=P, (i.e., p 2u 
=Pu VuE Ln) is called a projection operator. It can be readily 
verified that 

n 
}; Pj=E, (2.31) 

;=1 

where E is the identity operator. 
(xvi) We now introduce the concept of the direct sum of two or 

more spaces. Consider a vector space Ln ofn dimensions with a coor­
dinate system (e l , e2 , ••• , en), and a vector space Lm of m dimensions 
with the basis vectors (iI' i2, ... , im ). Provided that the two spaces have · 
no common vector except the null vector, the direct-sum space L t is the 
vector space defined by the t=m+n basis vectC'fs (PI' e2, • • " en, iI' i2, 
... ,im). These may be relabeled by the t vectors (kl' k 2 , • •• , k t). If L,. 
and Lm are complete spaces, so is L" and any vector u in L t can be 
expanded as 

(2.32) 

where Ui are scalars. 
As a simple example, consider a two-dimensional vector space 

(a plane) with the basis vectors (x, y) and a one-dimensional vector 
space (a line) with the basis vector (z), which does not lie in the plane 
(x, y). If the null element is common to both the spaces, the direct­
sum space is the three-dimensional vector space with the basis vectors 
(x, y, z). 

(xvii) Finally, we consider the direct product (also known as the 
Kronecker product) of two vector spaces. Consider, again, the two 
spaces Ln and Lm defined above. The direct-product space "is a space 
L. of dimensions p=nm defined by the p basis vectors (elil , e1i2, " ., 
eli., eli), •.. , e,';m). At the first thought, ej ik seems to be a tensor 
rather than a vector; but it can be seen, without much difficulty, that 
we can identify it with a vector in the p-dimensional space. If we 
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maJcc this identification and denote the resulting basis vectors by the 
new labels (/1' 12", ., I,), then, as before, they form a complete set 
in L, if Ln and Lm are complete spaces. Any vector v E Lp can then 
be expressed as 

2.3 Function Spaces 

p 
V= ~ Vj Ij. 

j = l 
(2.33) 

Consider the set of all continuous, 'square integrable' functions / 
f, g, h, .. . ), each of which is a function of one independent 
lariable x on the interval [a , b). We define the equality of two functions 
lS follows: Two functions I and g are said to be equal on [a, b), 
lenoted by writingf=g, if and only if fex )=g(x) for all values of x 
>n the interval [a, b). 

Referring to the definition of vector spaces in Section (2.1.1) , 
"Ie then see that the set of functions considered above is a vector space 
)Ver a field F if we define the addition of two functions and scalar 
nultiplication by 

(/+g) (x)=/(x)+g(x) , 

(c/) (x)=c/(x). 

(2. 34a) 

(2. 34b) 

Eq. (2. 34a) is called the operation of pointl1:ise addition of two 
functions. If the functions of the set considered are real, we have a 
vector space over the field of real n urn bers ; if they are complex, we 
have a vector space over the field of complex numbers. The identity 
in either case is a function which is identically zero for all values of x 
on [a, bJ and the inverse of a function I is the function -f with the 
property (-f)(x )=-/(x)(i.e., the value of the function -I at a point 
x is the negative of the value of I at x). 

As a concrete example, consider the set {Ie (x)} of all continu­
ous, square integrable, even, periodic functions of x of period 21. We 
shall allow, in general, complex functions to be included in the set. 
The sum of two functions of this set is also a continuous, square integ." 
rabIe, even periodic function of period 2/, and hence belongs to the 
set. In fact, it is easy to verify that the set is an abelian group under ' 
the rule of pointwise addition. Moreover, scalar multiplication by com­
plex numbers as defined in (2. 34b) satisfies the conditions (2. I). Hence 
it follows that the set {Ie(x) } is a vector space, which we shall denote 
by L •. 
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A vector space whose elements are functions is also caned a fwtC­
tion space. 

All the concepts developed in Sections (2. 1) and (2.2) can then 
be applied to function spaces, because, as emphasized in Section 1.8 
in connection with groups, the mathematical definition of a vector space 
is quite independent of the exact nature of its elements. This gives us 
considerable freedom in handling different vector spaces by the same 
abstract methods. 

Thus, a function space can be made an inner product space if we 
associate with any two functions a scalar such that the conditions (2.3) 
are satisfied. This can be easily done if we define the inner product of 
two functions I and g by 

(j, g)= J: I*(x) g(x) dx, (2.35) 

where the integral is over the range [a, b] of xon which the functions 
o,f the space are defined. The norm III II of a function I is given by· . 

II/W=U:!)= J: I/(x) /12 dx. (2.36) 

A Cauchy sequence of functions is defined as follows: A seque­
nce It, h, ... , In , . . , of function,s of one variable x is said to be a 
Cauchy sequence on [a, b] if for every real positive number E, we can 
find a positive integer N such that for all integers n>N and m>N, 

II/n-Imll<E (2.37) . 

in the sense that 

J: I/n(x)-f,n(x)12 dx<f. 

In a similar way (cf. Section 2 . 1 .3), we can define a convergent 
sequence and its limit. The definition of a Hilbert space of functions 
follows immediately. 

A set of n functions 11> 12" . . , f" of a vector space is said to be 
a set of linearly independent functions on [a, b] if and only if the 
equation · 

n 
~ at!i(x)=O 

i=l 

for all x on [a, b] implies that all the scalars a/ = O for l::;:i< n. 

(2.38) 

Coming back to the vector space Le of all continuous square 
integrable even periodic functions of period 2/, we see that any func-

.If the norm of a function is finite, the function is said to be square integrable. 
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I tion of this space can be expanded in the well-known Fourier cosine 
series 

00 _ 

f (x)= ~ a(I1)(I/";/) cos(mtx/l). 
n=O 

(2 . 39) 

The infinite set of functions (1/..;7) cos(l11tx/l) for O< n<oo clearly 
serves as an orthonormal basis in this space, for the functions of this 
set satisfy the relations 

I f' T -1 cos(l11tx/l) cos(mrrx/l) dx='I5mn . (2.40) 

Thus the vector space under consideration is denumerably infinite 
dimensional. 

2.3.1 The dual space. For each function f in the space L ., we 
have a set of coefficients a(l1) for Os n<:oo as in (2.39). These can be 
obtained very easily by Fourier inversion of (2.39), which gives 

a(l1) = [leX) (I/..;I) cos(nrrx/l) dx.· (2.4la) 

These Fourier coefficients are unique, i.e., if we have another function 
gELe whose Fourier coefficients are 

b(II)= f~, g(x)(l/";l)cos(nrrx/l)dx, (2.4Ib) 

then aCn)= b(n) for all Osn <oo if and only iff=g on [-1,1] . . 
Now we may treat a as a function of the discrete variable 11. It 

is easy to see that the function corresponding to f+g would be a+b, 
and that corresponding to -fwould be -a. In fact, it can be readily 
verified that the set of functions (a, b, ... ) is a veetor space which is 
defined over the same field as the space Le. This is known as the dual 
space of Le and its vectors have a one-to-one correspondence with the 
vectors of Le. It therefore follows that the dual space is also denu­
merably infinite dimensional. 

It should be clear that this is similar to the space of all n-tuplets 
where n is, nc,w denumerably infinite. The scalar product of two func­
tions in this space is 

00 

(a, b)= ~ a*(n) b(II). (2 . 42a) 
n=O 

By using Eqs. (2.41) in (2 .42a), we find 

(a , b)= L, r(x)g(x) dx=(J, g). (2.42b) 
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In the above equation, we have an important property of the Fourier 
transforms that the scalar product of I and g is the same as that of 
their transforms a and b. 

2.3.2 Direct sum of function spaces. Consider the set {/o (x)} 
of all continuous square integrable odd periodic functions of period 
2/, that is, the set of functions satisfying the relations 

10 (x+21)=lo (x) 

10 (-x)=-Io (x). (2.43) 
Once again, it can be verified that this set is a vector space7 

which we denote by Lo. Any function <fo(x) of Lo can be expanded in 
the well-known Fourier sine series 

CD 

q,(x) = ~ «(n) (1/v'1; sin(mtX/I). (2.44) 
n=l 

The infinite set of functions (i/v'l)sin(mtXf/) for 1<n<00 can be 
<;hosen as the orthonormal basis functions in this space, because 

~ f, sin(mtX/l) sin(m7tx/l) dx=omm (2.45) 

We can now take the direct sum of the two function spaces L" 
and Lo since they have no common element except the function which 
is identically zero. We then have a space of all periodic functions with 
period 2/, The Fourier expansion for a function of this space is 

~ CD 

I(x) = ~ uen) (I/v'/) cos(n7tx/I)+ ~ «(n) (l/v'l) sin(n7tx/I). 
n= O n=l 

(2.46) 

The basis functions of this space chosen in (2.46) are clearly orthonor­
mal since, in addition to (2.40) and (2.45), they satisfy 

1 J' I T _, cos(n7tx/l) sin(m7tx/l) dx=O ¥ n, m. (2.47) 

The spaces Le. Lo and their direct-sum space arc all denumerably 
infinite dimensional. The dual space of Lo is the set all functions 
(<<, ~, ... ), each element of which is the Fourier .ransform of an ele­
ment of Lo. 

It is a fairly easy matter to extend the concepts of this section to 
functions of more than one variables. . 

7 The function which is identically zero for all values of x is even as well as 
odd in x. It is therefore common to, and is the 'zero' element of, both the 
spaces {I. (x)} and {fo (x)}. 
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2.4 Operators 

In' this section, we shall use the symbols 4>n(X) for the orthonor­
mal basis functions of a Hilbert space L of functions,S which may be 
finite or infinite dimensional. 

An operator T is said to be defined on the space L if the action 
of T on any function! e: L results in a function which also belongs 
to L. Thus, 

T! (x)=g(x) where gEL. (2.48) 
To know the action of an operator on any function of L , it is 

enough to know its effect on the basis functions of L. Thus, when an 
operator T acts on a basis function 4>n(X), the result is some function 
of L, say 4>n'(x), which can be expanded in a linear combination of 
the original basis functions: . 

T 4>n(X) = 4>n'(X)=I 4>m(x)Tmn, n, m= ], 2, . . , . (2.49) 
m 

This. represents a system of linear equations, one for each value of 11. 

Written out in an expanded form, this becomes 

(4)1'' 4>2',· . " 4>n' , ... )= T (4)1' 4>2" .. , 4>n, ••. ) 

(2.50) 
Tnl Tn2 . .. Tnn .. 

L J 
The matrix [To] is the representation of the operator T with the 

basis {4>n}. It can be seen in analogy with (2,21) that a matrix element 
of T is given by 

Tmn=(4)m, 4>n') = (4)m , T4>n) 

=S4>m *(x) T4>n(x), (2,51) 

where S denotes summation over the discrete variables and integra­
tion over the continuous variables of the set x on which 4>'s depend 
(see footnote 8). 

If we introduce the following notation for row vectors 

¢=(4)1' 4>2,. .. , 4>n, .. ), 

¢' (4)1',4>2'''''' 4>n', .. ), (2.52) 

8 Here, x stands for the set of variables on which the functions of L may 
depend. 
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then (2.49) can be simply written in the matrix notation as 
cI>' =cI> T. (2.53) 

2.4.1 Special operators. We shall consider some special ope­
rators in this subsection. An operator T is said to be a linear operator 
if for every I and gin L, 

T (cl+dg) = cTI+dTg, (2.54) 
where c and d are any scalars of the field over which L is defined. On 
the other hand, T is called an antilinear operator if 

T (cl+dg)=c*TI+d*Tg ¥ f, gEL. (2.55) I . 

An obvious example of such an operator is the operator for t'm­
plex conjugation. If we denote it by K. it is defined by 

Kf ... -f*, K(c/)=c* KI c* 1*. (2.56) 

If two operators A and B satisfy the relation 

(f, Ag)=(BI. g) ¥ I, gEL, (2.57) 
A is said to be the hermitian conjugate of B, and vice versa, which is 
expressed by writing 

Let 
1='2: anrpn, g='2: bnr/>n. 

n n 

Then, on using the orthogonality of rpn, (2.57) becomes 

'2: a .. *bmAnm = '2: an*bmBmn*. 
n,m n,m 

(2.58) 

(2.59) 

(2.60) 

Since this must be true for all I and gin L, i.e., for all scalars a .. 
and b .. , it follows that 

(2.61) 

If the scalars of the space L are real numbers, (2.58) and (2. 6J ~ 
reduce to 

A=B, A=B, Anm=Bmn. (2.62) 
and A is said to be the transpose of B, and vice versa. 

If an operator T is its own hermitian conjugate (adjoint), it is 
said to be hermitian or self-adjoint. From (2.57), we see that Tis 
hermitian if and only if 

(f, Tg)=(Tf, g) ¥ f, gEL. (2.63) 

With (2.59), this reduces to 

Tnm=Tmn*. (2.64) 
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This is just the definition of a hermitian matrix-that is, a matrix 
which equals its own hermitian conjugate-and is written as 

T=Tt =(1)*=T*. (2.65) 

Thus a hermitian operator is represented by a hermitian matrix in a 
linear vector space. 

T is said to be a unitary operator if 

TTt =Tt T=E, (2.66) 

where E is the identity operator. It can be readily seen that if T is 
unitary, then 

(Tf, Tg)=(f, g) V f, gEL. (2.67) 

If the scalars of the space are real numbers, (2.66) reduces to 

TT= TT=E, (2.68) 

in which case T is said to be an orthogonal operator. 

2.4.2 The eigenvalue problem. We have already discussed the 
operation of an operator T on a basis function, which is 

T <pn=E <Pm Tmn. (2.49) 
m 

The choice of the set of basis functions {<pn} is not unique, and, as 
such, we would like to choose that set of orthonormal basis functions 
{t)in} in L which simplifies Eg. (2.49) as much as possible. Clearly, 
the simplest nontrivial case arises when the only nonvanishing term 
on the right-hand side is the n-th term, in which case we have 

TI}II= Tnn t)in Int)in, (2.69) 
which defines the scalars tn. A nonzero vector IjIn satisfying (2.69) is 
called an eigenvector or an eigenfunctioll of T corresponding to the 
eigenvalue I TI • The problem of obtaining the eigenvalues and the eigen­
functions of an operator (acting on a Hilbert space) is usually referred 
to as the eigen value problem, and (2.69) is often called the eigenvalue 
equation. 

The eigenvalues need not all be distinct, that is, two or more 
eigenvectors may correspond to the same eigenvalue; in this case, 
such eigenvectors are said to be degenerate. The niu!tiplicity of an 
eigenvalue is defined as the m:mber of linearly independent eigenvec­
tors which have the same eigenvalue under consideration. 

It is proper to ask whether each operator has eigenvalues and 
eigenvectors. If the vector space L is defined over the field of real 
numbers. every operator acting on L does not necessarily possess 



HILBEIlT SPACES AND OPERATORS 49 

eigenvalues and eigenvectors. Thus. consider the operation of a rota­
tion through 90° on a two-dimensional vector space of (real) position 
vectors. This operator has no eigenvectors since there is no nonzero 
vector in this space which transforms into a real mUltiple of itself. 

However, if L is a vector space over the field of complex num­
bers, every operator on L has eigenvectors. If We count each eigen­
value as many times as it occurs, then the number of eigenvalues is 
precisely equal to the dimension of the space L. 

The set of the eigenvalues of an operator is called its spectrum. 

2.4.3 DiagonaIization. We see from (2 .69) that if we choose 
the set {'.\In} as the basis in the space L, rather than the original set 
{</>n}, then the matrix representing the operator T is diagonal, i.e., 

Td= r tl l 
t2 0 

(2.70) 

0 tn 

L .J 
The eigenvalues' tn are the solutions of the N-th order equation 

det(T-tE)=O. (2.71) 

As we have said, N may be infinite, as is indeed the case in most phy­
sical problems. We are then faced with the problem of solving an 
infinite determinant. However, we are usually interested only in a 
few lowest eigenvalues in the spectrum of the operator and we can 
suitably reduce the determinant to a new determinant of a finite order 
N with small error if the subspace is properly chosen. 

Once the eigenvalues are determined in this way, the eigenfunc­
tions can be easily obtained. For this, we express an eigenfunction o/n 
corresponding to the eigenvalue tn as a linear combination of the 
original basis functions: 

N 
ljin= ~ </>m Urnn . (2.72) 

m=l 

If both the sets {~n} and {.pn} are orthonormal, U will be a unitary 
matrix. Let us express ljin in the row vector notation as 1ji1l=(U1n, 
U2n , ... , UNn). The eigenvalue Eq. (2.69) then becomes 
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. 
TIjI .. =(U1", U2",.,., UN") [ Tn Til TNt 1 

Ttl Tn TNa 

TIN. T2N '" TNN J 
=/" (U1", U2", ••• , UN")' (2. 73a) 

where we have used (2. 69) in the last step: Note that the matrix of 
transformation which appears in (2. 73a) is the transpose of that 
appearing in (2.49). \ This is because in (2.49), T acts on the basis 
vectors tP" (the passive viewpoint). while in (2. 73a), it acts o~ 
vectors of the space leaving the basis vectors unchanged (the active 
viewpoint). 

, Writing the m-th column of (2. 73a), we have 
N 

L UkrI Tmk=/" Um", 
k=l 

(2.73b) 

where 1 ~ n sN. This is a system of N linear equations for the N 
unknowns Um" (1 S m S N, fixed n). However, these equations are 
not all independent due to the condition (2.71). If the eigenvalue In 
is k-fold degenerate, it can be shown that the matrix (T -I" E) has 
rank N-k and hence only N-k ~quations from (2.73) are indepen­
dent. This means that we can determine at most N-k components 
Um" (fixed n). The general method is then to fix arbitrarily, say, the 
first k components and to obtain the remaining N-k components in 
terms of them.' Thus there is a considerable arbitrariness which 
results from the fact that any linear combination of the degenerate 
eigenfunctions is also an eigenfunqtion with the same eigenv.alue. 
We may conveniently choose any k orthonormal functions in this 
k-dimensional subspace of the full space. 

Having obtained in this way a set of N orthonormal eigenfunc­
tions. we can show that the representation of Twith the basis {1jI .. } is a 
diagonal matrix. We write Eqs. (2.49) and (2.72) in the matrix 
notation as 

TcI>=cI> [T], 

'i"=cI> U, 
where cI> and 'i" stand for. the row vectors 

cI>=(tPt> rpt, .. ·, tPN). 
'i"=(h, h.· .. , IjIN), 

9Joshi (1984), Section 8; KreYlZia (1972), Section 6.9. 

(2.74a) 
(2. 74b) 



HILBERT SPACES AND OPERATORS 51 

and we have distinguished between the operator Tand the matrix [T]. 
From (2.72), it i) clear that the n-th column of the matrix U just 
contains the components of the eigenfunction ljin. i.e., 

U=r Un UI2 Uln UNl 1 
U

21 
U22 U2n . ... U2N (2.75) 

L UNl UN2 eNn . '. UN!>' J 
Multiplying (2. 74a) from the right. by U, we get 

T cI> U=cI> U U-I [T] U. . 

or T,¥='¥ (U-I [T] U). (2.76) 

Thus, the matrix U- l [T] U is the representation of the operator T 
with the basis {Iji .. }. Now it can be readily verified that, by the cons­
truction of U as in (-2.75), we have 

U-l [T] U = Td. 

This can be seen by taking the (I, n) element of the left-hand side of 
the above equation, which gives 

~ [U-I]'m TmJc Ukn = ~ [U-l]'m Um" In [by (2. 73b)] 
m,k m 

= I" 8,,,, 
which is just the (I, n) element of Td. Eq. (2 .76) then finally gives 
us 

(2.77) 

which is the desired result. This process is called the diagonalizatioll 
of an operator.10 

1.4.4 The spectral Theory of operators. We shall restrict 
ourselves to the case when the Hilbert space of the operator T is finite 
dimensional. . Moreover, we shall consider T to be a hermitian opera­
tor or a unitary oparator.ll 

Let L" be the n-dimensional . (0 < n < 00) Hilbert space of T. 
We assume that L" is defined over the field of complex numbers, so 
that T has exactly n eigenvalues. Let '1' l a, •.• , 1m be the distinct 

IOSee also Joshi (1984), pp. 95-97 
lIThe discussion of this subsection is, in fact, valid for a more ~enera1 class 
of operators known as normal operators. An operator T is normal if it com­
mutes with its own hefmitiaQ cor\lupte, that is, jf TTt _rtT. Hermitian 
and unitary operators are clearly normal operators. 
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eigenvalues of T, sothatm~n. If the eigenvalue I, is krfold degene­
rate, there are k, linearly- independent eigenvectors of T in L,. which 
have the sfUDe eigenvalue f,. These eigenvectors constitute the basis 
for a krdimensional subspace M, of L,.; M, is called the eigenspace 
of T corresponding to the eigenvalue f,. Any vector of M, is an 
eigenvector of T with the eigenvalue t,. 

We thus have the eigenspaces MIt Ma, .. .• M" . . . , Mm, corres­
ponding to the eigenvalues t1• t2, • • " 1,; ; . . , tm, respectively. If T is a 
hennitian or a unitary operator. then these subspaces are · pairwise 
orthogonal;li two spaces are said to be .orthogonal if every vector of 
one space is orthogonal to every vector of the other. In our case, this 
is denoted by writing M, 1. M J if i 1= i,. 

Any vector uEL" can now be expressed uniquely in the form 
., 

u=u1+",+ '" +Um• (2.78) 
where U, is in M,. The u,'s are therefore pairwise orthogonal. The 
operation of T on u then gives · 

Tu=Tu1+TulI+ .. • +Tum 

=t1U1+t2"a+ ... +tmulII' (t.79) 

This then determines uniquely the action ofT on any vector of the 
Hilbert space L,.. To express the above result in a more convenient 
form, we define the m projection operators P, on the eigenspaces M,. 
such that the action of P, on u gives the projection of u on M,. or 

P,U=U,. 

Eq. (2.79) then becomes 

TU=t1P1U+t.P2u+ ... +tmPmU Y U E L". 

so that we can write 

T-t1P1+t.P2+ •.. +tmPm. 

(2.80) 

(2 .81) 

This expression is known as the spectral resolution of T. For every 
hermitian or unitary operator acting on a finite-dimensional Hilbert 

j space, the spectral resolution exists and is unique. 
The concepts developed in this section are closely related to, and 

find useful applications in, the eigenvalue problem in physics, because 
in quantum mechanics, we are concerned with the eigenvalues and 
the eigenfunctions of hermitian operators. 

12Jn this subsection, we shall state the important results of the spectral 
theory without proofs. For proofs, the reader is referred to Simmons 
(1963) . . 
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15 Direct Sum and Direct Product or Matrices 

We now 'digress a little in this section and consider two important 
operations with matrices which are not normally treated in elementary 
books on matrix algebra. These are the direct sum and the direct 
product (also known as the outer product or the Kronecker product) 
of matrices. . 

2.5.1 ~irect sum of matrices. The direct sum of two square 
matrices A=[Ao] of order m and B=[BIJ] of order n is a square 
matrix C of order m+n defined by 

C=AffiB=[ A 0 J=I All 
o B . 

1 
• (2.82) 

o. 
L Bill Bnn J 

where 01 and 01 are null matrices of order m X nand n x m, respec­
tively. Here the symbol ffi stands for the direct sum. This idea can 
be easily extended to more than two matrices. For example, the 
direct sum of 

A=a, B=[ ~ ~ J 

is a matrix of order six given by 
I 

D=AffiBEBC= 1 
0 0 0 0 0 (2.83) a I 

I ---T-------, 
I b 

I 
0 I C I 0 0 0 

I I 
I I 

0 I d e I 0 0 0 I I L ______ ~ _________ 

I 
0 0 0 I g h 

I 
I 
I 

k 0 0 0 I I 
I 
I 

0 0 0 
I I m n I 
I 
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Such 'a matrix, which has nonvanishing elements in square blocks 
along the main diagonal and zeros elsewhere, ' is said to be in the 
block.diogonalized form. It has the important properties: 

. det D=(det A) (det B) (det C), 
trace D=trace A+trace B+traceC, 

D-I = A-I EB B-1 EB C-I, 

(2. 84a) 
(2.84b) 
'(2.84c) 

which should be clear from (2.83). Also, if Al and At are square 
matrices of the same order, say n, and Bl and Ba are square matrice.q 

of the same order, say m, then!3 

' (AIEBBl) (AsEBB.)=(AIA7)Ef)(BIBa). (2.84d) 

2.5.2 Direct product of matrices. The direct product of two 
matrices A=[Alm] of order LxM and B=[B]pq of order PxQ ,is a 
matrixC of order IxJ whereI=LP and J=MQ. It can be written as 

C=A®B=[ AllB AlIB ..• AIMB ], (2.85) 
AuB AssB •.. AwB . 
• 

AuB AuB '/" AuiB 

where aU-'element' A,,,,B stands for a matrix of ordor P x Q given by 

AI",B= r A/mBn AlmBa . . • AlmBIQ ]. I AIr:BU AlmB2I ' " AlmBaQ 

L AlmBPl AlmBPI AlmBpQ ' 

(2.86) 

To obtain an element of C in terms of the elements of A and B, 
we use the notation C=[Clp, ",q] where a row of C is denoted by a 
dual symbol (Ip) and a column Of C by a dual symbol (mq), such that 

C/p, mq=Alm Bpq. (2.87) 
We may relabel the rows and the columns of C ~y two new indices 
i andj (I ~ j ~ I, I~) s;: J) so that 

C=[CIJ] = [Clp, .. q]. (2.88) 
This rather complicated notation can be made clear by an 

example. The direct product of 

(1) (2) (3) 

A=(I) [a b c J' 
(2) d e f 

(1) (2) 

B=(I) [ .h r ] 
(2) k s 
(3) I t 

laFor proofa of various results mentioned 'in thia and the following I!ubsections, 
see Joshi (1984), Section 13. 
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is the 6 X 6 matrix 

(II) (12) (21) (22) (1) (32) 
C=A®B=(Il) r ah ar bh br ch cr T . (2.89) 

(12) ak as bk bs ck cs 
(13) al at bI ht cl ct 
(21) dh dr eh er Jh Jr 
(22) dk ds ek es fk Js 
(23) L dl dt el et JI Jt J 

Note that the rows and the columns oj the matrix C are labeled by 
different schemes. Thus, while the third row of C is labeled as the 
(13) row, the third column is labeled as the (21) column. An element 
of C is, for example, 

C21 , 31 =fh=Az3Bll' 

which is consistent with (2 .87) . We now relabel the rows and the 
columns by identifying each dual symbol with one number, separately 
for the rows and for the columns. We ' then have the matrix 
[Cul = [Clp, mol] with (/p) -+ i, (mq) -+ j and 1 ~ i, j::;: 6. Thus, in the 
above example, C2 t. 31 == C4S. 

In the general case, the identification. of the dual symbol with the 
single running index can be made by letting i=(/-l) P+p and 
j=(m-I) Q+q; thus,. 

Clp, mo=Cjj=C(/-I)P+l1, (m-I) Q+q. 

The concept can once again be extended to the direct product 
of more than two matrices. There is no restriction on the order of 
the matrices whose direct product is to be taken. 

If Ai, Az, BI and Bz are any matrices whose dimensions are such 
that the ordinary matrix products AIA2 and BIBz are defined, then 
the direct product has the important property 

(AI ® BI ) (A2 ® B2)=(AI A2) ® (BIB2)' (2; 9Oa) 
Further, if F is the direct product of a number of square matrices 
A, B, C, ...• that is, F = A (g)B®C® ... , then 

trace F=(trace A) (trace B) (trace C) . ... (2.90b) 
The operation of the direct product of matrices is associative, so that 

A (g)(B(g) C)=(A(g)B)(g) C=A(g)B(g) C. (2.91) 
The opera.tion is also distributive with respect to matrix addition. 
Thus; 

A(g)(C+D)=A®C+A(g)D. (2.92) 
Moreover. from (2. 90a), we have 
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(AB) ® (AB) ® (AB)=(AB) ® «A ® A)(B® B» 

=(A ®A® A)(B®B®B). 

Generalizing the above equation, we have 
(AB)[kl = (A)[kl (B)[kl, 

where 
A[kl=A ® A ® A ® ... ® A (k times). 

(2 .93) 

(2.94) 

(2.95) 

Finally, if A and B are square matrices with eigenvalues and eigen­
vectors AI, Xi and fLJ, Yh respectively, the eigenvalues of A ® Bare 
A/fLj and its eigenvectors are XI ® Y J. That is, if Axi=AIX/ and 
BYJ=fLjYj, then 

(A ® B)(XI ® YJ)=AlfLJ (Xi ® )'j). (2 .96) 

The proof follows directly from (2. 90a). 
We shall find these concepts very useful in the next chapter. 

PROBLEMS ON CHAPTER 2 

(2.1) Show that the following sets are vector spaces. Also indicate how 
you would choose a basis in each space. What is the dimension of each space? 
Which is the field over which each vec~or space is defined? 

(i) The set of all vectors denoting the possible velocities of a free partich~ 
in classical mechanics. 

(ii) The set of all vectors denoting the possible wave vectors of a free 
particle in classical or quantum mechanics (note that this is usually referred to 
as the k-space). 

(iii) The set of all continuous square integrable solutions. of an n-th order 
ordinary linear homogeneous differential equation. 

(iv) The set of all continuous square integrable functions which depend on 
a set of variables. 

(v) The set of all real square matrices of order n. 
(vi) The set of all complex square matrices of order n. 
(2 . 2). Prove Eq. (2 .24). 
(2.3) Pfove Eq. (2 . 26). [Hint: Use (2 . 24).J 
(2.4) State whether the following statements are true or false and explain 

your answer: 
(i) If all the vectors of a set are pairwise orthogonal, it necessarily follows 

that it is an orthogonal set. 
(ii) If all the vectors of a set are pairwise independent of each other, it 

necessarily follows that it is a set of linearly independent vectors. 
(2.5) Consider the projection operators P defined in (2·.28). ,Show that 

P,PI':'"O if iif6j. (This is expressed by saying that the projection operators are 
palrwiseorthogonal.) 

(2.6) Show that the eigenvalues of a hermitian operator are real and that 
those of a unitary operator have absolute magnitude equal to unity. 
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(2.7) Show that the functions Po(x)= 1 and P~(x)=x are orthogonal on the 
interva1-I~x~l. Find scalars a' and b' such that P2(x)=I+a'x+b'x2 is 
orthogonal to both Po(x) and P1(x) on the same interval. In this way, r-nerate 
polynomials Pn(x)=I+ax+bxz+ ... +gx" such that Pn(x) is orthogonal to 
eachP",(x),O~m:::;:n-l,on the interval [-1, I]. , [Note that these are the 
Legendre polynomials, apart from constant factors.] 

(2.8) Obtain the eigenvalUes and the eigenvectors of the following matrices : 

(i) [112 0 -3y3/2 J' (ii) [ c~s6 Sin6]. 
o 1 0 -SID 6 cos e 
-3y3i2 0 -5/2 

(2.9) Obtain the direct sum and the direct product of the following 
matrices: 

(;) [ 2 
1 
3 

5 
4 
3 

and 

(ii) [~~ ~ -~ J and [~-~ ~ 'J. 
o 5 -I 4 2-2 

(2.10) Obtain the direct product of the two matrices: 

[-; ~ -:] and U 1 
(2.11) In Probleql (2.9) verify Eqs. (2,84a), (2,84b~ (2.84c) and (2.90b)· 
(2.12) Let p be a prime number and consider the set of the p integers 

(0, I, 2, ... , p-J). Show that this setis a field with addition mod (p) and 
multiplication mod (p)as the two binary operations. (A finite field is called 
a Galois/ield.) 

(2. 13) If T (A) is the matrix representing an operator T in the vector space 
La and T (B) that representing T in tho vector space Lb, show that the matrix 
representing T in the vector space La ® Lb is T (A) ® T (B). 

'Blbltograpby for Chapter 2 

Albert (1956), Chapter 3; Courant and Hilbert (1966), Chapter 1; Halmos 
(1958); Helmberi,(1969); Jackson (1962); Joshi (1984); Margenau and Murphy 
(1966) .. Chapter 10: Meijer and Bauer (1962), Chapter 1; Meschkowski (1968); von 
Neumann (1955); Newingand Cunningham (1967); Schmeidler (1965); Shilov 
(1965); SimmODS(1963). Chapters 10 and 11; Trigg (1964); Van der Waerden 
(1949). 



CHAPTER 3 

Representation Theory of 
Finite Groups 

In the !irst chapter, we discussed some elementary notions of 
groups in terms of the abstract concepts of elements and sets. In 
Chapter 2, we treated operators acting on their Hilbert spaces and 
studied their properties which are relevant to quantum physics. In 
physics, we are interested in groups of transformations which -act on 
suitable Hilbert spaces of physical systems, each veCtor of the Hilbert 
space characterizing a 'state' of the system. In Section 2.2, we have 
introduced the concept of a matrix representing an operator in a 

. Hilbert space. It is therefore natural to combine these two concepts 
and to obtain matrices representing all the elements of a group. The 
study of such matrices comes under the representation theory of groups. 
In this chapter, we shall consider finite groups only, although most of 
the results either hold good as they are or can be easily modified to 
the case of infinite groups_ Continuous groups and their representa­
tions are dealt with in the next chapter. 

3. I Introduction 

3.1.1 Definition. Let G={E, A, B, C, ... } be a finite group of 
order g with E as the identit~. element Let T;:::{T (E), T (A), T (B), 
.. . } be a collection of nonsingular square matrices, all of the same 
order, having the property 

T(A) T(B)=T(AB), (3.la) 
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that is, if AB=C in the group G, then 
T(A) T(B)=T(C), 

59 

(3.tb) 

then the collection T of matrices is said to be a representation of the 
group G. The order of the matrices of T is called thp dimension of 
the representation. 

Let Ln be an n-dimensional vector space on which the operators 
of G act. Let {~j} be an orthonormal basis in Ln. The operation of an 
element A E G on a basis vector is then given by [see (2.19) and 
(2.20)] 

n 

A ~/= L 4>1 TiI(A), (3·f) 
j=l 

where T(A) is the matrix representing A with the basis {~/}, An 
element of the matrix T(A) could then be, in analogy with (2 .21), 
given by 

(3.3) 

We could similarly obtain matrices corresponding to all the elements 
of G (with the same basis {~~}). , It is then obvious that these matri~s 
generate a representation of G, for, on the one hand, 

· n 

AB ~/=A L ~JTJI(B) = 
j=l 

while, on the other hand, 
n 

n 
L 4>k Tkj (A) Til (B), 

k,j=l 

AB ~/= L ~k Tkl (AB). 
k=l 

Since the above two operations must give the same result, we have 
n 
L TkJ(A) Til (B)=Tkl (AB) '.of l~i,k < n; 

i=l 
or T(A) T(B)=T (AB), 
which is just (3.1a). 

One may J>e tempted to jump to the conclusion that T is a 
group under matrix multiplication. However, one must be careful 
here because the matrices of T need not all be distinct. If 
each distinct matrix · of T is taken only once, the resulting s~t 'is cer­
tainly a group under matrix mUltiplication. Hereafter, whenever we 
refer to the 'group' T, we shall really mean the set of the distinct 
matrices of T. 

If all the matrices of T are distinct, there is clearly a one-to­
one correspondence between the elements of G and the matrices of 
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T. In this case, the groups G and T are isomorphic to each other and 
the representation generated by the matrices of T is called a faithful 
representation of G. On the other hand, if the matrices of T are' not 
all distinct, there exists only a homomorphism from G to T and such 
a representation is called an unfaithful representation ' of G. 

The simplest representation of a group is obtained when we 
associate unityl with every element of the group. Thus, in our exam­
ple of the group C,,, (cf. Section 1.1.2), we would have the corres­
pondence 

Element : E C, C,2 C,3 rnx my CTu CTv 
Representation 1 1 1 1 1 1 1. 

The set (1. 1, . . . , 1) does indeed form a representation of any group 
in general. For example, the product of two elements, say, C,mx=CT" 
in the above case, corresponds to 1 X 1 = 1 in the considered repre­
sentation. This is known as the identity representation. 

The identity representation is clearly an unfaithful representation of 
any group. The set of the eight matrices of Problem 1.I(v) is a faithful 
representation of C,v, because, as shown in Problem (1. 6), it is 
isomorphic to C,v. Every group has at least one faithful representa­
tion, the proof of. which is left to Problem (3.14). 

3.1.2 Some properties of representations of a group. We note 
that the identity element E of G has the property that EA=AE=A 
for all elements AE G. In terms of the matrices of a representation, 
this implies that 

T(E)T(A) = T(A)T(E}=T(A). (3A) 

We see that this matrix equation is satisfied only if T(E)=E, the unit 
matrix.2 Thus, in any representation, the identity element of the 
group must be represented by the unit matrix of the appropriate 
order. 

On taking A-l for B in (3.1a), we see that 

T(A) T(A-l)=T(AA-l)=T (E)=E, 

or T(A-l)=[T(A)]-l. (3.5) 

'This is to say that the matrix representing the inverse of an element is 
equal to the inverse of the matrix representing the element. 

lA constant number is a special case of a matrix-it is a square matrix of 
order one. 

sIn accordance with our convention, we shall use the same symbol E to 
denote the identity operator and the unit matrix. 
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Suppose \\e have two representations of a group G given by 
T}={T}(E), T}(A), .. . }, 

T2 ={T2(E), T2(A), .. . }. 

If there exists a nonsingular matrix S such that 
T

1
(A) = S-1 T2(A) S, T}(B) = S-l T2 (B)S, etc., (3 .6) 

for all the elements of the group G, then T} and T2 are said to be 
equivalellt representations of G. This means that the matrices of the 
first set can be obtained from those of the second set by a similarity 
transformation of the coordinate vectors of the vector space in which 
both the representations are defined. We express this by writing in 
short 

T1=S-} T2S: (3.7) 
If two representations of a group are not equivalent to each 

other, they are said to be inequiralen t or distinct representations. 

3.2 Invariant Subspaces and Reducible Representations 

It is evident that the vector space Ln which is used to generate a 
representation of the group G has the following property: For every 
element A of G and every vector 4>ELn, A 4> also belongs to Ln. We 
say that the vector space Ln is closed under the transformations of 
G or, simply closed under G. It means that the operation of any 
element of ~ on any vector of Ln does not take us outside Ln. 

A vector space Lm is said to be a subspace of another vector space 
Ln if every vector of Lm is also contained in Ln. Lm is called a 
proper subspace of Ln if the vectors of Lm do not exhaust the space 
Ln. Thus Ln is also a subspace of itself, but, of course, not proper. 

The vector space L n, which is closed under G, may possess a 
proper subspace Lm which is also invariant under G. In such a case, 
Lm is said to be an invariant subspace of Ln under G, and the space 
Ln is said to be reducible under G. 

3.2.1 Reducibility of a representation. let, as before, {T(E), 
T(A), T(B), .. . } be a representation of G in' Ln. We now state that 
if Ln has an invariant subspace Lm (m<n) under G, then in a 
suitable basis the matrices of the representation have the form 

T(A)=[-~~;~~~' ! · D(~~(A~). (3.8) 

where D(l)(A) and D(2) (A) are square matrices of orderm and "-1Il 



napeetiYoely. xc .... ) is of order (II-m) X m and 0 is a null matriz of 
Older m x (n-m). To show this. we use the row vector notation (or 
the ~tors: 

';1=(0 0 0 . . . 1, O •.. 0), (3.9) 
which means that the i-th column has unity and all the other elements 
are zero. The labeling of the II basis vectors may conveniently be 
chosen in such a way that the first m basis vectors are in L",. The 
openltion of AE G on a basis vector ,;,. (l=:;;:,,::;:m) is then given by 

A~,.==(OO .. I,.O .. O)r Tu ···T1", T1 .... +1 ... 1i" 1 
. T",1" .T ... ", T"' .... +l ... T",,, 

T",+l ... J 
T"l .•• T"", T",,,,+! ..• T"" 

Tm+1.1" . 

~ =(T"l T,.z • •. T,.",T,.,,,,+! .• • T,.,,), (3...10) 
where we have written Til for' Til (A) for the sake of brevity. Now. 
since L", is itself invariant under G, the transformed vector A",. also 
belongs to L",; hence its components along the basis vectors "' .. b 

" ........... , "" must be zero, i.e., 
T,.,. (A)=O, m+ l::;:k::;:n. (3.11) 

However, (J. is arbitrary, and letting it run from 1 to m, we see that 
ell the elements in the rectangular block of order m X (n -m) at the 
top right corner of T(A) must be zero. Hence ' T(A) has the form 
shown in (3.8). 

Let us consider the product of two elements of the group G, 
say, AB=C. In terms of the matrices. of the representation con­
sidered above; we have T(A) T(B)=T(C), or 

T(c)~[ ~ZX)I[j(,;(A>J [~:~;)ll>.~(BjJ 
= .......... ... --...... -.... -..... --... -----.--.-----.- ._._- . (3.12} 

[ 

D(l) (A) D(l) (B) 0 ] 

X(A) D(l) (B)+D(2) (A)X(B) D(I) (A) D(S) (B) 

But T(C) must itself be of the form 

T(C)=[-~~{~( "D;~'(C)] 



REPRESENTATION THEORY OF FINITE GROUPS 63 

therefore, we have 
D(1) (A) D(l) (B)=D(1) (C), (3.13) 
D(2) (A) D(2) (B)=D(2) (C), 

and X(A) D(l) (B)+D(2) (A)X(B)=X(C). (3.14) 

From (3.13), it is clear that the two sets of matrices DU) 

={D(I)(E), D(l)(A), •.. } and D(2) ={D(2)(E), D(2)(A), ... } also give us 
two new representations of dimensions m and n-m respectively for 
the group G. It is also clear that the basis vectors {<PI' <P2' .•. , <pm} 
are the basis for the representation D(l) and the remaining n-m 
basis vector {<Pm+l, ... , ~n} for D(2). 

In this case, Tis l'aid to be a reducible representation. Thus, we 
see that the reducibility of a representation is connected with the 
existence of a proper im'ariant subspace of the full space. 

We shall denote the n-m=p-dimensional vector space defined 
by the basis vectors {<Pm+l, • . . ,<pn} by Lp. 

3.2.2 A theorem on representations. We shall now show that 
any representation T of a finite group, whose matrices may be non­
unitary, is equivalent (through a similarity transformation) to a 
representation by unitary matrices. For this purpose, we define a 
hermitian matrix ' 

H= L T(A) Tt(A), 
AEG 

(3.15) 

where the summation is over all the elements of the group G, We 
invoke a theorem from matrix algebra that a hermitian matrix can be 
fully diagonalized by a unitary transformation. If U is the necessary 
transformation, then 

(3.16) 
where HtJ is a diagonal matrix whose diagonal elements are the (real) 
eIgenvalues of H. Using (3.15) in (3.16), we have 

Hd=U-l L T(A)Tt(A)U 
AEG 

L U-l TCA) UU-l Tt(A) U 
AEG 

L T' (A) T't (A), (3.17) 
AEG 

where T'(A)=U-IT(A) U. Taking the k-th diagonal element of 
(3.17), we get 

(HtJ]kk=dk= L L Tk/ (A) Tlk't (A) 
AEG j 
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= I: I: Tk/ (A) Tk/* (A) 
AEG j 

= I: )..: I Td (A) I 2. 

AEG i 
(3.18) 

Since each term in this summation is nonnegative, we have dk>O. 
But dk can be zero if and only if Tk/(A)=O for all values of j and for 

, all the elements A E G. This would give a vanishing determinant 
for all the matrices of the representation, a case which we have 
excluded. Hence dk>O, that is, dk must be positive.3 

As a consequence, it is also clear that Hd is a nonsingular matrix. 
We can therefore obtain any power of the matrix Hd simply by taking 
the corresponding power of all the diagonal elements of Hd, i.e" 

[(Hd)P]kk=(dk)p. (3.19) 

where p is any real number, positive or negative. 

The required similarity transformation matrix which converts 
the nonunitary matrices T(A) into unitary matrices r(A) is then 
seen to be 

giving 
r(A)= V-I T(A) V 

'=Hd-:1j2 U-I T(A) UHd1j2 
= Hr lj2 T' (A) H,lj2. 

(3.20) 

(3.21) 

(3.22) 
To verify that the matrices rCA) are indeed unitary, we note that 

r ·(A) rt (A)=[HJ -Ij2 T' (A) !ld1j2] [HdlJ2 T't (A) Hd-1j2] 

=Hd-lj2 T' (A) Hd T't (A) Hr1j2 

=H-d1j2 T' (A) I: T' (B) T't(B)T't (A) Hd-IJ2 by (J.17) 
BEG 

= H r 1J2 I: T' (AB) T't (AB) Hd -1/2 

BEG 
= Hd-!12 Hd Hrl/2 by (1. 9) 

=E, 
which shows that rCA) is a unitary matrix. 

If the elements of the group G are unitary operators, the similarity 
transfor~ation of ~h~pr~entat!on, T '. to t~e representation r 
has a slmple physlca! meanw~-:-It Implies gomg over from an, 

8A matrix all o*se eigenvalues are positive is called a positive dt'jinite 
matrix. 
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oblique system of coordinate axes to an orthonormal one. The 
nonunitary nature of the matrices T(A), etc., indicates that the 
basis vectors of Ln, chosen as the basis for the representation T, are 
not orthonormal, whereas the representation r by unitary matrices 
shows that the basis vectors for the representation r are orthonormal. 
We have achieved this transformation from the oblique coordinate 
system, say ¢> = (tPl' tP2 " .. 4,,), to the orthonormal coordinate system, 
say '¥= (ljil' 1ji2" •. ,ljill)' by means of the matrix V of (3.20) so that 
'¥=¢>V. In this light, what we have said in this theorem is realIy very 
simple and almost trivial: ft is possible to choose an orthonormal set 
of basis vectors in any finite dimensional vector space, which is 
obviously true! The difficulty in extending this theorem to infinite­
dimensional representations or to the representations of infinite groups 
is regarding the convergence of the various sums encountered in its 
proof. The theorem may none the less be proved to hold for certain 
classes of infinite groups known as compact groups which will be 
treated in the next chapter. 

Owing to this theorem, hereafter, we need to consider represen­
tations by unitary matrices only. This no doubt affords a great simpli­
fication. 

3.2.3 Irreducible representations. If the representation T consi­
dered above is reducible, the representation r = {r (E), r (A) , . . ~ }, 
defined by (3 .21), is also reducible, since they are defined in the same 
space and are equiva.lent. Moreover, since the matrices of rare 
unitary, they must have tbe form 

r(A)l~(~~(~)I- S;;~-(A)] . "0_. (3.23) 

where we have the two representations by unitary matrices S(l)= 
{S(1) (E), S(1)(A), ... } and S(2)={S(2) (E), S(2) (A), ... } which are 
defined in the spaces Lm and Lp and hence are equivalent to D(l) and 
D(2) respectively. 

It may ~ possible that the representations S(1) and S(2) are fur­
ther reducible, i.e., the spaces Lm and Lp may contain further invariant 
(proper) subspaces within them. This process can be carried on until 
we can find no unitary transformation which reduces all the matrices 
of a representation further. Thus, the final form of the matrices of 
the representation r maY look like 
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I 
I 

r(A) = r(!)(A): 
I -- -----,------., 
I (2" I 

o 

I r i (A) : 
I I 
L---'---"1---

I 
I 

o ,etc., (3.24) 

r--- ---

r ( s) (Al 

with all the matrices of r flaring the same reduced structure. When 
such a complete reduction of a representation is achieved, the com­
ponent representations r(1), [(2) , •. . , reS) are called the irreducible 
representations of the group G and the representation r is said to 
be fully reduced. 

It may be noted that an irreducible representation may occur more 
than once in the reduction of a reducible representation r. The 
matrices of the representation r are just the direct sum of the matrices 
of the component irreducible representations and this may be denoted 
by 

r=a1 r(l} EB a2 r(2) EB ... EB ac r(el 

=L aj reo, 
I 

(3.25) 

where, in the last step, the symbol for summation is to be understood 
in the sense of direct sum. 

At first sight, it may appear from (3.24) that the number of 
distinct irreducible representations of a group is very large and unlimited. 
However, for finite groups, this is not the case, because the irreducible 
representations of a group satisfy various conditions which limit their 
number and which are, at the same time, very useful in the applications 
of the theory.of groups to physical problems. In the next few sectiom 
we take up the study of such properties of the irreducible representations. 
As an example, the irreducible representations of Gv are discussed if 
Section 3.6. 
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3;3 'I1Ie ScbllE's LemJnas and tbe Ortbogonality Theorem 

There are two theorems of fundamc;ntal importance which · go 
by the name of Schur's lemmas and which are extremely useful forthe 
study of the irreducible representations of a group. They also l~ 
to the orthogonality theorem of the irreducible representations and we 
shall now consider them. It is assumed that the space in which the 
representations are defi~ed is a complex vector space. 

- 3.3.1 Scbur's lemma I.. If rw is an irreducible representation 
0/ a group G and if a matrix P commutes with a/l the matrices o/r(", . 
then'p must be a constant matrix, thai is, P=cE where c is a scalar. 

We shall prove this lemma by two methods. 

FIrst proof: Let A be any element of the group G; then it is 
Biven that 

r(I)(A)p=pr(l) (A) for aU AEG. (3.26) 

1f the .dimension of ~/) is n,P is a square matrix of order n. Since 
it has been remarked in Section 3~2.2 that the matrices of a represen. 
tatiqn can be talcento be unitary, it folloWs that each of the matrices 
r (A), r (B), etc., possesses a complete set of n eigeIl:vectors. Since P 
commutes with rcA), etc., it follow~ that P also has' n linearly 
independent eigenvectors. Let Xj be the. eigenvectors of P with the 
eigenvalues Cj. Then we have .. 

PXj=CJXj. 

Multiplying both sides from the left by r(/) (A), we get 

r<'I(A)Pxj=r(I)(A) Cj x" 

or 

(3.27) 

(3.28) 

byiJs~g (3.26). This means that rill (A)Xl, for all AEG, are eigen­
vectors of P with thesame eigenValue Cl. Let there be m such indepen­
dent eigenvectors of P having the same eigenvalue Cl. But the 
eigenve<:tors belonging to an eigenvalue generate a subspace Lilt which 
is invariant under G. Now if Lilt is a proper subspace of L", that is, 
if L", is not the same as L", then L" has an invariant subspace and as 
shown in Section 3.2. I, the representation r(1) must be reducible 
which is contrary to the hypothesis. Therefore Lm must be identical 

'P is the matrix of some operator in the same space L,. in which nfl is 
. defined. 
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with L" making all the eigenvalues of P equal to each other and equal 
to, say, Ci=C, giving P=cE. 

There is one more possibility in the a bove treatment, that is, the 
invariant subspace Lm may contain only the null vector. However, 
this case is excluded from consideration because if x is a null vector, 
it trivially satisfies the eigenvalue equation Px=cx with an arbitrary 
eigenvalue c. 

Hence the theorem is proved. 

Second proof: We shall first show that any hermitian matrix 
which commutes with every matrix of an irreducible representation is 
a constant multiple of the unit matrix. 

Let H be a hermitian matrix which commutes with all the matrices 
of the representation r CIl, so that 

Hr(i)(A)=r(I)(A) H for all AEG. (3.29) 

Let U be the unitary transformation which diagonalizes H, i.e., 
U-l HU=Hd, UHdU-l=H, (3.30) 

~ere Htl is a diagonal matrix with diagonal elements, say dl , which 
ar~ eigenvalues of H. (The matrix H is of order n, the dimension 
of the representation r(I).) 

Let us suppose that the eigenva lues of H are not all the same. 
Let us pick up a certain eigenvalue which is repeated, say, k times 
where l::;;k::;;n. By a rearrangement of the columns of U, the order 
of the eigenvalues d, in Htl can be changed at will'. Let such a re­
arrangement be made to bring the chosen equal eigenvalues in the first 
k positions of Htl, so that 

d1 =d2=. ',' =dF/=d/J-' k+ l::;;p::;;n. (3.31) 
Multiplying (3.29) from the lefe by U-l and from the right by U, we 
have 

U-l HUU-l r (I) (A) U = U-l rCi)(A) UU-l HU, 

or H"r(Il'(A)=rll )'(A) HI" for all AEG, (3.32) 
where r(I)'(A), etc., are the matrices of a representation equivalentto 
r(I). Taking the (j, f1-) element of both sides of (3.32), we find 

dj n/J-(jj)' (A)=ri/J-(i)' (A)d/J-, 

or (dj-d/J-) ri/J-(II' (A)=O for all AEG, 

By (3.31), dr=l=d/J- if l::;;j::;;k and k+l::;;f1-<n. Hence 
ri/J-w'; (A)=O for l<j::;;k, 

k + 1 ::;;p::;;n, 
and all AEG. (3.33) 

'Joshi (197.5), Section 9, p. 96. 
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The matrices of r(1)' therefore have the form 
k n-k 

n-:F:!-~J (3.34) 

This is of the form (3.8), showing that the representation r!ll'. and 
hence its equivalent repres.entation r(ll. must be reducible. But by 
assumption. rm is an irreducible representation. which is 'possible if 
and only if k=n. that is, if and only if all the eigenvalues of H. are 
the same. This shows that H =Hd and H must be a scalar mati ix. 

Now. let P be any matrix which commutes with all the matrices 
of the representation r<l). Then. by taking the hermitian conjuga~ 
of (3 .26), we have 

or 

or 

pt rlIIt (A)=r(llt (A) pt. 
pt [r(1l (A)]-I::[r(/) (A)]-I pt. 

pt r(/1 (A-I)=r(l) (A-I)pt for all A E G. (3.35) 

Hence pt also commutes with all the matrices of r(l). 
two hermitian matrices HI and HI' such that 

Wecande6no 

H I=(P+pt)/2. H.=i (pt -P)/2; (3.36a) 

P=HI +iH •• pt =H1 -iH.. (3.36b) 

If both P and pt commute with the matrices of r m, Eqs. (3.36&) 
show that HI and HI also do. As just shown above. HI and H. must 
then be constant matrices. From (3 .36b) it therefore follows that 
p must be a constant matrix. completing the proof. 

The importance of this theorem lies in the fact that its converse 
is also true. Thus, if no matrix other than a constant matrix com­
mutes with all the matrices of a representation, then the representation 
is irreducible. (This fact is used later in Section 4.5.1). 

3.3.2 Schur's lemma 2. If r(1I and r(j) are two irreducible 
representations of di{"ensions It and IJ respectively of a group G and 
if a matrix M(of order Itx IJ) satisfies the relation 

r(I)(A)M=Mr(J) (A) for all A E G, (3.37) 

then either (a) M =0. the null matrix. or (b) det M=ftO, in which ClUe 

rIll and rU) are equivalent representations. 
It should be noted that two representatiOIi:" can be equivalent 
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oalJ if their dimensions are equal. Hence if 11'1=1], only case (a}apptieL 

Proof: Taking the hermitian conjugate of both sides of(3.37), 
we have 

Mt rel)t(A)=reJ)t (A) Mtfor all A E G, 

or MtrCI)(A-l)=reJ)(A-l)Mt for all A E G. 

Multiplying from the right by M, we get 
Mt r(1) (A-l) M=r(j) (A-l) Mt Mforall A E G, 

or Mf Mr(}) (A-l)=r()' (A-l) Mt Mfor all A E G, (3.38) 

by using (3.37). Thus the matrix Mt M commutes with re)I(A-l) 
for all A E G and therefore, by the previous lemma, must be a 
constant matrix: 

(3.39) 
Wefirst~onsider the case h=l)=n, say. From (3.39), we have 

det (Mt M)=det (Mt)det (M)=c". (3.40) 

H c:;i:O, then det'M=l:O (because det ,Mt'=(det M)*); therefore M-l 
exists and'from (3.37), we have 

r u, (A)=M-l r(l) (A) M for all A E G, 

showing that r(/) and r ejl are equivalent representations. If c-o, 
then taking the (i, i) element of (3.39),.we find 

I Mlkt Mkl=O, 
,k 

or I Mkl* Mkl=I I MlIll=O, 
k . k 

which is possible if and only if Mkl=O for l:<:;;;k:<:;;;n. But i is arbitrary 
and can take any value from 1 to n; hence M =0. 

In the second case, when 1,=l:lj, we can assume without loss of 
generality that 1,<1). We supplement the matrIx M by writing 
(1,-1,) rows of zeros to give a new matrix M': 

Ij 

M' ~[---"--J} - M II . 

, (3.41a) 
.. ~ .. }Ij-I, 

'This gives 

(3.41b) 
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It can then be easily seen by matrix multiplication that M~t M'= 
Mt M, and hence 

or 

det(M,t M')=det(M t M), 

det(M,t) det(M') = cn, 

by using (3.40). Here, we have put Ij=n. However, by inspection 
of (3.41), det (M')=det (M't)=O; hence c=O, and Mt M=O. Once 
again, taking the (i, i) elelemt of Mt M, we see that M=O. 

This completes the proof of the lemma. 

3.3.3 The orthogonality theorem. As an application of the 
above two lemmas, let us construct a matrix M given by 

M= L ' r(O(A)Xr(l) (A-I), 
AEG 

(3.42) 

where r(O and r(j) are two inequivalent irreducible representations of 
dimensions It and IJ respectively of a group G of order g , and X isan 
arbitrary matrix of order I; X IJ independent of the group elements. 
Multiplying both sides of (3 .42) from the left by r(f)(B), where 
BEG, we get 

r(O (B)M=r(1) (D) L rm (A) X r(j) (A-I) 
AEG 

= L r(il (BA) Xr(j) (A-I) 
AeG 

= .2: r(I)(C)xr(j ) (C-IB) where BA=C 
CEG 

= L: r(l)(C)Xr(})(C-I) rU)(S) 
CEG 

=Mr(j) (B) , (3.43) 

for all BE G. Therefore, by the second lemma of Schur,' we have that 
M =·O. 

Taking the (k , s) element of (3 .42), we obtain 

L: L rkp(il (A) X pq r qs(j) (A-I)=O. (3 ·44) 
AEG p,q , 

For our purpose, we now conveniently choose the arbitrary matrix X 
to be a matrix all of whose elements are zero except the (m, n) element 

. which we take to be unity, i.e., Xpq=8pm 8qn• Then, we have, from 
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the above equation 

or 

L rkm(/) (A) rn.1j) (A-l)=O, 
AEG 

I: rkn,(i) (A) rsn( j )* (A)=O, 
AEG 

for l~k, m~l" l~n, s~IJ. (3.4Sa) 

Put in words, this implies that the product of the (k, m) element of 
the irreducible representation r(i) with the complex conjugate of the 
(s,n) element of the irreducible representation r(J), . summed over 
the group elements, equals zero. 

Next, we construct a matrix N by replacing r(j) in (3.42) by 
r(l), that is, 

N= L r(i)(A)Xr(/) (A-I). 
AEG 

By a treatment that led to (3.43), we can show that 
r(/)(A)N=Nr(j) (A) for all AEG. 

-

(3.46) 

Therefore, by Schur's first lemma, we see that N must be a constant 
matrix, say, N=aE, where E is the unit matrix of order It. Again, 
taking the (k,s)-th element of(3.46), .we get 

L L rk/il(A)Xpqrqsll) (A-l)=a8ks. (3.47) 
AEG p,q 

As before, if we take Xpq=8pm 8qn, then 

L rkm(/) (A) rns") (A-l)=a8ks. (3.48) 
AEG 

To draw any conclusjoo from (3.48), we must first find the scalar 
a. For this purpose, we take the traces of the matrices on both 
sides of (3.46), giving 

or 

1, 

trace N=al,=. L L L rkp(/) (A)Xpqrqk(/)(A-l), 
k=l AEGp,q 

=L Xpq L L rqkll)(A-l)rkp(')(A) 
p,q AEG k 

= L Xpq L r qp(/) (E) 
P.q AEG 

=g L Xpq 8pq 'g trace X, 
P.Q 

Q= g (trace X)/l,. (3.49) 
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But,' due to our choice of X, trace X =0 unless m=n, in which case 
trace X=l. In short, trace X=8mn• Hence, we get from (3.48), 

L rkm(i) (A) r n.(/) (A-I) = (g/It) 8h8mn, (3.45b) 
AEG 

for l::;;k, m, n, s<1,. Now we combine the two results (3.45a) 
and (3. 45b) in one single equation: 

L rkm(i) (A) rns(j) (A-l) = (g/1,) 811 'Oks 8mn, 

AEG 

or L rkm(il (A) rsn(j)* (A) = (g/ft) 011 O~. omn. 

AEG 

(3.50) 

This is known as the great orthogonality theorem for the irreducible 
representations of a group and occupies a central position in the theory 
of group representations. 

3.4 InterpretatioD of tbe Ortbogonalify Theorem 

Eq. (3.50) has a very elegant interpretation in the language of 
linear vector spaces. Let c be the total number of distinct 
irreducible representations of a finite group G = {E, A, B, . .. } of 
order g. Let us think of rkm(l) as a function of the elements of the 
group G. This function rkm(t) is defined only at theg discrete 'points' 
E. A, B. etc. If we were to plot the function rkm (I) against the variable 
A, it may look something like that shown in Fig. (3.1). 

+1 

0 

-1 

(I' 
rk'm 

lr 
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K 

B C'" • 
A 

IC 

FIGURE 3.1 The (k, m) . matrix element of the irreducible 
representation nIl as a function of the group 
elements 

We have one such function for every different value of i. k. m 
(l::;;i::;;c, I::;;k. m::;;l,), and hence the total number of functions 
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c 
is L I,' (we have I,:lfunctions for each value of i). All such functions 

1-1 

define a g-dimensional vector space because a function in this space 
can be completely specified by giving its g 'components'. This space 
is generally referred to as the group space. 

The left-hand side of (3.50) is then just the scalar product of the 
two functions rk",(i) and r ... (jl [see (2.35)]: 

(rsn(jl, rkm(i) = L rs .. (j)* (A) rkm(j) (A). (3.51) 
AEG 

Eq. (3.50) then implies that all the different functions such as 
rkm(i) are orthogonal to each other. However, we do not yet know 
whether they are complete, that is, whether they span the full space or 
not. Nevertheless, since the number of independent vectors in a 
vector space cannot exceed its dimension, we have the relation 

(3.52) 

This is the condition which, as we stated earlier, limits the number of 
the in-educible representations of a group G of order g. We shall/ 
later show that the equality sign holds in (3.52). We shall call fk",tn 
the representation vectors in the group space. 

This idea of the group space may be a little difficult to grasp in 
the first reading. However, to give an analogy, it is very similar to the 
two-dimensional spin space of spin functions of a particle with s= 1 /2. 
The basis functions in this space are XlI2(sz) and X-112(S.) (where s~ is a 
component of the spin s), each function itself being defined only at the 
two discrete values of its argument sz=± 1/2. Anyother spinor (a 
function in the spin space) can then be expressed as a linear combi­
nation of the two basis functions. In general, if the spin of the particle 
is j. then the spin functions define a (2j + 1 )-dimensional space with 
the 2j+ 1 basis functions Xj(jz) , XJ-l(jz), ... , X-J(jz) (where j. is a 
component of j), each function being defined at the 2j+ 1 values of 
its argument -j~,jz<j. 

3.5 Characters of a Representation 

We now introduce another important idea. We have seen that 
the matrices of a representation of a group in a given vector space 
are not unique, for they depend on the choice of the basis vectors in the' 
vector space and even on the ordering of the basis vectors. However, 
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all such representations must be related to each other by some SUD!­

larity transformation and must therefore be equivalent to each other. 
for all of them are defined in the same vector space. Now, we know 
that the trace of a matrix is invariant under a similarity transforma­
tion. Hence we see that the traces of all the matrices of a represen­
tation would uniquely characterize a representation irrespective of the­
choice of the basis vectors. 

Let l' be a representation (reducible or irreducible) of a group 
G. We define the characters of the representation l' as the set of the 
traces of all the matrices of the representation 1', i. e., 

X(A) = }; rkk (A). 
k 

(3.53) 

Obviously, if the representat;on is one-dimensional, the character is the­
same as the representation. Also, the characters of conjugate elements 
in a representation are the same, because the trace of a matrix is in­
variant under a similarity transformation. Thus, if A and B are con­
jugate elements, then there exists an element C s~h that A=C-1BC. 
or 

l' (A)=r (C-1) reB) r(c) ~ 

taking the trace of both sides gives 

trace (1' (A»=trace (1' (B», 

or X (A)=X (B), (3 .54) 

where we have used the cyclic property of trace, that is, for any mat­
rices P, Q and R, we have 

trace(PQR)=trace(QRP)=trace(R PQ) . 

All the elements in a class thus have the same character in a represen­
tation. The character is therefore a function of the classes just as a re­
presentation is afunction of the group ele/awls. 

3.5.1 Orthogonality of characters. We can immediately trans­
form (3.50) into an orthogonality relation for the characters of the 
irreducible representations of a group. Setting k=m and S=II in 
(3.50), summing over k and s and using (3.53), we get 

I: 1..(;) (A) I..(jP:' (A)=g/-: Oi; fi=g Ojj. 
AEG ' 

(3.55) 

Here j y.. (j) (A) is the charac;er of the element A in the representation 
r U), etc. If nk is the number of elements in the class Ck of the group 
then (3.55) reduces to 
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L - Ink 10) Jnk 1k(j)*= i3If, 
k V g g 

(3.56) 

where Xk(/) is the character of an element A in the class Ck in the 
representation r(O, etc., and the summation is over all the distinct 
classes of G. 

This is the orthogonality relation for the characters of the irre­
ducible representations of a group and, written in the form (3.56). 
once again suggests that hlnk/g) X.t(i) can be thought of as the qrtho­
normal basis functions in a class spaCe whose dimension equals the 
number of classes in G. We have one such independent basis function 

\ 

for each irreducible representation of the group and therefore, as 
before, we have the condition 

number of irreducible representations of G 

~number of classes of G. (3.57) 

That, in fact. the equality sign holds in (3.57) also will be shown in Sec­
tion 3.7. We shall call 1(1) thechara',J r ve'Ctors in the class space. 
. Taking the equality sign in (3 .57») he orthogonaJity relation (3.56) 

can be expressed in ail alternative fOrm as' 
c 
L 1k(I)* X/I) =K i3k1 . (3.58) 

;=1 nk 

The sum is over all the ineqUIvalent i~ducible representations of G 
and (3.58) denotes the orthogonality of the ~haracters for different 
classe.>. Though it does not contain any new information, it is helpful 
in writing down the characte~ of ~ group by inspection. 

We can derive a useful relation for the products of the characters 
of an irreducible representation r(a). To this end, we consider the 
product of two classes defined in \Section 1.3.1 

C, Cj ,= I 'aUk Ck. (1.16) 
k 

Let us add the matrices representing the elemen~ of the class Ci ~n the 
irreducible representation reI') and denote th~ resulting m:urix b)(1 
P,II., i.e., 

PI'¥.= L r(IX)(A). (3.59) 
AEC, 

'This can be obtained by using the faCt that if all the rows of a finite square 
matrix are normalized and orthogonal to each other, then its columns must 
also be normalized and orthogonal to each other. Thus, if U is a finite 
square matrix with uut =E, then UtU = E. 
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Similarly, of course, we can construct the matriCes for all the classes 
of G. For any BE G, we now have 

[r(lX) (B)]-l p(J. r(lX) (B)= L [r(ot) (B)]-l r(ot) (A) r(ot) (B) 
AECI 

AECi 

L r(ot) (A), (3.60) 
AE Ci 

~here we h~ve used (3.5) and the fact that as A runs over the class C/, 
B-1. A B also runs over the class Ct. It therefore follows that 

r(ot) (B) pjot=pjot r(ot) (B) for all BEG, (3.61) 

tha~is , Pjot commutes with al1 the matrices of the irreducible represen­
tation r(Ot). By Schur's first lemma, this means that Pjot must be a 
constant matrix: 

p/Ot=Ajot£. (3.62) 

Taking the trace of both sides of (3 . 59), we have 
Ajot /ot=n/IJot) , 

or 71/ot = (nj/lot)x}ot). (3.,63) 
From Eq. (1.16) and from the definition of the matrices pf in (3.59), 
we have 

pjotpjot='i aUk Pkot• 
k 

or 71 j ot A/"='i ajjk Akot, 
k 

by using (3.62). Substituting (3 . 63) in the above, we get 

or 

(3 .64) 

(3.65) 

Once again, this relation is extremely useful in constructing the 
characters of the irreducible representations of a group. 

3.5.2 Reduction of a reducible representation. It very often 
happens that we have a representation of a group which is. in general, 
·a reducible one. Such a representation , say r, may be written as a 
linear combination of the irreducible representations as in (3.25). 
We can find the number of times an irreducible representation r(il 
occurs in the reduction of r. For this we take the traces of both 
~ides of (3.25). If X(A) , etc., denote the characte? of the elements 
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in the representation r, then we have 

X(A)= I a/X(j) (A), 
I 

(3.66) 

for all AEG. Multiplying both sides by XOl* (A) and summing 
over all the elements of G, we get 

L X(jl*(A)X(A)=L aj L X(jl*(A)X(jl(A) 

AEG AEG 
=a1g, 

or a/=~ L X<Il*(A)X(A). 
g AEG 

(3.67) 

This gives a method for obtaining the coefficients in (3 .25). The 
characters of the irreducible representations are called pdmitive or 
simple characters, while the characters of the reducible representa­
tions are called compound characters. A compound character can be 
expressed as a linear combination of the simple characters of a group 
as in (3.66). 

3.5.3 A criterion for irreducibility. Let r be a representation 
of a group G with the character X. We can write the character X as 
a linear combination of the simple characters of G as in (3.66) with 
the coefficients aj given by (3.67). Let us mUltiply (3.66) by its 
complex conj ugate equation, sum over all the group elements and divide 
by g, the order of G. We obtain 

~ L X*(A)X(A)=..!.. L a/*a1 L X(il * (A)Y, (j l(A). 
g A EG g i,j AEG 

= };lajI2. (3.68) 
j 

If this quantity turns out to be equal to 1 for the representation r, 
it follows that all the a;'s must be zero except one, say ak, which 
must be equal to uni ty (remember that the at's are nonnegative 
integers). It follows that the representation r must be identical with 
(or equivalent to) the irreducible representation r<kl. We thus have 
a very simple criterion for the irreducibility of a representation: The 
necessary and sufficient condition for a representation to be irreduci­
ble is that its characters satisfy the equiation 

L x* (A) X (A)=g, 
AEG .. 

or (3 .69) 

where Y,k is the character of the k-th class of the group. 
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3.6 Tbe Example of C,. 
As an example of our preceding discussion of the representations 

and their characters, we now take up the case of the group C,? 
treated in Chapter 1. We shall illustrate how to find its irreducible 
representations and the corresponding characters. In practice, it is 
easier to find the simple characters of a group before its irreducible 
representations. 

3.6.1 The character table of C,.. We shall take for granted the 
equality sign in (3.52) and (3 .57) until it is proved in the next section. 
Since C,. has five classes, it must have five irreducible representations. 
say, r U ). r(2), r(3), r(4) and r(5), whose dimensions may be denoted 
by 11' 12, 1a. I, and 16 respectively. These must be connected by (3.52): 

112+122+132+1,2+/62=8. (3.70) 
The only possible solution (with integral I,) is when four of the It's 
equal 1 and the remaining one equals 2. The order of the It's is im­
material and hence we conveniently choose 11=/2=13=1,=1 and 1,,=2. 
We can then construct the character table by making use of the ortho­
gon:ality relations (3.56) and (3.58). It is shown in Table (3.1) for 
the group C, •. 

TABLE 3.1 THE CHARACTER TABLE FOR C,. 

classes C1 Cs Ca C, C. 
(E) (C" C,3) (Cl1 (mx. my) (UM' a.) 

characters 

X(1) 1 1 1 1 1 
X(2) 1 -1 1 -1 1 

X (3) 1 -1 1 1 -1 
X(4) 1 1 1 -1 -1 

X(5) 2 0 -2 0 0 

The first row is obtained very easily by writing unity for the 
character of each class. This corresponds to the identity representation 
which we have discussed in Section 3.1. Since the matrix for E 
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in any representation is just the unit matrix, its trace or character is I" 
the dimension of the representation; and this gives the first column of 
the table. For one-dimensional representations, the character is iden­
tical with the representation, and hence, for tbe representations r(l) 
through r(41, the characters themselves must satisfy the multiplication 
table. For the elements whose square equals E (such as Cl, mx, au, 
etc.), the only allowed characters are then ± 1. The mUltiplication 
Table (1 .2) for C,. shows that mXmy=C42 (or (juU. = C4

2) . This indicates 
that whether mx an.d my are both represented by + lor" by -1 
(remembering that elements in the same class have"tbe same characters), 
X(C,2) must be + 1 in all the one-dimensional representations. This 
gives us the characters of C,2 in r(2), reS) and r(4). 

For the elements C, and C,s, with (C~)'=(C,3)'=E, the one-, 
dimensional representations could bethe powers' ofi=y -1. But 
again, since (C,)2=(C,3)2=C,'I, X(C,) and X(Cf,3) can only be ±1 for 
r(2), rOil and r(4). Now we invoke the orthogonality relation; every 
new row of characters must be orthogonal to all the previous rows, 
and must satisfy the normalization condition (3.60). This can be 
achieved by taking + 1 for one of the classes C2, C, and C" in the 
representations r(2), r(3) and r('), and -1 for the remaining two classes. 
This completely determines the characters for the first four represen­
tations. The fifth row is obtained simply by using the orthogonality 
relations for the columns [Eq. (3 .58)]. 

The arguments given above for the group C,. are perfectly general 
and can be used in finding the character table for any finite group. We 
can always easily get the first row and the first column as indicated 
a hove. In the case of one-dimensional representations, the other entries 
are determined by using the criterion given in the footnote 1 and an 
extensive use of the multiplication table. In the case of irreducible 
representations of dimensions more than one, the orthogonality rela­
tions between the rows and between the columns can be used. For 
more complicated "groups, Eq. (3.59) involving the products of 
characters should ' be used. 

Since determination of the character table is one or" the most 
important exercises in group theory. we shall discuss another example. 

710 general, if the order "of an elem~nt A is n, i.e. A"=E, its only one-dimen­
sional representations can be powers ofexp(2ni/n), sinoe these are tho only 
numbers whose n-th power equals unity. Moreover, they are 'unitary' 
numbers, that is, numbers whoso inverses equal their complex conjugates 
respectively. 



Flow-chart for determining the character table of a finite 
group 

1. The number of irreducible representations of group 
equals the number of its classes. 

2. The dimensions of the irreducible representations are 
determined by the' equation 

t li2 = g. 
;=. 

Remembering that I, are positive integers, this equation 
has a unique solution, apart from the arbitrariness as to 
which of th~ possible values we choose for I .. 12, ••• , Ie, 
respectivefy. 

3. We now start constructing the character table. We 
make a c X c table with classes shown at the top and the c 
irreducible representations on the left, denoted by r .. 
r 2, ••• , re. 

4. Every group has a representation in which each ele­
ment is represented by unity, which is called the identity 
representation. This gives one row of the character table,. 

. say the first row. . . 

The character table of C,. 

1. Since C,~ has four classes, it must have four distinct 
irreducible representatons. 

2. The dimensions' of the four irreducible representationl 
of C,~ would be given by 

III + III + '3~ + 142 = 10, 

which is satisfied when we choose the four numbers to be 
I, 1,2,2. We may choose II = 12 = 1, I) = 14 = 2. 

3. The four classes of C,. are (£), (2C,), (2C,l), (5m). 
We label the four irreducible representations r .. r l , r), r~. 
The character. table would be a 4 X 4 table. A blank 
character table is drawn showing the four classes at the 
top and the four irreducible representations on the left, as 
shown below in Step 5. 

4. We may choose the first one-dimensional representa­
tion r l to be the identity representation and fill up the first 
row of the character table ~y writing unity below each of 
tile four clasles, as shown in the table below . 00 



5. In any representation, the identity element E is repre­
sented by a' unit matrix. Hence the character of the repre­
sentation for . the class (E) is the dimension of the 
representation. These have already been worked out for 
the irreducible representations in Step 2 above. This gives 
the column corresponding to the class (E) in the character 
table.; The character table as obtained so far looks as 
shown below. 

CI C2 Cc 
G (E) 
~--i '---'------I-

r 2 12 

6. If there are any other one-dimensional irreducible 
representations, their characters may now be worked out. 
In a one-dimensional representation, the characters are 

I identical to the corresponding matrices and hence the 

I· characters must themselves satisfy the multiplication table 
of the group. In particular, if An = E for a certain element 

I 
A, then [r(A»)" = r(E), and for a one-dimensional repre: 

. sentation, this leads to [y'(A)]" = 1 or X(A) = II/n. Thus 
in a one-dimensional representation, the possible characters. 

L of an element A of order n are the n nth roots of unity. 

5. Since the dimensions of the irreducible representations 
of Cs• as worked out in Step 2 above are I, I, 2, 2, these 
will also be the entries in the column for class (E). The 
character table as obtained so far looks as shown below. 

CI C2 C3 C4 
C5• (E) (2C~) (2Cs2) (5m) 

rill 1 1 
r 2 1 
r3 2 
r4 2 

6. The group has one more one-dimensional representa­
tion, r l . The reflections of the class C. are of order 2, 
while all the rotations of classes C2 and C3 are of order 5. 
This gives the possible characters for class C4 to be ± I, 
and the possible characters for classes C2 and C3 to be 
x, X2, x 3, x4, I, where x = exp (2,,; i/5). 

I Now consider two distinct reflections from class C4, and 
1\ denote them by ml and m) (1 ~ i,) ~ 5 with i * j). We 

can infer the nature of the product m/ m} without know­
ing the full multiplication table of the group. To begin 

--.----_._- _._-- -----
Tben using some multiplication properties of the group 
elements and the fact that every new row of characters must 
be orthogonal to all the previous rows, all the one-dimen­
sional characters can be worked out. 

7. For higher dimensional repre~elltations, we must use 
the orthogonalily relation. that is, every new row of 
charactcrs (in general, complex numbers) must be ortho- . 

with, m, mj must belong to the group. Next. the product 
of two reflections is a rotation because such an operation 
leaves the sense of the coordinate system unchanged. 
Further. since Inl and m, are distinct reflections, their 
product cannot be equal to E. This leaves us with the · 
possibility that nt, m) belongs to C2 or C3• In fact, if we 
take the product cif Inl with the remaining four reflections, 
two of them must give the class C2 and the other two the 
class C). 

This means that in the representation r 2• the characters 
must satisfy Y.1 (nil) X2 (m,) = Y.2 (Cs) or X2 «::l'), i * j. As 
determined earlier. the possible characters of m, arc ± I, 
and ml anci Ill, must have the same character as they 
belong to a class. Hence their product must give + I, so th<lt 
:l.1(CS) = :1.1 (CS2) = I. In order that I'z may be orthogonal 
to rio the only possibility now remains that :1.1 (111/) = -I . 
The character table obtained so far looks as shown below. 

Cs•· I (E) (2C5) (2C,2) (5111) -r;- -I-' . i ---1"---- 1- -
1'2 1 1 1-1 
r3 2 
r. 2 

7. To proceed further. let us assume that the characters 
of r3 are (2 Q b c). where a, b, c may be complex numbers. 
Orthogonalizing tbis to the characters of r l and r 2 (using 

00 
N 



gonal to all the previous rows. It must also satisfy the 
normalization condition (criterion for irreducibility), that is 
the sum of absolute squares of the characters for all 
the elements must equal the order of the group. The: 
orthogonality of the columns of the character table, 
Eq. (3.58), can also be used . Also if all the classes of a 
group are self-inverse, then all the irreducible representa­
tions of the group have real characters (see Problem 3.13). 
If these equations are not sufficient, the relation (3.65) 
involving product of characters call be used. 

_ .... -.'---' -._._- ----------------., 

(3.55) with i = 3 and j = 1 or 2), we get 

2 + 20 + 2b + Sc = 0, 
2 + 20 + 2b - 5c = 0, 

giving 1 + 0 + b = 0, c = O. Then the normalization of 
rJ «3.55) with i = j = 3 or (3.69» gives 

4 + 21012 + 21bl2 + 5\c12 = 10 => \a12 + IW = 3. 
If a = al + ;a2, b = bl + ib2~ we have so far only three 
equations to determine four real numbers. These are 

I + 01 + b l = 0, (i) 
02 + b2 = 0, (ii) 

al2 + ai + bl
2 + h22 = 3. (iii) 

We may now use (3.65). If we work: out the product of 
class e2 = (C" C,4) with itself, we find that 

e2 e2 = (C,2, E, E, Cl) = 2el + e3• 

Therefore with i = j = 2, we get- the coefficients in (1.16) 
as 

a221 = 2, all3 = 1, aW. = 0 for k = 2,4. 

Using this in (3.65) with II = 3, we ge't a2 = 2 -!- b, or 

al2 - al = 2 + bl' (iv) 
2ala2 = b2• (v) 

Combining Eq. (v) with Eq. (ii) , we find 01 = - i or­
a2 = O. The first solution al = - i, when substituted in 
the other equations, leads to ai = - S/4, which is in­
consistent. Hence we have the only solution 02 = O. This 

f 



r 

leads to b2 = 0, showing that a and b are real , and giva 

a = (- I ± y5)/2, b = (- I =t= Y5)/2. (vi) 

All the five equations in four unknowns are now consistent. 
Apparently there is a two-fold arbitrariness in the choice 

of sign of the radical in a and b. However, this arbitrari­
ness is only apparent and 'not real. For we notice that 
there is another two-dimensional representation r. of tbe 
group. If we denote the characters of r. by (2 p q r), tbco 
the orthogonality of r. with r. and r2, the normalization 
of r., and the class product equation (3.65) give us the 
same equations for p, q, r as ~btained for a, b, c above. 
Thus we get _ I _ 

P = (- I ± Y 5 ')/2, q = (- I =t= Y 5 )/2, r = O. (vii) 
But we will have one more condition, that r. should also 
be orthogonal to rJ. Moreover, rJ and r. cannot have 
the same characters, or else they would not be distinct 
representations. All this leads to the fact that we can 
choose one sign of the radical in a and q, and the other 
sign in band p. We are finally led to the character table 
shown below. 

C,. (E) 
-r, 1 

r2 1 
rJ 2 
r. 2 

(2C,) 
1 

(2C~) (Sm) 

1 1-1 
(- 1 +yS)/2 (- 1- yS)/2 0 
(- 1 - yS )/2 (- 1 + yS)/2 0 

The reader may compare this with the character table of 
C,. given in Table (7.7) which appears in a Ilightly differ­
entform. 

Here we have explicitly shown that all the irreducible 
representationa of C,. have real characters. In fact, by 
noting that all the classes of C,. are self-inverse. we could 
have assumed right in the beginning that the characters 
are real nUOIbera. This would have provided some simpli­

' fication in Ste~ 6 and 7. 
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along with a flow-Chart describing the general procedure. The example 
we consider is the symmetry group C,,, of a regular pentagon. contain­
ing the identity, four successive rotations of 2'IC/5 (C, and its powers). 
and five reflections in planes perpendicular to the ·plane of the 
pentagon. The group has the classes (E). (2Cs), (2Q), (5 m) so that 
g = J 0, c = 4. The flow-chart and the example are discussed on the 
preceding pages. One more example. the character table of the cubic 
group'O, is discussed in Section 7.4. 

3.6.2 The Irreducible repre .. ta.... or C,.. After having 
found the character table. it is easy to find the full irreducible repre.en­
tabons for the group C,.. The first four irreducible representations 
are identical to the corresponding characters, as mentioned before. 
For rei), we must choose a-suitable set of basis functions. Since C." 
is a group of transformations in a two-dimensional space, it would 
be clear that any two independent vectors of this space can be chosen 
as the basis to generate r ell, because these vectors "would transform 
into their own linear combinations under tbe operations of C, •. 
Choosing, for convenience, the two orthogonal basis vectors (x. y). 
we can obtain the matrices of r ell very easily. For example, consider 
the operation of C. on the basis vectors: 

C, [ ~.+[ ;.'Y} 
or C, (x, y) = (x' • y')=( - y. x)=-(x, y) [ 0 Il 

-I 0, ... 
(3.71) 

Then. by tbe definition of a ropresentation [sec Eq. p. 2»). we imme­
diately have 

(3.72) 

We can similarly obtain the other matrices of rei.. The complete table 
of the irreducible representations of the group C •• is given in Table 
(3.2). 

The problem of finding an irreducible representation of dimension 
greater than 1 is essentially the same as that of finding a suitable setof 
I, (equal to its dimension) basis functions which transform into their 
linear combinations on operating with the group elements. 1bia is 
not always easy. Some methods forobtaioing such basis functions are 
discUSICCI in the next few sections. 
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TABLE 3.2 THE IRREDUCIBLE REPRESENTATIONS OF Ct. 

E e, e,2 e,a m. "'- au ". 
rcu 1 1 1 1 1 1 
rCI) 1 -1 1 -1 -1 -1 
rCI) 1 -1 -1 1 -1 -1 
r(4) 1 1 -1 -1 -1 -I 

eO][ 01][-1 0] [O'-oI]e 0][-10][ 0-1][01) 
r(5) I ° 1 -1 ° ° -1 1 ° ° -1 ° 1 -1 ° 1 o · 

3.7 The Regular Representation 

We shall now consider an example of a reducible representation 
of C,.. The most natural way of obtaining a representation of a 
finite group is by an inspection of its multiplication table when it is 
written in such a way that an element in the extreme left column (second 
operator in the product) is the inverse of the corresponding element in 
the top row (first operation in the product). This is how we have 
~ritten Table (1.2) for C, •. 

Let 11S now construct square matrices of order 8 for all the elements 
of Ct. in the following way. The matrix for an element is obtained by 
replacing the element wherever it occurs in the multiplication table by 
unity and placing zeros elsewhere, For example, r(E) would be a unit 
matrix of order 8. Another matri: .. ~ ,~y r(C4), would take the form 

rO I 0 0 0 CO 

1

0010000 
000 1 000 

(3 .73) 

Notice that each row or each column contains unity once and only 
once, as per the rearrangement theorem. 

To show that such matrices do indeed generate a representation 
in general. we label the rows and the columns. of the matrices by the 
group elements themselves, rather than the indices i, j, etc. That is, we 
can think ,of the g elements of the group G as 'coordinate axes' in the 
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g-dimensional group space. Since multiplication by an element simply 
gives a new arrangement of all the elements (cf., the rearrangement 
theorem), the operations by the group elements can be thought of as 
rotations of these coordinate axes into one another in the group space. 
Then the (8, C) element of the matril'. for A in this representation 
will be given by 

(3.74) 

where 8BA.c=1 if BA=C (or 8-1C=A) and zero otherwise. Let D, 
F and H be some elements of the group G such that AD=F. Then, 
if the matrices such as (3.74) are to represent the group G, we must have 

rCA) reD) = r(F). (3.75) 

Taking the (E, C) element of the left-hand side, we find 

L ro,J/(A) rH,c(D) = I: 8BA H 8HD,C 
HeG HEG 

= 8B AD,C 

= 8BF,C 

= rB,c(F), 

which is the (8, C) element of the right-hand side of (3.75), showing 
that the matrices rCA), etc., obey the multiplication table of the group. 

The representation generated by such matrices is called the 
regular representation of the group, and we shall denote it by peg 
Ilereafter. 

Clearly, the characters of the elements in this representation are 
g for the element E and zero for all the other elements. We shall now 
find which irreducible representations of G are contained in this redu­
cible representation peg and how many times, i.e., our objective is to 
find ~he coefficients OJ in 

From (3.67), we have 

c/ = ~ L X(il* (A) I.reg (A), 
gAEG 

(3.76) 

where 'l.reg is the character of the regular representation. Since 
'l.reg(E)=g and xreg(A)=O for A=I=E, the above equation becomes 

1 
a/ = g X(/)* (E)g, 

or 0/=1/. (3.77) 

Thissbows that every irreducible representation of the group occurs in 
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the reduction of the regular representation as many times as its dimen­
sion, so that we have 

rre~=k Ii r(/). 
i 

Taking the traces of both the sides of (3 .78) for the element E, we get 

xreg (E)= L I, X(t) (E), 

or (3.79) 
i = } 

This proves that the equality sign holds in (3 . 52) and therefore 
the representation vectors rkm(i) [see discussion after (3 .52)] form a 
complete set of orthogonal vectors in the group space. 

When we have found 'the irreducible representations of a group 
whose dimensions satisfy (3.79), there exists no other independent 
representation vector which is orthogonal to all the representation 
vectors of the irreducible representations. This, in turn, implies that 
there is no other character vector which is orthogonal to all the charac­
ter vectors of the irreducible representations. Therefore, the charac­
ter vectors of the irreducible representations must also be a complete 
set of orthogonal vectors in the class space. Their number must then 
equal the dimension of this space, which is equal to the number of 
classes in the group. This simple argument shows that the equality 
sign holds in (3.57) also. 

3.8 Symmetrized Basis Functions for Irreducible Representation~ 

We now come to the real problem of how to reduce a reducible 
representation. Hereafter, we shall denote reducible representations 
by r<a), rIb), etc., of dimensions a, b, etc., and the irreducib:e 
representations by rIOt), rIM, etc., of dimensions lOt, If" etc. 

In many problems in physics, we have a set of basis functions 
generating some representation of a group. However, such a represen­
tation may in general be a reducible representation. ' It can be reduced 
by a suitable choice of the subsets of basis functions, each subset 
constituting an invariant subspace under the operations of the group 
elements. We shall now discuss a method for 0 btaining suita ble linear 
combinations of the basis functions and demonstrate the use of the 
method. 

Suppose that the n basis functions {</>l' </>2' ... ,</>n} in the space 
Ln generate a representation r of the group. The matrix representing 
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an element A in this representation is given by 
n 

A 4>1= L 4>Jrji(A). (3.80) 
j=l 

Thus, for example, it can be seen that the eight functions 4>1' 4>2' 
.. . , 4>8 of the eight positions 1, 2, ... , 8 shown in Fig. (3.2) form a 
convenient set of basis functions for the regular representation of C4v • 

In this figure, the coordinates of the eight points are indicated expli­
citly. The operation of, say C" on the basis functions can be written 
in the matrix equation 

(1)1', 4>2', ... , 4>8')=C4 (4)1' 4>2'· . ·,4>8) 
=( 4>1' 4>1' 4>2. 4>3' 4>7' 4>8, 4>6. 4>5) 
=(4)1,4>2' ... ,4>8) rrell(C,). (3.81) 

where the matrix representing C, in the regular representation is 
given in (3 .73). 

(-px,qYI 6 

. (-px,-qYJ 3 

(-qx,PYI 
2 

7 
(-qx,-PY) 

y 

(qx,Pyl 
8 

, (px,qYJ 

L-----I--X 

5 (px.-qYI 

I 

4 
(qx,-PY) 

FIGURE 3.2 The eight functions 4>; of the positions shown 
generate the regular representation of C,,, 

In order to reduce the representation r generated in (3.80), we 
wish to find a suitable unitary transformation matrix U such that 

U-l r(A)U=rred(A), (3 .82) 

for all A in G, where rred(A), etc., have the reduced or block-diagona­
lized form as in (3.24). For this, we write (3.80) in the matrix 
notation as 

A<I>=<I>r(A), 
where <I> stands for the row vector 

cD=( 4>1' 4>~, . .. , 4>,,). 
If U is the required transformation, then 

A<I>U=<I>UU-l r(A)U 

or A(<I>U)=(cDU) rred(A). (3 .83) 
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This suggests that if we choose the new basis functions 
'F=II>U 

91 

(3.84) 

in the space Ln, rather than the basis functions 11>, the matrices of the 
representation would be in the block-diagonalized form. In an ex­
panded form, (3.84) is 

n 

~;= L q,j Un. (3 .85) 
j = l 

For the purpose of finding the coefficients Uj; and the proper linea.r 
combinations 9;, we shall rewrite (3 .85) in a different form as 

n 
~pm"= 2:= q,;U"pm;, (3 .86) 

i=l 
where IjJpm'X is the lIl-th basis function for the irreducible representation 

. rf<X)occurring forthep-th time in the reduction of the representation r.lf 
c 

r= 2:: a" r i<x), (3.87) 
,,=1 

then 1 <oc< c, 1 < p< a" and 1< 111< 1" (the dimension of r f") . 

£q. (3 .86) is the same as (3 .85); the matrix [U<xp"/] is just another 
label for the matrix [Uj ;]; a set of values of (0:, p, Ill) denotes a 
column of U and a value of i denotes a row of U: Similarly, IjJpm" is 
just an~ther name for 9;. Since the dimension of the matrices on 
both sides of (3 .87) must be the same, we have 

c 

11= ~ a<x I" . (3.88) 
,, = 1 

Now the result of the operation of an element A E G on IjJpm" is 
to give a linear combination of the I" functions which generate the 
irred ucible representation rf"X), and which define an la.-dimensional 
invariant subspace of the full space L". Thus 

lOt. 
AljJpm'X= ~ Ypk'X rkmf:tl (A). (3.89) 

k=! 

In such a case, the function hma: is said to belong to or trallsform 
according to thl! m-th column of the irreducible reprcSl!1lfatioll rf:x). 
Let the basis functions q,; be orthonormal. Since we wish the 
resulting basis functions tj:pmlX also to be orthonormal, U must be a 
unitary matrix and we have 

11 

L Ua:PII/* Uflql'/=~:XflOpqOmk, 
j=! 

L Ua:p,,/* Ua:p,,/ = Oij. 
::z.,p,m 

(3 .90) 
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Operating on both sides of (3.86) by an element A E G, we get 
n 

Aljipmot = }-: A,pi Uotpm l • 

;=1 

~ n n 
or I: Ijipk'X rkm(otl (A)= I: I: cPj rji (A) U<r.p,,/' 

k=l i=l j=l 

Using (3.86) once again in the above equation, we obtain 
I", n n 
I: I: cps Ua.pks rkm(otl A= I: cPj rji (A) Ua.pmi . 

k=l s=1 i,j=l 
Since cpj are independent functions, the coefficients of each cp j on 
both sides must be equal. This gives 

I", n 

I: Uotpk S rkm(otl (A) = I: rsi (A) Uxpm i , (3.91) 
k=! i=l 

for all AEG, l::S;;s< n and l ::S;;m::S;; lot . This is a very important 
relation and is of great helpin determining the coefficients Uripmi, which 
then immediately give the symmetrized basis functionss IjImpot. This 
procedure is very similar to the projection operator technique9 in which 
symmetrized basis functions are projected out from a suitable function . 

Let us apply (3 .91) to the special case of the regular representa­
tion of a group. Changing the indices sand i to the group elements 
Band C respectively and using (3.74), we get 

I", 
2: UapkB rkm(otl (A)= I: r~~~ (A) Ua.pmC=Ua.pm BA , (3.92) 

k=1 CEe 
for all A, BEG and I < m5',ia.. Furthermore, if we choose the iden­
tity element E for B, we have 

I", 
I: UotpkE rkm(ot) (A)=Ua.pm A • (3.93) 

k=l 
This relation, together with (3.90), helps , determine the matrix U 
for the reduction of the regular representation completely. 

As an example, we shell apply the above result to the reduction 
of the regular representation of C4v (with the bases CPl' CP2' .•• , tPs 
considered earlier in this section) and to determine the symmetrized 

SA similar method has bcen used by Mariot (1962). However, his starting 
point is different from ours and his method involves some guessing and 
trial-and-error in the final stage. 

9Cotton (1971), Section 6.2; Hamermesh (1964), Section 3.18; Tinkham 
(I964), Section 3.8. 
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basis functions for the various irreducible representation). occurring 
in rrcg. Since / "'" 

rreg = r(l) EB r(2) EEl r(3) EEl r(~) EEl 2r(S), 

we need eight symmetrized basis functions, one belonging to each of 
' r CI ), r(2), r(3) and rIa), and two sets each of two basis functions 
belonging to r(5). Eq. (3.93) connects matrix elements Ua.pkA belong­
ing to the same irreducible representation, i.e., coefficients having the 
same ex and p. We arbitrarily choose one element, say Ua.pmE =a, and 
evaluate the others by letting A run over all the elements of the group. 
The value of a can be obtained finally by normalization. In the case 
of an la.-dimensional irreducible representation, we 'need to start with 
fa. arbitrary coefficients which can all be found in the end by normali­
zation (up to a sign factor ± 1, which must be determined by the opera­
tion of A on the corresponding symmetrized basis function). 

Thus, for obtaining the two sets of basis functions for r(S), we take 
U5P1E=a, U5P2E=b. (3.94) 

On using these in (3 .93) together with the irreducible representations 
of C4y given in Table (3.2), we obtain the following matrix elements: 

A E C4 C42 C43 mx my CJu U y 

Us PIA : a -b -a b a -a -b b 
USP2A : b a -b -a -b b -a a 

If we choose' the two sets of constants for p= I and p= 2 as a=a1, 

b=bl and a=a2, b=b2 , respectively, the 'orthogonality of all the 
distinct rows requires that al a2 +bl b2=O. Apart from thiS condition, 
we can choose the four constants arbitrarily. We must finally norma­
lize each row (or each column). 

The matrix U for the reduction of peg of C4V obtained in this 
way is given below (we have taken a1=bl =1, a2=-b2 =1): 

a 

+ + + + + + -, (3 ,95) 
+ + + + 

+ + + + 

+ + 

+ + + + + 

+ + + 

+ + + 

+ + + + + 
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where a factor of (8)-1/2 is associated with ea.ch positive or negative 
sIgn. 

One may wonder whether the order of the operators on the 
left (i.e., the ordering of the rows in (3.95)) is arbitrary and whether 
one could interchange the rows of the above matrix at will. How­
ever, this is not so, and the order is determined by the following 
consideration. Let us, for the moment, denote the g operators of 
the group G by AI' A2 , • • • , A g • Then, starting from a certain basis 
function, which we choose to call <PI' the order of the operators is fixed 
by the relation Ai<pi=<p]. i.e., if an operator brings <P2 into <p], we 
shall denote that operator by A2 , etc. 10 This is why we have labeled the 
points 1, 2, ... , 8 in Fig. (3 .2) in a particular fashion. The order of the 
columns of U is arbitrary except that the columns corresponding to 
the same irreducible representation (same IX. and p) must be together. 

By our starting Eq. (3.86), we then immediately have the symme­
trized basis functions for rrcg of C4v• These are: 

r Cl ) rfll1=(<Pl+<P2+<P3+<P4+<P5+<P6+<P7+<PS)/v' 8, 

r(2) rf112=(<P]-<P2+<P3-<P4-<PS-<P6+<P7+<PS)/v' 8, 

r(3) rf113=(<Pl-<P2+<P3-<P4+cfos+<P6-<P7-<PS)/v' 8, 

. fll> rfU-'= (<Pl+<PZ+<P3+<P4-<PS-<PG-<P7-<PS)/v' 8, 

r (S) 
: {rf1l5=(<Pl-<P2-<P3+<P4+<PS-.p6-<P7+.pS)/v' 8, 

rf125 = (.p] +.p2-<P3-.p4 -.p6 +.p6 - <P7+.pS)/ v' 8, 

rrf215 = (.p1 +.p2- <P3-.p4 +.pS-.p6+.p7-.pS)/v' 8, 

: i rf225= ( -.pI +<P2+ .p3-.p4+ <P5-.pS-.p7+<PS)/v'8. (3.96) 

Thus, starting from the eight-dimensional function space with 
the basis {.pl ' .p2'· .. ' .ps}, we have successfully reduced it into six sub­
spaces, each of which is invariant under the operations of c'lV. Four 
subspaces are one-dimensional and two are two· dimensional. It can 
be easily verified that they are indeed invariant subs paces. The opera­
tion of A E C4V on any of the first four functions of (3.96) has the 
effect ofmuItiplying it by ± 1, whereas a similar operation on tJiJl1ll5 (fixed 
p ; m=l, 2) mixes the two functions IjiP1 5 and IjiP2 5• It can also be seen 
that the unitary matrix of (3.95) block-diagonalizes all the matrices 
of the regular representation. For example, 

lONote that this discussion applies to the regular representation only. 
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I --+---, 
I -1 : 
1 I 
L-- -r - _ - 1 : -1: L---r--. 

1 1 i 
1 I 

95 

L __ + _____ , 
1 0 1 1 .(3.97) 
I : 

U-l rreg (C~) U= 

1 1 
1 I 
I 1 0 1 C ______ 1- ___ _ _ _ 

: 0 1 
I 
1 
I 
1- 1 0 
I 

The blocks will , of course, appear in the order in which the columns 
. of U have been arranged. 

Let us take the functions <Pi to be of the form 

<Pi(r) = exp( ik. ri), (3.98) 

where k is a vector of dimensions (length)-l with components kx and 
k y , Ti are the vecto rs to the eight poil1ts shown in Fig. (3.2). It is o f 
interest to find the behaviour of the symmetrized tjI's for small x 
and y . Thus, for example, consider 

Y1l2 oc c/>1-</>~+c/>3 -CP4- (/>5 -c/>6+CP7+CP8 
oc exp ik.(px + qy)-exp ik.(qx-py)+exp ik .( -px-qy) 

- exp ik.(-qx+ py)-exp ik.(px - qy) - expik .(-px + qy) 
+ exp ik . (qx + py )+exp ik . (-qx-py) 

oc sin (qkJ'Y ) sin (pk.,x)+sin (pk.lY) sin (qk xx). 

Reta ining only the first term in the expansion for small x and y, we get 

Y 1t~ oc xy . (3 .99) 

It is then said tha t the function l)i1l2 behaves or transforms like XJ. 
This is to say that the function xy is also a suitable basis function for 
the irreducible representation r(~) of C4V ; the efTect of AEC4V on 
Yll~ is t~e same as its effect on xy . In Table (3 .3), we have shown 
how the basis functions for the variolls irreducible representa tions 
transform, leaving the verifil:ation to the reader. 
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TABLE 3.3 BASIS FUNCTIONS FOR THE IRREDUCIBLE 

REPRESENTATIONS OF C4V 

Irreducible representa-/ r(l) r(2) r(3) 
tions of C4V 

Basis functions 
transform like 

1 xy {x, y} 

It should be noted that the basis functions {1\I115, 1\I125} and 
{lli2l5 , 1\1 225} of (3 .96) are not unique and therefore the matrix U is also 
not unique. For example, consider any two linear combinations of 
1\111

5 and h25
: 

Xl =a~115+b~125, 

X~=C~115+dh25, 

with the condition ad=/=bc, so that Xl and X2 are two independentfunc­
tions in this space [see Fig. (3.3)]. It can be shown that Xl and X2 

generate a representation of C4V which is equivalent to the represen­
tation r(2) [see Problem 3.2]. This provides an excellent example of 
generalized transformations in function spaces and the idea can easily 

r-=----. _____ "»- (jIS 

/ 'd 

/ 
l,... 5 5 r,,"=ciJ{1 +d(jf, 

FIGURE 3.3 Any basis can be chosen in a vector spJ.ce to generate a 
representation and all such representations are equivalent 

be extended to transformations in spaces of more than two dimen­

sions. If the matrix of coefficients [~ ~J is a unitary matrix, the 

resulting functions Xl and X2 are also orthonormal, and the tni.nsfor­
mation corresponds to a combination of rotations and refleclions only. 
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3.9 Other Reducible Representations 

In addition to the regular representation, we c3n generate other 
representations of a group. Such representations are, in general , re­
ducible. Thus, starting from any given function CPl in the Hilbert space 
of the operators of the group G, we can operate on it with all the ele­
ments A E G . . Again, in general, this will give us g independent funct io!1s 

3 
(-p. -p) (p. -pI 

FIGURE 3.4 The four functions of the positions shown 
generate a representation of C4t1 

rPlt CP2' ... , ;Pa' which generale just the regular representation of G. 
However if rPl has special symmetry properties, the number of inde­
pendent functions is less than g; in fact, it must be an integral divisor 
of g. As an example, let us start from a function CPl of the position 1 
shown in Fig. (3.4). Applying to this all the operations of C4v, we 
get three more independent functions of the positions 2, 3 and 4 of 
Fig. (3.4). Clearly, these four functions generate a representation r of 
C4v, since they transform into each other on the application of the 
operators of C4V ' The matrices vfthe representation r are determined 
byll 

(3.100) 

Since there is no four-dimensional irreducible representation of C4v, 

r must be reducible. The characters of the matrices of r are found 
to bel2 as given below: 

ll!\lote that these are the eight matrices generated in Problem U. 3). 
121n this particular example, these can be obtained quite easily by an inspec­

tion of Fig. (3.4), without having to find all the matrices of r explicitly. 
The character of A is thu~ the number of functions oJ>i which remain 
invariant under A. However, care must be taken in llsing this simple 
criterion in other more general problems wiler.: fractional coefficients may 
occur. 
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Classes 
C1 C2 C3 C4 e,. 
(£) (C" C43) (C42) (mx, my) (aWay) 

X 4 0 0 0 2 

Using (3 .67). we can find ai, the number of times an irreducible represen­
tation is contained in r. We find a1=a2=a5=1 and a3=a4 =0, giving 

.' r=r(l) EEl r(2) EEl r(5). 

In simple cases such as the one we are dealing with, these coeffi­
cients can be found by an inspection of the character table of the group, 
without recourse to (3 .67). Thus, notice that if we take the classwise 
sum of the characters of y'(l). '1.(2) and '1.(5) of C4V given in Table (3.1), 
we- obtain just the characters of r given above. 

Now we can apply (3.91) to determine the coefficients U"'1Jmi giving 
the- symmetrized linear combinations of ch. <P2' <P3' and cp.,. These are 
found to be 

r(l): ljiu1 =(<Pl +rP2+<P3+cp.4)/2, 
r(2): Ijin2 ={rPl-<P2+ cp.3-c/>4)/2, 
r(5) : {1ji11:=(<Pl+rP2-cf>.s-<P4) /2, 

1ji12 =(rPl-rP2-<pd-rP,)j2· 

(3.101) 

The unitary transformation matrix constructed from the coefficients of 
rP/s above block-diagonalizes all the matrices of the representation r. 

Thus, in general, whenever the irreducible representations of a 
group are completely known, (J. 91) is adequate to determine all the 
coefficients UaplI/ and hence the symmetrized basis functions. In most 
practical cases, the matrices of the reducible representations have only 
one nonvanishing element in each row and in each column, leaving 
only one nonvanishing term on the right hand side of (3 .91). Moreover, 
the irreducible representations of all the crystallographic point groups 
are at most three-dimensionaL This makes the determination of Uapmi 

quite easy. 

3.10 Direct Product of Representations 

Consider two representations r(a) and r(b) (reducible or irredu­
cible) of a group G. let us take the direct product of the corresponding 
matrices of the two representations and denote the new matrices by 

r(A)=r(a) (A)<8)r(b) (A), etc. (3.102) 
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Let AB=C in the group G, and consider the product · 
r(A) r(B)=[r(a) (A)® r(b) (A)l [ria) (B)® r(b) (B)] 

=[r(a) (A) ria) (B)J® :r1b) (A) r(b) (B)] 
=r(a) (C)® r(b) (C) 

= r(C). 

99 

(3.103) 

Thus we see thatthe matrices obtained by taking the direct product of 
the matrices of two representations also satisfy the multiplication table 
of the group and hence generate a representation of G. The represen­
tation r is called the direct product of the representations rill) and rib', 
and is denoted by r=r{a)®r(b). 

The direct product of two representations is, in general, reducible; 
it certainly is if either ria) or rib) is reducible. From our discussion 
of the direct product of matrices in Section 2.5.2, it is clear that the 
characters of the direct product representation r are equal to ,the pro­
ducts of the corresponding characters of r{a) and rib), i.e., 

(3.104) 

Let us first consider the reduction of the direct products of the 
irreducible representat:ons of G. We denote this by 

r(i)®r(j)=~Xkij r{k), (3. 105a) 
k 

'X,(i)(A) 'X,(j)(A)=~XkijX(k) (A), Vr AEG, (3..105b) 
k 

where Xkij are nonnegative integers. Then the direct product of any 
two representations 

ria) =~ at r(l)o and rib) =k bi r(i) 
i i 

splits into its irreducible components according to 

r{a)®r(b)=~ [ ~ 'ai bj XktjJr(k). 
k t, j 

(3.106) 

This can be easily extended to the direct pr:>duct of more than two 
representations. In Table (3.4), we have enumerated the direct 
products of all the irreducible representations of C4V in pairs and their 
decompositions. We leave its verification to the reader as an exercise. 

3 .10 ~ 1 Basis functions for direct product representations. The 
basis functions for the direct product representation can easily be 
obtained by taking the products of the basis functions of the consti­
tuent irreducible representations with each other. Thus, let {<Pl' <P2' ..• , 
<PI) be the basis for the irreducible representation rli) and {Xl ' X2, ·.·, Xl ;} 



100 ELEMENTS OF GROUP THEORY FOR PHYSICISTS 

TABLE 3.4 THE DIRECT PRODUCTS OF THE IRREDUCIBLE 

REPRESENTATIONS OF C4V 

r(3): r(l) (Xl r (3 ) = r(3), r (2) ® r (3 ) = r(4). 

r(3) (Xl f (3) = f(l); 

r(4): rIll (Xl r(4) = r(4) , r(2) (Xl r IU = r(3), 

r(3) (Xl r (4) = r(2) , r (4) (Xl r(4) = r(l); 

. . . .. .. , . : .... . ....... \ .... . ... . . . .. . .. . .. . .. . .. ... .. . ... . 
rIo) : rCl) (Xl f CS ) = f(5) , f( 2) (Xl res) = r CS ), 

f(3) (Xl f(S) = r(5), r(4) (Xl f CS) = r C6l , 

r(S) (Xl rCS) = rU)E£> f(2) EEl r(3) EEl r (4 ). 

for r U). Then the representation f= rei )(XlrU) has the 1; Ij basis func­
tions <fmn=c/>mXn (l < m::;:: Ii , 1 < 11 -:;;; Ij). By the definition of a 
representation, we have 

A (<fll> <fl2, .. ' ,<fftl}=(<fW<fl2"' " <f!;lJ) (fei) (A) (Xl r(j)(A». 

From this, the action of A on a particular function 'hnn can be written as 
[;lj 

A <fmn= I: <fM [rU) (A) (Xl .fIj) (A)]M, mn 
(kl)=l 

'/ {} 

I: I: c/>kX/rkm(il (A) f/n(j) (A) by (2.87) 
k=l 1=1 

=(A c/>m)(A X,,). (3.107) 

This shows how the operation of an operator on a function of the 
direct product space is to be performed. Here the /drdimensional 
space spanned by the basis functions {<fmn} is the direct product of the 
two spaces spanned by the basis functions {c/>m} and {Xn} respectively. 

In this branch of abstract algebra, we can also take the direct 
product of a space with itself. Thus, consider a space Ln with the 
basis functions {c/>l' c/>2"'" c/>n}. The n2-dimensional direct product 
spac~ Ln (Xl Ln has the set of basis functions {c/>lc/>l" • . ,c/>ic/> )" .. ,c/>nc/>n} . 
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However, one has to be very careful at each stage of the algebra and we 
must remember that we are dealing with an abstract notation. There­
fore, it is necessary to distinguish between the two direct product func­
tions tfo;tfoj and tfoJtfo, (i=f=j), since in this notation, they stand for two 
independent vectors in the direct product space. To avoid any ambi­
guity. one could use primed and unprimed basis functions. 

As an example, let us consider the direct product 
r=f(5 ) ® r(S) = r<l) (j1 1~1) ® r(3) (j1 rl"; (3. ]08) 

(see Table 3.4). We take the set offunctions {x,y} as the basis for 
r (5 ). Then the basis functions for the representation rare (t,y} 
{x',y'}={x2, xy, yx,y2}. The effect of an operator, say C,E::C". 
on these functions can be readily found to be 

C,(xx;xy;yx:yy')=(yy:-yx~-xy~ XX') 

~('~XY:YX:)Y'lf -r -i ~] 

The validity of (3.107) ,can now be easily checked; thus 

C,(xy) = ( C,x) (C,y) = - yx. 

It can also be seen that 

(~.109) 

~] ~ [~~ ~J ® [-~ n [f 
0 0 
0 -1 

-1 0 
0 0 

i.e., the matrix representing C, in r is the direct product of the matrix 
representing it in r (5

) with itself. 
The reduction of (3. 108) can now be easily obtained by consider­

ing the character; of the representation r. The symmetrized linear 
combinations for the constituent irreducible representations are found 
to be rll) : YI = [(xx') +(y y')] , 

r (2
) : 1jJ2 = [ (xy') + (yx') ] , 

r(3) : ~3 = [(xx') -(y y')] , 

r(~) : Y4 = [ (-"y')- (vx') ] . p.IIO) 

We may mention that the occasion for taking the direct product 
of two representations of the same group arises when we have 
a number of identical particles in the system under consideration. Thus, 
in a two·electron atom such as helium, if the wave function of either 
electron transforms according to the irreducihle representations of a 



102 FLEMENTS OF GROUP THEORY FOR PHYSICISTS 

group, then the combined wave function oftbe two electrons (neglect­
ing the electron-electron interaction) will transform according to the 
direct product representations of this group. 

3.11 Representations of a Direct Product Group 

In thi.s section, we consider the representations of a group 
which is a direct product of two commuting subgroups. Let H = 
{E=H1 ,H2, ... ,Hiz) and G={l{ G1,G2 , .• • , Gg} be two groups of 
order It and g respectively such that all the elements H j commute with 
all the elements G j. Let their direct product group of order k=hg be 
denoted by X={E _Kw K12, . . . , K1g, K21, ... , Khg}, where an ele­
ment of K is obtained by 

Kij=HjGj. 

Let HiHm:. ·Hpand GjGn=Gq ; then 

K1j Kmn=(HI Gj) (Hm Gn) 

= (Hj Hm) (Gj Gn) 

= Hp Gq 

(3 . Ill) 

=Kpq. (3 . 112) 

Let r(h) be a representation of Hand reg) a representation of G. 
Then 

r(hl(Hi) r(Iz)(Hm)= rUz)(Hp). 

r(g)(Gj) r( g)(Gfl)=r(g)(Gq). 

Taking the direct product of the matrices on the respective sides of the 
above equations, we have 

r(h)(Hp) ® r(g)(Gq)=[r(1d (Hi) r(1d (Hm)] ® [r(g)(Gj) r (g )(Gn)] 

=[r(1d (Hi) ® r (g)(Gj)][r(h)(Hm) ® r Cg)(Gn)]. 

(3 . 113) 
If we define new matrices by 

r(k)(Kpq)=r{lz)(Jlp) ® r(g)(Gq), 

then (3. 113) becomes 
r(k)(Kpq)=r(k)(Kij)r(k)(Kmn). 

(3 . 114) 

(3 . 115) 

Comparing this result with (3 . 112), it is clear that these direct product 
matrices form a representation of K. Thus the direct product of re­
presentations of two commuting groups is a representation of the direct 
product group. . 

Now, we go on to show that if both r{1d and r(g) a re irreducible 
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representations of Hand G respectively, then the direct product 
r(k) = r UIl ® rIg) is an irreducible representation of K. As discussed 
earlier [see Eq. (3.69)], the condition for irr~duc.ibility gives 

L 'l.(hl (Hj) "I.Ud* (Hj)=h, 
HiEH 

L X(g) (Gi ) X(g)*(Gj)=g, 
GiEG 

(3 . 116) 

where X(h) and 'I.(g) are the characters of the representation s r(M and 
rIg) respectively. Taking the product of th~ respective sides of the 
above equations, we find 

hg-k"=-[ L X(1Il (Hi) X(/d* Hj)] [ 'L 'I.(g) (Gj)X( g) * (Gj)] 
~EH ~EG · 

= I: I: [X(1d (Hd Z(g) (G j )] [X(Id. (Hi)X(g) * (Gj)]. 
HiEH G;EG 

We can easily deduce from (3.114) that the characters of the 
represf:'ntation r(k) of K are the products of the characters of the 
respective representations of Hand G. Hence the above equation 
reduces to 

k= L X(k) (Kij) X(k)* (Ku) , (3. 117) 
. Ki;EK 

proving that r(k) is an irreducible representation of K. 
Since in the identity representation of any group, each element is 

represented by unity, the identity representation of K is the direct pro­
duct of the identity representations of Hand G. It can also be seen 
that if either r(h) or rIg ) is a reducible representation of H or G, then 
the direct product representation of K is reducible. 

We shall now prove that all the irreducible representations of K 
are the direct products of an irreducible representation of H and one 
of G. Let the number of the irreducible representations of H be Ch and 
their dimensibns fi(1d (I < i< Ch ). Let also the number of the irreducible 
representations of G be Cg and their dimension s i/ g

) (I < j< cg ) . Then, 
by (3.79), we have 

Ch 

L [l/h) F =h, 
i=l 

Cg 

L [lj(g) ]2 =g. 
j = ! 

The irreducible representations of Kwhich are obtained by taking the 
dir.:ct products of the irreducible representations of 1/ and G will havc 
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dimensions Idkl=lllhl IJ Igl. Consider now the sum of the squares of the 
dimensions of the irreducible representations of K obtained in this way: 

ClII CII c" ell 

L I: [1t)lkl]2= E L [11(/11]2 [ljlglJ2 

;=1 j=1 ;=1 j=1 

=hg 

=k; 

C" CII 

or L [I" Ikl]2=k, (3.118) 
n=1 

where we have denoted the dimension of an irreducible representation 
of Kby 1 .. lkl=/i/kl. The above equation shows that the direct products 
of the irreducible representations of Hand G exhaust all the irreducible 
representations of K, i.e., there is no irreducible representation of K 
which cannot beexpressed as a direct product of an irreducible repre­
sentation of Hand one of G. If we denote the number of the irredu­
cible representations of K by Ck, then 

Ck=C"Cg • (3.119) 

This is a very important result in the theory of direct product 
groups since it helps in constructing all the irreducible representations 
of a bigger group K from those of smaller groups if K can be expressed 
as the direct prodllct of two or more subgroups. Although we have 
given an explicit proof of the result here, the same could have been 
proved using Problem 1. 23(iv) together with the fact that the number 
of irreducible representations of a group is equal tv the number of 
its classes. 

3.11.1 Basis functions for representations of the direct pro­
duct group. The hasis functions for a representation rl.kl of K (redu­
cible or irreducible) can be constructed by taking the products of the 
basis functions of corresponding representations r Ch ) and rIg), of H 
and G respectively, whose direct product is the representation r Ck ). In 
other words, the Hilbert space of the representation rCk) is just the 
direct product of the Hilbert spaces of the representations r Ch ) and r cg ) . 

Let us denote the 11I"_a basis functions of r(h) by {<PI' <P2, . .. , tPa} 

and the llg)=b basis functions of rCg) by {Zl' Z2' ... , Xb}. Then the 
representation r(k)= rCfI)® r(.<:) of K has the ah basi, functions {y"",}. 
where ~m,=<pmXn and I ~m:.C::;; a, 1 :':;:11 .:h. If an element of K is 
denoted by Kpq=HI'G" , then its operation on a function ~I/J" is given by 
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ab 
Kpq'}mn= L ljikr fkr.mn(k) (Kpq) 

(kl) = 1 
ab 

= L r/>kXr [fkm(hl (Hp) f'n(g) (Gq)] 

(kl)= 1 
a b 

1105 

=[ L r/>k fkm(hl (Hp)] [ L Xrf/n(g) (Gq)] 

k = I 1= 1 

(3 . 120) 

Thus, the operators of the two constituent groups act on functions 
of their respective Hilbert spaces only. 

We shall now consider a simple example of the direct product of 
two groups. Consider the two groups, both of order two, H={Ex, mx} 
and G={Ey, my} , where, as before, the operations mx and my denote 
reflections in the xz and yz planes, respectively. We have d~stin­
guished the identity element in the two groups for the sake of 
clarity. Since mx commutes with my, we can take the direct product 
~"'f Hand G to give a group of order four with the elements E=ExEy, 
A = Exmy, B=mxEy, C=mXmy• The irreducible representations of 
Hand G are as given below: 

group H 

1 

1 

1 

-1 

f1(g) 

f
2
(g) 

group G 

Ey my 

1 

-1 

The irreducible representations of K can then be easily obtained by 
taking all possible direct products of the irreducible representations 
of Hand G. These are given below: 

f
1

(!.:) - f11(kY 

f
2

<k) = f
12

(k) 

fa (k) = f 21
Ck ) 

f~(") = f 2Z <k) 

E 

group K 

A 

1 

-1 

B C 

-1 

-1 -1 

-I -1 1 

It can be seen that ,K is isomorphic to the group {£. C42, mx . l11y} 

\\ hich i ~ a ~ lIbgroup of C4 • • 
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Let us now take <PI and <P2 as the basis functions for the two 
irreducible representations of H and Xl and ;(2 as those for G. The 
various operations are then given by 

EX<Pl =tPl' n1X<Pl = <Pl. 

EX<PS=<P2' n1X<PZ=-<P2 ; 
E yX1=Xl• myXl= Xl' (3.121) 

EyXa=X2' myX2=-'l.2· 
An irreducible representation rn1kl=rljlkl of K wili then have the 
basis functions 

'f1j-<PiXj, i,j=l, 2. 
For example, the irreducible representation r z(kl_r12(k) has the basis 
function 'f12=<Pl'ZZ' which can be easily verified as follows: 

Eof12= (Ex<Pl) (Ey'l.z) = <PIX2 Y12' 
AoflZ=(Ex <Pl) (n1yXz)=(foJ( -'(2) =-tjl12' 

B~12=(mx4>1) (Ey"X.2)= q, l Z2 Y12' 
CtjllZ=(mX <Pl) (my'l.2)= <Pl( -Y.2)~ -'f12' 

If there are two distinguishable particles (such as an electron and 
a proton) whose wave functions transform according to some represen­
tations of two different symmetry groups, then the wave function of 
the system as a whole will transform according to the representations 
of the direct product group. 

PROBLEMS ON CHAPTER 3 

(3. 1) If the matrix T (A) of Eq. (3.8) is a unitary matrix, show that the 
rectangular matrix X (A) must be a null matrix. [This is the form of the matrix 
r (A) of Eq. (3.23).) 

(3.2) Let Yl, Y2, ... , <)in be the basis functions for an n-dimensional 
representation r of a group G. Show that any n independent linear combina­
tions ' of the Yi 'S also generate a representation of G which is equivalent to r. 

(3.3) If r is a representation of a group G, show that r' (whose matrices 
are the complex conjugates of the corresponding matrices of r) is also a 
representation of G, whereas. r -l (whose matrices are the inverses of the 
corresponding matrices of nand rt (whose matrices are the hermitian con­
jugates of the corresponding matrices of n are not representations of G unless 
G is an abelian group. 

(3.4) If r is a representation of a group. show that rand r- are both 
reducible or both irreducible. 

(3 . 5) Construct the character table and the table of the irreducible 
representations for the group C3IJ, the symmetry group of an equilateral 
:riangle. 



REPRESENTATION THEORY OF FINITE GROUPS 107 

(3.6) Derive Eq. (3.58) from Eq. (3 . 56). 
(3.7) Obtain the character tables and the irreducible representations of 

(i) a group of order 3; (ii) a cyclic group of order 4; (iii) a noncyclic group of 
order 4; (iv) a group of order 5; (v) a cyclic group of order 6; (vi) a nonabelian 
group of order 6; (vii) a cyclic group of order n where n is a positive integer. 
(Refer to Section 1. 8.) 

(3 . 8) Obtain the character table for the group generated in Problem (1. 7). 
(It will be noticed that it is the same as that for Ch . This shows that two 
groups having the same character tables are not necessarily isomorphic.) 

(3.9) Obtain the character table of the alternating group A4• 

(3.10) Verify Table (3.4) for the direct products of the irreducible 
representations of C",. 

(3.11) Let r(i) and rw be two inequivalent irreducible representations 
of a group G. Show that the direct product representation nil ® njJ· does 
not contain the identity representation. Show also that the direct product of 
an irreducible representation with its own complex conjugate representation 
contains the identity representation once and only once. 

(3.12) Obtain the direct products of all the irreducible representation of 
the group C3" and reduce them into direct sums of the irreducible representa­
tions. 

(3.13) Let Ct· be the inverse of the class Ci [see Problem (1.18)]. If 
Ci·=Ci , the class Ci is said to be self·inverse. Show that the number of real 
irreducible characters of a group equals the number of its ' self-inverse classes. 

(3.14) Show that every group has at least one faithful representation. 
(3.15) Verify Eq. (3 . 65) for the characters of C4" given in Table 3.1. 
(3.16) Show explicitly (by operating with all the group elements) that the 

functions xy and x2_y2 respectively generate the representations n2) and 
n3) of C4v' 

(3.17) Generate representations of the group Ch starting from the 
functions (i) z, (ii) X2, (iii) x 3, (iv) x 2y, (v) eix, (vi) cos (x), (vii) cos (mx) 
sin (ny), (viii) exp (ax+by) with ar&b. In case the representation is reducible, 
reduce it and find suitable combinations of functions which generate the 
constituent irreducible representations. 

(3.18) Same as Problem (3.17) for the group Cs" with the following 
functions: (i) z, (ii) xy, (iii) x2- y2, (iv) x2, (v) x3, (vi) x2y. 

(3.19) Con~truct the regular representation of the group C3". Choose 
a set of six functions which generate the representation. Reduce this repre­
sentation and obtain six symmetrized basis functions transforming according to 
the various irreducible representations of C3". 

(3.20) Show that two representations r 1 and r 2 of a finite group G 
have no irreducible representation in common if and only if their characters 
are orthogonal, i.e., 

• 

c 

L nk Xlk X2k*=0, 
k=1 

where Xu and X2k are the characters of the k-th class in r 1 and r 2 respectively. 
(3.21) Show that the two functions ei (X+II) and ei(x+II) generate the 

regular representation of the group (E, m",) where m", is a reflection as defined 
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in the text. Obtain two linear combinations of these functions transforming 
according to the irreducible representations of (E, mz ). 

(3.22) Show that the function exp [i(ax+by)] with a",b is one of the four 
functions which generate the regular representation of the group (E, C42, m"" mr ). 
Once again, obtain four symmetrized combinations of these functions trans­
forming according to the irreducible representations of the group. 

(3.23) Prove that a one-<iimensional representation of a group must 
be irreducible. 
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CHAPTER 4 

Continuous Groups and Their 
Representations 

I n Chapter 1, we introduced the notion of finite and infinite groups 
and gave a number of examples of both. We saw that infinite 
groups may be of two categories-discrete and continuous. We shall 
repeat their definitions here: If the number of elements of a group is 
denumerably infinite, the group is called discrete, whereas if the num­
ber of elements is nondenumerably infinite it is called a continuous 
group. 

Practically all the theory of groups developed in Chapters 1 and 3 
for finite groups holds good in the case of discrete infinite groups. it 
is when we treat continuous groups that some modifications are needed. 
In addition to the,e modifications, many new concepts are introduced 
which provide a point of contact between the theory of continuous 
groups and other branches of mathematics. Whereas the theory of 
finite group stands alone, without relying on any other part of 
mathematics, the theory of continuous groups, as remarked by 
Wigner.1often makes extensive use of the theory of ordinary and partial 
differential equations, topology, etc. In this chapter. we shall develop 
the theory of continuous groups and their representations. 

This chapter is not aimed at providing a rigorous mathematical 
exposition of the topic at hand. The objective is to i'ntroduce to the 
reader the elementary concepts of continuous groups in an easily com­
prehensible way . 

lTalimn ("')68). 
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4.1 Topological Groups and Lie Groups 

The elements of a continuous group can be characterized by a 
set oCreal parameters aI' a" .. . , a", at least one of which varies conti. 
nuously over a certain interval. The set of parameters should be both 
necessary and sufficient to characterize all the elements of the group. 
In other words, it should not be' possible to choose a set containing a 
smaller number of parameters which can be used 'to characterize alJ the 
elements of the group. Let the nuinber of continuous parameters 
be r (l:S;;r:s;;n). If this number is finite, the continuous group is said 
to befinite and r is called the order of the continuous group. 

EXAMPLE 1. The set of all real numbers is a continuous group of 
order 1 because any real number can be characterized by one parameter, 
say x, taking values on the interval [- 00, 00]. 

EXAMPLE 2. Consider a linear transformation of a variable x to x' 
of the foriD. 

x'::::.ax+b, a, b E [-00, 00], a=#;O. (4.1) 
The set of all such transformations is a two-parameter group, an element 
of which can be symbolically denoted by T(a, b) such that 

T(o. b)x=x'=ox+b. (4.2) 
The law of composition can be obtained as follows: 

80 that 

T(al> bl ) T(o" b,)x=T(ol' b1)(0.x+b2) 

=01 (0,x+b,)+b1 
=a1a.x+a1b.+bu (4,3) 

T(aa. b3)=T(alJ b1) T(as, b.)=T(a1o., alb.+b1); (4.4a) 

0 8=°1°2' ba=a1b.+bl' (4.4b) 
From this it can be seen that the identity element is T(l, 0) and the 
inverse is given by 

T(c, d)=T-l (a, b)=T(I/o, -b/a); 
c= l/a, d=-b/a. 

(4.5a) 
(4.5b) 

Note that 0. and ba are analytic functions of a1' bl • ai, bl in (4.4b) 
and so are c and d of a and bin (4.5b). ' 

EXAMPLE 3. The set of all displacements in a three-dimensional 
real vector space of the form 

x'=x+a, y'=y+b, z'=z+c, (4.6) 
,is a three-parameter, continuous group. If we denote the translation 
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0perator by T(a, b;c), the identity element is T(O, 0,0) and the inverse 
Gf T(a, b, c) is T( -a, -b, -c). 

EXAMPLE 4. Consider a linear homogeneous transformation of two 
variables of the form 

(4.7) 

or, in the vector form 
r'=Ar, (4.8) 

with 
det A=I 00 1#0. (4.9) 

The set of all such transformations, obtained by giving all possible 
real values to al} subject to the condition (4.9), is a group. It is a 
four-parameter, continuous' group, known as the linear group in two 
dimensions and denoted by GL(2). It can be seen that this group is 
isomorphic to the group of all nonsingular matrices of order two 
under mUltiplication. 

EXAMPLE 5. Consider a linear homogeneous transformation of 
n variables (a generalization of Example 4): 

n 

X/= L ajjXj, lS;i<n, 1 ail 1#0. (4.10) 
j=l 

The set of all such transformations is a continuous, n2-parameter 
group known as the linear group in n dimensions and denoted by 
GL(n). This group is isomorphic to the group of all nonsingular 

. matrices of order n under mUltiplication. 

EXAMPLE 6. The set of all rotations about an axis is a continuous 
group of order 1, whose parameter may conveniently be chosen to be 
the angle of rotation, say e, taking values on the interval [-1"C, 1"C] or 
[0, 27t]. This group, denoted by SO(2), will be discussed in more 
detail in Section 4. 2. 

EXAMPLE 7. The set of all rot~tions about all axes passing through 
a fixed point in the three-dimensional space is a group whose elements 
can be characterized by the Euler angles ex, ~, y.The group, denoted 
by SO(3), is to be discussed later in Section 4.3. 

4.1.1 Topological groups. Owing to the continuous nature of 
the group elements, it is desirable to introduce a topology in the group. 
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For simplicity, we shall restrict ourselves to groups whose elements can 
be put in a one-to-one correspondence with the points of a subset of 
an r-dimensional real inner product space Sr. We shall refer to this 
subset as the parameter spac~. 

Let2 P (x) be the point of Sr corresponding to the element x of 
the group G. P (x) is said to be the image of the element x. 

Considet now a neighbourhood of the point P (x) in Sr. This is the 
set of all points P' of S, for which 

1IP'-P(x)li< f., (4.11) 
where f is a real positive number. This is also called the f-neighbourhood 
of P (x) and we shall denote it by 1f. [see Fig. (4 . 1 )]. The points of this 
neighbourhood N. are then the images of the elements constituting a 
neighbourhood Z. of tbe element xof G. Symbolically, the neighbour­
hood Z, of x is the set of elements x' in G for which 

/I P(x')-P(x) II <f. (4.12) 
By using these concepts, we can define the limit and the continuity of 
the laws of composition and inversion of the gro~p elements. 

Thus, consider a composition of group elements ,such as 

X 1XI"X.. (4.13) 

The law of composition of the group elements is said to be continuous 
. in x, if for every f>O, it is possible to find a real number 8, >0 such 
that for all x belonging to the neighbourhood ZIl. of x 2 (i.e., all x for 

FIGURE 4.1 The neighbourhood N. of P(x ) in Sr IS the set of the 
images of elements in the neighbourhood Z. of x in G 

which II P(x)-P(x2) II <8. ), the element XIX belongs to the neigh­
bourhood Z, of X3 (i.e., " P (XIX) - P (x3) " < f). What this means 
is that a small change in one.of the factors in the product produces 

2In this chapll;r, we shall denote the elements of Ihe continuous group by x 
with primes or subscripts. 
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a small change in the product. Similarly, of course, we can define 
the continuity qf the law of inversion of the group elements [see Fig. 
(4.2) and Problem (4.1)], which means that a small change in an 
element produces a small change in its inverse. 

(3) (b) 

FIGURE 4.2 (a) The continuity of the law of composition: for every xEZ~. 
the neighbourhood of X2, xlxEZ., the neighbourhood of x3. 
where XIX2=X3' (b) The continuity of the inversion of the 
group elements: for every x'EZ~.. the neighbourhood of 
x, x'-IEZ., the neighbourhood of x-I, where xx-I=t', the 
identity element 

We are now in a position to define a topological group: it is a 
group in which the law of composition and the law of inversion are 
continuous in all the group elements. 

4. 1.2 Connectedness and compactness. Consider any two ele­
ments Xl and x2 of a topological group G with images P (Xl) and P (x2) 

in Sr. If it is possible to connect P (Xl) and P (x2) by one or more 
paths lying entirely within the parameter space, the parameter space 
is said to be connected; otherwise it is disconnected. Let G be a 
group whose parameter space is conneCted and consider a path con­
necting P (Xl) and P (xz). The set of elements of G whose images are 
the points of the path connecting P (Xl) and P (x2) will be called a 
path connecting Xl and x 2 • A group is then said to be connected if 
there exists a path connecting any two group elements, or, in other 
words. if its parameter space is connected. 

As an example, we see that the group of rotations about an axis 
is a connected group, as is also the group of proper rotations in three 
dimensions. 

It is important to note that the property of connectedness is 
different from the continuous nature of the group, which depends On 
the continuous variation of one or more of the group parameters. Thus 
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a continuous group may not be connected, an important example of 
which, as we shall see later, is the rotation-inversion group in three 
dimensions. . As shown in Fig. (4 .3), it means that the parameter 
space of a continuous disconnected group consists of two or more 
disjoint subsets such that each subset is a connected space, but it is 
not possible to go continuously from a point of one subset to a point 
in another without going outside the parameter space. 

FIGURE 4.3 A plausible structure of the parameter space of 
a continuous but disconnected group . 

A continuous connected group may further be simply connected 
or multiply connected depending on the topology of the parameter 
space. A subset of the Euclidean space Sr is said to be k-fold connected 
if there are precisely k distinct .paths connecting any two points of 
the subset which cannot be brought into each other by continuous 
deformation without going outside the subset. The structure of 
mUltiply connected spaces is shown in Fig. (4.4). A connected group 
is then said to be k-fold (onnect{d if its parameter space is k-fold 
connected. 

(a) (b) {c) 

FIGURE 4.4 Plausible structures for (a) a simply connected space, (b) a 
doubly connected space, and (c) a fourfold connected space. 
In each case, the ,space under consideration is the lined region 

l£a topological group h~S\r continuous parameters and l1~r discrete 
para.Q1etersi ~ts parameter spac~ will co~ist'cf n-r disjoint sl\bspaces. 

. \ 
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There is a one-to-one correspondence between any two disjoint 
pieces of the group space and when the analytical properties of the 
group are discussed, only the piece (subspace) containing the identity 
element is generally implied. 

Finally, a topological group is said to be compact if its para­
meter space is a compact space, that is, a closed3 and bounded' space. 

4.1.3 Lie groups. The dependence of the elements Xl' X 2• etc., 
of a topological group G on its r continuous parameters can be written 
explicitly as Xl =x1(al , a2 • ... , ar), X 2=x2(bl , b2, ... , br), etc. Let 
Xl X2= Xa (CI , c2, •.. ,Cr) and XI-I=X, (dl .d2, ... ,dr). The parameters 
of Xs and X( can be expressed as functions of the parameters of Xl 

and X 2, that is, 
Cj = Cj (a l • .•. , ar; bJ , ••• , br), 

dj-dj(a1, . • . ,ar), (4.14) 

for 1 <i~ r. A topological group is called an r-dimensional Lie group 
if there exists a neighbourhood N of the identity element e such that 
the continuous parameters of the product of two elements and those 
of the inverse of an element in N are continuous differentiable func­
tions of the parameters of the elements, that is, if ct's and d;'s of 
(4.14) are analytic functions of a;'s and b;'s for elements in N provi­
ded that xa and X, lie in N when Xl and X 2 do. In- addition, there 
will be laws for combining the other n-r discrete parameters. 

It is convenient to choose the continuous parameters of a Lie 
group such that the image of the identity element e is the origin of the 
parameter space, i.e., e=x (0, 0, ...• 0). With this parametrization, 
an element near the identity may be written, due to the analytical 
properties of the Lie group, as 

x(O,O, .. . , f j, .. . ,0)~x(O,0, ... ,O)+ifjlj(O,O, .. . ,0), (4 . 15) 

to first order in fj. The operator Ij can be obtained from (4 . 15) and 
is given by 

Ij= lim [;.. {x(O, . . . ,fj, .. . ,0)-x(O,0, .. . ,O)}]. (4.16) 
'.i-+{] If] 

All the properties of a Lie group can be derived from the r operators 
Ij (1 ~j ~ r) which need to be defined only near the identity element 
of the group. . 

3A set is closed if every Cauchy sequence of elements of the set has a limit 
element which also belongs to the set. See Section 2.1.4. 

'See Simmons (1963), p. 58. 
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By the successive application of the product rule, we can arrive at 
an element of the group a finite distance away from the identity. 
Thus, suppose we wish to gl.nerate the element x(O, 0, ... , OJ, ...• 0). 
Let us write OJ=N'f), where N is a large positive integer so that f) is 
a small quantity. Then 

x(O,O, ... , OJ, .. . , O) = [x(O, 0, . .. , f), ... , O)]N 

=[e+i E j IJ]N 

=[e+i(aj/N)lj]N. (4.17) 

Allowing N to tend to infinity and using the algebraic identity 

lim (l+x/N)N=exp(x), 
N ..... 

this becomes 
x(O,O, ... , aj, .•. , O)=exp (iajl) , (4.18) 

which is an exact result. The exponential function on the right-hand 
side of (4. 18) is to be understood as being formally equivalent to its 
expansion in the powers of the operator i}. For a .general element of 
the group, we can easily extend the above result to obtain 

x(a1 , a2, •••• ar)=exp [i. ja)l)]. (4.19) 
) - 1 

All the elements of the Lie group belonging to the subset containing 
the identity can be obtained by giving various values to the para­
meters a) on the respective prescribed intervals. The operators IJ 
are therefore called the generators of the Lie group. A Lie group 
with r continuous parameters has r generators. 

The infinitesimal elements of a Lie group themselves constitute 
an a belian group. Thus, let 

Xk=X(O,O, ... , fk, •• . , O)=e+ifkh, 

xJ=x(O,O, ... , f) •... , O)=e+i EJi}. 
Then 

XkXj=XjXke:t.e+i (fklk+fJIJ), (4.20) 

to first order in the f'S, which is again an infinitesimal element of G. 

4.1.4 Representation of a continuous group. Let a set of matri­
ces r (x) generate a representation of the Lie group G. We say that 
r is a continuous representation of G if 

r(x)-+r(x') as x-+x'. (4.21) 

The group G is homomorphic to the group r of matrices and the 
matrices of r can be characterized by the same parameters as used for 
characterizing the elements of G. Eq. (4.21) then means that as the 
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values of tho parameters are continuously changed from tbost for % 
to those for x' in the parameter space, the corresponding matrix rex) 
goes coni;;)Uously to r(x'). 

If we restrict ourselves to the consideration of the continuous 
representations of a compact continuous group, then wo have the 
foJlowing important theorems which we shaU state without proof. 
These are, in a way, extensions of sorno of th~ results which bold 
good for finite groups to the case of continuous groups: 

(a) Any representation htU an .,alenl representation whole 
malricel are unitary. We have proved this for finite groups in Section 
3.2.2. 

(b) Any unitary representation il completely reducibk, i.e., can be 
brought to the form (3.24), 

(c) Any irreducible reprelentation ufinite dimensional. 

4.1 no Asia) Rotatio. Grotlp S0(2) 

Consider the set of rotations of a circle about an axis normal to 
the plane of the circle and passing through its centre. Each clement of 
this set'can be characterized by one parameter which can be chosen to be 
the angle of rotation ~ which takes values on the interval [0, 2nJ. This 
is clearly a one-parameter, continuous, connccted, abelian, compact, 
Lie group, known as the axial rotation group, and is denoted by S0(2). 
Since rotations by ~ and.+ 2nn (n an integer) are identical, the para­
meter space is the subset [0, 2n] of the real line. The group is 
infinitely manifold connected because there are infinitely many 
paths connecting any two group elements which cannot be brought 
into each other by continuous defonnation without going outside 
the space. The path which goes around the circle n times is not 
identical to one which gocs around it n+1 times [see Fig, (4 .S) ]. 

FIGURE 4. S The II'OUP SO(2) is infinitely manifold connected 
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If we denote an element of this group by T(,p\ the law of compo­
sition is 

f
T(,p+O) if ,p+O<21t, 

T (1).) T(A)=T(O) T (,p)= 
T(,p+6-21t) if ,p+O~ 21t. 

(4.22) 

The identity element is T (0) and the inverse of T(,p) is T(2':t-,p). 
The transformations of a cartesian coordinate system (x, y) in 

the plane of the circle under the rotations of the group SO(2) can be 
used to generate a representation of the group. The operation of an 
element T (,p) on (x, y) is given by 

T(,p)(x,y)-(x'.y')=(x,y) [ C?S,p sin,p J. (4.23) 
- sm,p cos,p 

The matrix of transformation on the right-hand side is an orthogonal 
matrix of oTdcr 2. With every element T(,p) of the group can thus be 
associated a 2 X 2 orthogonal matrix with determinant + 1 and the 
correspondence is clearly one-to-one. The set of all orthogonal matrices 
of order 2 having determinant + 1 is a group which is isomorphic to 
the axial rotation group and therefore provides a two-dimensional 
representation for it. This matrix group is also denoted by the same 
symbol SO(2). 

Since the axial rotation group is abelian, all its irreducible n;pre­
sentations must be one-dimensional. To obtain all such irreducible 
representations, we take the help of the product rule (4.22) and note 
that the only numbers (I X I matrices) which satisfy it are of the form 

X(,p) = exp(c4» , (4.24) 

where c is a number and X(,p) is the character of T(,p). But since 
T(21t)=e, the identity, and e must be represented by unity in any one­
dimensional representation, we have exp (21tc) = I, giving c=im where 
m is an integer, or 

X(m) (,p)=exp(im,p). (4.25) 

For every integral value of m we have an irreducible representation of 
SO(2) given by (4.25). The orthogonality theorem (3.55) for characters 
becomes in this case 

(4.26) 

If we allow multivalued representations, it can be seen that "/.(III} 

(,p)=exp(im ,p/2). X(m)(,p)=exp(im ,p/3), etc .. can also be used as 
representations of SO(2), because it is evident that 

exp (im ,p/k) exp (im O/k)=exp [im(,p+6) /k), 
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satisfying the group multiplication law; ' here k is any integer. In 
general , x(ml (4)) = exp(im cj> jk) gives us a k-valued representation of 
SO(2). However, it is found that in constructing mathematical models 
of real physical systems, only single-valued and double-valued 
representations occur. Further discussion of such representations 
can be found at the end of Section 4 . 5',3 . 

4.2.1 Generators of SO(2). Since SO(2) is a one-paramt.Cer group, 
it has only one generator. The generator will depend on which 
group isomorphic to SO(2) is under consideration. We shall illustrate 
this by considering four examples. 

EXAMPLE 1. The group of the complex numbers {exp (im4»} for 
0< 4><2rc, fixed ' m. This group is clearly isomorphic to SO(2). By 
(4 . 16), the generator is given by 

1= ~~ L.~ [exP(iI114»-l)} 
=nl. (4.27) 

By (4.18), any element of the group can be written as exp (im¢», which 
is trivially true in this case. ' 

EXAMPLE 2. The group of ill orthogonal matrices of order 2 with 
deter~inant + 1. We have seen that a typical element of this group can 

, [cos4> Sin4>] h ' h (' be wntten as '.J. .J.' T e generator IS t erelore 
-SI11'f' cos'f' 

1= lim [~{[ cos¢> sin¢> J-[ 01 
°1 J}J 

,p.....o irp -sin¢> cos¢> 

=[ O-i ] 
i 0 ' (4.28) 

which is one of the Pauli spin matrices commonly denoted by U y • Any 
2 x2 orthogonal matrix with determinant + 1 can then be written as 

[
cos¢> sin¢> ] . 

• .J. .J. = exp(/.puy), (4.29) 
-Sln'f' cos 'I' 

a verification of which is left to Problem (4.4). 

EXAMPLE 3. Consider a circle of radius a and let x measure the 
distance along the circumference. Letf f(x)and let T (¢» stand for a 
rotation of the function f through an angle 4> a bout an axis normal to 
the circle and passing through its centre. Sincefis defined onlyon the 
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circle, T(,) has the effect of translating it by a distance a" i.e., 
T(,) f(x)-f (x + at/». The generator lis then an operator whose effect 
onf(x) is 

i f(x)=~: {i~ [T(,;)f(x)-ef (X)]} 

= ~i: t~ [f (x+at/»-f(x)] } 

=-ia of/ax. (4 . 30) 

Thus, the operator is proportional to the quantum mechanical momen­
tum operator Px= -itiB/ox and is given by 

I=apx/ti. (4.31) 

An operator of the group can then be written as 

T(t/»=exp (i, apx/fi). (4.32) 

EXAMPLE 4. Letf f(x,y) and let . the operator T(t/» stand for an 
orthogonal transformation of the coordinate system as in (4.23). The 
operation of T (cfo) onf then gives 

T(,p)f(x, y)=f(x cost/>+y sin" -xsint/>+y coscp). (4.33) 

The generator can be found out as follows. 

If (x, y) = lim .~ x [f. (x cost/>+y sint/>,-x sint/>+y cost/»-f(x, y)] ,-+0 l'f' . 

=~~ {:t/> [yt/>of/BX-XCPof/OY]} 

=-i(YB/ox-·xB/oy)f(x, y). (4.34) 

Hence 
I = -Lz/fi, (4.35) 

where Lz is the component of the angular momentum operator normal 
to the plane (x, y): 

Lz=ifi (Y8/ox-x%y)=xpy-ypx= -ifio/ct/>. (4.36) 

An orthogonal transformation of the coordinates in the two-dimen­
sional plane (x, y) is then given by 

T(cp) = exp (-it/>Lz/fl). (4.37) 

4.3 The Three-Dimensional Rotation Group SO(3) 

Consider the set or all orthogonal transformations 10 a three-
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dimensional real vector space (i.e., a space defined over the field of real 
numbers). ,It is a group which we shall denote by 0(3). It canalso 
be alternatively defined as the gr<?up of all 3 X 3 orthogonal matrices. 
The two groups are isomorphic to each other. 

If R is an orthogonal matrix, it satisfies the equation 

RR=RR =E, (4.38) 

where E is the unit matrix and R is the transposed matrix of R. 
Taking the determinants of both the sides of (4.28) and noting that 

det R=det R, we have 
(det R)2= I ;:>det R= ± 1. (4.39) 

The matrices of the group 0(3) are thus divided into two sets-one con­
taining the matrices with determinant + 1 and the other containing the 
matrices with determinant - 1. It can be easily checked that the first 
set is a group. We shall denote this group-the group of aU real 
orthogonal matrices of order 3 with determinant + I-by SO(3). 

Considering the isomorphism of the orthogonal matrices with the 
orthogonal transformations, we see that an orthogonal ,matrix with 
determinant + 1 corresponds to a pure rotation or proper rotation of 
the coordinate system. An orthogonal matrix with determinant - 1 
corresponds to an orthogonal transformation which can be expressed 
as the product of a proper rotation with the inversion. Such trans­
formations are called improper rotations. The matrix corresponding to 
the operation of Inversion is the negative of the unit matrix: 

J=[-l 0 OJ o -1 0 
o 0-1 

(4.40) 

The inversion and the identity constitute a group of order 2. Since 
inversion commutes with all the rotations,1i we have the important 
relation 

0(3)=SO(3) ® (E, J). (4.41) 
The group (E, J) has only two one-dimensional irreducible represen­
tations. The representations of 0(3) can therefore be easily obtained 
from those of SO(3) by the theory of the direct product of groups. We 
shall therefore consider below th~ irreducible representations of SO(3) 
only. The group 0(3) is called the three-dimensional rotation-inv:!rsion 
group. 

6In the matrix group, J is a constant matrix. Hence it com'Dutes with all 
square matrices of order 3. 
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The parameters of SO(3) can be chosen in various ways. Let us 
choose a cartesian coordinate system (x.y, z) in the space under consi­
deration. We may denote a rotation through an angle ~ about an axis 
u by Ru (~) . It requires two parameters to fix a direction with respect to 
the coordinate system. For example, we may choose the two para­
meters to be the angular polar coordinates (e, 4» of a point on the 
axis u. The three group parameters e, 4> and ~ are shown in Fig. (4.6). 

z 

· U 

~~-------4,-----y 

'" I ",J 

x 

FIGURE 4.6 The three parameters e, '" and ~ of SO(3) 

An alternative method is to express the rotations in terms of the 
Eular angles. This is a more convenient way for developing the theory ~ 

further. A rotation through the Eular angles (oc, ~, y) denoted by 
R(oc, ~, y) consists of the following three successive rotations: (i) a 
rotation through oc about the z axis, followed by (ii) a rotation through 
f3 about the new y axis, followed by (iii) a rotation through y about the 
transformed z axis. Thus, 

(4.42) 

The matrix of transformation corresponding to the element RCa, ~, y) 
can be easiiy found out. Consider first the element Rz (oc); its matrix 
of transformation is clearly 

sIna 
cosoc 

o 

Writing down similar matrices for Ry(~) and Rz(y) and taking the 
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product in accordance with (4.42), we obtainS 

R(rt., ~,y)= 

123 

[

. cosO! cos~ cosy-sinO! siny sinO! cos~ cosy+cosO! siny sin(j COSy J. 
-cosO! cos~ siny-sinO! cosy -sinO! cos~ siny+cosO! cosy -sin~ siny (4 .43) 

-cosO! sin~ -sinO! sin~ -cos~ . 

This is an orthogonal matrix with determinant + 1 and gives the general . 
element of the matrix group SO(3). 

The generators of SO(3) can be obtained by considering an infini­
tesimal rotation through an angle E about an axis u. The group of rota­
tion Ru (cfo) for O<cfo<2rc, which is a subgroup of SO(3), is isomorphic 
to SO(2) and hence, in the manner in which we obtained (4. 35), we get 

(4.44) 

"'. where Lu =L·u IS the component of the angular momentum operator 

'" L along u, u being a unit vector along u. Since any rotation can be ex-
pressed as the product of three rotations about the cartesian coordi­
nate axes, we see that we need the three operators 

Ix=-Lx/fi., ly=-Ly/ fi., Iz=-Lz/fi.. (4 .45) 

Any rotation operator can then be written as 

Ru(cfo)=e~p [-i1> (L.-a)/1i]. (4.46) 

While expanding the exponential, it should be remembered that the com­
ponents of the angular momentum operator L do· not commute with 
~ach other. 

The full rotation-inversion group 0(3) has four parameters which 
may be taken to be (rt., ~, y, d), where rt., ~, and yare the parameters 
of SO(3) and d denotes the determinant of an element and can take 
values ± 1 . . The parameter space of 0(3) thus consists of two discon­
nected regions. It is therefore a four-parameter group, three of which 
are continuous. It is a continuous, compact, Lie group which is, 
however, not connected. 

4.3.1 Irreducible . representations of SO(3). As usual, it is 
easier to find the <;:haracters, rather than the actual matrices, of the 
irreducible representations of SO(3). As discussed at the end of 
Section 3.6.2, the problem is to find a suitable set of basis functions 

6For more details, see Messiah (1965), Section C.10; Ziman (1969), Section 
7.9. • 
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which transform into their linear combinations on operating with the 
elements of SO(3). It is well k.nown thatthe set of the 21 + I spberiCal 
harmonics YI'"~O, ~), where 1=0, 1,2,3, ... , and -1-s;;.m~/, transform 
into their own linear (,,ombinations on rotating the coordinate system. 
If the transformation properties of Y,'" (0, +) under rotations are known 
then, of course, we immediately have the matrices of the irreducible 
representations generated by the 2/+ I functions YI'" (6, +). Weshall 
take this up later, indicating at present a method to determine the 
characters of the irreducible representations generated by y,... (0, ~). 

Let. us first consider the class structure of the group SO(3). Consider 
the two operations Ru (<<) and Ry (Cl) which denote rotations through the 
same angle « about two distinct axes u and v (both passing t.hrough thlb 
origin). Since there exists in SO(3} an operation which can bring toC axis 
u into the axis v. by rule (iii) of Section 1.3 for finding classes, we s~ 
that Ru (<<) and Ry (<<) must belong to the same class. In other words, if 
R,,<r~}, say, is the rotation which brings the axis u into the axis v, then 
Ra (<<) and Ry (<<) are related through a similarity transformation 

Ru(a.)=[R" (~)Jl Ry (Cl) R" (~) . (4.47) 
It should be clear that ~ is the angle between u and v and w is per­
pendicular to both of them. We thus have the important result: III tire 
group sa (3), rotations ,through a given angle about all axes belong to 
a class. In any representation, therefore, characters of the elements of 
SO(3) depend only on the angle of rotation, not on the axis of rotati0l!~ 

- It is thus not necessary to know the complicated transformation 
properties of the spherical harmonics under all rotations. We may 
choose the axis of rotation to be the z axis; the operation of M &) on a 
spherical harmonic Y I" (0, ~) is then known to be 

R1(Cl} YI'"(O,~)- YI'" (O,~-Cl)=exp (-im &) YI"(6, ~). (4.48) 
The matrix representing RI (a.) with the basis {YI"(e .. m (for 

-l~,!,~f) is therefore a diagonal matrix given by" 

e-,(/-l)CII o 

1 
(4.49) 

el/CII J 
7 Although the o~rator R.(CII) has a diagonal representation in (4: 49), itshould 
not be thought that this is a reduciblo representation .. A rotation ~bout any 
other axis except the r axis will be representod by a nondlagonal matrut because 

• ·of the millilll of the spherical harmonics. 
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The character of Rz(lX) is then easily found to be 

I 

XCll(IX) = L eimx 

m= - / 

= e-i1X(1 +ei"'+e-''''+ . .. +e2i1") 
expr; (/+t)1X1-exp[ -i(l+l)lX] 

ex. pUocj2)-exp( -ilX/2) 

sin(/+l )IX 
= sin(lXj2) . 

Coming to the actual representations, we have 
/ 

R(oc,~, y) y/"(e, 1» = L Yr' (e, 1» Dm,m(IJ (IX? ~, y). 
m'=-l 

125 

(4.50) 

(4.51) 

The spherical harmonics generate a (2/+ 1)-<limensional ilTeducible 
representation. The identity element is R(O, 0, 0), and from (4.50), we 
see that X<Il (0)=2/+ I , as it should be. The representation is denoted 
by 'D(/). For 1=0, 1,2, . .. , these give all the continuous and single­
valued irreducible-representations of SO(3). A method to obtain the 
matrices D U) (IX, ~,y) is discussed in Section 4.5.3. 

4.3.2 Connectedness of SO(3). We have seen that every 
rotation of SO(3) can be characterized by a vector whose length is 
equal to the angle of rotation and whose direction is along the axis of 
rotation. The end-points of all ~ uch vectors thus fill a sphere of radius 
7t. Every element of SO(3), except those denoting rotations through 7t. 

has associated with it a unique point inside the sphere. However, . 
since the rotations through 7t and -7t about an axis denote the same 
element, we must identify all diar.'1e trically opposite points of the sphere 
under consideration, that is, we must think of two diametrically opposite 
points as being the same point. This introduces some important topo­
logical connectedness properties in the group SO(3). 

Consider two elements Rl and R2 of SO(3). There are two distinct 
paths connecting the images of Rl and R2 in the parameter space as 
shown in Fig. (4.7); a direct path (a) from Rl to R2 and a path (b) 
which first goes to the point x on the surface of the sphere, makes ajump 
to the diametrically opposite point x' and then goes to R 2 . The path 
(b) cannot be made to coi ncide with the path (a) by a continuous 
distortion bel:ause as we move the point x on the surface of the sphere 
its equivalent point x' alSo moves remaining always diametrically 
opposite to x. 
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1·0 (b) 

FIGURE 4.7 Two distinct paths connecting the image points of Rl and R 2 : 

(a) a direct path and (b) a path which makes a jump across . 
diametrically opposite points 

We can now show that any other path connecting Rl and R2 can 
be brought into coincidence with one of the two paths of Fig. (4.7) by 
a continuous distortion. Thus consider a path R1xx'yy'R2 which 
makes two · jumps across the surface of the sphere as shown in Fig. 
(4.8). In this figure, it is shown that this path can be contin~ously dis­
torted to make it a path of type (a). As We let x approachy on the sur­
face of the sphere, x' approaches y'. Finally, as x and y coincide, so do 
x' andy', and the path is clearly of type (a). Similarly, it can be shown 
that a path which makes n jumps across the surface is of type (a) or (b) 
depending on whether n is even or odd. 

x 

The group SO (3) is therefore doubly connected. 

y' 

y x y X, Y 

FIGURE 4.8 Continuous distortion of a path making two jumps across the 
surface of the sphere to a path of type (a) 

4.3.3 Tbe group O(n). It should be clear that the set of all real 
orthogonal matrices of order n is a group. This group is denoted by 
O(n) and is a continuous, compact, Lie group, which is, however, not 
connected. It can be alternatively thought of as the set of all 
orthogonal transformations in a real n-dimensional vector space. If 
x, are the orthonormal basis vectors in this space, a transformation 
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n 
of O(n) leaves the quadratic form L x/2 invariant; The parameter 

j=l 
space of O(n) consists of two disconnected pieces, one corresponding 
to matrices with determinant + 1 (proper rotations) and the other to 
p1atrices with determinant -1 (reflections). The subgroup containing 
proper rotations is a connected, n(n-l)/2-parameter,S Lie group, 
denoted by SO(n). O(n) has one discrete parameter in addition to 
the n(n-l)/2 continuous parameters of SO(n). 

For example, 0(4) is the group of all orthogonal transformations 
which leave the quadratic form X2+y2+Z2+U2 invariant. If we regard 
x, y, Z, u as the cartesian coordinate axes in a four-dimensional 
Euclidean space, the six parameters of SO(4) can be thought of as 
representing rotations in the six coordinate planes. From the theory 
of SO(2) and SO(3) [Eqs. (4.34) and (4.45)], it can be seen that the 
six generators of SO(4) can be conveniently taken to be . 

Al = -i (y'iJjoz-zo/By), A2= -i (z%x-x'iJ/oz), 

Aa= -i (x%y-yB/ox), 

B1= -i(xBjou-u%x), B2=-i(y%u-u%y), 

Ba=-i(z&-j'iJu-uBjoz). (4.52) 

The commutators of th-ese generators with each other are found to 
be 

[AI> A21=iAa, [BI' B2]=iAa, 

[AI' B1]=O, [AI' B2 ]=iB.,[Av Ba]=-iB" (4.53) 

and others obtained by cyclic permutations of the indices in each of 
the above. 

Changing to a new set of linearly independent generators defined 
by 

JI=i (A1+BI), KI=i (AI-B1), 1=1, 2, 3, 

we see that the cominutators become 

(4.54) 

[JI' J2]=iJa, [Kv Kt]=iKa, (4. 55a) 
[It, Kj]=O, l,j=I,2, 3, (4. 55b) 

with permutation of indices in (4. ?5a). This shows that each of the 
sets (/1' J2, Js) and (Kl' K 2, Ka) generates the- group SO(3), so that 
SO(4) is isomorphic to the direct product of SO(3) with itself. A 
physical application of this group is discussed in Section 5 .8.1. 

BAn orthogonal matrix of order n has n(n-1)/2 independent elements. 
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4 .4 The Lorentz Group 

It is of interest to consider the group of transformation s which 
leave the quadratic form XI2+X22+ .. . + X/- XP+12- . . . -Xn2 (O<p 
<n) invariant. These groups are known as the pseudorotation groups.~ 
Although some authors lO also refer to all such groups as the Lorentz 
group, it is customary to restrict the phrase Lorentz group to the case 
of the above quadratic form with n=4, p=3, i.e. , XI2+X22+ X32-X/. 
owing to its importance in the special theory of relativity, where the 
four-dimensional space-time continuum is described by the metric 

dS2 = dx2+dy2+dz2-c2dt2. (4 .56) 

The pseudorotation group is denoted by the symbol Op, n_p, and 
there is no loss of generality in choosing p~n-p. The simplest of 
the pseudorotation groups o:::curs when p=l, n=2, that is the group 
0 1 , l' which leaves the quadratic form x2_y2 invariant. A general 
transformation of 0 1 ,1 is of the form 

x'=x cosh 6+y sinh 6, 
y'=x sinh 6+y cosh 6, (4.57) 

where 6 is real and - 00 < 6 < 00, so that 
X'2_ y'2=X2_ y2. (4 .58) 

Each element of the group can be characterized in terms of a real 
parameter 6, and the set of matrices 

[
cosh 6 sinh 6 ] 
sinh 6 cosh 6 ' -00<6<00 , (4 .59) 

gives a two-dimensional representation of the group . In addition, 
the group 01> 1 also contains reflections (such as x~-x, y~y), the 
matrices corresponding to which have determinant -.1. It is there­
fore a continuous, one-parameter, Lie 'group, which is noncom pact 
because the parameter space is unbounded, and not connected because 
the parameter space is divided into two disjoint subspaces. Also 
note that the transtormations of the pseudorotation group are not 
orthogonal. 

In analogy with Example 4, Section 4 .2 . 1, the single generator 
of the group can be found to be 

B=- i (x8j8y+y8j8x). (4. 60) 

If we put y=iv, so that X2 _ y2=X2+VZ, a transformation which leaves 

9Englefield (1972), Section 1 .9. 
IOHamermesh (1962), p. 307. 
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x2_y2 invariant also leave5 X2+V2 unchanged. But the group of the 
quadratic form x2+ v2 is just the group SO (2), with transformations 
given by 

x' =X cos e+ I' sin e, 
v'=:=-x sin e+vcos o. (4.61) 

Ifwe put cx=ie,(4.61) reduces to (4.57), so that the pseudorotation 
group can be thought of as a group of rotations through imaginary 

. angles or as a group of rotations of coordinate axes where one of 
the coordinates is imaginary. 

Coming to the quadratic forin X2+y2_z2, we see that this will be 
invariant under ordinary rotations [of the form of (4.61)] in the 
xy-piane and under Lorentz rotations [of the form of (4.57)] in the 
xz- and yz-planes. Thus, the group of the quadratic form X 2+y2_z2, 

that is, the group O2 , l' is a three-parameter, continuol,ls, noncompact, 
Lie group. The three generators of the group can be chosen to be 

BI = -i(y8/8z+z8/8y), B2= -i (x8j8z+zo/8x), 

A3=-i(x8/8y-y8j8x). (4.62) 

Their commutators with each other are easily worked out to be 

[B], B2 ]=iA3, [B2' Aa]=-iBt> [A3' B I ]=-iB2 • (4.63) 
The negative sign in the last two commutation relations of( 4.63) is 
characteristic of the fact that B] and B2 generate imaginary rotations. 

Finally, let us consider the group which leaves the quadratic form < 

X2+y2+Z2_U 2 invariant. This Lorentz group evidently contains as a 
subgroup the group 0(3) of real orthogonal transformations in the 
three-dimensional space (x, y, z). In addition, it also contains 
imaginary rotations in the XU-, yu- and zu-planes. Thus, it is a six­
parameter, continuous, noncom pact, Lie group. The six generators 
can be chosen to be Aj and Bk, j, k= 1, 2, 3, where 

A I =-i(yoj8z-z8/8y), A,=-i(z8/8x-x8/oz), 

A3=-i (x8/yo-y8/8x), 

B1=-i(x8j8u+u8j8x), B2= -i (y8/8u+u8/8y), 

B3=-i(z8/ou+u8/8z). (4.64) 

The commutation relations among these generators are found to be 
identical to those of (4.53) ·except that the second equation of (4.53) 
shows a change in sign; they are given by 

[AI' A2]= iAa, [Bl' B2]=-iA3 , 

[AI' Bt]=O, [AJ ' B2]=iB3 , [Al' B3J=-iB2 , (4.65) 



ELEMENTS OF GROUP THEORY FOR PHYSICISTS 

with others obtained by cyclic permutation of the indices in each of 
the abov~. 

For further reading, the reader is referred to the literature.l1 

4.5 The Special Unitary Group SU(2) 

Let u and v be a pair of vectors in a two-dimensional vector 
space defined oyer the field of complex numbers . A rotation in this 
space transforms u and v into their linear combinations: 

u'=au+bl', v'=cu+dv; (4.66a) 

(4. 66b) or [u', v']=[u, v] [ ~ ~ J 
where a, b, c, d are complex numbers and hence the transformation 
matrix involves 8 parameters. If we consider only those rotations 
which leave the quadratic form uu*+vv*=luI2+lvI2 invariant, we see 
that the matrix of transformation in (4 . 66b) must be a unitary matrix. 
In other words, if we require that lu'12+lv'12=luI2+lvI2, then from 
(4 .66), we obtain the conditions 

aa*+cc*= 1, bb*+dd*= 1, ab*+cd*=O. (4.67) 

Since the scalars are complex, the last of Eqs. (4,.67) is equiva­
lent to two conditions. These conditions thus reduce the number of 
parameters in (4.66) from 8 to 4. By using (4.67), it can be ded uced 
that the most general unitary matrix of order two involving four real 
pa,rameters can be expressed in the form12 

[ 
cos6 cir£ sin6 e'Y ] 

-sin6 ej(~'-y) cos6 fj(~-r£) , 

(4.68) 

whose determinant is exp(i~). Here el, ~, Y and 6 are the four real 
parameters. 

The set of all such transformations is the group U(2) which is 
isomorphic to the group of all unitary matrices of order 2. It is a 
4-parameter, continuous, connected, compact, Lie group. 

The subgroup of, U(2) which contains all the unitary matrices of 
order 2 with determinant +! is of particular interest in physics. It 
is the set of matrices whose general element is 

[
a -b* ] 
b a* withaa*+bb*=l. (4.69) 

llWybourne (1974). 
12See Eq. (5.50) of Joshi (1984). 
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~ t is known as the unitary unimodular group or the special unitary group 
lnd is denoted by SU(2). Owing to the additional condition on the 
determinarit, SV(2) is a three-parameter group. In what folIows. we 
shall denote the general element (4 .69) of this group by R(a, b). 

4.5.1 Irreducible representations of S V(2) . The matrices of 
(4.69) themselves provide us · with a representation of S V(2) . Other 
representations. can be obtained by considering the transformations 
of the following 2j+ 1 symmetric products of u and v of degree 2j: 

uJ+m vJ- m 

fll! = t(j+m)! (j-m)! ]1/2' (4.70) 

where m=-j, -j+l , . . . ,j-l,j, andj is an integer or half an odd 
integer. Because u and v transform into their linear combinations as 
per l4. 69), it is clear that the 2j+ 1 functions of (4.70) also transform 
into their own linear combinations under the transformations of S V(2). 
This provides us with a (2j + 1 )-dimensio nal representation of S V(2) 
whose matrices can be obtained by applying R(a, b) onf/I! and using 
(4.69): 

R (a b)/-III =. 1 . (au+bl')Hm( -b*u+a*vy-m. 
" J [U + m) ! (j-m !]1/2 

Expanding the brackets by the binomial theorem, we find 

1 U+m)! 
R(a, b)h

m = 2: lU+m)! (j-m) ! P/~' k! (j+m-k) ! 
k,J 

(4.71) 

X (au)i+m-k (bV)k (~-m)! , (-b*u)Hn-l(a*v)1 
L! u-m-l)! 

= 2: [(j+m) ! (j-m) ! 11 /2 ai+m-k (a*)1 
k,[k! U+m-k)! I! (j-m-l)! 

' . x bk( _b*)J-m-1 U2j-k-1 vk+l. (4.72) 

Although the upper limits of k and I in the summation are j+m 
and j-m respectively and the lower limit for both is zero, we need not 
mention these explicitly. We can take account of it by saying that k and 
I take all integral values which keep the arguments of all the factorials 
in the denominator nonnegative. 

We can now express the right-hand side of (4.72) as a linear 
combination of hm's. If we make a change of variables by defining 
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m'-j-k-/, we have 2j-k-l=j+m', k+l-j-m', and (4.72) 
becomes 

j 

R(a, b) fjm= I: fjm' Dm'm(J) (a,b), 
m l =02-j 

with 
r(j+m)! (j-m)! U+m'}! (j-m')!]1/2 

Dm'm(j) (a, b) = ~ U+m-k)!k!(j-m'-k)!(m'-'m+k)! 

(4. 73a) 

XaJ+m-k (a*)J-m'-k bk (_b*)m'-m+k. (4.73b) 

Here, again, k takes all possible integral values so that none of the fac­
torials in the denominator has a negative argument (for given values of 
j, m and m'). The limits of k may thus be different f(lr different values 
of m and m'. If we kept track of the limits while making the change of 
variables, we would arrive at the same result. Thus the lower limit of 
k is determined by the value of m-m'. If m' -m<O, the. lower limit 
of k is m-m', while if m' -m;)O, the lower limit of k is O. Similarly, 
the upper limit of k is governed by the two factorsj+m-kandj-m'­
k and is equal to the smaller of the two integersj+m and j-m'. 

The functions fi''' defined in (4.70) clearly constitute a set of 
2j+ 1 independent functions in the (2j+ I)-dimensional Hilbert space 
L 2J+t which is the space of the representation D<j) of (4.73). We 
note that 

But the right-hand side is the binomial expansion of (luI2+lv/2)2j/(2j)!; 
hence we have 

L IfrI2=(~j)!(IUI2+lvI2)2J. 
m 

(4.74) 

Since lul2+lvl2 is i~variant under the transformations of SU(2), 
I IfJm l2 is also invariant, showing that our representations DUl are 
m 

unitary. 
We can show that the representations D(j) are irreducible. We 

sh~ll use the converse of Schur's first lemma to prove this, that is, 
we shall show that if a matrix P commutes with D<j) (a , b) for all a 
and b (with aa*+bb*=:=l) then P must be a constant matrix. To this 
end. we work out the matrices of D(J) for two particular cases. Choos-
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ing first a=exp(irz. /2). b=O with « real, we find that only the term 
with k=O in (4.73b) survives, giving 

D""",U) (el lX
", 0)=3""",eJ"'%. (4.75) 

Secondly, if we let m'=jin the general matrix element (4. 73b), we see . 
again that tbe only allowed value of k is 0, giving 

D (jl ( b) [ (2j)! Ji 1+M( b.)l-
1'" a, = U+m)! (j-m)! a - . (4.76) 

Now, if P commutes with all the matrices of DU) of the form (4.75), 
which are all diagonal with distinct eleroents, then P must also be a 
diagonal matrix,1J i.e., Plk=PI~II'. Considering the (j, m) element of 
the matrix equation PDU)(a, b)=DU>(a, b)P and using (4.76), we find 
that PJDJmUI=DlmU)Pm. Since D}mU1 (a, b) is not identically equal to 
zero, it follows that Pl = pm, that is, P must be a constant matrix . 

. Thus no matrix other than" constant iiiaifix CGffiiTIut"s Wiih aii the 
matrices D(j) (a, b). It therefore follows that DUI is an irreducible 
representation. It turns out that DIll il the only irreducible representa­
tion of SU(2) of dimension 2j + 1. Moreover, since the dimensions of 
the representations D(ll differ for different values of j, they are not 
equivalent to one another. In other words, the group SU(2) has one and 
only one I"~;va'ent irreducible representation of every integral order. 

The characters of DU) can now be easily found out. To this end, 
we shall first determine the class-structure of SU(2). In fact, we shall 
show that aU those elements of SU(2) of the form (4.69) which have the 
same real part of the parameter a belong to a class of SU(2). This can be 
done by obtaining the eigenvalues of a general elemerit of SU(2). If 
A isan eigenvalue of the unitary matrix (4.69), it can be deduced that 
A satisfies the quadratic 

"· ..... (0+0·) A+ I =0. 
The two eigenvalues are thus 

~ =[~+@·-4)1"1I2, ~=[~-l~~-4)IJ·]/2, (4.77) 

where ~=a+a· is a real number. Now from the condition 00·+ 
bb-= ·l, it is clear that -1~Re(a)~I, where Re (a) is the real part 
of a, so that -2~~~. Eqs. (4.77) then show that A.=A1•• 

Moreover, it is also clear from (4.77) that Al ",= 1. It follows that 
!All = !A.I = 1. Hence, defining rz. by ~he relations 

cos (rz./2)=M2, sin (<</2)=(I_~·/4)I/2, 
we find that the two eigenvalues beeQme '. 

~1=exp(;rz./2), ".=e.xp(-icz./2). (4.78) 

13See Joshi (1984), Example 3.l, p. 31. 
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Since -2$;~$;2, we have -l$;cos (<</2) $;1 and 0 $;sin (<</2)$;1. 
This gives O$;«~27t. Since the eigenvalues depend only on the 
real part of a, all elements of SU(2) having the same Re(a) will 
have the same eigenvalues and hence will be conjugate to each otha. 
Every real value of« on the interval l 0, 2rr] thus determines l,l class 
of SU(2). 

'Now we can obtain the character of a class (characterized by at) 

in the irreducible representation DU>. Since all the elements in a class 
have the"same character, we can obviously choose the simplest element 
in the class 1,lDder consideration to obtain the characters. Consider the 
element R(a,b) of SU(2) for which a=exp (i«/2), b=O. The matrix. 
representing this element i., DU> has already heen found out in (4.75), 
The trace of this matrix gives the character of the element underconsi-
deration. Thus, j 

X(j) (eix /2,0)= L Dmm(j) (eirx/2,0) ­
m=-j 

j 

= L eimrx 

m=-j 

_ sin (j+l) ct 

- sin (<</2) (4.79) 

This is analogous to the characters (4.50) of the rotation group 
SO(3), with the important difference that for SU(2),jcan take nonnega­
tive integral as well as half-odd-integral values, whereas for SO(3), I can 
take only nonnegative integral values. 

4,.5.2 Homomorphism of SU(2) on SO(3). Consider the functions 
of (4.70) for the particular casej=l. We have the three functions 

xl=fll=u2/v'2, x 2=flO=UV, X a=fl-I=V2/-v''f: (4.80) 
Their transformation by a general element R (a, b) of SU(2) gives 

Xl' = R (a, b) Xl =a2 Xl +abx2+b2 xs , 

x 2' = R (a, b) x 2=-2ab* xl+(aa*-bb*) x 2+2a* bxs• 

xa' = R (a~b) x 3=b*2 xl-a* b* x 2+a*2 x 2 • 

Defining three new variables 

X = XI-Xa, y= - i (Xl +xa), Z=X2, 

and their inverse transformation 

x 1=(x+iy)/2, X~=Z, x3=( -x+iy)/2, 

(4.81) 

(4. 82a) 

(4. 82b) 
with similar expressions for the primed variables, we see that (4.81) 
becomes 
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x'=! (a2 +a*2_b2 _b*2) X+ ~ (a2-a*2+b2 _b*2) y 

+ (ab+a* b*) z , 

y'=-~ (a2-a*2-b2+b*2) x + i (a2+a*2+b2 +b*2) y 

-i (ab-a* b*) z, 

z'=-(a* b+ab*) x+i(a* k-ab*) y+(aa*-bb*) z. 

135 

(4.83) 

We notice that all the coefficients in (4.83) are real. Moreover, 
remembering that aa*+bb*= 1, it can be shown that X'2+y'~ L.Z'2= 

X2+y2+Z2. Starting from a unitary matrix R(a, b) of order 2 with deter­
minant + 1, we have thus succeeded in associating with it a real ortho­
gonal matrix of order 3 with determinant + 1, which corresponds to a 
pure rotation in the three-dimensional real vector space of (x, y, z) and 
hence is an element of SO(3). 

We shall now show the converse, that is, that all the rotations of 
SO(3) are associated with one (or more?) element of S V(2). Any general 
rotation through the Euler angles (IX, ~ , y) can be expressed as tile pro­
duct of three rotations in accordance with (4 . 42). Choosing first a uni­
tary transformation with a=exp (i1X/2), b=O, Eqs. (4.83) give 

x'=x ·cos IX-y sin lX , y'=x sin IX+ y cos IX, z'=z, (4.84) 

the element R(ei f1.j2, 0) of SV(2) corresponds to the rotation through 
IX about the z-axis of the group SO(3), or 

R(e/f1. j2, 0)=[ e

i

f1.j2 / 0 J---J~~:: ~~~: ~ J. (4.85) 
o e--i f1.j2 L 0 0 1 

Similarly, choosing a=cos (~/2), b=sin (~/2), we see that 

-sin ~ ]-f c~s ~ ~ s~~ ~J. 
cos ~- '- -sin ~ 0 cos ~ 

'[ cos ~ 
R(COS ~ sin~) = 2 

2' 2 . . ~ 
sm 2 

(4.86) 

By using (4. 85) and (4.86) in (4.42) we then find that the unitary 
transformation 

r e"" 
r:,' J[ 

cos ~ -sin~ J[ ei:t.ja 

e-':' ] 
2 

sin ~ cos~ 0 L 0 2 2 



136 ELEMENTS OF GROUP THEORY FOR PHYSICISTS 

corresponds to the rotation R (IX, ~, y) of SO(3), or 

-sin ~ ei (V_CXI2] 2 

cos ~ e-i (cxHlj2 

-R (tX, ~, y). (4.87) 

We must now .examine whethec this correspondence bctween 
SU(2) and SO(3) is an isomorphism or homomorphism. We have already 
seen in (4. 83) that each unitary matrix of ~ U(2) corresponds to a unique 
rotation of SO(3). We must now determine how many matrices of SU(2) 
are associated with each rotation of SO(3). We notice from (4.87) that the 
two rotations R(O, 0, 0) and RCO, 21t, 0), both of which denotc the iden­
tity element of SO(3), have associated with them the two unitary matrices 

r 1 

E=L <> 
0J [ -1 0J 1 and - E= ° -1 . 

In fact, we no ice that the operations R(IX, ~,y) and R(IX, ~+21t, y), 
which represent the same element of SO(3), correspond to two distinct 
unitary matrices of SU(2), one of which is the negative of the other. 
There is thus a 2-to-l homomorphism of SU(2) on SO(3). 

4.5.3 Representations of SO(3) from representations of SU(2) . 
While discussing the irreducible representations of SO(3) in Section 
4.3.1, we really obtained only their characters in (4.50), but did not 
obtain the complete matrices D(/l(IX,~ , y) for the irreducible represen­
tations which appear in (4.51). We can obtain these from the irreducible 
representations D(.i) of SU(2) generated in (4.73). Since we have just 
proved that SU(2) is homomorphic on SO(3), we could obtain a repre­
sentation of SO(3) by starting from a r.epresentation of SU(2) and 
picking out (lnly those matrices which correspond to the elements 
of SO(3). Eq. (4.87) shows that the unitary matrix of order 2 of 
SU(2) for which 

a=cos (~/ 2) ei ('X+1')j2, b=sin (~/2) Ei (CX-V)/2, 

corresponds to the element R(IX.!" y) of SO(3). Hence a representation of 
SO(3) can be obtained by associ ating the matrix which represents the 
element R(a, b) of SU(2), i.e. , the matrix DU) (a, b) with the element 
R(a, ~, y) of SO(3). The required matrix is thus 

Dm'mU) (IX, ~, y)=Dmlm(j) ( cos ~ ei(cx+Y)J2, sin ~ e/(7.-Y)j2 ) 
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=2: (_l)m'-m+k [U+m)! (j-m)! U+m')! (j_m')!]1/2 
k U+m-k)! (j-m' -k)!k! (m' -m+k)! 

( 
R)2j+m-m'-2k ( ~)m'-m+2k 

X eia"'e'm'Y cos ~ sin 2 . (4.88) 

We notice from (4.85) that the element R(e j (1./2, 0) of SU(2) corres­
ponds to the element R(oe, 0,0) of SO(3). The characters of the elements 
of the rotation group 50(3) can therefore be obtained from the special 
form (4.79) with ~=y=O; 

. (j) (oe) sin U+t} oe 
X sin (oe/2) . (4.89) 

We thus see that for integral values of j, these characters coincide with 
those of D(I) obtained in (4. ~O). In other words, the representations 
D(j) for integral j are identical to the representations D(I) . However, 
for half-odd-integral values of j, each rotation of SO(3) is the image 
of two matrices ±D(J) (O(,~, y) due to the 2-to-l correspondence noted 
at the end of the previous subsection. 

Thus, for example . the identity element E is the image of the two 
matrices 

[ 0
1 0 ] [-1 ° ] 1 and 0 -1 . 

Another e.1ement, say a rotation through 7t about the y axis (~=7t, 

a=y=O; R(O, 7t, 0», is the image of the two matrices [ ~ -~ ] and 

[ _ ~ ~ ] because R (0, 37t, 0) is identical to R (0, 7t, 0). Let us, for 

the moment, denote R (0, 7t, 0) by Ca. If we choose the representative 
matrices to be 

D(E)=[ b 0] [0 -1] 1 and D(C2)= 1 0' 

then we find that 

[0 -IJ D(E)D(C2)= 1 ° =D(C2) D(E)=D (C2), 

but 

(4.90) 

In general, if Rand S are two rotations of 50(3), we would have 
D(j)(R) D(J)(5)=±D(J)(R5) (4.91) 
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for half-odd-integral values of j. Such representations are known as 
double-,alued representations. 

The origin of this ambiguity in sign is easy to trace. Consider 
the two el~ments R (a. b) and R (-a, -b) of SU(2). From the form 
of the matrix elements (4. 73b). it is easily seen that 

D""",v) (-a, -b)=( _1)21 D""",U) (a, b). 
80 that 

V)( b)-{ D{J)(a, b) for integralj, 
D -a, - - -DU) (a, b) for half-odd-integral j. 

Thus, in the irreducible representations with integralj. the elements 
R{fI. b) and R(-a. -b) are represented by the same matrix while in 
those with half-odd-integral j, they are represented by two matrices 
one of which is the negative of the other. In particular, whenj=i. we 
just have the matrix group SU(2) with 

R(a, b)={: -:: 1 R(-C4, -b)=;:[ =: _:: ] 
When we consider lite homomorphism of SU(2) on SO(3), we would 
have an ambiguity in sign as in (4.91). We may conclude that the 
representations DUI of SU(2) with integral j are the single-valued rep­
resentations of SO(3) identical to D(J) considered earlier, whereas the 
repre~entations DO) of SU(2) with half-odd-integral j are the double­
valued representations of SO(3). 

The ambiguity in the sign ~n be removed by considering a group 
which has twic:e the nUPlber of elements of SO(3). In the new group, a 
l'OT:l$tion tltrougb 2n about any axis is not identical to the identity 
element but only-a rotation through 4n is the identity. We thus define 
a new element.if to mean the rotation through 2it about, say, the z axis. 
T~ group we have constructed then has all the rotations of SO(3) plus 
the products of E with all the elements of SO(3). It should be obvious 
that the representationsD(J) for half-odd· integral values of j are siligle­
valued representations of the new group. The new group is said to be the 
double group of SO(3) and is often denoted by SO'(3). It is isomorphic 
to Sue'll. But not~ce that SO(3) is not a subgroup of SO'(3);in fact the 
elements of SO(3) now do not constitute a 'group because these are now 
not closed under multiplication. Consider. for example. an element (n of 
SO(3) denoting a rotation through 2ft/n (n a positive integer) about 
some axis. Then the n-th power of this element is not equal to the iden­
tity element; it equals the element Ewhich we have defined above, and 
which does not belong to SO(3). It is only (e,,)!" which equals the 
identity of the group SO'(3). 
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It should be pointed out that such cases arise in physics whenever 
we are dealing with particles or systems of particles which have spin an­
gular momenta. For example, the orbital angular momentum ofelec­
trons is an integral multiple of 1i while the spin angular momentum is 
t1i. Thus, if we are dealing with a system containing an odd number of 
electrons the total angular momentum is a nalf-odd-integral multiple 
of 1i. It is well-known in this case that the wave function of the system 
does not return to its original value after a rotation through 27t but be­
comes negative of its original value, returning to its original value only 
after a rotation through 47t. In the language of group theory, this means 
that the symmetry of the wave function is governed by the irreducible 
representations of the corresponding double group rather than those 
of the original symmetry group. We shall deal with some more double 
groups in greater detail in Chapter 7. 

It should be realized that the existence of the double-valued re­
presentations of SO(3) is a consequence of its being doubly connected. 
In general, if G is a k-fold connected continuous Lie group, then it has 
single-valued, double-valued, triple-valued, ... , and k-valued represen­
tations. If Cn denotes an n-fold rotation about some axis and is an 
element of G, then (Cn)n is the identity element E in the group G. Let us 
now construct a group G' in which only a rotation through 2k7t, and 

. not a rotation through 27t, a bout any axis is the identity element. Let 
us define E1 as a rotation through 27t, E2 as a rotation through 47t, 
... , Ek-1 as a rotation through 2 (k-I)7t and, finally, Eo as a rotation 
through 2k7t which is the identity element of G'. Then it is clear that 

G' =GUE1G UE2G U ... U Ek-1G. 

The set G, which is a subset of G', is not now closed under multiplication, 
because (cn)n=E1 is not the identity element and does not belong to 
G. The group G' is homomorphic to G with a k-to-l correspond~nce. 
Every representation of G' therefore gives a representation of G. How­
ever, some of thes.e will be single-valued, some double-valued, "', 
and some k-valued representations of G. The group G'is called the 
universal covering group of G. Although such groups are of topological 
interest by themselves, no physical situation has yet been found to 
require the use of more than doubly connected groups. 

4.5.4 Direct product of representations of SU(2). It is of 
interest to obtain the direct products of the irreducible representa­
tions of SU(2) and to reduce them into linear combinations of the 
irreducible representations. Consider the direct product D=DU)®J)U') 
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of two irreducible representations of SU(2). Let the characters of D 
be denoted by X; these are then the products of the corresponding 
characters of DU) and D(}'). Thus, 

j i' 
X«)() = XU) «)() XC') «)()= 2:: eimrt 2:: (illl ·a. 

m=-j m'=-j' 
j l' 

2:: 2:: ei(m+m' )a. 

1I1=-j m'=-i' 
Hj' J Hi' 
2:: 2:: eiMa.= 2:: "I.(J) «)(). (4.92) 

J=lj-i' 1 M=-J J=lj-j'l 
This gives a very simple formula for the direct product of two irreduci­
ble representations: 

Hi' 
L D(J) , (4.93) 

J=Jj-i' I 
showing that each representation occurs at most once in the reduction 
of the direct proQuct. Moreover, only those irreducible representations 
are contained in the reduction whose 'J'-values satisfy the triangular 
inequality Ij-j' I < J< j+j'. Eq. (4.93) is known as the C/ebsch­
Gordan series. 

4.6 Generators of U(n) and SU(n) 

The group of all unitary matrices of order n is known as U(n) , 
whereas the group of aU unitary matrices of order n with determinant 
+1 is denoted by SU(n) (SU stands for special unitary). Clearly, 
SU(n) is a subgroup of U(n). Since a unitary matrix of order n has n2 

independent elements, U(n) is a continuous, connected, n2-parameter, 
compact, Lie group. The elements ofthe group SU(n) have one more 
condition to satisfy (that their determinant be + 1), so that SU(n) is a 
continuous, connected, (n2 -1)-parameter, compact, Lie group. 

It is fairly easy to obtain the /12 generators of U(n) . For this we 
note that if H is a hermitian matrix, exp(iH) is a unitary matrix. The 
converse is also true, i,e., if U is any unitary matrix, then it can be 
expressed in the form 

U=exp(iH), (4.94) 
where H is 'a hermitian matrix. Now any linear combination of hermi­
tian matrices with real coefficients is again a hermitian matrix.1• Hence 

UNote that the set of all hermitian matrices of order II is an 112-dimensional 
real vector space. 
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there can be at most n2 independent hermitian matrices of order n. Let 
" H l , H 2 , • •• ,HN be a set of n2 independent hermitian matrices of order 
n, where we have denoted N=n 2 for the sake of convenience. Let 
OJ (l < j <N) be n2 real independent parameters. Then it is clear that 
any unitary matrix of order n can be written as 

N 

u=exp[; .2: OJ Hj ] , (4 .95) 
J=l 

or, in other words, all the elements of U(n) can be generated from 
the right-hand side of(4 .95) by giving all possible values to the N real 
parameters aj. The N independent hermitian matrices Hj are thus the 
generators of U(n). Obviously theY 'are not unique, and any N inde­
pendent linear combinations of these could equally well ~ used as the 
generators of U(n). 

If A is any square matrix, it can be easily seen that lS 

det(eA)=etraCeA. (4.96) 

Using (4.94), we therefore see that . 
det U=det (elH)=exp (i trace H). (4.97) 

All the diagonai elements of a hermitian matrix are real and 
hence trace H=rx is a real number. This shows in passing that 
det U=exp(irx) is a number of unit magnitude. 

Coming to SU(n), we make use of the fact that its elements have 
their determinants equal to + 1. " Thus if we denote an element of 
SU(n) by Uo=exp (iHo), then it follows from the condition det Uo=1 
that trace Ho=O. Now, as before,l· there can be at most n2-1 inde­
p"ndent traceless hermitian matrices of order n, and these can be con­
veniently chosen to be the g~nerators of SU(n) along with n2-1 real 
independent parameters. 

It is convenient to choose the n2-1 generators of SU(n) first 
and then add to this set the unit matrix of order n to obtain the n2 

generators of U(n). 
As "an 'example, the three generators of SU(2) can be chosen to 

be the Pauli spin matrices 

ax = [~ ~J. ay=[~ -iJ [1 OJ o ,az= ° -1 ' (4.98) 

which are a set of three independent traceless hermitian matrices of 

J5See Joshi (1984), Example 12.12. p. 134. 
l~The set of all traceless hermitian matrices of order n is an (n2-1)-dimen­

sional real vector space. 

", 
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order 2. For the generators of U(2), we could then choose the set 
(E, ax, ay, az) where E is the unit matrix of order 2. 

4.7 Lie Algebra and Representations of a Lie Group 

Consider a Lie group with r continuous parameters ak having the 
r generators I}> 12" •• , Ir • We have seen that any element of the Lie 
group ~an be expressed in the form 

r 

x (aI' a2 ,· • • ,ar)=eXP(i L adk). (4.19) 
k=l 

In the case of a finite group, we have seen that all the properties gf the 
group can be obtained from the structure of its multiplication table. 
What is the equivalent of the multiplication table for a continuous 
group? We can show that for a Lie group, the commutators of its 
generators determine the structure of the group. 

Thus, consider two particular elements of the Lie group of the 
form 

x(O, 0, ... ,ak, . .. ,O) =exp (iakh), 

x(O, 0, . .. . a/, . .. ,O)=exp (ia/h). 

The product of these two elements, exp(iakh) exp(iad/), must belong to 
the group and hence must be expressible in the form (4.19) with some 
values of the parameters Ok. Now since the generators of a Lie group do 
not, in general, commute with each other,17 there is no simple way of 
writing this product element. We may, however, use the fact that such 
a product involves the commutator of hand h For the product 
exp(iokh) exp(io,I,) to belong to the group, it therefore follows that the 
commutator [Ik, I ,] must be a linear combination of the generators, i.e., 

r 

[h , I,] = L CkljIj, l<k,l<r; (4.99) 
j=l 

where Ckli are certain coefficients. The commutators of pairs vf generators 
of a Lie group determine the structure of the Lie group completely in 
analoDY with the multiplication table for a finite group. The coeffi­
cients Ck/ are therefore known as the structure constants of the Lie 
group. They are a characteristic property of the Lie group and do 
not. depend on any particular representation of the generators. How­
ever, they are not unique, since the generators of a Lie group are 
themselves not unique. 

17They ~ommute only when the Lie group under consideration is abelian. 
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As we have remarked before, any linear combination of the 
generators with real coefficients can also be used as a generator of the 
group. It is then clear that the r generators of a Lie group are the 
bases for an r-dimensional real linear vector space. . 

Eq. (4.99) takes us one step fu rther-it provides us with a law 
of composition between any two elements of the vector space such 
that the resulting vector is also an element of the vector space. The 
set of real linear combinations of the generators of a Lie group is, 
in fact , a Lie algebra (see footnote 2 in Chapter 2). 

Quite generally, a Lie algebra is a real r-dimensional vector space 
L with elements (x, y, z, ... ) endowed with a law of compositi( \ for 
any two elements of L denoted by [x, y] such that 

(i) [x, y] E L, 

(ii) [x, y]=-[y, x], 

(iii) [x, [y, z]]+[y, [z, x]]+[z, [x, y]]=O, 

for all x, y, z E L. The law of composition [x, y] is known as the 
commutator of x and y. A set' of" independent vectors of L is called · 
a basis of the Lie algebra ir. analogy with the basis for a vector space. 

Since the commutators of the generators of a Lie group defined 
in (4.99) satisfy the above properties, we obtain the following relations 
among the structure cnl1stants: · 

r 

L [Ckr Cjms+CI/" Ckms+Cjk'" Clms]=O. 
m=l 

(4.100) 

Moreover. 'since the generators h are hermitian, (4.99) shows that 
the structure constants Ck/ are purely imaginary. 

The importance of the Lie algebra lies in the fact that we may 
generate a representation of the Lie group by considering a matrix . 
representation of the Lie algebra. Thus, if we are able to find a set of 
r square matrices all of order p, say, such that they satisfy the com­
mutation relations (4.99) with the given structure constants, then 
using these for the h's in (4.19), we would generate a p-dimensional 
representation of the Lie group. We can therefore take it as a general 
rule that a representation of a Lie algebra can be used to generate a 
representation of the associated Lie group. 

As an example, we shall apply the above discussion to SU(2). 
Its geQerators given in (4.98) satisfy the commutation relations 

[(fl, ak]=2i }; f Jkl alt-.. . 
(4.101) 
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where flit is the fully antisymmetric tensor of rank 3 whose only non­
vanishing elements are 

fUI=EI31=Esu=-flll =-ElIl=-fall= 1. (4.102} 

The indices, j. k,1 stand for any of x,y,zorfor 1,2,3. Hereafter, the six 
equation.s in (4.102) will be abbreviated into a single equation and wilt 
be written as 'E1II= I and all permutations with proper signs· ... The 
components of the tensor E}"I multiplied by 2i are evidently the struc­
ture constants of SU(2). The Lie algebra of SU(2) is thus the set of 
aU real linear combinations of U)t, a, and oz. 

Let us now look at the following three matrices: 

"1-[ ~ ~ ~], "'=f ~ -~ ~], ;\.=[ ~ -~ O~ ]. 
000 .... 0 0 0 0 0 

(4.103) 

It can be easily verified that they satisfy the same commutation rela­
tions as the generators a's, i.e. 

l"}' ",,1=2iI 'llel "I. (4.104) 
1 

The "'s thus generate a representation of the Lie algebra of SU(2) 
and can therefore be used to generate a three-dimensional representa­
tion of SU(2) itself. 

The maximum number of mutually commuting generators of a 
Lie group is called its rank. The rank of SO(3) is thus 1 because no 
two of its generators L)t, Ly and Lz commute with each other. The 
rank of SU(2) is also 1. 

An operator which commutes with all the generators of a Lie 
group is kflown as a Casimir operator for the Lie group. Aecording to 
a theorem due to Racah, the number of independent Casimir operators 
of a Lie group is equal to its rank. It was recogniZled by Casimir him­
self that one such operator could always be constructed by taking a 
suitable bilinear combination of the generators. 

The one and only Casimir operator of SO(3) is thus L'=L, . .'+Ll 
+Lz·. which commutes with each of Lx, L, and Lz. The only Casimir 
operator of SU(2) is similarly ~1=uxl+a,·+4rzl. 

Since the Casimir operators of a Lie group can be diagonalized 
simultaneously with its generators, the eigenvalues of the Casimir opera­
tors may be;; used to label the irreducible representations of the Lie group. 
Thus. the Casimir operator LI of SO(3) has the eigenvalue 1(1+ I), 
where I takes on all nODl.egative integral values, and hence the irre-
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ducible representations of SO(3) may be labeled by the index I as we 
have already done in Section 4.3. We have seen that the dimension of 
the representation D(J) is 21 + 1. Similarly, the Casimir operator ~2 
of SU(2) has, in general , the eigenvalues j(j+ J) where j takes all non­
negative integral and half-odd-integral values (the representation (4.98) 
for the generators is a special case withj= t). The irreducible representa­
tions of SU(2) can therefore be labeled by j. These are the representa­
tions DU) considered earlier and are of dimension 2j+ 1. 

4.8 The Special Unitary Group SU(3) 

As should be clear from the name, S U(3) is the group of all unitary 
matrices of order 3 with determinants + 1. It has 32-1 =8 generators 
which are usually denoted by AI ' A2 , ••• , As. Although these can be 
chosen in many ways, it has become a convention to use the following 
traceless matrices as the generators of SU(3): 

-~ ~], A3=[ b 
o 0 0 

g 6 J' A5=[ ~ ~ -~], A6=[ ~ 
o 0 i 0 0 0 

-n [ 

1 0 0 .., 

As= J3 0 1 0 J. 
o 0 -2 

Their commutators can be worked out and are found to be 

[Aj, Ak] =2 i :L fjkl AI' 
1 

where the only nonvanishing components of fjkl are 

f123 = 1, 

~'7=f518=f246~f267~f345=f637=t, 
f468=f678=y3/2, 

and all permutations with proper signs. 

(4.105) 

(4.106) 

(4.107) 

It must be realized that these structure constants are a characteris­
tic property of S U(3) and do not depend on the particular representa­
tion chosen in (4.105). 

We see from (4.105) thatAa and As are diagonal matrices and hence 
commute with each other. We can verify (from the structure constants 
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(4.107» that no other matrix of(4.105) commutes with both A3 and As. 
The rank of SU(3) is thus 2. ' 

The group SU(3) therefore has two Casimir operators. One of them 
is a quadratic combination of the generators : 

8 
C1 = L Aj2. (4.108) 

i=l 

It can be verified without difficulty that C/ commutes with all the gene­
rators, i.e., [CI , Ai]=O for l~j~8 (see Prbblem 4. 7). The other Casimir 
operator is a complicated trilinear combination of the generators. 

The eigenvalues of the two Casimir operators of SU(3) may be 
labeled by two running indices p and q, and then an irreducible represen­
tation of SU(3) may be denoted by (p, q) , where p and q take all non­
negative integral values. The dimension of this irreducible represen­
tation is found to bel8 

d=(1 +p)(1+q)(2+p+q)/2. (4 . ]09) 

It has become a convention to denote an irreducible representation 
merely by its dimension. That is, instead of specifying it by (p, q), we 
denote it simply by dor d* according as whether p<qor p>q. If p=q, 
there is only one irreducible representation of the corresponding dimen­
sion denoted by d. 

Thus, the lowest order irreducible representation of SU(3) i, that 
forwhichp=q=O, or (0, 0)_1. Some of the other irreducible representa­
tions are (0,1)_3, (1, 0)-3*, (0, 2)_6, (2, 0)-6*, (1,1)=8, (0, 3)~10, 
etc. The direct products of these irreducible representations can be 
taken and reduced in terms of the irreducible representations. Without 
.going into detail,18 we list below a few particular cases of decomposi­
tion: 

30 3 = 6 EEl 3*, 

303* = 8Et> 1, 

30303 = lOffi8ffi8EBl. (4.110) 

4.8.1 Physical applications or SU(2) and SU(3). Just as the 
orbital wave functions of an electron (spherical harmonics) generate, 
·or transform according to, the irreducible representations D<i) of 
SO(3) in accordance with (4 .51), we can see that the spin functions of 

18See Fonda and Ghirardi (1970) for a detailed treatment of SU(3). 
1~For the rules for reducing the direct products of the irreducible repre­
sentations of SU(3), see, for example, Fonda and Ghirardi (1970). 
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an electron would generate the representations of SU(2). Consider a 
single electron with a spin angular momentum 5=t ti~ where ~=( aa, 
Uy, Ur) and a, are the Pauli spin matrices. The two orthonormal spin 
functions may be denoted by Xm and XC-i) which are simultaneous 
eigenfunctions of 5' and s z. Under an orthogonal coordinate trans­
formation, these spin functions undergo a unitary transformation in the 
complex two-dimensional Hilbert space of Xm and X( -i). This space 
is known as the spinor space and any vector (which is any linear combi­
nation of the two basis functions) of this space is called a spinor. The 
spin functions xW and X( -1) thus generate a two-dimensional repre­
sentation of SU(2) which we recognize to be D(l) . 

Let us now consider the case of two electrons. Since the spin 
functions of each electron transform according to D(l) , the spin func­
tions of the combined system will transform according to the direct 
product representation Dm ® D(i). This is a four-dimensionalrepre­
sentation of SU(2). From the decomposition law (4.93) for the direct 
products of irreducible representations of SU(2), We see that 

D(l) ® DW =D(l) eJ D(OI. (4.111) 

If we donote the spin functions of the first electron by ~ (+) 
and XI ( -), and those of the second electron by X2 ( + ) and X2 ( - ), then 
the basis functions for the direct product representation of (4. Ill) 
are clearly the four functions [Xl ( + ) X2 ( + ), Xl ( +) X2 (-), Xl ( -) 
x. (+), Xl (-)~( - )]. By using tho standard methods, we can obtain 
four symmetrized linear combinations of these functions such that 
one of them will generate the representation D(O) and the 
remaining three will generate D(l). These, when normalized, are 
found to be 

D(O) : 

D(l) : 

(4.112) 

The total spin of the system in the state ljio. 0 is zero (a singlet state). 
while in any of the three states ljil' l' IJil'O' and 1/11'-1 it is ti (the triplet 
state). 

The SU(2) finds another important application in the isotopic 
. spin formalism of elementary particles. In the long list of elementary 
particles, it can be seen that there are a large number of pairs such that 
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the two members of a pair rui.ve prac~ically identical properties except 
their electrical charges. An obvious example is a proton and a neu­
tron, all of whose properties are almost the same except their electro­
magnetic properties. We may then treat the proton and the neutron as 
f,he two states of a single nucleon field. We denote the two states by Ip> 
and ~ n> and define an operator't'a whose eigenstates they are with the 
eigenvalues +t and -t respectively, i.e., 

't'slp>=i Ip>, 't'aln>=-i In>. (4.113) 

The states Ip> and In> now span a two-dimensional Hilbert space in 
which the operator 't'3 would have the same representation as that of 
C16 given in (4.98). In analogy with the electron spin problem, we make 
the hypothesis that there exists an operator 't', to be called the isotopic 
spin operator, which is given by -

:::2='t'11+'t'21+'t'sl, 

whese "1' 't'2 and 'fa are the components of the vector operator:::. All 
physically observable states must be simultaneous eigenfunctions of:::S 
and't's' The states Ip> and I n> thus generate the two-dimensional irre­
ducible representation n(t} of SU(2). The charge of the nucleon in 
any of the eigenstates is Q=i+'t'a' 

The formalism is mathematically exactly analogous to that of the 
electron spin problem. Just as we do not treat an electron with spin 
~ up' and an electron with spin 'down' as two different types of particles 
but regard them merely as two states ofa single entity called 'electron', 
we must teach'ourselves to regard the proton and the neutron as the two 
states of a single 'nucleon'. It must be realized that the . coincidence 
between the two cases is not merely accidental. It emerges from the 
fact that in quantum mechanics, unli~e in classical mechanics, the an­
gular momentum is a purely mathematically defined operator which 
corresponds to some physical observables. 20 Thus, the isotopic spin 
operator is as much an angular momentum as the operator for orbital 
or spin angular momentum of an electron. 

The study of elementary particles has shown that there are cer­
tain groups of particles which can be assigned further quantum num­
bers-such as baryon number, strangeness. hypercharge, etc.-in addi­
tion to the isotopic spin angular momentum. It was therefore suggested 
that the symmetry group of these particles may be larger than SU(2) and 
may, in fact, be SU(3). Thus, there are a number of groups of parti-

ZOFor the quantum mechanical definition of angular momentum, see Section 
6.4.1. 
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des whose states transform according to the irreducible representations 
of SU(3), that is, they are degenerate with each other for strong inter­
actions but are distinguished by their electrical charges and strangeness. 
The basic triplet transforming according to the irreducible represen­
tation 3 of SU(3) is (p, n, /\), where /\ is a hyperon. It is well­
established now that there are groups of eight and ten elementary 
particles which correspond to the irreducible representations 8 and 10 
of SU(3). In fact, when Gell-Mann21 proposed the SU(3) scheme, he 
<:ould fit only nine of the then known elementary particles into the 
ten states of the representation 10, leaving one gap. The particle 
with properties predicted by Gell-Mann was soon observed in the 
laboratory and named 0-. The story is essentially parallel to that 
of Mendeleev's periodic table with gaps which were later filled by the 
discovery of new atoms. 

PROBLEMS ON CHAPTER 4 

(4 . J) By referring to Fig. (4 .2b), state the definition of the continuity of 
inversion for a topological group. 

(4.2) Show that the following sets are groups: 

(a) The set of matrices [ ~ ex ] with -00 <ex< 00 ; 

(b) The set of matrices 

[ 
(1-u2/c2)-112 -U(1-U2/C2)-112] 

A(u)= -uc-2 (l-u2/ci)-112 (l-u2/c'I.";-1I2 

with -c$u$c, where c is a real positive constant. Use the relativistic law of 
addition of velocities, w=(u+v)/(I+uv/c2). 

(~.3) Show that the sets of transformations (a) x'=ax, y'-by;(b) x'-ax, 
y'-y/a, a .. O, are Lie groups and obtain their infinitesimal generators. 

(4.4) Prove Eq. (4.29). [Hint: Expand the right-hand side in the formal 
exponential series and use the property of the Pauli spin matrix that a.2=E.] 

(4.5) What is the grOUP U(I)? Show that U(n) = SU(n)®U(I). 
(4.6) Show that in an even-dimensional real vector space, inversion is 

equivalent to a proper rotation . . 
. . (4.7) Show that the operator of (4.108) is a Casimir operator for SU(3), 
I.e., that [el • ).;) ... 0 for 1<1<8. 

(4.8) Let H -be a her;;;,;n matrix of order n and lot U=exp(iH). Let H 
be expanded with a suitable number of, rows and columns of zeros to Jive a 
hermitian matrix of ordet m: 

H' [H 0] 
- 0 0 . 

IlNe'cman and Gc1I-Maon (1964). 
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(a) Show that exp(iH')= [~ ~], where E is the unit matrix of order 

m-n. 

(b) Show that the set of matrices [~ ~ J, where U is any unitary 

matrix , is a group isomorphic to U(n) . [In this sense, it is often said that U(n) 
is a subgroup of U(m) if lI<m.l 

(c) Show that, in the above sense, SU(n) is a subgroup of SU(m) if lI<m. 

(4.9) Let ait and ai denote the operators for the creation and the ani­
hilation of a nucleon respectively, where i stands for p (proton) or n (neutron). 
These operators follow the boson commutation relations: 

[a;, a;t )= 0;;, [ai , a;I=[a/ , a;t )= 0. 

(a) Show that the operaters -:-", =a"t an+an t a", ",I/=-i(a"t an-ant a,,). 
T~=a" t a"-a,, t an satiSfy the commutation relations (4.101). [They therefore 
generate the ' a lgebra of SU(2). This is the neutron-pro'on isospin algebra.) 

(b) Show that the operator E = a" t a,,+an t an commutes with a ll the T'S . 

[The operators E, T"" "rl/. Tz thus generate the algebra of U (2) .) 

(4.10) A system contains three electron~ each with spin !b. Show that the 

system can exist in a quartet state (with spin S = 31i/2) and two distinct 

doublet states (each with spin S=~ 11). Obtain the symmetrizcd spin functions 
for these states. 

(4 . 11) The transformation of a vector r= (x, y, z) under rotations is 
determined by the matrix R (a., ~,y) given in (4.43). If we define the spherical 
or standard components of r by 

rl=-(x+iy)/y'2, ro=z, r_l=(x-iy )/ y'2, 

show that these components transform according to 

+1 
rn' = L rmDmn(l) (a. . ~,y), n=-I, 0, 1, 

111=-1 

where the elements Dmn(l) (a., ~,y) are defined in (4.88). [See -also (6.77) for 
the case j = 1.] . 
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CHAPTER 5 

Group Theory in Quantum 
Mechanics. I 

The fundamental problem of quantum physics is to investigate the 
Schroedinger equation 

(5.1) 

where .g( is a linear hermitian operator suited to the problem at hand 
and tjJ and E are its eigenfunction and eigenvalue respectively. The ope­
rator .g( may correspond to any physical observable such as position, 
momentum, 'angular momentum (spin or orbital), energy, and so on. In 
general, there are several solutions-which satisfy (5. 1) and which may 
be denoted by tjJi with the corresponding eigenvalues Ei. The number 
of eigenfunctions of.g( in most q~antum mechanical problems is in 
fact infinite. It is an axiom of quantum mechanics that the set of all 
eigenfunctions of a hermitian operator is a complete set. These 
eigenfunctions define a Hilbert space on which the operator acts. 

In general , it is very difficult to find the exact eigenfunctions and 
eigenvalues of an operator, except in some very simple 'exactly solvable' 
cases. However, the problem can be considerably simplified by using 
group theoretical methods. In this chapter. we shall establish the 
connection between group theory and quantum mechanics by showing 
how the use of group theory helps in (a) simplifying the eigenvalue pro­
blem, (b) classifying the various eigenfunctions of an operator by the 
irreducible representations of the symmetry group of the operator, and 
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(c) de~ing their general properties by the consideration of the sym­
I metry properties of the operator. 

5.1 Hilbert Spaces in Quantum Mechanics 

Before we begin applications of group theory, we shall illustrate 
in this section that with every hermitian operator corresponding to a 
physical observable, there is associated a Hilbert space on which the 
operatcr acts. We shall do this by considering a few typical examples. 

5.1. lOne-dimensional square-well potential with perfectly rigid 
walls. The potential is of the form V(x) = + 00 for 1 xl> a and 
V(x)=O for 1 x 1< a, where a is some finite positive constant. The eigen­
functions of this problem are known to bel ~n(x)=sin (nrrx/2a) for 
even nand I)in(X)=COs (nrrx/2a) for odd n, where n takes all positive 
integral values and x takes values on the interval [-a, aJ. It is clear that 
these eigenfunctions constitute an orthogonal set on [-a, a J and hence 
can be chosen to be the basis functions of the Hilbert space of the 
Hamiltonian of the problem. Let us denote this space by L. 

One Itljght jump to the conclusion that this is the direct sum of the 
spaces L, and Lo dis~ussed in Section 2.3.2. A little reflection, how­
ever, shows that this is not so because only alternate values of n are 
allowed in the sine and the cosine functions .. How can we then describe 
this space in words? It is not the space of all periodic functions with 
period 4a. A. little thought again tells us that it is the space of all con­
tinuous, square integrable functions which vanish at the bOttndaries2 

1 x I=a. Any function in this space Lean be expanded asa linear com­
bination of the complete set of basis functions as follows. 

CD 

~(x)= L en ~n(X) 
n=l 

CD 

= 2: an sin (nrrx/a)+ 2: bn cos .[(2n+l)rrx/2aJ. (5.2) 
n=l n=O 

Consider now the case when the potential is not constant in the 
region 1 x 1<;: a but still has perfectly rigid walls at 1 x I =a. The eigen­
functions will no longer be simple sine or cosine functions but must still 
satisfy the same boundary conditiQos.3 that is, they must vanish at! x I 

lSchiff (1968), p. 39. . 
2This shows in passing thO importance of boundary conditions in quantum 
mechanics. 

3Schiff (1968), Section 8. 
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=a. This implies that the eigenfunctions of the new problem must also 
belong to the Hilbert space L of the original pro blem and therefore can 
be eJCpanded4 as in (5.2). As is well-known, a function such as tjJ(x) of 
(5.2) denotes a wave-packet (whose spatial extension depends on the 
relative magnitudes of the coefficients a" and b,,) and this is just what we 
exp'!ct to obtain for the problem at hand. 

. 5.1.2 The bydrogen-like atom. The Hamiltonian of an elec­
tron in a hydrogen-like atom in the cent!"e of mass coordinates is 

S{ = - ti 2 V'2 /2p.+ VCr), (5.3) 

where V(r) = -Ze2/r, Z is the charge at the nucleus, e the electronic 
charg~, r the radial distance from the nucleus and !1. the effective 
mass. The eigenfunctions of this problem are known to be5 

9"/111 (r)=Rnl (r) Y,m (6,4», (5.4) 

where Rnl(r) is the solution of the radial Schroedinger equation, 
Y,m(6, 4» is a spherical harmonic and r=(r, 6,4» in ~pherical polar 
coordinates. These functions are orthonormal if th~ functions R"I are 
normaliz~d; thus 

f tjJ"lm (r)tjJ* n'I'm' (r) d3r=3nn, 31/'3mm,. (5.5) 

These eigenfunctions therefore constitute the basis functions for 
the infinite-dimensional Hilbert space. The boundary conditions here 
are that each eigenfunction tjlnlm (f)~O as r~ 00. Any function (conti­
nuous and square integrable) satisfying these boundary conditions can 
be expanded as a linear combination of the bound state eigenfunctio:1s 
of (5.4). One must bear in mind, however, that this is not thefull Hilbert 

" space of the Hamiltonian (5.3); the full Hilbert space would include 
the eigenfunctions corresponding to the continuous eigenvalues in 
addition to those of (5.4). 

5.1.3 Angular momentum. If J denotes the angular momen­
tum operator of a physical system, it is kno'vn that its components 
do not commute with each other but that J2 commutes with all the 
components of J. The problem is therefore to construct simultane0us 

4Th is is the philosophy "behind the precept in perturbation theory that the 
eigenfunctions of the perturbed problem can be llxpanded as linea: combi. 
nations of the eigenfunctions of the unpertur!)ecJ problem, provided the 
boundary conditions are the same. 

5We have disre~arded the spin of the electron and have restricted ourselves 
to the bound energy levels. 
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eigenfunctions of J~ and, say J,.1t is not necessary to obtain the explicit 
eigenfunctions. The eigenfunctions may be characterized by two indices' 
i and!.L and an eigenfunction may be denoted in the Dirac notation 
by I if.!. > . The set of all such eigenfunctions for i=O, t, 1, !, ... , and 
f.!.= - j,-j+ 1, . . .. .i -1 . .i' is a complete set in the infinite-dimensional 
Hilbert space of the angular momentum operator. The action of 
the components of this operator on a basis function is given by 

J 2 1 if.!.> =j(j+ 1)1i2 I/:.L > , 
Jz I iu.>=f.!.ti I.ifL>, · 

(Jx+iJv) IJ ~ ;> =fi{j+ 1)-fL (fL+ 1)]1.'211 Ii, /.L+}>, 

(Jx - iJy ) IiIL > ':""'i:j(j + 1) - fL (fL -1 )]1 /2 ti Ii. f1. -1>. (5.6) 

Eq<,. (5.6) sho~1hat'th.x infinite-dimensional Hilbert space of J 
splits into a direct sum · of an infinite number of finite-dimens~nal 
Hilbert subspace, TJle dimenSion of a subspace corresponding t'Q a 
p<.rticular allowea ' f-¥filue is (2.i+ 1) and the corresponding basis 
functions ari; I iIL>for -j<f.!.< i. This is the familiar spin space of a 
system whose angular momentum is i 11 and is the space in which the 
representation DUl of SU(2) is defined. 

5.1.4 Electron in a periodic potential. Let us tina y consider an 
electron in a crystal lattice. The eigenfunctions of the Hamiltonian in 
this case can be put in the Bloch form 

~nk(r)=exp (ik·r) Unk(r). (5.7) 

where Unk(r) is a periodic function with the periodicity of the lattice. The 
boundary conditions here are the periodic boundary conditions. The 
number of the allowed values of the vector k is equal to' the number of 
unit cells in the crystal and n is the band index which takes all positive 
integral values (and also takes account of the states in the bands ob.-· II 
tanined from the core levels). These eigenfunctions constitute a basis 
for the infinite-dimensional Hilbert space of the crystal Hamiltonian 
and any function with the same periodic boundary conditions can be 
expressed as a linear combination of functions in this complete set. 

The examples of Sections 5.1.1, 5.1.2 and 5.1.4 show that when 
the operator under consideration is the Hamiltonian, its Hilbert space 
is determined by the boundary conditions rather than the actual form 
of the potential. 

eS<:hiff(1968), Section 27; Messiah (1965), Section 13.1 
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5.2 'Transformations of a Function 

Let R be an operator referring to a transformation of the coordi­
nate system e/, i.e., 

Rej=ei', i=·l, 2,3, .. . , (5 .8) 

wher~ e;' are the axes of the transformed coordinate system. Eq. (S. 8) 
can also be written in full as 

e;'= I ej Rj;, i=1,2,3, ... , 
j 

(S .9) 

where [Rjj] is the representation of the operator R with the bassis {el}. 
We are interested in knowing how the form of a function (defined 

. in the space of {ej}) changes when the coordinate system undergoes a 
transformation. To begin with, let us consider a simple function of one 
variable (one-dimensional space) such as f(x)=cos x. For the coordi­
nate transformation, we take the translation of the origin of the 
coordinate to the point x=a. If we denote this transformation by R, 
the new coordinate can be denoted by 

x'-+ x' = Rx=x-a. (S.IO) 

It is then obvious that the inverse transformation will be R-l x=x+a/ 
What happens to the function/(x) in the new coordinate system? 

Let us denote the transformed function of x' by!t(x') and denote by PR 
the operator corresponding to R operating on functions of? x. Then we­
can write algebraically 

PRf(x) f,(x'). (5.11) 

In our case, withf(x)=cos x, it would be clear from Fig. (S .1) that 
the transformed function takes the form !t(x')=cos(x' +a). Dropping 
the primes, this can be written in the form !t(x)=cos(x+a) , or 

PRf(x)=cos (R-l x). (5.12) 

The same result would be obtained if we kept the coordinate sys­
tem fixed and moved the fllnctionf(x)=cos x by a distance a to the left 
(the active point of view). As discussed in Chapter 1, this shows in gene­
ral that a transformation of the coordinate system e; is equivalent to 
the inverse transformation applied on the function! Generalizing this 
result to the three-dimensional space of position vectors, this means that 
the value of the transformed function ft at a point r is the same as the 
value of the original functionf at the point R-1r. We therefore have 

!t (r)=PRf(r)=f(R-1 r). (5.13) 

7Note that the operator R acts on the coordinate x only. 
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f (x) = cos )I. 

)t 

(; ) 

fix';' cos (x' + a) 

y' 

I 
(b) 

FIGURE 5.1 (a) The function I(x)=cos x; (b) The coordinate transfor­
mation in which the origin is shifted to the' point x= a, so 
that x'=x-a and It (x')=cos (x'+a) 

Since this transformation is very important, it would be worth 
considering one more example in the three-dimensional space. Let us 
take the function to be 

f(r)=exp i (kIX) +k2x 2+kax3), (5.14) 

where· (Xl' X 2, X 3) are the components of r in the orthonormal system 
{Ci} and ki are scalars of dimensions (Iength)-l. Let R be a rotation 
of the coordinate axes through 90° about ca . that is, 

R(c l , c2 ' ca)-(c1' , c2', c3') 

~('''''''') [ ! -~ ~ J (5.15) 

The function fer) has the value given by (5.14) at a point P=(xi • x 2, x~). 
In the primed system, the point P (see Fig. (5.2)) has the coordinates 
(x)', x 2', xa'), where x/=x2 , X 2'=-XI , xa'=x~. Since the value of the 

_ function fat the point P has not changed during the transformation 
(or, in other words, the value of the function/at the point P is indepen­
dent of the coordinate system). the form of the transformed function 
mList be 
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!,(r')=exp i (-klX2'+k2Xl'+kaxs'). (5.16) 
Since r' is only a label for the argument off" we may drop the primes 
and write 

I 
/ 

I 
/ 

I 
I 

/e'l 
/ 

/ 

p {(X"XI,X,) ,- , . , 
, (X"XI,X.) , 
1 
I , 
III 3=X3 

I , 
I------+-: --:--~ •• '.·I 

, I 
I I, 
, IX ."-X, 
, I __________ J 

X't:K. X. 

FIGURE 5.2 The transformation oftbe coordinate 
system ei to e/ 

(5.11) , 

This form of the transformed function can evidently be obtained by the 
operation 

1 0]_ 
o 0 
o 1 

(5.18) 

The matrix obtained in the above equation is the inverse of that 
obtained in (5.15). Hence, once again we have 

f,(r)=PR!(r) f(R-l r), 

which is just (5.13). Here it should be emphasized that the function 
!of (5. 14) is identically the same as the functionf,of(5.17); the only 
difference is that in (5.14), the position r is measured in the original 
coordinate system, whereas in (5 .17), it is measured in the transformed 
system. 

Consider now the effect of the successive transformation of the­
coordinate system by the appJicationofthe operators RandS. LetP. 
and Ps be the operators which act on functions of r and, which corres-
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pond to Rand S respectively. The result of the first operation, by 
(S .13), is 

PR/(r)=/(R-I r)=F(r), (5.19) 

which defines the function F(r). Now the result of the operation of Ps . 
on F(r) is 

Ps F(r)=F (S-l r). 

On replacing r by S-l r in (5.19), we get 
F(S-l r)=/(R-I S-l r). 

Using (5.19) and (5.20) in the above equation, we have 

Ps PR/(r) ,=/(R-1 S-l r). 

(5.20) 

(5.21) 
Note the interchange in the order of the inverse operators in the argu­
ment of the function/ on the right-hand side of the above equation. 

5.3 Space and Time Displacements 

5.3.1 Space displacements. Consider a physical system repre­
sented by a wave function ~(r). Let the physical system be displaced 
through a vector .e.. Since this is ~quivalent to displacing the coordinate 
system through -.e., the wave function representing the physical 
system, according to our previous discussion, will be 

~' (r)=~ (r-pJ (5.22) 

If we denote the corresponding translation operator by p,(.e.) (the 
subscript r stands for space displacements), then we have 

P,(.e.) til (r)=~' (r)=~ (r-f)· (5.23) 
Our aim now is to optain an expression for the translation opera­

tor P, (.e.). We first consider the particular case when the displacementE 
is parallel to the x axis. Since the wave function ofa physical system is 
a continuous· and differentiable function at all points of the space, we 
can expand ~(r-.e.) in a Taylor series: 

~ (r-f)=~ (x-p, y, z) 

{ 
0 p2 02 

} 
= I-p ox + 2! 8x2-··· Hx,y~z) 

=exp ( -P:x) ~ (x,y, z). 

Extending this to any general displacement.e., we have 
~(r~.e.)=exp (-.e.. \7) ~(r) 

=exp ( - i.e.· p/1i) ~ (r), 

(5.24) 

(5.25) 
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where ,= -i I\. \l is the quantum mechanical operator corresponding to 
the linear momentum of the system. Comparing this with (5.23), we 
find 

P r (!?)=exp (-i£.p/I\.). (5.26) 

Since £. is real and p is a hermitian operator, P r (£.) is a unitary· operator. 
It now remains to verify whether the displaced function still cha­

racterizes a possible state of the system. For this, we first note that the 
function tV(r), being a wave function of the system, satisfies the time­
dependent Schroedinger equation 

il\. o~ t\J(r)=..9(t\J(r), (5.27) 

where ..9(is the Hamiltonian of the system. We ,now calculate the time 
derivative of the displaced function which gives 

i ti o~ tV' (r)=i ti Pr (e.) :1 tV (r)=Pr (e.) ..9( tV (r) 

=Pr (e.) ..9( Pr t (e.) Iji' (r). (5.28) 

It is then clear that the function tV'(r) satisfies the time-dependent 
Schroedinger equation with the same Hamiltonian ..9( if and only if 

.PrC!?) ..9(Prt(f.) = ..9(, or [Pr(£.), ..9(]=O. (5.29) 
On looking at the form of the unitary operator Pr (.e) given in (5.26), 
we note that (5.29) holds for all vectors e.. if and only if p commutes 
with ..9(. This implies that if the physical system is invariant under all 
space translations, its linear momentum is a constant of motion, or is 
conserved. 

The set of all translation operators Pr(£') (for all values of e..) 
clearly is an abelian, continuous, connected, three-parameter, non­
compact group. The law of composition for this group is simply 

Pr (£.) Pr @)=Pr (~)Pr (.e) = Pr(e.. + ~J. 
This is the symmetry group of the physical system under consideration. 

It would be instructive to consider two simple examples of the 
concept discussed here. Consider first the case -of a free particle whose 
Hamiltonian contains only the kinetic energy part: ..9(=-ti2:?,2/2m 
=p2/2m. Its wave function is of the form exp(ik·r) where k denotes 
the wave vector of the particle. If we displace the system through a vector 
~, the new function exp[ik.(r- .£I)] also represents a possible state of the 
free particle. This must be true for any vector £ beCause the momentum 
of the particle commutes with ..9( and is therefore a constant of 
motion (p=tik). 
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Consider next the case of an electron in a hydrogen atom. The 
wave function of the electron is of the form Rnl (r) Yt"l (e, 4». Here the 
position vector r is measured in a coordinate system whose origin is at 
the nucleus. If we displace the system through some vector so that the 
nucleus is no longer at the origin of coordinates, the displaced function 
cannot be put in the standard form and hence does not denote a possible 
state of the system. The linear momentum is therefore not a constant of 
motion for an electron in a hydrogen atom which is of course a well­
known result. 

5.3.2 Time displacements. In a~alogy with the space displace­
ment of a physical system considered above, we may displace a system 
in time and try to' find out whether the displaced function represents 
a possible state of the system. 

Thus, let ~(t) be the wave functionS of a physical system and let 
P,('t') denote the operator for translating the functions of time by an 
amount't'. We then have 

(5.30) 

We may expand the function ~(t--r) in a Taylor series about the · 
point t and we then find that 

PI ('t') Ht)=exp (--rO/atH (t). (5 . 31) 

We therefore have 

PI ('t')=exp( --r%t). (5.32) 

Now, the quantum mechanical energy operator is given by 
.9{=ifia/ot. If $I. is itself independent of time, that is, if the energy is 
a constant of motion, then we can replace a/at in the exponential in 
(5.32) by .9{and obtain 

PI ('t')=exp (i't'.9{/ 'fi), . (5.33) 

which is a unitary operator because 't' is real and .9{ is hermitian. 
This again shows that if a physical system is invariant under all 

time displacements, then the energy of the system is a constant of. 
motion. The transformed function in this case still obeys the Schroe­
dinger equation. All the time translation operators PI('t') commute 
with the Hamiltonian, i.e., 

[P/(-r),&]=O, all T. (5.34) 

The set of all time translation operators is again an abelian, conti-

8We are not interested in the other variabies on which y may depend; 
these a re therefore suppressed here. 
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nuous, connected, one-parameter, noncompact group which is the 
symmetry group of the physical system. 

Once a?~in, we may consider the example of the hydrogen atom. 
If we have an isolated hydrogen atom, with no perturbations, its 
Hamiltonian is invariant under all time ·displacements. If the atom is 
in a particular state at a given instant of time, it will continue to remain 
in the same state for all time and the total energy of the system will be an 
invariant. On the other hand, if we apply a time-dependent perturba­
tion, the Hamiltonian is no longer invariant under time translations, 
the atom may make transitions froll' one state to another and the 
energy of the atom does not remain a constant of motion. 

5.4 Symmetry ~f the Hamiltonian 

In the previous section we have seen by means of two examples 
that when a system possesses a certain symmetry, there is a corres­
ponding physical observable which remains a constant of motion. We 
shall develop this concept here in its complete generality. We shall 
hereafter use the operator .ge of (5'.1) to mean the Hamiltonian (the 
energy operator) of the system. 

The Hamiltonian .ge is itself a function of the various parameters 
of the system such as the position vector, time, momentum, angular 
momentum, etc., and it reflects the symmetry of the system it des­
cribes. Its familiar form in the single-particle approximation is 

1i2V 2 

.ge - 2m +V, (S.3S) 

where the.first term is the kinetic energy operator for the particle it des­
cribes and V contains all the other terms. The Laplacian V2 is invariant 
under all orthogonal transformations of the coordinate system (that is, 
under the rotation-inversion group 0(3». Hence, the symmetry of .geis 
essentially governed by the symmetry of the function V. Thus, if(S. 3S) 
refers to an electron in a hydrogen atom, the potential energy of the 
electron is spherically symmetric, and .ge would be invariant under 
the group 0(3); if it refers to an electron in a crystal, .ge would be 
invariant under the symmetry transformations of. the crystal (that is, 
the operations of the space group of the crystal, to be discussed in 
Chapter 7). 

Let us consider the operation of PR , which corresponds to some 
coordinate transformation R, on the Schroedinger equation (5.1): 

PR.ge Jr=PR EJr, 
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or 

-or 
where 
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(PR .j(PR-1) (PR 1ji)=EPRIji, 

.j(' (PRrJJ)=E(PR~)' (5.36) 

(5.37) 

is the Hamiltonian referred to the transformed coordinate system. If 
the operator PR is such that.j(' = .j(, which means that the form of the 
Hamiltonian function in the new coordinate system is the same as its 
form in the original one, then from (5.37), we find that 

.j( PR=PR.j(. (5.38) 

This shows that the Hamiltonian commutes with all the operators 
under which it is invariant. 

The set of all transformations R which leave the system invariant 
is a group. The set of the corresponding transformations PRleaves 
the Hamiltonian of the system invariant and hence also is a group. 
The two groups are isomorphic to each other and they will both be 
denoted by the same symbol G. It is known as the symmetry group 
of the Hamiltonian or the group of the Schroedinger equation. (See Pro­
blem 5.7.) 

The commutation relation (5.38), when used in (5.36), implies that 

(5.39) 

that is, PRIji is also an eigenvector of .j(with the same eigenvalue E. The 
function PRIji is thus degenerate with Iji, unless it is a mUltiple of IJ.. 

5.4.1 Symmetry and degeneracy. Starting from a given eigen­
function 1J.1 of .j( with the eigenvalue E, we can generate' a set of 
independent eigenfunctions 1J.1' ~2' ... , \jIn (n <. g, the order of G) by 
operating with all the elements of the group G. These functions form a 
basis for a representation of G which may be reducible or irreducible. 
However, if all possible symmetry transformations which leave the 
Hamiltonian invariant have been included in the group G, then the repre­
sentation generated by the degenerate eigenfunctions must, in general, 
be an irreducible one. Conversely, the eigenfunctions belonging to an 
irreducible representation of G (occurring for a particular time) can be 
transformed into each other by the operations of the elements of G, 
and hence they must be degenerate, as is clear from (5.39). 

Now we may ask the question: Do the eigenfunctions trans­
forming according to different representations of G always have diffe­
rent eigenvalues? In general, they should. This is due to the fact that if. 
for example, IjJ and <p are functions belonging to different irreducible 
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representations of G, then there is no operation of G which mixes them. 
But it may happen that we have failed to include all the symmetry trans­
formations of the Hamiltonian in the group G, in which case, the 
representation generated by the degenerate eigenfunctions may be 
a reducible one. The basis functions belonging to two or more consti­
tuent irreducible representations may then be degenerate. However, 
if this happens consistently, that is. if we find that the basis functions 
belonging to two or more irreducible representations of G are always 
degenerate, we may conclude tbat we have overlooked some symmetry 
of tbe' Hamiltonian. When we have considered al1 possible symmetry 
transformations of the Hamiltonian, the basis functions belonging to 
different irreducible representations of G must, in general, have different 
eigenvalues. 

We can, however, hardly ever be certain in practice that we have 
discovered all the invariances of a pbysical system. An excel1ent exam­
ple of this will be found when we discuss the dynamical symmetry of 
physical systems in Section 8 of this chapter. 

It may still happen tbat for certain values of the parameters (such 
as the nuclear charge, the electronic mass, the interatomic distances in 
molecules and crystals, etc., on which the eigenfunctions depend), 
two or more eigenfunctions belonging to different irreducible represen­
tations have the same energy eigenvalue. This degeneracy is not 
demanded by the symmetry of the system and cannot be inferred 
from group theoretical considerations. This is called accidental degme­
racy as against the essential degeneracy which arises due to the symmetry 
of the system and wbich we have hitberto discussed. The essential de­
generacy can be removed by lowering the symmetry of the system. On the 
other band, the position of the accidental degeneracy changes on chang­
ing the parameters, which have no effect on essential degeneracy; 

To take an example, c.onsider a simple two level Fermi system shown 
in Fig. (5.3). Both the levels A and B are doubly degenerate, i.e., 

A1 
Al 

A 
A2 

Bl 
.~ 

A2.BI 

B 
B2 

82 

FIGURE 5.3 The splitting of levels under a magnetic field 
and the accidental degeneracy of A2 and Bl 
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each level can accommodate two fermions, one with spin 'up' and one 
with spin 'down'. If we apply a magnetic field, each level splits into 
two. The separations between the two levels Al and A2 and between 
BI and. B2 increase linearly on increasing the intensity of the magnetic 
field . Fig. (5.4) shows the variation of the energies of the four levels 
with the intensity of the magnetic field. It is clear that for some 
value of the magnetic field. the energies of the two levels A2 and Bl 
will coincide, such as at the point P in Fig. (5 .4). 

3 

'E'A 
C 
:;, 

~ 2 
f .. :e 
~ 
>-
~ 1 • c: 
W 

0 
0 2 3 

Inten'slty of magnetIc field 
(Arbitrary Units) 

4 

FIGURE 5.4 The double degeneracies at A and Bare 
essential .whereas the double degeneracy at 
P is accidental 

The double degeneracy of the two levels A and B in the absence 
of the magnetic field is due to the symmetry of the system. The 'up' spin 
is not distinguishable from the 'down' spin in the absence of a magnetic 
field, and hence it is an essential degeneracy. On the other hand, the 
double degeneracy at P in Fig. (5.4) for a particular value ofthe magnetic 
field is an accidental degeneracy, as it is not warranted by symmetry 
considerations. The essential degeneracy at A and B is removed only by 
lowering the symmetry of the system but the position of the accidental 
degeneracy can be changed by changing the charge or the mass of the 
fermions (or even by changing the velocity of . light, since the Bohr 
magneton depends on it). 

We shall come across a number of other examples of the two types 
of degeneracy while treating various problems in the remaining part 
of this book. 
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5.4.2 Good quantum numbers. Let us come back to our discussion 
about the connection between the dimensions of the irreducible 
representations and the degeneracies of the energy levels. The impor­
tance of this result, as we shall soon see, is that it provides a means 
of labeling the energy levels and the eigenfunctions of the system by 
the irreducible representations of its symmetry group and determil1es 
the various degeneracies to be expected. 

Thus, if tJipmec is an eigenfunction belonging to the m-th column of 
the ~-th irreducible representation occurring for the p-th time in the 
energy level scheme, then ~ and p are suitable indices for labeling the 
eigenvalues which may be denoted by Exp. For example, the Hamil­
tonian of an electron in a hydrogen atom has rotational invariance. The 
eigenfunctions of the problem are Rnl Y/" (8, </» and the energy levels of 
the electron can be labeled by the indices n and I (n corresponds to p 
here). Anticipating the result of our further discussion, we may consider 
the example of an electron in a periodic lattice. The irreducible represen­
tations of the group of tbe Hamiltonian in this case are characterized 
by a wave '.'ector k, and therefore, we may denote the eigenfunctions 
by tPnk (r) and the energy eigenvalues by E" (k), where 11 is now the 
band index. 

This is indeed the group theoretical explanation of good quantum 
numbers. Thus, for an electron in a hydrogen atom, n and I are good 
quantum numbers; for an electron in a crystal, nand k are good 
quantum numbers. A good quantum number is that characteristic of 
the eigenfunction of the physical system which remains invariant under ' 
the symmetry transformations of the system, and is, therefore, the 
most suitable variable to label the eigenfunctions and tbe eigenvalues 
of the system. 

In the light of this discussion, the time-independent Schroedinger 
equation for any system can be put in the most general form 

(5.40) 

where IX, P and 11l are the good quantum numbers. While the eigen­
function is characterized by these three parameters, the eigenvalue 
depends only on ~ and p. The degeneracy of the level ErJ.p is therefore 
the number of values m takes which is the dimension of the IX-th 
irreducible representation . 

. 5.5 Reduction Due to Symmetry 

If an arbitra~y choice of basis functions is made, the Hamiltonian 
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would in general have nonvanishing matrix elements between any 
pair of basis functions. The Hamiltonian matrix would then have 
diagonal as well as off-diagonal elements. However, we shall see in 
this section that with a suitable choice of the. basis functions, the Hamil­
tonian matrix can be put in a block-diagonalized form, considerably 
simplifying the problem of obtaining its eigenvalues. 

5.5.1 Orthogonality of basis functions. A:i a first step towards 
our objective, we shall show that if the elements of a group are 
unitary operators, then the basis functions belonging to different 
irreducible representations of the group or to two different columns 
of the same irreducible representation are orthogonal. 

Let IjIpmlX be a basis function transforming according to the moth 
column of the irreducible representation r(lX) (of the symmetry group G) 
occurring for the p-th time in the energy level scheme. Let also IjIqn~ 
be a basis function transforming according to the n-th column of the 
irreducible representation r(1Il occurring for the q-th time in the energy 
level scheme. Since the scalar product of two functions is invariant 
under a unitary transformation, we have 

( 5.41) 

for all AEG. Writing explicitly the operation of A on the basis functions 
in the right-hand side of the above equation, we have 

( 
IIX /fJ ) 

(ljIpmlX, IjIq"fJ)= L IjIpk(lX) rkm(lX) (A), L IjIql{J r,,,({J) (A) 
k=1 1=1. 

(5.42) 

. IIX III 
= L L rkm(lX) * (A) rl,,({J) (A) (ljIpk'X, 'hill). (5.43) 

k=I/=1 

Let us restrict ourselves to finite groups for the moment. Since the left­
hand side of the above equation is independent of the group element A, 
we may sum the right-hand side over all the group elements and divide 
by g, the order of G. By using the orthogonality relation between the 
irreducible representations, we then find 

1 I.. 'Ii 
(hmlX, IjIq~Il)=_ L L L rkm(lXl* (A) rt,,({J) (A)(hklX , IjIql{J) 

g k=1 1=1 AEG 

IflI. la 
=81X1l8mn (1/111) L L 8kl (ljIpk!X, IjIq1fi). (5.44) 

k=l 1=1 

This shows that the basis functions IjIpmll and IjIq,,~ are orthogonal if 
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Cl~~ or m~n, . 
However, if IX=~ and m=n, we find from the above equation that 

1 ['" 
(ljipm'x, IjiqmCl)=-1 L (ljipkcx, IjiqkCl

). (5.45a) 
Cl k=l 

Since the right-hand side is independent of m, we have an important 
result that 

(5.45b) 

for 1 < m, k -s;;, ICl, i.e., the scalar product of t~o basis fllnction~ both 
transforming according to the same column of the same irrec.. lcible 
representation, is independent of the column index. 

Although we have derived these results for a finite group, it would 
suffice to say that they hold good for compaot continuous groups also. 

Thus, if we have a number of basis functions transforming accord­
ing to the various irreducible representations of a group, the only 
scalar products that are likely to exist are those between basis functions 
transforming according to the same colHmn of the same irreducible 
representation. 9 

We have obtained the above result for the basis functions of the 
irreducib'le representations of any group in generai. However, if we are 
considering the eigenfunctions of the Hamiltonian. which are at the 
same time basis functions for the irreducible representations of its 
symmetry group, then we can go one step further. It. is known from 
elementary quantum mechanics that if IjipmCl and ljiqn~ are two eigen­
functions of .!J( having two different eigenvalues Ezp and E~q, then 
they must be orthogonal. Combining this with the above orthogonality 
relation (5.44), we see that the set of all eigenfunctions of the Hamil­
tonian, if they are chosen so as to form basis. functions for the irre­
ducible representations of its symmetry group, is an orthogonal set. 
In other words, the matrix representing .!J( with such eigenfunctions 
for the basis is a diagonal matrix. 

5.5.2 Block-diagonaiization of the Hamiltonian. The situation 
discussed above when the Hamiltonian is fully diagonalized is really 
only an ideal case and obtains when we know the eigenfunctions of 
the Hamiltonian. However, in practice, we do not know ' the eigen­
functions of the Hamiltonian beforehand. We may, nevertheless, con-

9Even these may vanish, of course, in particular cases due io reasQns other 
than .those of symmetry. 
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struct a set of approximate eigenfunctions generating the various 
irreducible representations of the symmetry group of the Hamiltonian 
and use them as a starting point towards determining the required 
eigenfunctions. We can show that if we construct the matrix represent­
ing the Hamiltonian wlth these basis fUllctions. it will be in a block­
di"gonalized form. though not in the fully diagonalized form. 

Thus. as before. let ypm'" and ~ql/~ be two basis functiol1sas defined 
in the previous subsection. Theseare no~ not necessarily the eigen­
functions of the Hamiltonian. Our object is then to find the malmo 
element of the Hamiltonian between these two states, i.e., (ljIpmO:, .jI. 
IjIq"I!). Since.j{ is invariant under all operations of its symmetry 
group, it is easy to see thatthe function.j{ h,,1! has the same symmetry 
as IjIq"l!. For, let A be a symmetry element in the group, so that 

A IjIq"II=}; Ijiq,1! r,,,(I!) (A) \f A E G. (5.46) 
I 

Now consider the operation of A on the function $( IjIq"l!. Using 
the fact that A commutes with .jI., we have 

A (${ljIq"I!)=${Aljlq"II=}; (..1{1j1q,ll) r'n(/I) (A) VAEG. (5.47) 
I 

This shows that $(ljIqnl! also transforms under the symmetry group 
according to the n·th column of the irredu:ible representation r(Il). 

Hence the scalar product of hmiX with .j{ IjIqnll will involve factors like 
ll"'l! llmn in au:ordance with (5.44). The only nonvanishing matrix 
elements of.jl. will thus be between functions of the form ljipmcx and 
IjIqmO: i.e., 

(5.48) 

The Hamiltonian matrix would therefore be in a block-diagonalized 
form the dimensions of the blocks being equal to the number of 
values the index p takes; these are the numbers Go: defined in (3.87). 
The dimension of the biggest block will be the maximum number of 
times an irreducible representation occurs in the energy level scheme, 
i,e., the largest of the ao:'s . The problem is then consid~rably simpli. 
fied because it has essentially been reduced to that of determining the 
eigenvlllues of the blocks separately. 

To illustrate this by an example, let us consider a very simple case 
of a Hamiltonian which is invariant under the inversion operator J. 
Let UJ be the unitary opt!rator corresponding to J which operates on 
functions of the position vector. As we have seen before, the operator 
U J then commutes with ${ : 

UJ ${=${UJ • (5.49) 

Applying the o~erator UJ to both the sides of (5.1) from the left 
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(where IjI is an unknown eigenfunction of .9{) and using (5.49), we get 

.9{(UJ 1jI)=E (UJIjI). (5.50) 
Let q, be an eigenfunction of UJ ; then 

UJ q,=c q, , (5.51) 
where c is the eigenvalue of U J corresponding to q,. Since the double 
operation of J leaves the coordi~ate system invariant. we have 

(U})2 rp=cUJ q,=c2 q,=1' ; 
hence 

c=±I. (5 .52) 

In fact, any physically acceptable function which is purely even or 
purely odd under coordinate inversion will be an eigenfunction of UJ 
with the eigenvalu~ + 1 or -1 respectively. 

Let the eigenfunction IjI of .9{ be written as the sum of an even 
function and an odd function. Thus, let 

(5.53a) 
where 

(5. 53b) 

If IjI is neither purely even nor purely odd under inversion, U}1jI would 
be independent of IjI and both would be degenerate eigenfunctions of 
.5{. Any two independent linear combinations ofljl and UJIjI, such as 
q,e andq,o, will then also be eigenfunctions of .9{ with the same eigenvalue 
E. In the language of group theory, we see that q,e and ,po are the 
symmetrized basis functions for the irreducible representations of the 
inversion group (E, J). It would obviously be convenient to work with 
the eigenfunctions CPc and CPo rather than with IjI and UJIjI, because the 
matrix element of.9{ between cpc and CPo would be zero. 

We must extend the above result to include all the eigenfunctions 
of.9{. Let {1jI1' 1j12' .•. , IjIn} be the eigerifunctions of .9{ defining a Hilbert 
space Ln where n may be finite or infinite. From the above discussion, it 
follows that every eigenfunction must be either (i) purely even or purely 
odd, or (ii) degenerate with another eigenfunction. In case of degeneracy 
we can choose two suita ble linear combinations which are purely even 
or purely odd. Hence we can choose all the eigenfunctions of .9{ to be 
purely even or purely odd under coordinate inversion, that is, which 
are simultaneous eigenfunctions of .9{ and UJ.IO We therefore see that 

lOThis is in conformity with an important result in quantum mechanics that 
simultaneous eigenfunctions can be found for two commuting operat('rs (or, 
in matrix algebra, simulianeous eigenvectors can be found for two commut­
ing matrices). 
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each eigenfunction of the Hamiltonian, which has space inversion 
symmetry, has a definite parity which is even or odd depending on the 
action of UJ on the eigenfunction. 

Except in the case of very simple systems, the exact solution of 
(5.1) is very difficult; that is, it is difficult to find the exact eigenfunctions 
of ..9(. However, in general, we can choose a set of n suitable basis func­
tions all which form an invariant subspace of the infinite-dimensional 
Hilbert space of ${. These basis functions 0/; are not necessarily the 
eigenfunctions of $( and, therefore, we may write thl': operation of .5{ 
on a function all as . . 

n 

..9(0/;= L o/j${j/. (5.54) 
j=1 

As in the discussion of Section 2.4.2. our·aim now is to find the eigen­
functions of..9( as correctly as possible by constructing linear combina· 
tions of o/t's. If we are able to find all the n eigenfunctions Xi of ..9£, 
then, as in (2.69), we have 

..9(X/=£;X/. (5.55) 

But as we have just mentioned, it is difficult to obtain the exact eigen­
functions. We can sfill construct approximate 'zeroth order' eigen­
functions 1/(0) by taking suitable linear combinations of o//'s~ such that 
in the equation 

n 
..9(1P)= L 1/0'} .9lj;, (5.56) 

j=1 

the off-diagonal· elements $(j/ (j#i) are much smaller than the 
diagonal elements .%/. When this has been achieved, we say that we 
have obtained the eigenfunctions and the eigenvalues of ..9(to a certain 
order of approximation which depends on how small the off-diagonal 
elements are compared to the diagonal elements. To this order 'of 
approximation, we may write the above equation as 

&1.;<0>=£/(0) 1/(0), £/(0)=..9(;;. (5.57) 

Group theory is of great assistance in this process. Thus, in the 
example considered earlier in this subsection, a great deal of simpli­
fication would be obtained by using the invariance of ,j{ under inversion 
and by choosing the approximate eigenfunctions of ..9( to be simul­
taneous eigenfunctipns of UJ. Let these n basis functions be arranged 
in such a way that the first m are even and the remaining n-m are 
odd. Then the matrix representing ..9(with these basis fu~ctions will 
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appear in the block-diagonalized form 
m n-m 

-[,...-.~ ~J-} m 
[.%,1- . ~ .; . ... }n-m (5.58) 

It should then be clear that by considering all the symmetry trans­
formations of .9{' we can furt~er diagonalize the matrix for .9(. 
Group theory tells us, as we shall see in Section 5.7, which elements 
of the .9(-matrix ought to be zero on the grounds of symmetry, although 
it does not tell us anything about the nonvanishing elements. 

It may be mentioned here that the expansion (5.54) in terms of the 
n basis functions <¥; is itself an approximation. In principle, 11 should 
be infinite: but for practical reasons, we take it to be finite. We are 
usuaIIy interested only in the lowest few eigenvalues of .9C and these 
are not much affected if n is chosen t.o be sufficiently large and the 
corresponding n-dimensional subspace is chosen properly. The 
approximation of taking n to be finite is then a very good one. 

S.6 Perturbation and Level Splitting 

As is well-known in elementary quantum mechanics, only a few 
problems are exactly solvable. In the general case, a considerable 
simplification ensues if the Hamiltonian can be split into two parts 
such as 

(5.59) 

where the first part .9Co is simple so that its eigenvalues can be obtained 
relatively easily and the second part V has a small effect on the eigen­
values of .9(0' 

Let G be the group of symmetry transformations of .s{o' In gene­
ral, all the ~perations of G will not leave V invariant, or in other words, 
the group K of symmetry transformations of V will be smaller than 
G. We shaII assume that the group K is a subgroup of G. The full 
Hamiltonian .9C remains invariant only under the symmetry transfor­
mations common to both .9Co and V. This implies that K is also the 
symmetry g{'oup of !J{. 

By assumption, the eigenfunctions of .9Co are known. As dis­
cussed before, these can be grouped into invariant. subsets (according 
to their degeneracy) where each subset forms the basis for an irredu-



172 ELEMENTS OF GROUP THEORY FOR PHYSICI!ITS 

cible representation of G. Let us denote the eigenvalues of &0 by Ea.(O), 

which is la. -fold degenerate so that there are 17. independent eigenfunc­
tions {~1 ' ~2 ' ... , ~/a.}, all having the same eigenvalue Ea.(O). These Ix 
eigenfunctions form a basis for an irreducible representation r(a) of 
G. If we now imagine that the perturbation V is 'switched on', the 
group of symmetry of the system will be reduced to K. Since K is a 
subgroup of G, the functions {ljJi} will still generate an Ia.-dimensional 
representation of K; but this representation· will in general be a reducible 
one. We cab then reduce this representation by the standard technique 
discussed in Chapter 3. Thus, we get new subsets from the set offunc­
tions {q,I} such that a function in a subset mixes only with the functions of 
the same subset under the operations of the group K. These subsets 
must all belong to different eigenvalues (except in the case of acciden­
tal degeneracy) and hence the original energy level Ea.(o). 'splits' into a 
number of energy levels due to the lowering of symmetry. 

We shall illustrate this by an example. Consider a simple two­
dimensional square molecule or a crystal having a square lattice. The 
group of symmetry of the system is our group C, •. Suppose the crystal 
is compressed along one of the edges of the square. The symmetry of 
the resulting system (a primitive rectangular l~ttice) is lower than that 

TABLE 5 . 1 THE CHARACTER TABLE OF C2V Al'D THE CHARACTERS OF 

THE ELEMENTS OF C2v IN THE IRREDUCIBLE REPRESENTATIONS OF C4V 

I I E C42 In., mil 

Character table of C2v Dl 1 I 1 1 

D2 1 1 -1 -1 

Da 1 -1 1 -I 

D4 1 -1 -I 1 

I 

Characters of the ele- n I) 1 1 1 1 
ments of ChI in the 
irreducible represen- n 2) 1 1 -1 -1 
tat ions of C4v ." n S) 1 1 1 1 

n 4) 1 1 -1 -1 

nS) 2 -2 0 0 
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of the square. In fact, the symmetry group of the compressed lattice . 
is K={E, Cl, mx , m).} which is denoted by Cly in crystallography. 
We shall see how the levels corresponding to the various irreducible 
representations of C,y split on applying the perturbation. 

The group C2• has four elements and it is an abelian group. It 
has, therefore, four irreducible representations, all one-dimensional. 
In Table (5.1). we have shown the character table of C2• and the 
characters for the elements of C2y in the irreducible representations of 
the group C,y. 

Since the levels belonging to the irreducible representations r(1) 

of C,y for l~i~4 are nondegenerate, they cannot split further. 
On examining Table (5.1), we find' that a basis function transforming 
according to r(l) or r(3) under C,. will transform according to Dl under 
the operations of C2y • Similarly, a basis function transforming accord­
ing to 1'(2) or r(4) under C,y will transform according to D2 under the 
operations of CI •• Lastly. a level belonging to the irreducible represen­
tation r(5) of C,. must be split on compressing the crystal as there is 
no two-dimension? I irreducible representation of Ca.' Let the two 
tiegenerate functions h 5 and t¥25 be the basis functions for r(5). These 
functions now generate a representation of C2• whose characters are 
given in the last row of Table (5.1). By inspection of the characters, 
it can be easily seen that, as far as the group C" is concerned, we can 
symbolically write 

(5.60) 

The basis functions for Ds and D, are simply t¥15 and t¥.5 respectively, 
as can be readily verified by operating on these functions by the ele­
ments of CI •. Thus, any level belonging to r(5) in the molecule or lattice 

. splits into two nondegenerate levels belonging to the irreducible re­
presentations .Qaand D .. in a crystal having the symmetry group C ••. 

One of the most important and celebrated cases-the splitting of 
the electronic energy level .. of an atom in acubic crystal field-will be 
treated in Section 7.6!. 

5.7 The Matrix Element Theorem and Selection Rules 

Let the Hamiltonian of a system be given by (5.59) and let us as­
sl/-me that, to begin with, the perturbation V has been switched off. Let 
t¥pmlZ denote the eigenfunctions of .9£0; these describe the stationary 
states of the unperturbed system. That is to say, if the system is in some 
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state Ij/pmIX at a given instant, it will continue to remain in the same state, 
provided there is no perturbation on the Hamiltonian .g{o. The applica­
tion of a perturbation of lower symmetry not only splits the energy 
levels of the system as discus~ed in the previous section but also induces 
transitions of the system from one eigenstate of .g{o to another. 
Thus, there is a nonvanishing probability that after some time the 
system may be found in some other eigenstate of .9lo, The group theore­
tical matrix element theorem allows us to predict which transitions are 
forbidden purely on the grounds of symmetry of the eigenfunctions and 
the perturbation. We shall now take up this study. 

5.7.1 The matrix element theorem. Let Ij/p",IX and .yqnfj be two 
eigenfunctions of .9lu, which are also among the basis functions genera­
ting the irreducible representations of the group of .g{o. let the pertur­
bation V be now applied to the system. We can use the eigenfunctions 
of .g{o to generate a representation of the operator V. This is easily ob­
tained by considering the operation of Von an eigenfunction, say Ij/pmIX, 

and expanding the resulting function in a complete set of all eigenfunc­
tions of .9lo, Thus, 

VhmIX= L Ij/qn" c(a.,p, m; ~, q,.n), (5.61) 
l3,q,n 

where c(a.,p, m;~, q, n) are scalars. These coefficients can be determined 
by taking the scalar product of V~pmIX with some other eigenfunction 
and using the orthogonality between the eigenfunctions. This gives 

c(o:,p,m;~,q,n)=(lj/qn~, Vlj/pmlX), (5.62) 
which is just the matrix element of the perturbation V between the basis 
states Ij/qnll and ~pmIX. With these coefficients, (5.61) becomes 

V~pmIX= L Ij/qn ll (~qn~, VhmIX ). (5.63) 
~,q,n 

The transition from the state Ij/pmIX to the state ~qnll under the perturba­
tion V will be forbidden if the matrix element of V given in (5.62) 
vanishes. 

It is seen from (5.63) that the function Vlj/pmlX is not a function of 
'pure' symmetry, butis a linear combination ofanumberof basis func­
tions. We therefore have the matrix element theorem: 1f the function 
V~pm<X does not contain a part transforming according to the n-th 
column of the irreducible representation r(~), the matrix element 
(5.62) must vanish (for al/ values of q). This means then that in this 
case the transition between the states ~pm<X and Ij/qnl! under the action 
of the perturbation V is forbidden. 

We may use the function VtjJpm" itself to generate a representation 
of the symmetry group G of .9{0. Such a representation, say r, 
would in general be a reducible one, because V~pmIX is not an eigenfunc-
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tion of ..9Co (unless V commutes with ..9Co). 
The perturbation V itself is a function of the coordinates (or, it 

acts on the coordinates) and hence can be used to generate a represen­
tation, say rv, of the group G. The function Vtjlpm"', considered as a 
product of the two functions Vand 9p;II"', therefore generates a represen­
tation which must be the direct productlI of rv and r("'), i.e., 

r=rv®r(IX)= 2: Oy r(Y), (5.64) 
y 

where we have expressed r as the direct sum of the irreducible represen­
tations of G. It is then clear that the matrix element (5.62) will v?nish 
if the direct product rv ® r(ex) does not contain the irredl.. ;ible 
representation r(II). 

Note that this is a weaker condition than the one stated earlier in 
the matrix element theorem. Thus, in order to determine whether a cer­
tain element such as (5.62) survives, we should first apply the weaker 
but simpler condition to find out whether fv ® r(a) contains r(M. If 
this gives a negative :-esult, there is no need to apply the stricter condi­
tion. But if this gives a positive result, we must go further and find out 
whether VtjlpmC( contains a part transforming according to the n-th 
column of r(~). 

An equivalent condition can be obtained by taking the direct pro­
duct of r with r(tJ) *. The condition is that the matrix element of Vbe· 
tween tjlq~~ and tjlpmC( vanishes if the representation r(lI)· ® rv ® r<ca:) 

does not contain the identity representation of G.12 
Thus we see that the symmetry of the system forbids certain transi­

tions. Group theory, however, does not give any information about 
the matrix elements of V which do not vanish due to symmetry. It must 
be emphasized that such matrix elements may also vanish due to some 
other reasons or merely by accident. 

5.7.2 Selection rules for electric dipole transitions. To illus­
trate the working of the matrix element theorem, we shaH consider the 
selection rules for electric dipole transitions of an electron in a molecule 
wi.th the symmetry group C4•• Another example will be treated in 
the next chapter where we shall obtain the selection rules for electronic 

HAs a special case, we can see that ..9{o is invariant under all operations ofG, so 
that it generates the identity representation of G. Hence ..9(0 hmC( has the same 
symmetry as ohm,ex • 

]2Note that the equivalence of the two conditions is a consequence of the 
resul t of Problem (3. 11). 
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transitions in isolated atoms. The electric dipole moment operator is 
e:=er; it is a vector operator with components e(x, y, z). This will be 
the operator V of the above theory and it can easily be seen that it gene­
rates the representation r,,=r(1)E9r(5) of Ct. (the operator ez gene­
rates r(U and the two components e(x, y) generate r(6). Suppose we 
wish to find out whether the transition between two states belonging 
respectively to r(ll and r(2) is allowed or not; we then work out the 
direct product r" ® r(21=(r(l) E9 reo»~ ® r(2)=r(2) E9 r(I), by using 
Table (3.4). Since this does not contain r(l), we conclude that the 
transition r(l) .... r(2) under the influence of the electric dipole radiation 
is forbidden. 

Working out the selection rules for all possible transitions in a 
similar fashion, we find that the allowed transitions for electromagnetic 
radiation polarized in the z direction (the component ez) are r(l) .... r U) 

(or 1 ~i~5. The allowed transitions under electromagnetic radiation 
polarized in tlJe (x,y)-plane (the components ex and ey) ~re r(l) .... r(l) for 
l~i~4. The remaining transitions are forbidden under the influence of 
the electric dipole moment operator; the~ are r(ll .... r CZ), rll), rC'); 
r(l) .... r(S' , ret' and r(3)_r(f). 

Consider now the selection rules' for the matrix elements of the 
electric dipole mOPlent operator between two states of given symme­
tries. Applying the weaker condition on the direct product of theirredu­
cible representations, we have seen above that the transitions r(6) .... r(') 
and r(I) .... r(5) are allowed. But suppose we now wish to find out 
whether the transition from a state~Pl6 to a state 1/1112' or I/I'l'isallowed 
or not (the notation here is obviouS). The matrix elements under 
consideration are (~n6, e:I/IPl5fand (~rl" ~ ~PI6). Now ~P16 transforms 
according to the first column of rCo) like x and I" has three compo- ' 
nents which transform according to r(l) and the two columns of r(5). 
The prodl1ctfunction I"~PI5 therefore has three parts which may be 
denoted by X~PI$, yIjIpI 5 and Z~PI$. By operating with all the elements 

·of C4", we then clearly s.ee that the function Z~PI5 which is like 
zx transforms according to the first column of rm , the function 
Jllli5 p1 like xy transforms according to r(2) (See Table 3.3) and 
X~P1s like x 2 is one of the two .functions which generate the re­
presentation r(l) E9 r CI' (see Problem (3.17». The function ~~PI6 thus 
does not contain any part transforming according to ret) or to the 
second column of rIll). Both the matrix elements under consideration 
therefore must vanish and the corresponding transitions are forbidden. 
On the other hand, it should be obvious that a transition between, 
say, 1/1 PIli and ~f111 is allowed becaus,e e:1/I P16 contains a part transforming 
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according to the first column of f(si. This should make it clear that 
when the weaker test gives a positive result, the stronger test must 
further be applied to check whether tbe transition is really allowed. 

The working out of the selection rules for magnetic dipole transi­
tions is left to Problem 5.2. We may only mention that the magnetic 
dipole moment operator is an axial vector. Its x and y components 
therefore still generate f (S) but its13 z component generates r(~) . 

5.8 Dynamical Symmetry 

We have so far discussed symmetries of physical systems which 
may be 'termed geometrical symmetries (except the time translation 
symmetry) because they refer to the external geometrical ~tructurc of 
the system. These include rotations, reflections and inversion. In this 
section, we shall consider a different type of symmetry which is known as 
the internal symmetry and which relates to the particular form of the 
force law or the interaction between different parts of the system, 

We have discussed earlier in this chapter the relation between 
symmetry and degeneracy and have learnt to expect some kind of sym­
metryor invariance associated with a physical system irthe eigenvalue 
spectrum for its observables shows degeneracy. For example, the Hamil­
tonian of an electron in a hydrogen atom is invariant under all rotations 
so that the geometrical symmetry group is 0(3). Our discussion of the 
previous chapter tells us that the irreducible representations DV) have 
dimensions 2/+ I so that these would be the expected degeneracies of 
the energy levels of the electron. But we know that in fact all the levels 
with a given value of the principal quantum number II and all values 
of I between 0 and n-I are degenerate. The actual degeneracyH is 
thus 

n-J 

L (2/+1)=n 2
• 

1=0 
(5.65) 

As ' we shall soon see, these degeneracies arise from the internal 
symmetry of the hydrogen atom, 

The operators of the geometrical symmetry group are those under 

13An axial vector has the same rotational properties as a polar vector but is 
invariant under inversion. A reflection can be thought of as a rotation 
through 7t about a line normal to the plane of reflection followed by inver­
sion. The effect of m." m., a" and 11" on the z component of an axia I vector 
is therefore to multiply it by-I. 

uWe have neglected the spin degeneracy here. 
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which the potential energy bfthe particle remains invariant. However, 
there are other operations which involve simultaneous transformation 
of the coordinates and the momenta and which leave invariant the 
Hamiltonian as a whole. These are usually called dynamical symmetries. 
We shall consider two rather simple cases, the hydrogen atom and the 
isotropic harmonic oscillator, and see that their dynamical symmetry 
groups are O( 4)al)d SU(3), respectively. The dynamical symmetry group 
of a system of course contains its geometrical symmetry group as a 
subgroup. 

5.S.1 The hydrogen atom. An electrdn in a hydrogen-like atom 
with nuclear charge Ze experiences a potential energy given by 

V(r)=-Ze 2/" (5.66) 

where e is the electronic charge and, is the distance of the electron form 
the nucleus. The potential energy, being spherically symmetric, is 
invariant under the geometrical symmetry group 0(3). The fuJI Hamil­
tonian of an electron in a hydrogen-like atom is 

. p2 Z f 2 

..9£(r)=2[J.-" (5.67) 

In classical mechanics this is the familiar Kepler's problem and the 
classical orbit for a particle with the potential energy (5.66) is known 
to be an ellipse with the centre of attraction at one of the foci. It must 
be recognized that the mere spherical symmetry of the potential is not 
sufficient to make the orbit of a particle closed, though it is sufficient to 
make it lie in a plane. It is only when the potential is Coulombian 
that the orbit becomes a closed ellipse; see Fig. (5.5). In case of the 
Coulomb potential, therefore, we have an additional invariant such as 
the vector OA or OP. In quantum mechanics, it is known that the 
vector 

M' 1 Ze2 r =21-' (p}(L-Lxp)--,-, 

()@ 
(b) 

(5.68) 

FIGURE. 5.5 The orbit of a classical particle around a centre of force 0 with 
(a) an arbitrary spherically symmetric potential, and (b) a 
Coulombian potential of the form V(r) a: l/r 
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known as the RUllge-Lenz vector, is a constant of motion. that is, it com­
mutes with the Hamiltonian. Here, L is the orbital angular momentum 
operator which is normal to the plane of the orbit . From (5.68) we can 
easily see that 

M'·L=O. (5.69) 

so that M' is a vector in the plane of the orbit. The orbital angular 
momentum also commutes with the Hamiltonian and is a constant 
of motion. We thus have 

[M' ,3{J=O, [L,3{J =O. (5.70) 
Using the com mutation relations between the com ponents of rand 

p, we can show, after a somewhat lengthy calculation, that 

M'2= 23{ (V+ti2)+Z 2e4• (5.71) 
'1-'-

We now have six operators (three components e2ch of Land M') 
which correspond to the invariants of the problem at hand . We may 
use these operators to generate unitary transformations15 (as in (4. 19» 
under which the Hamiltonian would be invariant because of(5 .70) . In 
accordance with the theory of continuous groups 0 utlined in the previolls 
chapter. we therefore work out the commutation relations between the 
components of Land M' with each other . There will be fifteen com­
mutators which are given below in five equations , each standing for 
three equations obtainable from it by cyclic permutation of x, y and::. 

[Lx. Ly]= iti Lz , [M/, Lx]=O, [M/ , L .. ]= iti M/, 

[M/, Lz]=-itiMy', [M/,My']=- 2iti !J{L. 
I-'-

(5.72) 

The components of L by themselves constitute a closed algebra 
and, as seen in the previous chapter, can be u~ed to generate the Lie 
group 0(3). But, as Eqs. (5.72) show, the six operators Land M' 
do not form a closed algebra because of the appearance of a new 
operator, the Hamilt0nian $(, in the commutator of the components of 
M'. However, let us work with a particular bound state energy level 
(E<O) of the hydrogen atom and restrict ourselves to the invariant sub­
space (of the full space) which corresponds to the eigenvalue E. In this 
subspace, we can replace $( by E, and define a new operator byll 

M=(-/L/2E)IM'. (5.73) 

. l5This was first suggested by Pauli. 
l6The operator M acts only on the invariant subspace corresponding to the 
eigenvalue E. 
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In the first four commutators of (5 .72), the components ofM simply re­
place those of M'. The last commutator, however, takes the form 

[Mx',My]=i1i I z • (5.74) 

The algebra of the six operators Land M is then obviously a closed 
one. These can therefore be used to. generate a six-parameter Lie group 
which will be the dynamical symmetry group of the hydrogen atom. 

To show that this group is 0(4), we define six new operators by 
writing 

JU = 'I. €jjk Ik, for i,j, k=x,y, z; 
k 

(5.7Sa) 

(5.75b) 

Here, (Uk is the fully antisymmetric tensorofrank three. The commu­
tation relations between these operators can be worked out and are 
found to be 

[J.q,Jyz]=i 11 Jzx, [Jxw,1.vz]=O, 

[Jxw, Ja]=i fi Jzw, [Jxw, Jyw]=i 1i JXY' 

[Jxw,lyx]=i 11 J yW' (5.76) 

where, again, each equation stands for three equations obtained from 
it by cyclic permutation of x, y and z. The six operators JFO (p, (1~X, 
)" z, w) are the infinitesimal generators of a group whose operations 
leave the quadratic form x 2+Y'+Z2+W 2 invariant, i.e., the group of 
all real orthogonal transformations in a four-dimensional vector 
space, or 0(4). We have one operator for generating rotations in each 
of the six coordinate planes. 

It is particularly convenient to construct the following linear ' 
combinations of Land M: 

A=t (L+M), B=t (L-M), (5.77) 

so that the commutation relations between the components of A and B 
are 

AxA=i11 A, BxB=i fiB, 

[AI, BJ=O for i,j=x,y,z. (5.78) 

Moreover, since Land M both commute with .5{, it follows that A and 
B also do. The above equations then show that the lie algebras of A 
and B are separately closed, so that each of them can be used to 
generate the SU(2) group. This tells us that 0(4) is ·homomorphic to 
SU(2) ® SU(2). 

The ran~ of 0(4) is seen from (5.72) to be 2; we may choose the 
two commuting generators to be anyone component of A and anyone 
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component of B. There are therefore two Casimir operators which 
commute with all the six generators. These are obviously A2 and B2 or 
any two independent linear combinations of these. Their eigenvalues, 
in analogy with the theory of SU(2), may be written as 

~2=a(a+l) liz, B2=b (b+l) li2, (5.79) 
where a andb take all nonnegative integral or half-odd-integral values. 
Taking the sum and the difference of A2 and B2, we find that 

C=A2+B2=! (V+M2), C'=A2-B2=L.M. (5.80) 

Using (5.69) and (5.73), the second of the above equations shows that 
C' =0, so that our physical system (the hydrogen atom) corresponds 
only to that part of 0(4) for which A2=B2 or a(a+ l)=b(b+ I). This 
gives the two solutions a=b and a= -(b+ I); the second solution must, 
however, be discarded since a and b are restricted to nonnegative values. 
This tells us that only those representations of 0(4) represent the states 
of the hydrogen atom for which a=b, i.e., representations of the f0rm 
(a, a). 

The eigenvalues of the Casimir operator C then become 

C=2a(a+ I) 1i2• (5.81) 

Using Eqs. (5.71), (5.73) and (5.80), we then have that 

C=! [ v- iE r:(V+1i2)+Z2e4}] 

[ 
flZ2e4] =-! li2+2£ . 

Using (5.81) in the above equation, this finally gives 
fLZ2f-4 

E= - Lli~ (2a+ 1)2 . 

(5.82) 

(5.83) 

If we make the identification n=2a+ 1, so that n takes all positive in­
tegral values, (5.83) agrees with the more familiar quantum mechanical 
result for the energy levels of an electron in a hydrogen atom. Since the 
dimension of the irreducible representation (a, a) of 0(4) is (2a+l)2 
=n2, this also explains the n2-fold degeneracy of the levels . 

. We have remarked earlier in this chapter in Section 5.4. 1 that the 
degeneracies of the eigenvalue spectrum of a physical system are related 
to the dimensions of the irreducible representations of its symmetry 
group. We ha:ve also men tioned that if the eigenfunctions belonging to 
different irreducible representations of a gr<?up are always degenerate, 
we may conclude that we have overlooked some symmetry of the system 
and the symmetry group must be larger than the one that has been 
found. The present case provides an excellent example ofthis situation. 
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On the basis of the group 0(3), the expected degeneracies were only 
2/+ 1. But we find in actual practice that all the levels of an electron 
with different values of I, but with same n, are always degenerate, 
i.e., for each value of n, the levels with all allowed values of 1 are 
degenerate. This fact itself would suggest that the symmetry group 
of the hydrogen atom is larger than 0(3). We have now found that the 
Hamiltonian of the hydrogen atom is invariant under 0(4) and we 
then get the correct degeneracies for the energy levels. 

5.8 .2 The isotropic harmonic oscillator. It is known that the 
energy levels of a three-dimensional isotropic harmonic oscillator are 
highly degenerate and the degeneracy of each level is larger than that 
required by the geometric symmetry group 0(3). Once again, we shall 
see that this is due .to the fact that the dynahlical symmetry group of a 
three-dimensional isotr9pic harmonic oscillator is SU(3). 

The Hamiltonian of an isotropic harmonic oscillator is 

(5.84) 

where Ctl2 = k/(.I. and pj and rj are the cartesian components of p and r 
respectively. We shall work with the raising and lowering operators for 
the eigenvalues of!J( defined by 

aj (2f'~W)i (pj-iCtl(.l.rj), 

(5.85) 

a/ (21}tiW)i (pj+iwf'rj). 

Using the commutation relations between pj and rj, the commutation 
relations between OJ and ajt can be found to be 

[OJ, ajt] = ai), (5.86) 

[OJ, aj] = [Ojt ,ajt ]=0. 

Inverting the transformation (5.85) and substituting in (5.84), the 
Hamiltonian becomes 

.9{=1iCtl I(aji" Qi+!)= l1Ctl L {ajt , aj}, (5.87) 
j 2 j 

where {A,B}=AB+BA denotestheanticommutator of A and B. 
The commutators of the raising and the lowering operators with 

the Hamiltonian turn out to be 
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(5.88) 
The occupation number operator al t aj has eigenvalues I1j, where nj can 
take any nonnegative integral value. The eigenvalues of the Hamil­
tonian (5.87) are therefore 

(5.89) 

where 
n=n1+n2+n3 ; n1 ,n2,n3 =0, J, 2,.... (5.90) 

The degeneracy of the level En is then easily seen to be17 (n+ 1) (n+2)/2. 
The angular momentum operator can be worked out by using the in­
verse transformation of (5 .85) and is found to be 

iti 3 
L}=(r)( p)j="2 L Ejk, (aka,t -akt a,). (5.91) 

k,l=1 

We can further show that operators of the form ~jt aj commute with 
the Hamiltonian. The operator ajt aj has the effect of transferring a 
quantum from the j-direction to the i-direction and hence leaves the to­
tal number of quanta unchanged. There are nine such operators and 
it can be shown that they generate the algebra of U(3). We see from 
(5.87) that the operator for the total quantum number is given by 

3 !J{ 3 
L ajt aj= lieu - 2:' (5.92) 

i=1 
and hence it commutes with all the operators ajt aj. Eight other inde­
pendent linear combinations of the operators ajt aj can be constructed 
which generate the algebra of SU(3). These are 

A3 =a1 tal -a2 t a2• A4 =a1 t a3 +a3 tal' 
As=-i(a1

t a3-aat a1), A6=a2t a3+a3
t a2, 

1 
A7=-i(a2t a3-a3t a2), As=--=(a1t a1 +a2t a2- 2aat a3) (5.93) 

y'3 
It is left as an exercise to show that they satisfy the commutation 
relations (4.106). The dynamical symmetry group of a three-dimen­
sional isotropic harmonic oscillatorlS is therefore SU(3). 

17This is the total number of distinct ways in which a positive integer can be 
split into the sum of three nonnegative integers. 

ISThe dynamical symmetry group of an n-dimensional isotropic harmonic 
oscillator is SU(n). 
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5:9 Time Reversal and Space lnversion Symmetries 

In this chapter, we have so far considered some of the important 
continuous groups such as the groups of space and time translations 
and of generalized rotations in an n-dimensional (real or complex) 
vector space. In the present section, we shall consider two more 
symmetries which many physical systems possess. They are the time­
reversal symmetry and the space inversion symmetry.19 These sym­
metries have some very interesting consequences. 

5.9.1 Time-reversal symmetry_ Many physical systems COD­

tain an invariance under the reversal of the direction of propagation 
of time. This is true of classical systems as well as quantum mechani­
cal systems. Thus,· in classical mechanics, a system which has only 
conservative (velocity-independent) forces is invariant under the 
operation of time-reversal. Since the force is mass times accelera­
tion and the acceleration is the second derivative of the position vector 
with respect to time, the force is unchanged if t is replaced by -1. 

However, ifa particle is movingina medium with friction or viscosity, 
the medium exerts on the particle velocity-dependent forces; if the~ 
involve an odd power of velocity, the motion of the particle is not 
invariant under time-reversal. 

In a system with time-reversal symmetry, the path of a particle 
remains the same after time-reversal but the direction of propagation 
of the particle is reversed. The velocity itself, being the first derivative 
of the position .vector with respect to time, is reversed. For example, 

Acceleration 

(a) 

y(t) 

Accel\lration 

v,,,,(t) 

(b) 

FIGURE 5.6 The path of a planet around the sun S . The velocity of 
the planet after time-reversal in (b) is given by vrt,,(t )= -v(t) , 
where V( I ) is its veloci ty before time-reversal in (a). The 
accelera tion is i nvariant under time-reversal 

19Some authors also call this space reflect ion symmetry. 
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in the classical Kepler problem of the motion of a planet around the 
sun, the orbit of the planet would remain the same jf the direction of 
propagation of time were reversed, but the direction of motion of the 
planet will be reversed (see Fig. 5.6). This is also true of a charged 
particle in an electric field since the force on the charged particle due 
to the field is qE (where q is the charge and E the electric field) which is 
independent of the velocity of the particle (see Fig. 5.7). In a magnetic 
field, however, the motion of a charged particle is not time-reversal 
invariant. This is because the magnetic field exerts a force proportional 
to v)( H (where v is the velocity and H is the magnetic field) which 
involves the first power of velocity (see Fig. 5.8). 

'1 
_---=E=--_~ '1 E 

p 

L-----------____ x 
(a) (b) 

FIGURE 5.7 (I} The path OAP of a charged particle in an electric field E which 
is along the x axis and the particle has a constant velocity compo­
nent along the y axis. (b) The particle traverses back its path along 
PAO when the time reversal is applied at the point P. 

E 

\'(t) 

FIGURE 5.8 A charged particle executes a circular path ABC in a magnetic 

field H (normal to the plane, denoted by 0). When time­
reversal is applied at C, the instantaneous velocity is reversed, 
reversing the direction of tho force ncH. The particle does 
not retrace its path and the system is not invariant under time­
reversal. 
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5.9.2 Time-reversal operator for spiDJess particles. Consider 
a particle in a static potential V(r). Its classical Hamiltonian is 

.9{ (p, r)=:~ + V(r)=.9{ (-p, r). (5.94) 

Since it depends quadratically on the momentum, and hence on velocity, 
it is invariant under time-reversal. It is then clear that if r=r( t) is a solu­
t(on of the equation of motion, r ... (t)=r( -t) is also a solution of the 
equation. The pOSition of the particle at time 1 in one solution is the 
. same as its position at time -t in the time-reversed solution. The 
velocity and the momentum of the particle in one solution are opposite 
to those in the time-reversed sol~tion. 

We are thus led to define a transformation of the dynamical 
variables under which rand p go respectively to rand -po This trans­
formation, called the time-reversal, will be denoted by T and it has 
the following properties: 

Tr Tt =r, Tp Tt =-p. (5.95) 

Consider now a quantum mechanical system 
time-dependent Schroedinger equation 

. a {fi2V } lfiat q,(r,t)= - 2m + V(r) q,(r, I). 

described by the 

(5.96) 

Replacing 1 by -I and taking the complex conjugate of both sides of . 
the above equation, we have 

a {fiIVI} 
ifial 1Jt*(r, -1)= - 2m + V(r) q,*(r, -I). (5.97) 

This shows that q,*(r, - t) is also a solution of the Schroedinger equation 
if q,(r, t) is. The state q,*(r, t) thus develops in the +1 direction exactly 
as. the state q,(r, t) develops in the -t direction. 

For spinless particles, we thus see that the complex conjugation 
operator, which we shall denote by K, has the effect of reversing 
the direction of propagation of time. This can also be seen from the 
fact that in the usual representation of wave mechanics, the matrices 
for rand p are respectively real and purely imaginary, so that the 
complex conjugation operator K has the following effect on rand p: 

K r Kt =r, K p Kt =-.p. (5.98) 
For spinless particles, therefore, the time-reversal operator is just the 
complex conjugatioQ operator apart from a phase factor. If we· 
choose the phase factor to be unity, we have 

T=K. (5.99) 
Theoperatfon of T on a wave function gives its complex conjugate; 
thus, 

To/(r)=~*(r). (5.100) 
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Tho invariance of the Hamiltonian under tbe transformation p_-p 
is then, equivalent to saying that it commutes with T, i.e., 

[T,.9lJ=O. (5.10]) 
Remembering that p=-i!i'V, we see that(5.101)will hold if ,g(docs 
not contain any odd powers of p, i.e., if ,g( is real, as is the case for 
stationary physical systems. 

The time-reversal operator is clearly not a linear operator. It is, 
in fact, an antiunitary operator (which is the combination of an anti­
linear and a unitary operator). Thus, an operator T acting on a vector 
space L is said to be anti unitary if for every ~, ;EL, 

(T;, T~)=(~, ;)=(;, ~)*, 
T(a;+l/4I)=a* TtJ.+b* T~, 

(5. 102 a) 
,(5.I02b) 

where a and b are scalars. The complex conjugation operator X Is 
also an antiunitary operator. 

5.9.3 Time-reversal opentor for particles With spiD. H we 
desire to extend the concept of time-reversal to the most general case 
of particles having angular momenta, we would require' the trans­
formation properties of angular momentum under tho time-reversal 
operator. From (5.95.) we see that the orbital angular momentum 
transforms according to 

T(rxp) Tt=-(ucp), (5.103) 

i.c., the orbital angular momentum anticommutes with tho timo-rever­
s8I operator. Since the spin is an angular momentum, weexpect that 
it will also anticommute with T; thus if s and J are the spin angular 
momentum and the total angular momentum operators respectively, 
we have 

TsTt =-s, TJTt =-J. (5.104) 
In the standard (r, sz) representation in 'which the z component of the 
angular momentum operator is taken to be diagObal, thc'matricos re­
presenting s" and Sz are real whereas the matrix representing Sy is purely 
imaginary. to Under the action of the complex conjugationopcrator, we 
therefore have 

Ks"X t -s", KsyX t =~Sy, KszXt =Sz. 

For a particle with spin, we therefore write' 

T UK, 

IISchBr (1968), p.203. 

(5.105) 

(5.106) 
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so tbat, since XI equals tbe identity. we have 

TX=U, (5.107) 
where U is to be determined. Since TandX are both antiunitary opera· 

. tors, their product U must be <1 unitary operator. Refcrringto Eqs. 
(5.95), (5.98) ,(5.104) and (5.105), we find thatthc effect of the unitary 
transformation U is given by 

V r Vt =r, Up ut =P. 

Us)( ut =-s)(, USy U t =Sy, VSz ut =-Sz. (5.108) 
Since U commutes with both rand P. V bas an effect only on the 
spin variables ofthe particle. The last three equations of (S.lO~) in 
fact sbow that U corresponds to a rotation through n about the y 
axis in the spin space of the particle. The operator for such a rotation 
can be written in accordance with (4.46) as 

U=exp (-insy/fJ.), (5 .109) 
giving 

T-exp (-insy/ti) X. (5.110) 

In the particular case of a spin-i particle, sy=itiay and it follows 
from (4.29) that ' 

exp (-i7tCJy/2) = -iay, (5.111) 
. so that 

T=-iay K. (5.112) 
The above result can be easily extended to a system of n particles 

having arbitrary spin angular momenta. If 5, denotes the sp' gu­
lar momentum operator for the i-th particle, then we may wrlto T as 
the product of the V's for each particle and K. Thus, 

T=exp (-inslY/I.) . .. exp (-inslly/ti) K, (5.113) 

where S,y is the y component of s,. Since each S'y is purely imaginary, 
each exponent in (5.113) is real and hence cc,>mmutes with K. More­
over, the s,;s also commute with each other, for the operator Sly 
acts on the spin' variables of tbe i-th particle only. The order of the 
factors in (5.113) is thus immaterial. 

5.9.4 Kramers' theorem. Taking the squaro of the operator in 
(5.113), we get 

T2=exp (-2insJ)./ti) . .. exp (-2inslly/ti) . (5.114) 

Each factor on the right-hand side of the above equation denotes a 
rotation through 2n. The i-th . factor will be equal to + I or -1 
according as the spin of the i-th particle is an integral or a half-odd-
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integral multiple of ii. P is thus equal to + 1 or -1 depending on 
whether thenumber of half-odd-integral spin particles in the system is 
even or odd. 

As discussed earlier in this subsection, if Iji is an eigenfunction of 
the system (which has time-reversal symmetry), then TIji is also an 
eigenfunction. Assuming that Iji is a non degenerate eigenfunction, we 
see that Tq, must be a multiple of Iji, say, 

TIji=cq,. (5.115) 
Operating once again by T. we have 

PIji=T[clji]=c*TIji=c*clji. (5.116) 
Thus, if T2=+ 1, then Ie 12=1 and c is just a phase factor. But if 
P=-I, there is no number c for which I cI 2=-I, so that the 
eigenfunction TIji must be " linearly independent of Iji. Since both '" 
and TIji have the same eigenvalue, we have at least twofold degeneracy. 
Since Iji and TIji are independent eigenvectors, and since J'2IlI=-1ji is 
a multiple of the original eigenvector q" the net degeneracy of the 
level must be even. We therefore have the Kramers' theorem which 
states that every energy level of a system with an odd number of 
electrons in the presence of any electric field but no magnetic field is 
evenfold degenerate. This is known as Kramecs' degeneracy. 

We can further show that when T2= -1, Iji and TIji are ortho­
gonal. For this, we replace tP by TIji in (5.102a) to get 

or 
since T2 =-1. 
orthogonal. 

(T2q" TIji)=(Iji, TIji), 
-(Iji, TIji)=(Iji, TIji), 

This shows that (Iji, TIji)=O, so that Iji and Tq, are 

It must be emphasized that Kramers' degeneracy is removed 
by the application of an external magnetic field. This introduces terms 
like v)( H, L· H or s· H in the Hamiltonian. and these are not invariant 
under time-reversal. An external magnetic field thus destroys the time­
reversal symmetry. 

One is likely to ask the question: What is the effect of the internal 
magnetic fields? A system containing moving charged particles 
always has internal magnetic fields. Do they destroy the time-reversal 
symmetry of the system? The answer is no. The reason is that when 
the time-reversal is applied on" such a system, the velocities of all the 
charged particles are reversed, reversing the currents and therefore the 
directions of the internal magnetic fields. This leaves the terms such as 
v)( H, L· H or s· H (where H is now the internal magnetic field) invariant 
under time-reversal. Thus the internal magnetic fields need not bother 
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us while considering the time-reversal symmetry.21 It is for this reason 
that interaction terms such as spin-orbit and spin-spin interactions do 
not destroy the time-reversal symmetry of the Hamiltonian. 

5.9.5 Space inversion symmetry. The operator Qf space inver­
sion has the effect of reversing the position coordinates of all the parti­
cles ofthe system under consideration and has no effect on the angular 
momentum variables of the particles. We have already introduced this 
operator earlier in Section S. S .2 where we denoted it by J. We have 
seen there that if the Hamiltonian ofasystemhas inversion symmetry, 
the eigenfunctions can be chosen to be purely even or purely odd; 
in other words, the eigenfunctions have a definite parity. 

Let ljI(r) be an arbitrary function and 1jI'(r) the function obtained 
after applying the space inversion. Then 

1jI'(Jr)=wljl(r), (S.117) 

where w is a number to be discussed soon. The fact thattbenumberw 
lppears in (S.117) but not in (S .22) oreS. 30) is a consequence of the dis­
:rete nature of the transformation of space inversion. We also have 

UJ ljI(r) = 1jI'(r) =wIjI( -r), (S.118) 

where we have used (5.117) in the last step and UJ is the operator 
defined in Section S. S .2. One more application of UJ on (5.118) gives 

U lljl(r)=wUJIjI( -r)=w2 1j1(r). (S.119) 

Two inversions restore the original coordinate system, so that the 
norm of the function ljI(r) cannot cnange on the application of Ul;~t 
may at most be multiplied by a phase factor of unit magnitude. Thus wa, 
and-hencew, must be a complex number of unit magnitude. We shall 
IlO~ show that wl\= + I or -1 according as the spin of the system is 
integral or half· odd-integral. -

Suppose that G is the symmetry group of the system (excluding . 
the space inversion symmetry) and that ljI(r) is one ofthe basis functions 
for generating a certain representation of G. If the net spin of the 
;ystem is integral, the representations of G are single-valued and the 
dentity element E is represented only by the unit matrix. Therefore, 
7J11jI(r)=EIjI(r)=IjI(r) and it follows from (S.119) that w2= 1 or w= ± 1. 
However, if the net spin of the system is half-odd-integral, the group 
J also admits double-valued representations. The identity element in 
;his case corresponds to two matrices, the unit matrix and the negative 

21Whether a magnetic field is to be treated as internal or external, of course, 
simply depends on how we define our physical system. 
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unit matrix. We therefore have U/I)i(r)=EI)i(r)=±I)i(r), so that w!= 
±1 and w=I,-I, i, or -i. 

We expect each kind of particle to have a definite value'of IV. We 
note that all the results of physical significance such as selection rules, 
etc., are unaffected by the choice ofw because all the physicallyobserv­
able quantities contain products like I)i/*l)ij (where l)ij and l)ij are diffe­
rent states of the particle), which have a factor w*w= 1. 

If a function remains invariant under space inversion (w=+l) , 
it is said to be of even parity and a particle represented by such a function 
is called a scalar particle. On the contrary, if a function changes sign 
under space inversion (w=-l), it is said to be of odd parity and the 
particle represented by it is said to be a pseudoscalar particle. As per the 
current convention, the nucleons are assigned even parity while the 
pions are assigned odd parity. 

PROBLEMS ON CHAPTER S 

(5.1) What are the generators of the group of space displacements and of 
the group of time displacements? 

(5.2) Find the selection rules for the magnetic dipole transitions if the 
symmetry group is C,,,. 

(5.3) Find the selection rules for the electric and the magnetic dipole transi­
tions if tho symmetry group is Ca... 

(5.4) (a) Prove the commutation relations (5 .88). 
(b) Show that Q;t Qj commutes with the Hamiltonian (5.87). 

(5.5) Show that the operators in (5.93) satisfy the commutation rules (4.106) 
of SU(3) with the same constants as given in (4.107) 

(5.6) Show that the dynamical symmetry group of a two-d~ 
isotropic harmonic oscillator is SU(2). 

(S.7) Let G=(R, S, T, . . . ) be the group of transformations which lcaw a 
physical system invariant. Let PR, Ps , etc., be the corresponding operators 
which act on functions and leave the Hamiltonian of the system invariant. 
Show that the operators PR. ps. etc., also constitute a group which is isomo .... 
phic to the group G. [Hint: Using(5.21), show that if PR corresponds to Jt 
and Ps to S, then PR Ps corresponds to RS.] 
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CHAPTER 6 

Group Theory in Quantum 
Mechanics. II 

The symmetry properties of atoms play a very important role in 
the study of their structures. Since in atoms, we have to deal with a 
number of identical particles, the electrons, one of the 0 bvious symmetry 
elements is the permutation symmetry. The same is true of nuclei 
where we have a system containing a number of identical nucleons. It 
is well known that this has led to the postulate of Heisenberg and Dirac 
that the wave functions of a system of identical fermions must be 
antisymmetric under the interchange of two identical particles, enabling 
us to express the wave functions in the form of Slater determinants. 
In addition to the permutation symmetry, atoms also possess rota­
tional invariances; they are invariaut under all operations of the 
group SO(3) in the single-particle model. · Although many atomic 
problems can be solved without its aid, group theory becomes almost 
inevitable when the system contains a large number of atoms, such 
as in molecules and crystals. Even in atomic physics, group theore­
tical methods provide a touch of elegance and generality and the 
various results can be better understood in the light of the group 
theoretical interpretation. 

In this chapter, we shall study mainly three topics-symmetries 
of atomic systems, the problem of addition of two angular momenta 
and irreducible tensor operators. 
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6.1 Atomic Symmetries 

We shall consider in this section the important atomic symmetry 
groups, which as we have mentioned, are the three-dimensional rotation­
inversion group and the symmetric group. We shall work in the single­
particle model assuming that each elec.tron in the atom moves in the 
average potential of the nucleus and the rest of the electrons. The 
potential is then spherically symmetric so that the Hamiltonian of an 
electron in an atom is invariant under the rotation-inversion group. 

6.1.1 The rotation-inversion group. We have already discussed 
in Chapter 4 the three-dimensional rotation group SO(3) and the 
rotation-inversion group 0(3). In this subsection, we shall consider 
the irreducible representations of 0(3). We have seen that 

0(3)=SO(3) ® (E.J), (6.1) 

where J is the inversion operator. Let us denote the two irreducible 
representations of the group (E, J) by 1'(+) and 1'(-), where 

1'(+)(X)=+I, X=E or J; 

1'(-)(E) = + 1, 1'(-)(J)=-1. (6.2) 

1'(+) is clearly the identity representation of the group (E, J). The 
irreducible representations of 0(3) are then the direct products of the 
irreducible representations of SO(3) with those of (E, J). If we denote 
the irreducible representations of 0(3) by D(/,a), then 

D(I,a)=D(/) ® 1'(0), (6.3) 

where a stands for + or -. Since 1'(a) are one-dimensional represen­
tations, the dimension of D(J· a) is the same as that of D(I), i.e., 21+ 1. 
The group 0(3) thus has two distinct irreducible representations of 
every odd order. 

To obtain the actual matrices of the irreducible representation 
D(l,a), we note that the elements of 0(3) can be divided into two 
categories, {X} and {JX}, where X runs over the group SO(3). The 
matrices of D(J· a) are therefore given by 

so that 

DU, a)(EX)=D(I)(X) ® 1'(a)(E)=D(l)(X), 

D(J.a)(JX)=D(l)(X) ® 1'(o)(J), 

D(J,+)( JX)=D(J)( X), D(J,-)( JX)=-D(J)( X), 

(6.4a) 

(6.4b) 

(6.4c) 

for all X E SO(3). The classes of 0(3) are quite simply related to 
those of SO(3). In fact, each class {Ru (~)} of SO(3) gives two classes 
of 0(3)-{ERu{ot)} and {JRuCot)}. The character of a class in the 
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irreducible representation DU, a) can be found by using (6.4). This 
gives 

XU, a) (E(X)~X(I)«(X), 

XU, +) (Joc) = X(l)(Ot), X(I, -) (Joc)= -XU) (at), (6.5) 

where X(I) «(X) is given by (4.50) and we have denoted the classes of 
0 (3) by (E (X) and (J(X) for brevity; the class (E (X) contains all rotations 
through (X while (Joc) contains the elements denoting all rotations 
through a; followed by inversion. 

The eigenfunctions of an electron in an atom may thus belong to 
any of the irreducible representations DU, a). If an eigenfunction belongs 
to D(I, +), it remains invariant under the inversion and is said to be of 
even parity; the corresponding spectral term is said to be positive or 
even. If an eigenfunction belongs to D(I, -) it changes sign under the 
action of J and is said to be of odd parity and the corresponding spectral 
term is said to be negative or odd. The parity of a wave function of a 
system of particles depends only on the space coordinates of the particles 
and not on their spins. The spin angular momentum (or any angular 
momentum) is invariant under the inversion of the position coordinates. 

It is, however, found that not all the irreducible representations 
D(I, 0) occur in a one-electron atom. This is due to the fact thatthe one­
electron wave functions are homogeneous polynomials of degree I in 
x,y andz, where lis the orbital quantum number. Such a polynomial 
clearly gets multiplied by (-1)1 on coordinate inversion which takes x 
to'.-x,y to ~V andzto -z. The only irreducible representations that 
occur are thus D(O, +>, D(1'-),D(2, +>, D(3,-I,etc.,correspondingtothe 
Spectral terms s,p, d,J, etc., which alternate in parity. This is nottrue 
in a many-electron atom as we shall see below. Table (6.1) shows 
the various electronic levels along with the irreducible representations 
to which the eigenfunctions of the one-electron atom belong. 

In a many-el~ctron atom, the parity of the combined wave function 
of all the electrons is (_I)k where k = 1;// and I; is the orbital quan-

I 

tum number of the I-th electron. Total orbital and total spin quantum 
numbers denoted by Land S are obtained respectively from the 
individual II and Sl of the electrons by vector addition method, with 
ML = 'E.m/j and M. = 'E.msi. Here m/i and m'l are respectively 
the quantized projections of II and Sj. The spectral term of the atom is 
characterized by the value of L; L=O, 1,2,3, ... ,correspond respec­
tively to the lables S, P, D, F, .... 

Unlike the case of a one-electron atom, the S, P, D, etc., func­
tions of a many~ectron atom may have either parity. For example, 
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whereas the p functions of a one-electron atom must have an odd parity~ 
the Pfunctions of a many-electron atom can have eithp.r even or odd 
parity depending on whether I It is even or odd. Thus, consider the 

I 

case of two electrons. If both the electrons are in the p shell, their 
wave functions transform according to D( J. -). The product wave func­
tion therefolc transforms according to the direct product representation' 

D(l,-) ® D(l' -}=D(o. +) EB D(1· +) EB D(2, +). (6.6) 

TABLE 6.1 THE ELECTRONIC LEVELS IN A ONE-ELECTRON ATOM 

Nomenclature 

Is 0 

2s 0 

2p 

3s 0 

3p 1 

3d 2 

4s 0 

4p 1 

"" 2 

4/ 3 

Parity 

even 

even 

odd 

even 

odd 

even 

cwn 

odd 

even 

odd 

Representation 

D(O.+1 

D(O.+) 

D(l.-) 

D(o.+) 

D<1.-) 

D(z.+l 

D<O.+1 

D(1.-1 

D(!. +l 

D<'.-) 

Degeneracyl 

3 

1 

3 

S 

1 

3 

S 

7 

This shows that the atom can have L=O, 1 or 2, and in any of these 
states, its parity will be even. On the other hand, if one electron is in 
the p shell and one in the d shell, the product wave function would 
transform according to 

I DU.-) ® D(2'+>=D(1.-) Ea D(I.-) Ea D(S,-), (6.7) 

i.e., the atom can have L=l, 2 or 3, and in any of these states, its 
parity is odd. From this consideration, we have a very important rule: 
Whe;eas the parity of a one-electron warefunction is linked to its orbital 
quantum num'ber /, the parity of a many-electron ~are function is indepen-

IWe have dis~ .. rded the electron spin here. If this is taken into account, the 
appropriate symmetry aroup Is SU (2) rather than 0(3) and the degeneracies 
must be furtber multiplied by 2. 
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qent of the total orbital quantum number L but depends on the I values of 
lhe constituent electrons. We shall find this of great utility in obtaining 
the selection rules later in tb~ chapter. 

6.1 .2 Angular symmetry of wave functions and spherical har­
monics. We have seen in Chapter 4 that the 2/+ 1 spherical harmonics 
y/m (6, cfo) for -I-s;;, m -s;;,1 generate the irreducible representation D(J) 
of SO(3). The e.igenfunctions of a one-electron atom are of the form 
Rn/(r) y/m(6, cfo) where Rn/(r) is spherically symmetric. The angular 
dependence of the eigenfunctions is therefore completely contained in 
the spherical harmonics y1m. For the sake of completeness, we shall 
list in this subsection the first few spherical harmonics and the corres­
ponding atomic eigenfunctions. Table (6.2) gives the symmetry of the 
eigenfunctions for 1=0, 1, 2 and 3 and their angular parts which 
are obtained by using the transformation 

o 

1 

2 

3 

x=r sin 6 cos </>, y=r sin 6 sin </>, z=r cos 6, (6.8) 

TABLE 6.2 THE ANGULAR SYMMETRY OF THE ATOMIC 

EIGENFUNCTIONS FOR 1=0, 1, 2 AND 3 

8:1 

Symmetry of the 
eigenfunction 

P:{; 
. z 

r xy 

d:l' :~_Y2 
2z2_x2_y2 

r 2z3_3z (x2+y2) 

X (4z2-x2_y2) I Y (4z2_x.2_y2) 

f:~ Z(X2_y2) 

I xyz I x3-3xy2 

L 3x2y-y 3 

Angular part of tho 
eigenfunction 

constant 

sin 6 cos 4; 
sin 6 sin 4; 

cos 6 

sin2 6 sin 24; 

sin 6 cos 6 sin 4; 

sin 6 cos 6 cos f;. 
sin2 6 cos2~ 
3 cos2 6-1 

5 cos3 6-3 fOS 6 

sin 6 (5 cos2 6-1) cos I/; 
sin 6 (5 cos26-1) sin I/; 

sin 2 6 cos 6 cos 24; 

sin2 6 cos 6 sin 24; 
sin3 6 cos 31/; 
sin3 6 sin 34; 
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which is valid on the surface of a sphere of radius r. Table (6.3) 
gives the linear combinations2 of these functions wbich are proportional 
to the spherical harmonics of degree I and order m. The y/m's form a 
complete orthonormal.set of square-integrable functions on the unit 
sphere. 

TABLE 6.3 THE STANDARD SYMMETRIZED CoMBINATIONS WHICH 

GENERATE THE REPRESENTATIONS D(I) OF SO(3) 

D(l) I 
D(O) 

1)(2) 

D(3) 

1 

I x±iy 

!z 
l 

r 

The linear 
combination 

I 2z2_x2_y2 
I 
I 
~ zx± iyz 

I 
I (X2_ y2) ± i{2xy) 
L 

r I 2z3_3z (x2+y2) 

I 
I (x ± iyh4z2-x2_y2) 

I 

i I Z (X2 - )'2) ± 2ixyz 

l (x3-3xy2) ± it3x 2y-y 3) 

is proportional to the 
spherical harmonic 

y1·l==F J8~ sin 6 exp(±i~) 

Y1o= J 4~ cos 6 

Y20= J 1~7r (3 cos2 6-1) 

YZ*l==F J!: sin 6 cos 6 exp(±i~) 

Yz"'2= J!~7r sin2 6 exp(±2i~) 

YaO= J d; (S cos3 6-3 cos 6) 

y.1 :::r::J2T. 3 =, 647r Stn 6 (S cos2 6-1) 

Xexp(±i~) 

Y *2 /105. 
3 =...; 327r SlO2 6 cos 6 exp(±2i+) 

13"5 
y.",3==F J 64" sin3 6 exp(±3i.) 

6.1.3 The symmetric group. We have introduced the symmetric 
group in Section 1.7. We shall consider here a few additional pro­
perties of these groups. 

2For theshapes'ofthese functions, see White (1934), p. 63. 
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Firstly, we shall discuss the class structure of the symmetric group 
S". There is a particularly simple way for obtaining the number of 
classes, of S,,; the rule is that the number of classes of S" is equal to 
the number of ways in which the integer 1'1 can be partitioned into a 
sum of positive integers. Each of these ways is related uniquely to a 
class of S". . 

Thus, for 1'1=3, we can write 3 as 3, 2+1 and 1+1+1, sothatthe 
number of classes of S3 is 3. The class corresponding to (3) contains 
elements in which all the three objects undergo cyclic permutatioDs; 
these are the elements A and B defined in (1 .36). The partition 2+ 1 
gives us a class containing the elements which denote the cyclic per­
mutation of two objects (transposition) leaving the third object un­
changed; such elements of.83 are C, D and F. Finally, the partition 
·1 + 1 + 1 gives us the element in which each object is unchanged~the 
identity eleLlent. The classes of S3 are therefo re (E), (A,B) and 
(C,D,F). 

For, 1'1=4, we have five ways of partitioning: 4, 3+1, 2+2~ 
2+ 1 + I, 1 + 1 + 1 + 1. The last partition gives the 'identity element. 
The class corresponding to the parti~ion 2 + 1 + 1 ~ontains elements 
which involve one transposition leaving the remaining two objeCts 
unchanged; there are 6 such elements. The partition 2+2 means two 
interchanges in pairs; this class contains 3 elements. The elements in 
the class corresponding to the partition 3 + 1 consist of cyclic permuta­
tions on three objects leaving the fourth unchanged; these are 8 in 
number. Lastly, the class corresponding to the partition 4 consists of 
the remaining 6 elements. 

Example. We shall consider the group S4 and obtain its classes. We 
shall employ a simpler notation than that used in Section 1.7, 
although the definition of an operation will remain the same. Thus, 
an element of S4, say (2 4 3 1), will mean that the second object is 
to be brought to the first position, the fourth to the second position, 
the third remains where it is, while the first object is to be taken to 
the fourth position . For example, the operation of the permutation 
(243 I) on (2 3 1 4), according to the above definition, will be 
, (24 3 1)(2 3 I 4) = (34 1 2). 

We can now directly write the classes of S. by the rule given above. 
The partition 1 + -I + 1 + 1 gives the permutation in which each 
object is in its own position, that ~s, the identity element E = (1 2 3 4). 
The next partition 2 + 1 + 1 gives a class of six elements AI, 1 <; i <: 6, 
each of which consists of a transposition between one pair of objects, i 

leaving the other two unchanged. These six transpositions expressed ' 
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as prod.ucts of the generators (l 2), (l 3), (1 4) are 

AI = (1 2) = (2 1 34), 
A2 = (l 3) = (3 2 1 4), 
A3 = (1 4) = (42 3 1), 
A. = (2 3) = (1 3 2 4) = (I 2) (I 3) (I 2), 
As = (2 4) == (1 4 3 2) = (I 2) (I 4) (I 2), 
A6 = (3 4) = (I 24 3) = (I 3) (l 4) (I 3). 
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The next partition 2 + 2 gives the class (Bh B2 BJ ) each element of 
which consists of two transpositions in pairs. The elements are expli­
citly given by 

BI = (1 2) (3 4) = (2 1 4 3) = (1 2) (I 3) (I 4) (1 3), 
B2 = (1 3) (2 4) = (3 4 1 2) = (l 3) (1 2) (l 4) (I 2), 
BJ = (1 4) (2 3) = (4 3 2 1) = (l 4) (I 2) (I 3) (I 2). 

The partition 3 + 1 gives eight elements, in each of which one object 
is kept fixed and the other three are cyclically permuted: 

CI = (1 3 4 2), C2 = (I 4 2 3), C3 = (3 2 4 1), C. = (4 2 1 3), 
Cs = (2 4 3 1), C6 = (4 1 3 2), C7 = (2 3 1 4), Cs = (3 1 2 4). 

Finally the partition 4 gives us the permutations having the property 
that no object remains in its own place, nor do any two objects 
undergo a simple transposition. This gives the six elements 

Dl = (2 3 4 1), D2 = (24 1 3), D3 = (3 1 4 2), 
D. = (342 1), Ds = (4 1 23), D6 = (43 1 2). 

It is left as an exercise to express the elements of classes (C,) and (D/) 
as products of generators. We see that the classes (E), (B,) and (C/) 
consist of even permutations while (A,) and (D/) consist of odd 
permutations. 

We thus see that the groups S3 and S" have 3 and ,5 classes res­
pectively. These will also be the number of their distinct irreduc!ble 
representations. Their dimensions can then be found by using the con­
dition (3.79). This gives the dimensions of the irreducible represen­
tations of S3 to be 1, 1 and 2. For S" we find the dimensions to be 1, 
1,2,3 and 3. 

The classes of Sn for any value of n can in general be found by 
the same method. It turns out that for every value of n, Sn has two, 
and only two, distinct irreducible representations of dimension one. One 
of them is obviously the identity representation in which each element of 
Sn corresponds to unity. In the other one-dimensional representation, 
the even permutations of Sn correspond to + 1 while the odd permuta­
tions to -1. We shall denote this irreducible representation of Sn by r odd. 
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This is a very important result for us, because we can immediately 
recognize that it is connected with the construction of symmetric and 
antisymmetric wave functions of a system of n identical particles. 
Thus, let 1jI(1, 2, . . ~ , n) denote a particular state of the system cmd 
Jet us construct the wave function 

'Y.ven = L AIjI(I, 2, .. . , n). (6.9) 
AES" 

It is then clear that the operation of any element of S" on 'Yeven leaves 
it unchanged, i.e., 

A'I"ev'II='I"even V AES". (6.10) 

The wave function 'Yeven therefore generates the identity represen­
tation of S". On the other hand. if we construct the wave function 

'YOdd= L (-I)" AIjI(I, 2, ... , n). (6.11) 
AES" 

where a is the number of transpositions in the element A, then we 
find that 

. (6.12) 

The wave function 'Yodd thus changes sign under a transposition of 
. any two elements. 

If we have a system of n identical bosons, its wave function must 
be of the form 'Yeven which generates the,identity representation of 
S". A system of n identical fermions, on the other hand, must be 
represented by a wave function of the form 'Yodd which generates the 
representation r odd of S". If we assume that there are no interactions 
between the particles, the state function 1/1(1, 2, ... , n) can be expressed 
as the product of single-particle eigenfunctions according to 

IjI(P1' P2.· .. , p,,)=u1 (P1) u.(pJ . .. u,,(p,,). (6.13) 

where U,(Pi) is the wave function of thej-th particle in the i-th single:. 
particle orbital. Here Pi denotes all the coordinates (position and 
spin projection) of the j-th particle. The antisymmetrized wave func­
tion of the system transforming according· to rOOd is then the Slate, 
determinant 

u1(1) u1(2) ... "1(n) 

I ul (l) u2(2) ... ut(n) 
'YOdd=-= (6.14) .yn! 

u,,(1 ) u,,(2), . .. u,,(n) 
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For example, if we have three identical particles whose coordi­
nates and spins are symbolized by 1,2 and 3, and three spin-orbitals, 
then the wave function of a particular state of the system may be 
written as 

~(PI' P2' P3)=UI (PI) U2 (P2) U3 (Pa), (6.15) 
where each PI can take values I, 2 or 3 and no two pi's can have the 
same value. The antisymmetrized basis function is then 

111(1) ul (2) u l (3) 
I 

'1"004= y'6 u~(l) u2(2) ·u2(3) 

us(l) u3(2) u3(3) 

=[~(I 2 3)-~(2 1 3)+1ji(2 3 1)-Iji(3 2 I) 
+1ji(3 1 2)-1ji(1 32»)/y'6. (6.16) 

6.2 Sele.ction Rules for Atomic Transitions 

We have seen that the states of a many-electron atom may belong 
to all the irreducible representations of 0(3) but that the states of a 
one-electron atom belong only to some irreducible representations of 
0(3). It is therefore natural that the selection rules for the two systems 
would be different. We shall consider the two cases separately. 

6.2.1 A maoy-electron atom. We shall first obtain the selection 
rules for electric dipo'le transitions of a many-electron atom. .The 
electric dipole moment operator ~=f(X,y, z) isa polar vector (which 
changes sign under inversion) and it clearly generates the representa­
tion D(l, -) of 0(3). The transition of a many-electron atom from a 
state D(L,o) to a state D(L', a) under the electric dipole radiation would 
then be allowed if the direct product representation D(l, -) ® D(L. a) 

contains DIL', <h. Now, we have 

D(l, -I ® D(L,o)= if L=lO. 
{ 

D(L-l, -0) Et> DIL, -01 Et> DIL+l,-o) 

D(1, -0) if L=O.. (6.17) 
The second part of the above equation shows that the transition 
between two states with L =0 is forbidden. The representation D(L', 0 ') 

appears in the direct product if 

L'={ L,.L±1 if L=lO, } 
1 If L=O; 

and 0'=-0, 

(6. 18a) 

If we denote L'-L= /\,.L. tbis gives us the selection rules for electric 
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dipole transitions: 
/).L=O, ±1 (O+-/~O); parity change. (6 . 18b) 

Since the electric dipole moment operator does not act on the spin 
variables of the atom, we also have the selection rule /).S=O. 

6.2.2 A one·electron atom. It is well known that the spectral terms 
of one-electron atoms like hydrogen and the alkalies are particularly 
simple. Once again, we examine the direct product DU' 0) ® D(l, -) for 
obtaining the selection rules for electric dipole transitions. This gives 
us an equation similar to (6.17) with L replaced by I. However, we must 
now take into account the fact thatthe parity of a one-electron atomic 
wave function is linked to its Ivalue. Thus, if there is a state of the atom 
belonging to the representation D(l· 0), there cannot be any state of the 
atom belonging to D(l, -0) but there are states belonging to D(J±l'I-O ). 

This therefore forbids transitions for which I' =1 and gives us the 
selection rule 

t..i=± I, parity change. (6.19) 

On the other hand, the magnetic dipole moment operator gene­
rates the representation D(l, +1 and we have, for 1=1<0, 

DO, +)®D(l, o)=D(l-l, o)(f;D(l, O)(f;D(l+l, 0). (6.20) 

The only allowed transition among these is therefore DU, O)_D(/.oI, 

and we have the selection rule 

/).1=0, no change in parity. (6.21) 

Moreover, since the magnetic dipole moment operator also does not 
act on the spin variables, we have 

/).s=O. (6.22) 

6.3 Zeeman Effect 

In this section, we shall study the Zeeman effect which stems from 
the splitting of the atomic energy levels in a magnetic field,. 

Consider an atom in a state j having a (2j + I )-fold degenerate 
energy level En). If the atom is placed in a steady uniform magnetic 
field H, assumed to be along the z axis, the degeneracy of the level En' is 
totally lifted and it splits into 2j+ 1 riondegenerate levels. This result 
can easily be obtained group theoretically. 

Let IJijm be the 2j+ I degenerate eigenfunctions (for '-j<m5:,j) 
for the level En}. The symmetry group oftbe atom is SO(3) ifjis integral 
and SU(2) if j is half·odd-integraI. If the group is SO(3), lJi/n contains 



GROUP THEORY IN QUANTUM MECHANICS. II 203 

the spherical harmonic Yin (6,4», while if the group is SU(2), IjiJm has 
the same transformation properties as the function jjm defined in 
Section 4.5.1. In either case, a rotation through IX about the z axis has 
the effect 

(6.23) 
Let 'A V be the perturbation arising from the applied magnetic field, 
where 'A is a parameter.3 The perturbation 'AV and therefore .the per­
turbed system (i.e.,atom+magnetic field) are invariant only underro­
tations about the z axis. The symmetry group of the physical system is 
thus SO(2), which is a subgroup of SO(3) or SU(2). Since SO(2) is an 
abelian group, it has only one-dimensional irreducible. representations. 
This is sufficient to show that the function IjiJm cannot remain degenerate 
for all values ofm between-j andj. The function ljijm now belongs to the 
moth irreducible representation of SO(2) and thus the (2j+ I)-fold 
degeneracy is completely lifted by the magnetic field. 

The operation of the perturbation V on an eigenfunction ljijm of 
the unperturbed system is, in general, to mix all the degenerate eigen­
functions. We can therefore write: 

j 

(6.24) 
m' __ ) 

where vm'm=(~/n', Vyjm) is the matrix element of V between two 
. degenerate unperturbed eigenfunctions. The matrix element of V be­
tween two nondegenerate eigenfunctions Yr m' and y/n will be identi­
cal\yzero because the operation of V on ~Jm does not mix any function 
with different j value. Since V is invariant under SO(2), V ~jm has the 
same transformation properties under SO(2) as yjm, i.e., 

R/IX)(V ~jm)=exp(imlX)( V y/n). (5.25) 

Thus, the function V ljijm also belongs to the moth irreducible represen­
tation of SO(2) and, by the matrix element theorem, we see that 
(~jln', V~/n) will be proportional t08m·ln• or 

(6.26) 
which defines VIII as being the expectation value of Vin an unperturbed 
state ~/n. The matrix representing V with {ljii lll

} as the basis is thus 
diagonal and I'm are its eigenvalues. The new energy levels are then 
clearly given by 

SThe parameter). is being used here to faciiitate the separation of tho vari­
ous orders of perturbation. This is the usual and well known technique 
in perturbation theory. 
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(6.27) 

This is as far as we can go with the help of group theory. The 
actual calculation of vlll's will depend on the explicit nature of the 
perturbation and the exact atomic eigenfunctions. 

The number of components into which a line splits under a mag­
netic field helps determine the j value of the unperturbed state. It 
was by this method that Sommerfeld originally suggested that j must 
be given integral as well as half-odd-integral values. 

6.4 Addition of Angular Momenta 

It is often necessary in many quantum mechanical problems to 
couple two or more angular momenta and obtain the angular momen­
tumofthe combined system. We may be dealing with a single particle 
with two angular momenta (orbital and intrinsic) or with a system of 
two particles (such as two electrons in the same atom). Our aim in 
this section would be to obtain the possible values for the total 
angular momentum and its quantized projection and to obtain the 
eigenstates of the combined system as (symmetrized) linear combina­
tions of the separate eigenstates of the two angular momenta. 

Before going to the proper problem of addition of angular 
momenta, we shall discuss in the first subsection below the quantum 
mechanical nature of angular momentum. This subsection is included 
here merely for the sake of completeness although its results have in 
fact been used previously in this book. 

6.4.1 Angular momentum in quantum mechanics. In classical 
mechanics, the angular momentum is an easily comprehensible entity. 
It is defined as L=r)( p where r is the position vector and p is the 
linear momentum and is related to r by p=m drJdt where m is the 
mass of the system. The angular momentum depicts the' rotational 
properties of the system. FO,r example,.. if a system has rotational 
symmetry about an axis, the component of angular momentum along 
that axis is a constant of motion. If the system is invariant under all 
rotations, th~ angular momentum L is conserved. 

Although these results hold good in quantum mechanics also, it 
is not possible to take the former definition of angular momentum 
over to quantum mechanics. This is because in accordance with the 
basic axioms of quantum mechanics, rand p are themselves nm 
classica I quantities but the position vector operator and the linear 
momentum operator, respectively, related to each other by p= -iti 'Vr 
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or f= -i1i2p. We may. of course, still define L = r)( p and call it the 
angular momentum operator. If the system possesses full rotational 
symmetry, the operator L would commute with the Hamiltonian and 
would therefore be a constant of motion. However, this is not the 
only invariant ofaquantum mechanical isotropic system. A quantum 
mechanical system possesses other degrees of freedom (the intrinsic 
spin angular momentum, the isotopic spin angular momentum, etc.) 
the observables corresponding to which are invariants if the Hamil­
tonian is invariant under rotations in its Hilbert space. These addition- · 
al degrees of freedom have no classical analogue. 

As the whole structure of quantum mechanics is based on opera­
tors corresponding to observables, we will have to -define angular 
momentum in quantum mechanics abstractly and mathematically. For 
this, we shall first define an angular momentum operator. 

An operator A with Cartesian components Ax, Ay and A: is said 
to be an angular momentum operator if 

(i) the operators AI (i=x, y, z)correspond to physicalobservables. 
(ii) they transform under rotations like the components of a vector 

(Le., the matrix associated with the transformation is the same 
as (4.43», and 

(iii) they obey the following commutation relations: 

[Ax , Ay]=i1iAz, [A y, Az]=i1iAx, [Ar, AxJ=i1iAy. (6.28) 

The physical observable associated with the operator A will then be 
called an angular momentum. 

The operator L=r x p is a particular example of an angular mo­
mentum operator, because it satisfies the above three axioms. The 
observable associated with it i,s called the orbit~l angular momentum. 
The intrinsic spin angular momentum operator S and the isotopic spin 
angular momentum operator::. are other examples of an angular mo­
mentum operator. The physical observables associated with them are 
respectively called spin angular momentum' (or simply spin) and charge. 

Hereafter, we shall frequently call the angular momentum opera­
tor simply the angular momentum and denote it in general by J. 

The square of the angular momentum J2= Jx2+Jl+Jr2 commutes 
with each of the components of.J as can be verified from (6 .28) . 
However, (6.28) shows that no two components of J commute with 
each other. In any representation, therefore, not more than one com­
ponent of J can be diagonalized at a time. By convention, we choose 

'It is a mere fantasy to imagine that a particle having spin angular momentum 
is really rotating about itself; spin is merely the name given to the additional 
doaree of freedom possessed by many particles such as electrons, neutrons, 
etc., and by many composite systems such as nuclei, atoms, molecules, ele. 
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basis states for representation which are simultaneous eigenstates of J2 
and Jz. It is found thatJ2 can have eigenvaIuesj{j+ 1}52 withj= O,t, I, .~, 
2, ... , and Jz can have eigenvalues m11 where m= -j, -j+I, .. . ,j. 
A common eigenstate of J2 and Jz can be denoted by Um> with 

J 2 Ijm>=j(j+ 1) 112 Um>, Jz /.im >=m11ljm > . (6 .29) 
Normally, there would be other operators too which commute 

with both J2 and J z . Correspondingly, the system would have good 
quantum numbers other than j and m. We should strictly denote a 
common eigenstate of all the commuting operators by I Njm > where 
N is the set of all the other good quantum numbers. These quantum 
numbers are, however, not relevant to the rotational properties of the 
eigenstate I Njm > . They govern , for example, among other things, the 
radial dependence of the eigenstates. We shall often drop these, except 
where necessary, and write an eigenstate simply as I jm> although its 
dependence on the other quantum numbers would be implicit. 

The two operators J±=Jx±iJy which are hermitian conjugates of 
each other have respectively the effect of increasing and decreasing 
the z component of the angular momentum by unity. Thus,s 

J+ I.im > =[j(j+I)-m(m+I)]i11l.i,m+l > , 
(6.30) 

Lijm> =[j(j+I)-m(m-I)]lti I j,m-l>. 

The coefficients in the above equations are the elements of the matrices 
representing J+ and L with the basis {I jm > }. The representation of 
J2 and its components (Jx, J y and Jz or J± and Jz) with this basis is 
called the standard representation of angular momentum. It is evident 
that in this representation, only the matrix for J y is purely imaginary 
while all the other matrices are real. The matrices for J2 and Jz are, 
of course, diagonal whereas those · for Jx, J y, J+ and J_ are block­
diagonalized with blocks of dimensions 2j+ 1. The states {I jm>} 
generate the representation D(J) of SU(2) under generalized rotations 
in the Hilbert space of the operators J2 and J, so that we have 

UR Um > =}; I jm'>Dm'nY)(R), (6.31) 
m' 

where we have denoted a rotation such as Ru(</» or R (a. , ~,y) of 
SO(3) by UR for brevity and convenience. 

In particular cases, it is not necessary that all the allowed values 
of j should occur. For example, if the orbital angular momentum L2 
is under consideration, its allowed eig~nvalues are 1(1+ 1) where 1 takes 
only nonnegative integral values, excluding all the half-odd-integral 

5SeC Heine (1960), Section 8; Schiff (1968), Section 27. 
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values. Moreover, for a given value of J, there may be more than one 
sets of (2J+ I) linearly independent eigenfunctions corresponding to it 
(for different values of the remaining quantum numbers N). 

6.4.2 Addition of two angular momenta and symmetrized com­
binations of eigenstates. Let J1 and J 2 be two angular momenta. If 
each component of J 1 commutes with every component of J 2, then it 
can be shown that J =J1 +J2 is also an angular momentum. Thus, 
consider the commutator 

[Jx , Jy] [J1X+J2x, J1y+J2y] 

= [J1x, J1y]+[J2X,J2Y] 

=i n(JF +J2Z) 

=in J z , (6.32) 

which is identical to the first of Eqs. (6.28). Similarly, by cyclic per­
mutations of x, y and z, we find that [Jy, Jz]=inJx and [Jz, Jx]=in Jy, 
so that J is an angular momentum. The commutators of J with J 1 

or J 2 are found to be 

[Jx, J;x] = [J1X+J2x, J;x]=O, 

(6.33) 

[JX,J;Z]=[JIX+ J2X' J;z]= -inJ;y, 

with i= 1 or 2~ and similar equations obtained by cyclic permutations 
of x, y and z. . 

Let IJlm1 > be the eigenstates of J 12 and J]Z and I J2m2 > those 
of J 22 and J2z• The combined eigenstates of these four mutually 
commuting operator$ are just the products of the individual eigenstates 
which may be denoted by 111m] > I J2m2 > =IJ]ml' J2m2 > ' For given 
values of it andJ2' these are altogether (2J1+I)(2J2+1) in number, 
and have the properties 

J;2 I Jlml' i21112 > =.h CJ;+ 1) n2 I Jlml' J2 1112> , 

. (6.34) 

The (2J1 + I) (2.i2+ I) eigenstates transform according to the represen­
tation D(h) ® DU') of 5U(2). This representation can be reduced to 
a sum of irreducible repres.entations as in (4 .93) where each irreducible 
representation DUJ occurs once for values of J between I il-J2 I and 
Jl + k Each representation DU) has associated with it (2j+I) states 
which are just linear combinations of 1.i1111 1 • .iln2 > . The number of 
these states is 
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h+f2 
L 

j= Ih-h J 
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(6.35) 

as it should be. 
In order to construct the new eigenstates, we note that the square 

of the total angular momeptumJ2commutes with both J 1
2andJ22, and 

so does J z • For obtaining these eigenstates we choose the set of linearly 
independent mutually commuting operators to be (J12, J 22, J2, Jz ) instead 
of the set (J]2, J F , J 22, J2z). The eigenvalues of J2 may be denoted 
by j(j+ I)1i,2 where Jjl- j21 < j::::;"it + j2 and a <.:ommon eigenstate of 
the former set of operators may be denoted by U m> where mn is the 
eigenvalue of Jz in the state Jj m>. We express this state as a linear 
combination of the states Ul ml,j2 m2> in the form 

h 
Um>= 

h 
L L IAm1,j2 m2>C(jIml ,j2 m2;j m). (6.36) 

ml=-h m2=-h 

The coefficients of expansion6 can be obtained by taking the scalar 
product of the above equation with some state, s~y U1m/,j2m2'>, 
and using the orthonormality of these states. This gives 

<jl m/,j2 m2' Um> = C(j1 m/,j2m/;j m). (6.37) 

Eq. (6.36, then becomes 

jjm>= L U]ml,j2m2><jIml,j2 m2 jjm>. (6.38) 
ml,m2 

These are the eigenstates we are seeking and have the properties 

J2Jjm>=j(j+l)1i,2 jjm>, J: Um>=m1i, U m>, (6.39) 
J j 2jj m>=jj(ji+I)1i,2 jj m>, i=l, 2. 

The coefficients <jl ml,j2 m2 Ij m> are called Clebsch-GorrJan 
coefficients or Wigner copfficients or vector coupling coefficients. Opera­
ting on the state (6.38) with JZ=JIZ+J2z, we have 

m'fi Ij m> = L (ml +m2)'fi Ul m1 ,j2 m2> 

x <j] m1,j2 m2 Urn>. (6.40) 

Using (6,38) once again on the left-hand side of the above equation, we 
get 

L (m-m1-m2)1'i. Ul m1,j2 m2> <jl JnI,.i2 Jn2 Ij m> =0, (6.41) 
inl,ln2 

Since the states Ijl m],j2 m2> are linearly independent for different 

~rt can be shown that these coefficients are independent of the other quantum 
numbers N; see Messiah (1965), Section XlII. 27. 
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values of m1 and m2• the above equation is satisfied if and only if 

(m-m1-mZ)<jl m1,jz mz U m> =0. (6.42) 
This shows that 

<jl m1.j2 m21j m> =0 unless m=ml +m2. (6.43) 

This shows that the z component of the total angular momentum must 
be equal to the sum of the z components of t he individual angular 
momenta.' In short. the conditions for the nonvanishing of the CoG 
coefficientS <A m1,j2 m2 jj m> are 

Ul-j21 < j < A+j2' m=m1+m2• 

and Iml~j. (6.44) 

The C-G coefficients of (6.38) are just the elements of the trans­
formation from one basis to another in the (2jl + 1)(2j2 + I)-dimensional 
Hilbert space. If the set of initial states {jjl ml,jz m2>} and the 
set of final states { jjm>} are both assumed to be orthonormal, the 
matrix of these elements is a (2jl + I )(2jz + I)-dimensional unitary 
matrix. 

The largest value of m is jl +j2, and this can occur only when .i 
also has its largest value equal to jl +j2. Thus, if j=m=jl +jz, it can be­
seen from the rules (6 .44) that the only CoG coefficient in (6.38) to be 
different from zero is that for which m1=A and m2=j2' giving 

Ul +j2,jl +j2> =l.iljl,j~2> <jljltj2j21i1 +j2' jl +jz>. (6.45) 

Now. since both the states iiI + j2,jl +j2> and IjJ.il,j2j2> are 
normalized, the C-G coefficient in the above equation can at most be a 
complex number with unit magnitude. By convention, we choose the 
phase such that this coefficient is + I: 

(6.46) 

We. shall see that with this and a similar convention explained later, all 
the C-G coefficients turn out to be real so that the unitary matrix of . 
transformation in fact reduces to an orthogo'lal matrix. 

6.4.3 Calculation of Clebscb-Gordan coefficients. We shall show 
/ 

that the (2A + I)(2j2+ I)-dimensional matrix of the CoG coefficients 

7This rulo is quite general and holds good for thoaddition of more tban two 
angular momenta also. 

sWe shall write 'CoG coefficients' instead of 'Clebsch·Gordan coefficients' 
for the sa ke of brev ity. 
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reduces to a direct sum of smaller matrices with one block correspond­
ing to each allowed value of m=m1 +m2. 

Since the matrix of transformation in (6 . 38) is unitary and since 
all the elements are real by the phase conventions, we have 

<Aml,i2m2 Ii m>*=<il mVi2 m2 jj m>, (6.47a) 
hH! j 

L L <jlml, i2 m2 lim> <jl m/, i2 m2' lim> 
j= I h-jz I m=-j 

(6.47b} 

=8mm• 8}}.. (6.47c) 
Notice that the rows and the columns of this matrix are labeled by 
different schemes. Each row is labeled by the dual symbol (ml' m2)~ 
while each column is labeled by the dual symbol (j, m). For exam­
ple, for given values of il and i2' the first row would be called the 
(iI' i2)-row (because ml -A, m2 = i2), while the first column would 
be (jl+i2' il+i2)-column (because i=m=A+i2)' For this reason~ 
it is not easy to write down the transpose of an element <il ml, 
i2 m2 lim>. In other words, it is not true that the element <i m 
IA mi' i2 m2> is the transpose of <il ml, i2 m2 I j m>. By conven­
tion, we shall mean by both these symbols the same element, i.e., 

<i m I A ml, i2 m2>=<it ml,i2 m2 lim>, (6.48) 
both of which stand for an element in the (ml' m2)-row and the 
(j, m)-column. 

We have already shown that the largest v~iue of m occurs when 
i=m=it+i2 and only one C-G coefficient survives in this case. 
The next largest value of m is il+ii-I and this may occur in two 
ways: when i=il+i2 or i il+i2-1. Also, since m=ml+m2, we 
must have either ml=il' mi=i2-1, or ml-jl-I, mZ=i2. This 
shows that the two final states I it + i2, il + i2 -1> and I it + i2 -1, 
it +i2- I > are both linear combinations of only the two initial states 
IitiH iz i2-1 > and lilil -1, i2i2>; or, in accordance with (6.38), 
we can write 

I it+i2,il+i2- I > 
= I it it,i2i2- 1 ><ilit, izi2- I I il+iz, il+i2- 1 > 

+ I itil-I, iziz><ilil-l,i2i2 I i l+iz,il+i2- 1>, 
I it+i2-I,it+iz-I> 

= iilil,i2iz- I ><itil,i2iz-I lit+iz-l,il+iz-l> 
+ I ilil- I , i2 iz><it ii-I, j2i! iii +i2- I,il+i2- I >. 

(6.49) 
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Thus, in the second aM the third rows and columns of the e-G 
matrix, there would be only two nonvanishing coefficients. As we 
proceed further, we can see that if the columns are labeled in decreas­
ing order of m, t4e e-G matrix would be in a block-diagonal form. 
The dimensions of the blocks increase to begin with from unity 
onwards and then again decrease to unity for the lowest value of m 
which occurs when -m=j= jl+j2 and m1=-A, m2=-j2' 

To obtain the e-G coefficients explicitly, we shall first obtain their 
recursion relations connecting one to the others, from which the 
,coefficients can be calculated knowing one of them. For this, we apply 
the raising operator J+=J1++J2+ to both the sides of (6. 38}, use 
(6.30) and divide by 11 throughout to obtain 

[j U+l)-m(m+l»i I j, m+l> 

= 2: {UIUI+l)-ml (ml +l)]i UI ml +l,j2 m2> 

+Udj2+ 1)-m2 (m2+1)]i I A ml ,j2 m2+1>} 
X <A m l , j2 m2 I j m>. (6.50) 

On the left-hand side, we substitute for I j, m+ 1 > again from (6.38). 
On the right-hand side, we change the variable of summation to 
ml ' =m1 + 1 in the first term, leaving m2 unchanged, and to m2' =m2 + 1 
in the second term, leaving: mi unchanged. The first term, for example. 
then becomes 

h+l jz 

2: 2: UI (jl+l)-(ml '-l) m1']i i A m1',}1 m,> 
ml'=-h+l m2=-jz 

X <jl m1'-I, j2 m2 I j m>. 
Now, it can be seen that for ml ' =A + lor - jl' the radical in the square 
brackets above vanishes. The range of summation over mt' can there­
fore be replaced by -jl to jl' Dropping the prime in m1' finally, the 
first term becomes 

h jz 

2: 2: UI Ul+ 1)-m1 (m~-I)]lljl mh j2 m2> 
ml=-h m2=-jz 

X<jl ml- l ,j2 m2I.im>. 
The second term in (6.50) is treated in a similar fashion. Then, noting 
that the states I A Inl' j2 m2 > are orthogonal, we equate their coefficients 
on both t4e sides and obtain 

, UU+l)-m (m+l)]i <Am1,j2m21.i, m+l> 
=[jl Ul+l)-ml(m~-l)]l <jl ~-I,j2 m2 I j m> 
+[j~(j2+I)-m2(m2-1)]i <A m1,j2m2-1 /j m>. (6.51) 

Similarly, operating on both sides of (6.38) by the lowering operator 
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L~i-:+J2-inst~adof J+ and following the same procedure as above, 
we can obtain another relation given below. 

[j U+I)-m(m-l)]i <jl ml>j2 m2 /j, m-I> 

=Ul Ul+l)-m1 (ml+1)]i <jl m1+l , j2 m2 I j m> 

+U2U2+1)-m2 (m2+1)]i <jl m1, j2 m2+1 I j m>. (6.52) 

These two recursion relations are sufficient to obtain all the C-G 
coefficients by starting from the first coefficient (6.46) which is the only 
coefficient with m jl + j2' 

Suppose, for example, that next we wish to vbtain all the C-G 
coeffieients with m=jl+j2-1. Putting m1=jl' m2=j2-I , j=jl+j2 and 
m=A+j2' in (6.52) and using the selection rules (6.44) together 
with (6.46), we obtain ' 

<Ajl,j2jz-1 Ul+j2,jl+j2-1 > =U2/Ul+j2)]I. (6.53) 
Similarly, if we put m l jl-l, m2=j2andj=m=A+j2 in (6.52), we find 

<jlit-l,jzj2 Ijl+j2 , A+j2-1 > =[A1(A+j2)]I. (6.54) 

These are the two C-Gcoefficients withj=j,+j2 and nt-A+j2-1. 
There are two moreC-G coefficients with m=it+j2-1 and both of 
these havej-}1+j2-1. These can be calculated by using theorthogo­
nality relatio

x 
(6.47). To clarify the procedure, we have shown in Table 

(6.4) the mat 'x elements under consideration, where we have denoted 
the matrix ~l ments of (6.53) and (6.54) respectively by a and b. The 
elements to be calculated are denoted by c and d. The normalization of 

h 

iI / 
/ 
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/ 
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the UI,j2-1)-row gives aI+d'=l, which, by using (6.53) fora, gives 
c2=A!(A+j2)' (6.55) 

Similarly, the normalization of the UI-l. jz)-row together with 
(6.54) for b gives 

d2=j2/UI+j2)' (6.56) 
The orthogonality of the two columns under consideration requires 
ac+bd=O or c=-d (b/a)=-d(Alj2)1. This shows that c and dare 

. both real and have opposite signs. Here, again, there is an arbitrary 
-choice for the sign which is fixed according to the convention that the 
first of these elements, for whichj=m and ml-A and which has the 
general form < jl jl ' j2 j-A I jj>, is real and positive. This gives 

c-< AA,j2j2-1 Ijl+j2-I,jl+j2-1>=[AIUI+j2)]I. (6. 57a) 
d= < jIA-I, j2j2 I jl+j2-I,jl+j2-1>=-[j2/(A+j2)]I. (6.57b) 
Next, we consider the value m=jl+j2-2. This will give a 3 x3 

submatrix of CoG coefficients for j=A+j2' A+j2-.1,jl+j2-2 and for 
(mI' m2)=(jI, j2-2), (A-l,j2-1), UI-2,j2)' The first two columns 
(for j=A +j2 andA+j2-1) can be obtained by using (6.53), (6.54) and 
(6.57) in (6.52). The last column (for j=jl+j2-2=m) is obtained by 
the orthonormalization of the rows. The process of normalization 
again leaves an arbitrary sign which is fixed by the convention that 
the first element of the last column is real and positive. 

A repetition of this procedure determines all the remaining blocks 
of the desired matrix. The matrices of the CoG coefficients for some 
particular small values of jl andj2 are given in Table (6.5). 

TABLE 6.5 THE MATRICES OF THE C-G CoEFFICIENTS 
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The Wigner's 3-j symbols which are related to the C-G coefficients, 
have been extensively numerically tabulated in the literatur~' for a 
large number of cases. 

6.5 Irreducible Tensor Operators 

In addition to the transitions of a physical system caused by 
electric and magnetic dipole radiation, there may be higher order transi­
tions due to electric or magnetic quadrupole, octupoie, etc., radiation. 
Although their intensities are small, they become important when the 
electric dipole transition is forbidden. The matrix element theorem of 
Chapter 5 can easily be applied to find the selection rules for the 
higher order transitions. A theorem due to Wigner and Eckart, to be 
dealt with in the next section, further gives us the ratios of the variou& 
transition probabilities without having to calculate the matrix elements. 
explicitly. These calculations are best performed by using the ,concept 
of irreducible tensor operators which is the subject of this section. 

The rotational prope rties of an operator are determined by its com­
mutator with total angular momentum operator J. To see this, let 
R(p) denote a rotation of the coordinates where the vector 'l. has the 
magnitude or'the angle of rotation and is parallel to the axis of rotation. 
Let UR('!.) be the corresponding operator which acts cn functions. 
Let P be any operator before transformation and p i the same operator 
after the rotation. Then 

P'='UR('l.)t P UR(p). (6.58) 
The rotation operator U R(~) has the form 

UR~)=exp(-i ~·J/Ii). (6.59) 
For rotations through infinitesimal angles, (6 .58) becomes, to first 
order in ,p, 

P'~(I+i!·J/Ji) P (l-i!·J/1i.) 
i " 

~P+ Ii [!.J, PJ. (6.60) 

We shall now define scalar and vector operators and then tensor 
operato.rs in general. 

6.5.1 Scalar operators. We say that a quantity is a scalar if it is 
invariant under all ro.tations. Obvious examples of scalar quantities are 
mass, length, energy, etc. Similarly, an operator S is said to be a scalar 
operator if it is invariant under all rotations. For example, the Hamil-

9Rotenberg et aI. (1959). 
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tonian of an isotropic system such as an atom is a scalar operator. The 
spin-orbit interaction operator L·S is also a scalar operator. A scalar 
operator thus generates the representation D(O) of the rotation group. 
By the matrix element theorem, we then see that all the matrix elements 
of a scalar operator between states belonging to different irreducible 
representations or to different columns of the same one of SO(3) must 
vanish. Moreover, it can be shown that the matrix element of a scalar 
opetator between any two states transforming according to the same 
column of a certain irreducible representation of SO(3) is independent 
of the column index. 

Thus. if S is a scalar operator, it is invariant under all rotations, 
so that 5' = 5. By looking at (6 .60), with P replaced by S, we see that 
this is possible if 5 commutes with all the components of the total 
angular momentum J of the system; or 

[J, S]=O. (6.61) 

Let I N j m > be the set of the common eigenfunctions 'of J2 and Jz • 

Our object is to consider the matrix element of 5 between any two of 
these eigenstates, i.e. , < N' j' m' 151 N.i m > . Since 5 commutes with 
J. the operation of J2 and the components of J on the vector S IN} m> 
is the same as their operation on I N j m>. The vector 5 I N j m > thus 
transforms according to the m·thcohimn of the }-th irreducible repre­
sentation of the rotation group. By the orthogonality of the basis 
functions (see Section 5.5.1), we then have 

<N'j'm' lSI Nj m > =qJj,I)",,,,, < N'} ml 51 N j m > . (6.62) 

Replacing m by m- 1 in the first of Eqs. (6.30), we can write 

IN j m>=[U U+I)-m(m-I)} 112]-}J+ 1 N} m-I > . (6.63) 

By using this, the matrix element on the right-hand side'of (6.62) becomes 

< N'jm lSI Nj m > 

= [{j (j+ I)-m (m-I)} 112]-1 < N' } m 15 J + IN} 111-1 > 
=[{jU+ I)-m(m-I)}1i2]-l < N'} 111 IJ+5INj m-l > . (6.64) 

Taking the conjugate of the second equation of (6 .30), we have 

< N j m I J+= < N j m-II [j(j + 1)-m(m-I)]Hi. (6 .65) 
Substituting this in (6.64), we finally obtain 

< N'j m 151 N} m>=< N' jm-II 51 N} Ill-I > , (6.66) 

showing that. the matrix element is independent of m and depends only 
on} and the other quantum numbers. We therefore define the quantity 

5NN,(j)= < N j m 151 N'} m>, (6.67) 
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which is called the reduced matrix element of the scalar operator S. 
Eq. (6.62) then becomes 

(6.68) 

6.5.2 Vector operators. Once again, it is expedient to examine 
what we understand by a vector. Apartfrom having a magriitudeand 
a direction, a vector is characterized by its transformation under rota­
tions. If r is a vector and r' the vector· obtained after an infini-
tesimal rotation f, it can be seen from vector algebra that . 

r.'=r+f Xr. (6.69) 
A vector operator is defined in exactly the same way by its trans­

formation proPerties. An operator V with three cartesian components 
(Vx, Vy, Vz) is said to be a vector operator if after an infinitesimal rota­
tion ! , the transformed operator V'is given by 

UR(f)tV UR(!)=V'=V+ f xV. (6.70) 

Comparison with (6.60) shows that a vector operator V must satisfy the 
commutation relations 

(6.71) 

We note in passing that if Vis replaced by.1, the above equation becom&6 
an identity, a proof of which is left to Problem (6.9). The angular 
momentum operator J is thus a vector operator. Other examples of 
vector operators are the quantum mechanical operators for position, 
linear momentum, orbital angular momentum, spin angular momentum, 
isotopic spin angular momentum, electric and magnetic dipole moment 
operators, etc. 

It is convenient to work with the spherical components (a)so known 
as the standard components) of the vector 9perator V rather than the 
cartesian components. These are defined by 

V1=-(Vx+iVy)/v2, Vo= Vz, V-1=(Vx-iVy)/y2. (6.72) 
Using these in (6.71). we finally get the following nine commutators 
between the components of J and those of V: 

[1+, VI1=O, [L.Vd =y21iVo, [I:, V1l=1i VI' 
[1+. V_1l=v211 Vo.[L. V-1]=O. [1z,V-1 ]=-11 V-I' 
[J+, Vol=v211 VI.lL~ Vo]=y211 V-I' [1z. Vo]=O. (6 .73) 

These commutation relations can be further condensed to the form 

[J±. Vq ]=[ 2-q (q± I)l! 11 Vq±h 
[1z, Vq]=q 1i Vq; q=I. 0,-1. (6.74) . 
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These equations serve as an alternative rlefinition of a vector operator: 
V is said to be a vector operator if its components satisfy the commu­
tation relations (6.74) witl} the components of the total angular 
momentum. 

As a third alternative, we can use the fact that the bpherical 
components of a vector r transr(}J"m under a finite rotation R(rx, ~,y) 
according as 

I 

L rill' Dm 'ln (l)(rx, ~, y); (6.75) 
m'= - ! 

(seeProblein4.Jl). We then say that Vis a vector operator if its 
components are operators transforming according to 

J 
UR(!l)t Vm UR(f.)=Vm'= L. Vm, D,n'nJ (l)(rx,~, y), (6 .76) 

m'=-l' 

where UR('l.) corresponds to the rotation R(rx, ~, y). 

For the sake of re~dy reference, we shall give here the explicit 
form of the matrix D(l)(rx, ~,y) obtained from (4.88) with j= 1. It is 
found to be 

D'l)(rx,~, y) 

1 sin ~elx 

I 
v2 
~) I. . ~ L sin22'e/ IIX - Y V2 Sill ~ e-IY cos2 2' e-i(IX+Y) 

cos ~ I. / --- sm R e- ex V2 t' 

It can be verified that it is a unitary matrix. 
We have defined earlier the two types of vectors·-polar and axial. 

Both have the same transformation properties under pure rotations 
but a polar vector undergoes a chang~ of sign under inversion whereas 
an axial vector is invar-iant under inversion. The same defin ition is 
taken over for polar and axial vector operators. Thus, with UJ deno­
ting the inversion operator, we have . 1-V for a polar vector operator, 

U}VUJ= • + V for an axial vector operator. 
(6.78) 

A polar vector (operator) belongs to the representation D(1, -) whereas 
an axial vector (operator) belongs to D(l"r} of 0(3). Among the 
examples mentioned above in this subsection, the operators for position, 
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linear momentum and electric dipole moment are polar vector opera­
ton while the angular momentum operator (orbital, spin or isotopic 
spin) and magnetic dipole moment operator are axial vector operators. 

6.5.3 Tensor and irreducible tensor operators. If u and v are 
two vectors, then it is known from elementary tensor algebra that the 
nine quantities UlII l'q (where 111, q= -1, 0, 1) constitute the components 
of a tensor of rank two and transform under rotations according to 

+1 
R(IX, ~, y) UIIIl'q=um' l'q' = !: Un !,/ DnnPI (IX, ~, y) D/q(l) (IX,~, 'C). 

n, /=-1 
(6 .79) 

Similarly, the nine operators UmV q, where U and V are vector opera­
tors, are said to be the components of the /el1sor operator UV of rank 
two if the transformed components 

Um' Vt/=URt Um Vq UR (6.80) 

can be expressed in terms of UIII Vq as in (6 .79). The tensor operator 
UV is the Kronecker or direct product of the vector operators U and V. 

It is clear that the nine components of the tensor UV generate a 
nine-dimensional representation DCI) ® DCI) of SO(3). This represen­
tation can be reduced to the form DCD) EEl D(l) Et> D(2). It follows that it 
is possible to construct suitable linear combinations of the nine 
components of UV such that one of these is invariant under all rota­
tions, three of them generate D(1) and the remairing five combinations 
generate D(2). The invariant linear combination is obviously the trace 
of the matrix10 l JV which is 

1 

I: (-I)mUm V-m. (6.81) 
m=-I 

Too is therefore a scalar operator which generates the representation 
DCO). It is clearly equal to U · V, the scalar product of the two vector 
operators U and V. 

The three linear combinations which generate D(1) can be seen 
to be the components of the vector product TCI)= U X V. This has the 
cartesian components 

T)l),= UyVz- UzVy , T/I) = UzVx-UxVz, 
TzCJ) = UXVy-UyVX, (6.82) 

which transform like x, y and z under. rotations. By using (6.72), we 

lOA tensor of rank two lIuch as UV can be expressed as a square matrix with 
elements UiVj where i, j=x, y, z. 



220 ELEMENTS OF GROUP THEORY fOR PHYSICISTS 

can obtain the spherical components of T(l) which are 

T±l(l)=U±lVO-UOV±l, TO(1)=UIV-I-U-IV1' (6.83) 

which transform like x±iy and z respectively, or like the spherical 
harmonics of degree one. 

Finally, the five linear combinations which generate D (2 ) are, apart 
from constant factors, found to be 

Tx/2)= Ux Vy+Uy V x, T yz(2)= UyVz+UzVy, 

Tz) 2) = UzV, + UxVz • TX L y.(2)= UxVx- UyVy , 

T2zl-x'_ yl (2)=2Uz Vz-UxVx- UyVy , 

(6.84) 

in terms of the cartesian components ofU and V. They transform like 
the five independent polynomials. of degree two, which is indicated by 
using suitable subscripts. Once again, converting these into spherical 
components we get the following components which are proportional 
to the spherical harmonics of degree two: 

T±2(2),... Txl_ y' (2)±2iTxP)"" U±lV±l ex:: y~±2 (8, </», 

T±1(2),... =f(Tzx(2)±iTy z(2»,... U±l Vo+ UOV±l ex:: Y2±1 (8, </», 

TO(2),...T2Z._X'_Y' (2),...,.,2 UoVO+ U1 V-I +U-1VI ex:: Y20 (8, 4». (6.85) 

The sign,... is used instead of equality to denote that constant factors 
have been dropped. 

The operators T (O), T(l) and T (2 ) constructed above are called 
irreducible tensor operators. In general , we define an irreducible 
tensor operator (or a spherical tensor operator) T (k) of degreell k where 
k = 0, t . 1, ~' .. .. , as an operator having 2k+ 1 components Tq(k ) with 
q=-k, -'<:+1, .. . ,k-I, k, called the spl/erical or standard com-
p Oi/ents which transform under rotations according to 

k 
uRt Tq(k ) UR= >' TIIl (k ) DlIlq(k)(R). (6.86) 

m= -k 

In other words, T (k) is an irreducible tensor operator if its 2k+ 1 
components generate the irreducible representation D (k) of SU(2) . The 
21+ I spherical harmonics Yt'"(8, if» considered as operators are the 
standard components of an irreducible tensor operator Y(I) of degree 
I. Also, the 21 electric or magnetic multi pole moment operator is an 
irreducible tensor operator of degree I. For 1=0, 1,2, 3, . .. , we get 
the monopole, dipole, quadrupole, octupole, .. . , moment operators. 

It turns out that alI irred.ucible tensor operators of physical interest 

llSome authors call this the rank, but this is likely to lead to confusion 
because the operator UV is also a tensor of rallk tw.o. 
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have integral values of k. Since the components of an irreducible tensor 
operator T(k) for integral k have the same transformation properties as 
the spherical harmonics of degree k, they have the same commutation 
relations with the components of the total angular momentum operator 
J as do the spherical harmonics. This follows from (6.60) which tells 
that the transformation of an operatO[.-llUder .rotations is uniquely 
determined by its commutators with J . Knowing the commutatorsl~ of 
the components of J with Yklll. we can immediately write down the 
following commutators: 

[JL , T,/k) ] = q1i T,P) , 

lJ±, Tq(k)] = [k (k+l)-q(q±l)Jl1i Tq±l(k ). (6.87) 

These equations provide an alternative definition of irreducible tensor 
operators. This definition, which is due to Racah,13 states that the 2k+ 1 
operators Tq(k) are sa id to be the standard components of an irreducible 
tensor operator T(k) if they satisfy the commutation relations (6.87) 
with the components of the total angular momentum operator. Note 
that for k = l, we have explicitly shown the equivalence of the two 
definitions (6.86) and (6.87) for vector operators in the previous sub­
section. In the genera l case also, it is possible in principle, though 
laborious. to obtain the commutation relations (6.87) by comparing 
(6.60) and (6.86) . 

6.5.4 Direct product of irreducible tensor operators. We ha .... ;:: 
shown in the previous subsection that the direct product of two 
vector operators can be reduced to a sum of three irreducible tensor 
operators . We can generalize this concept and show that the direct 
product of any two irreducible tensor operators can be reduced to a 
sum of irreducible tensor operators. 

Let S(k) and T(p) be two irreducible tensor operators of degree 
k and p, respectively. The direct product of these is defined as 
a tensor operator having the (2k+l)(2p+'}) components S,,(k) T,(p) 
for -k ~q<k and -p ~r~p. To investigate the transformation 
properties of these components, we consider the effect of a rotation R 
on one of the components. The transformed component is given by 

URi'S,,(k) T, (p ) UR=URt Sq(k) UR UR t Tr {p ) UR 

I: ' S/k) T'/p) D,q(k)(R) DIlI {p)(R). (6.88) . 
I, II 

1 !Schiff (1968), Eqs. (28.16) and (28.17). 
13Fano and Racah (1959). 
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This shows that the (2k+ 1)(2p+ I) operators Sq(k) T,(pl transform 
according ·to the direct product representation D(k) ® D(pl. It follows 
that the operator Sq(k) Tr(p) can be expressed as a linear combi­
nation of irreducible tensor operators U/') for I k-p I ::;;:s::;;:k+p and 
-s<l<s with CoG coefficients in the form 

S,/k)T'(p)= L L U,<s) <k q. p rls t>. (6.89) 
s t 

Let us IIlvert the above rehtion to obtain U,(s). Multiplying both 
sides of (6.89) by <k q, p rls' t'>. summing over q andr and using 
the orthogonality relation (6.47c), we obtain 

k p 

U,<s)= L L Sq(k) T,(p) <k q. p rl s t>. (6.90) 
q=-k r=-p 

It can be shown explicitly that U,<s) are the components of an irreducible 
tensor operator. For this, we obtain the commutation relations of 
U,(sl with the angular momentum operator. Using the operator identity 
[A, BC]=[A,B] C+B [A, C], we find that 

[Jz. U,<s)] = L ([Jz, Sq(k)] T,(p)-tS,/k) [J:, T,(p)1} 
q,r 

x <k q,p rls t> 
L (q+r)ti Sq(k) T,(p) <k q.P rls t> 
q,r 

=1 ti U,<s), (6.91) 
where we have used (6.87) and tfie fact that the CoG coefficient 
<kq, p rl s t> survives only ifq+r=t (see (6.44». 

Next, we obtain the commutator of J+ with U,(s). Using (6.87). 
this gives 

[J+. U,<s)] = L {[k(k+I)-q (q+I)}1 ti SHl(k) T,(p) 
q,r 

+[p(p+I)-r(r+l)]1 tiS/k) Tr+1(p)}<k q. p rls t>. (6.92) 
As in obtainiQg (6.51'), we now replace the sum over q in the first term by 
that over q' =q+ 1. The limits of q' can be taken to be the same as 
those of q (-k to k). Similarly. in the second term, we replace the sum 
over r by that over r' =r+ I. After ' rearranging the expression. we 
finally drop the primes in q' and r' to get 

[J+. Ui(s)]= L {(k(k+l)-q(q-I)]l ti<k q-I, p rls t> , 
q,r 

+[p(p+I)-r(r-l)li ti<kq, p r-Ils t>} Sq(k) T,(p). (6.93) 
Using the recursion ~elation (6 .. 51), this becomes 

[J+,U,(s)]= 2: [s (s+I)-1 (t+I)]1 Ii Sq(k) Tr(p) 
q,r 

x<kq.prlst-j-l>. (6.94) 
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Substituting from the definition (6.90), we finally get 
[J+, U,(')J=[S(S+ 1)-/(1+ 1)]1/1 Ii T,+1('). 

A similar treatment shows that 

(6.95) 

[1-, U,(')]=[S(S+I)-1 (t-l)JI/21i U'-I(·). (6.96) 
Eqs. (6.91), (6.95) and (6.96) prove that U(s) is an irreducible tensor 
operator of degree s. 

6.5.5 Action of a tensor operator 00 an angular momentum 
eigenstate. In this subsection, we shall show that the operatioll of 
a component of an irreducible tensor operator T{k) on an angular 
momentum eigenstate jj m> gives a state which can be expanded 
as a linear combination of the angular momentum eigenstates. 
For this, we consider the rotational properties of the state Tq{k) /j m >. 
Operating on this by URt, which corresponds to the rotation R, and 
using (6.86) and (6.31), we have 
uRt Tq(k) Ii m>=URt Tq<k) URUR t Ii m> 

= L Tq,(k) /j m' > Dq'q{k)(R) Dm'm(j)(R), (6.97) 
q'.In' . 

This shows that the (2k+ 1)(2j+ 1) states Tq{k) lim> transform 
according to the dir~t product representation D{k) ® D{}). It immedia­
te1y follows that they can be written as linear combinations of angular 
momentum eigenstates If m'> transforming according to the irredu­
cible representation DO') for I k-j I s;;.j' s;;.k+ j in the form 

Tq{k) U m>= L 1/ m'> <j'm' Ik q,j m>. (6.98) 
j',nl' 

Inverting the above relation, we .find 

Ij'm'>= L Ti k ) U m> <k q,j 111 U' m'>. .(6.99) 
q,m 

It can be explicitly shown that the states constructed in (6.99) are angu­
lar momentum eigenstates with quantum numbers j' and m'. This is 
the converse of the above problem. To this aim, we operate on both 
sides of (6.99) by l. and use the first of (6.87) to obtain 
Jlli'm'>= L JI Tq(k)/j m> <k q,j mlj' m'> 

q,m 

lI.m 

== L (m+q) Ii Tq(k) /j m> <k q, j m Ij' m'> 
t,m 

-m' Ii Ii' m' >. . (6.100) _ 
Similarly, we can operate on both sides of (6.99) by J ± and, using the > 

, 
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commutation relations (6.87), proceed as before. The reader should 
be familiar with this method by now. The final result is 

j± Ij'm'>=[j' U'+I)-m' (m'±l)]lli 1/ m'± I>, (6.101) 
which. together with (6.100), shows that(6. 99) is an angular.momentum 
eigenstate. 

6.6 Matrix Elements of Tensor Operators 

The actual transformation properties of the tensor operators and 
the eigenstates are not of so much importance in themselves as the 
physically interesting matrix elements of the operators between the 
eigenstates. There is a theorem due to Wigner and Eckart which gives 
the ratios of the matrix elements of a tensor operator between . angular 
momentum eigenstates in terms of the C-C coefficients. This greatly 
simplifies the calculation because all the matrix elements of a tensor 
operator can be related to one particular element which may be chosen 
to be the simplest one and which is usually determined experimentally. 

6.6.1 Wigner-Eckart theorem. On putting in the other quantum 
numbers explicitly, Eq. (6.98) can be written in the from 

Tq<k) IN j m>= LIN j'm'> <j' m'lk q,j m > . (6.102) 
j',nl' 

Let T<k) be the tensor operator whose matrix elements we are interested 
in. Owing to. the presence of the C-G coefficient, only one term in the 
sum over m' in (6.102) survives, that for which m'=m+q. Even this term ! 
would vanish if I m+q I> j'. Moreover, j' itself is restricted to the ; 
range I k-j I < j'< k+j. With these selection rules implicit in the ! 
CoG coefficients, Eq. (6. 102) tells that the state Tq<k) I N j m> I 
contains various parts transforming according to the (m+q) column 
of the irreducible representation nU') with the coefficients <j' m' I k q. 
j m > . The scalar product of Tq<k)! N j m> with some angular 
momentum eigenstate I N1j1 m1> will survive ~nly if m1=m+q, 
I k-j I < j1 < k+j and I m+q I ::;;j1. When all the three conditions 
are satisfied, (6. 102) shows that the scalar product in question, which 
is in fact the matrix element < N1A m1 I Tq<k) I N j m>, is propor­
tional to <j1 m!1 k q, j 111 > due to the orthogonality of the states 
I Nj 111> for different jand m. If anyone of the three conditions is 
violated, the C-G coefficient and hence thematrix element underconsi­
deration are zero. In either case, therefore, we can write the matrix 
element < N1j1 nil I T,/k) I N j m > as the product of the coefficient 
<j1 nil I k q,j 111> and some quantity which we write in the form 
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<NIA m! I Tq(k) I N} m> 
=F (Nd! m1 , Tq(k), N} m) <}l m]1 k q,j m>. (6.103) 

It will be our aim now to show that the quantity F (Nljl m1 , Tq(k) , 

Nj m) is independent of m, ml and q. 
Taking explicitly the scalar product of I Ndl 111] > with (6.102) , 

we find that 

< N1 .i1 m1 I Tq(k) 1 Nj 111 > . 

=< Nl.il m+q 1 N'il m+q><il m 1 I k q,} m > . (6.104) 

Similarly, replacing m l , q and III respectively by 1111 ', q' and nz', we obtain 

< Nlil m/ I Tq,(k) 1 Nj m' > 
= <Nlilm'+q'IN'ilm'+q'>< J111l1'lkq',.im'>. (6.105) 

We have shown in Section 5.5.1 that the scalar prodllct of two basis 
functions both transforming according to the same column of the same 
irreducible representation is independent of the column index (Eq. 
(5.45b». We therefore have 

< Nlil m+q I N' A m+q> =< N!ilm'+q' 1 N'ilm'+q'>. (6.106) 
Eq. (6.104) then. shows that the ratio 

< NIll m11 T/k) 1 N i m >/< .il m l I k q,j m > 
is independent of m, q and hence mI' We can therefore write (6.103) 
in the form 

< Nlilm] I Tq(k) I Nj m > 
= < N1illl T(l<) II Ni><}l mIl kip,} m >, (6.107) 

where the quantity < N 1il II T(k) II N f> depend's only on the nature 
of the tensor operator and the quantum numbers N, }, Nl and il' 
lt is independent of m, q and mI' !tis known as the reduced matrix 
element or the double-bar matrix element.a 

Eq. (6.107) embodies the Wigner-Eckart theorem. Expressed in 
words, it states that the matrix element of the q-th standard compo­
nent of a tensor operator T(k) between the angular momentum 
eigenstates I N i m> and I Nl il ml > equals the product of the 
C-G coefficient <il m1 I k q, i m> with a number which is independent 
ofm, q and mI' 

The matrix element (6 .107) has the same selection rules as the C-G 
coefficient appearing in it, i.e., it vanishes unless I k-il<jl<k+i, 
m1 =m+q and I ml I ::;:;'il' Once the reduced matrix element < N 1 il 
II T(k) II Ni> is determined for given values of i,jl' N andNH all the 

Hit is not a 'matrix element' in the quantum mechanical sense, hence the use 
of the double bars. 
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(2j+I)(2 k+l)(2jt+ 1) matrix elements can be easily obtained from 
a table of C-G coefficients. Moreover, taking the ratio of any two 
matrix elements (of the same tensor operator) of the form (6.107), we 
find that 

< N t / l m1 I Tq(k) INjm > < jlmllkq,/m > 
< N 1j 1 m/ r Tq,(k)1 Nj m' > <j1ml'l kq' ,jm' > ' 

(6.108) 

so that the ratios of the matrix elements are determined without any 
other knowledge. \ 

It is not an easy task to calculate the reduced matrix element 
theoretically. It is normally determined by calculating one particular 
matrix element experimentally. This is usually chosen to be the one 
simplest to observe, that for which q=O and m=1111 =0 or t depending 
on whether the system has integral or half-odd-integral angular momen­
tum. The Wigner-Eckart theorem has useful applications in atomic 
and nuclear physics. 

6.6.2 Selection rules for multipole transitions. The 21 electric ~.; 

or magnetic multipole operator is a (2/+ I )-component irreducible 
tensor operator of degree I. The electric multipole operator has parity 
(-1)1 whereas the magnetic multipole operator has parity (-1 )/+1 under 
inversion. The case 1=1 (dipole moment operators) has already been 
treated in Section 6.2. We shall now obtain the selection rules for elec-
tric quadrupole transitions in many- and one-electron atoms. 

The electric quadrupole moment operator is an irreducible tensor 
operator corresponding to k=2 and has even parity under inversion. 
Looking at (6.107), we see that the matrix element of the electric 
quadrupole moment operator between the states I N L M> and 
IN'L' M'> of a many-electron atom will be proportional to the CoG 
coefficient <L' M' I 2 q, L M> where -2<q<2. This immediately 
gives the selection rules 

b,.L=O, ±1,±2 (O~/~O, 0~/~1); 
(6.109) 

b,.M=O/ ± 1, ±2. 
For transitions between the total angular momentum eigenstates 
I N J M > and I N' J' M' >, we have similar selection rules. Remem­
bering that J can take integral as well as half-odd-integral values, we 
have the selection rules 

b,.J=O, ±1, ±2 (O~/-O, l~/-t, 0~/_1); 

b,. M =0, ± 1, ±2. (6.110) 
In one-electron atoms, there is an additional restriction due to 
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parity. Thus, if there is a state of a one-electron atom belonging to 
D(I,al, there may be states belonging to Dl.'I..a>, but there can be no 
states belonging to DI.1. a>. Since the electric quadrupole moment 
operator has even parity, we have the following selection rules for a 
one-electron atom: 

t.l=O, ±2 (0+-/-0). (6.111) 
As an important corollary of these selection rules, let us consider 

the expectation value of the 21-multipole (electric or magnetic) 
moment operator in an angular momentum eigenstate ; this is 
<N j m I T,P) I N j m>. This expectation value vanishes unless 
I/-j I ~j~l + j. i.e., unless 1s;;.2j. Thus, a spin-zero particle has zero 
expectation value for the dipole moment, or, in other words, a spin­
zero particle cannot possess any dipole moment. Similarly, a spin­
zero or a spin-l particle cannot have any quadrupole moment, etc. 

PROBLEMS ON CHAPTER 6 

(6 .1) Show that every class of S,. must contain either all even or all odd 
permutations. 

(6.2) Show that all the ' classes of Sn are self. inverse classes. 
(See Problem 3.13 for definition.) 

(6.3) For a IYltem of n identical object •. ahow that 
(a) (j k) (j m) (j k) = (j m) Uk) (j m) = (k m); 
(b) (j k) (j m) (j k) (j m) = (j m) (j k); 
(c) [(I j) (I k) (I m») (i j) = (f m) [(i j) (I k) (i m )]; 
(d) [(I j) (i k) (l m (I m) = (f m) [(I j) (i k) (I j»); 

where I. j. k. m <; n. 
(6.4) Generate air the permutations of S. from the generators (l 2>. {l 3). (1, 4) . 

tbat iI. starting with identity. single transpositions ( (1 2). (1 3). (1 4) ). product 
of two generatort «12) (1 3). (\ 3) (1 2) . .. . ). product of three generators. etc. 
Show that you let exactly 24 dlltinct elements. [Hint: Use the properties given 
in Problem (6.3).1 . 

(6.S) Let J 1 and J'I. be two angular momenta . 
(a) Show that if J1 commutes with Jz• the vector K=J1-JZ (with 

components K,.=Jl .,-J2.,. etc.) is lIot an angular momentum. 
(b) Show that K=J1-J! is an angular momentum if the components 

of J 1 and J 1 obey the commutation relations [h., 12.,1=0. [/l .,. J21/]=i1i J2:, 

[111:' JIIa]=-i1i lh. and their cyclic permutations. 
(6.6) Let U and V be two vector operators. 
(a) Show that 

-+1 
L (-I)'" U", V_",=U. V!!!To~O). 

'"--1 
(b) Show explicitly that the operator To(O) constructed above is a scalar 

" .. \ 
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operator. [Hint: On using (6 .79) on the left hand side of the above equation. 
you will get a factor 1: (-1)'" D"",(l) D h -",(I). By looking at the matrix (6.77) 

1/1 . 
you can show that (-1)'" D"_,,,(U =( _1)1 D-z,m(U*. This gives the factor 
~ (-1)1 D"",(l) D_z,,,,(1)*, which is equal to(-l)1 bm - I owing to the unitarity 

m 
of D(lI. The result follows.] 

(6.7) This is the generalization of the above problem. If U(k) and V(k) are 
two tensor operators of the same degree k, show that 

• k 

I.: (_1)0 U o(k) V -o(k) 
q--k 

is a scalar operator. (This is known as the scalar prodllct of two tensor opera-

tors.) [Hint: You will have to show in generalfrom (4. 73b) that 
(-1)0 D",'-o(k)-(-l)m D-m'o(k)*.] 

(6.8) Given that one angular momentum is jz=!. obtain the e-G coeffici­
ents lceepingh, m1 and m general. You will have a 2x2 matrix with the row 
index mz=±l and the column indexj=h±l. -

(6.9) Show that if V is replaced by J in (6 . 7i), it becomes an identity. 
that is, i[t.J, J]-b !MJ. 

81b1Joarap1aJ for Cllapter 6 

Edmonds (1968); Englefield (1972); Eyring, Walter and Kimball (1944);. Fano 
and Racah (1959); Heine (1960); Judd (1969); Kuhn (1969); Locbl (1968); 
Mcssiah.(196S), Chapter 14; Rose (1967); Rotenberg, Bivins, Metropolis and 
Wooten (1959); Slater (1960); Slater (1963) 



CHAPTER 7 

Crystallographic and Molecular 
Symmetries 

Crystals distinguish themselves by a regular arrangement of 
the constituent atoms in three dimensions. A crystal cari be thought of 
as made up of a lattice and a basis.l A lattice is merely a regular pattern 
of points in one, two or three dimensions. If with each point of the 
lattice (called a lattice POillt), we associate a basis containing a certain 
number of atoms, the resulting structure is a crystal. We assume that 
the lattice extends to infinity in all the three directions (which may be 
taken care of by the periodic boundary conditions). 

The symmetry of the crystal plays an extremely important role 
in the study of the properties of crystals such as diffraction of waves 
from crystals, the electronic structure of crystals, etc. Various other 
phenomena such as the colours exhibited by crystals having impuri­
ties and defects, paramagnetic resonance of impurity atoms and 
Mossbauer effect studies of an impurity ion in a host crystal also depend 
on the symmetry of the environment of the impurity atom. It is but 
natural, therefore, that group theory is an essential and helpful tool 
in the study of various solid state phenomena. 

Owing to the assumption of the infinite extension of a crystal in 
all directions . there are severe restrictions on the possible rotational 
symmetries of a crystal. For example, a molecule may have an n-fold 

lKittc, (1976). 
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symmetry where n is any positive integer including infinity. However. 
in crystals, only some values of n are allowed. 

The geometrical symmetry transformations of a crystal are of 
three types: (i) translations, (ii) rotations, reflections and inversion, 
which are known as point symmetry operations, and (iii) combinations 
of the above two types of operation. When the group of transfor­
mations of a certain system consists of operations which leave one point 
of the system undisplaced in position (i.e., operations of type (ii»), it is 
called a point group. Examples of a point group are C4V> 0(2), 0(3), 
etc. Groups containing space translations are not point groups. The 
crystal symmetry groups can therefore be divided into two categories­
the crystallographic point groups, which leave at least one point of the 
crystal undisplaced, and the crystallographic space groups, which include 
the tni.nslational symmetry of the crystals. The molecules, on the other 
hand, possess only point symmetries, except in the case of very long 
chain polymer molecules which may be thought of as having some 
translational symmetry and which will not be considered here. 

In this chapter, we shall study the crystallographic point and space 
groups, the molecular point groups, the double groups, and their 
irreducible representations. The irreducible representations of the space 
groups will be dealt with in the next chapter. 

7 .1 Crystall\)gra~hic Point Groups 

The requirement of translational symmetry in the crystals puts a 
limit on the number of possible crystallographic point groups. This can 
be easily seen as follows. First we note that all the lattice points in a 
lattice are equivalent to each other in the sense that the lattice as seen 
from one lattice point looks exactly the same as viewed from any other 
lattice point. This means that if the lattice is invariant under a rotation 
of 21t/n (n a positive integer) about some axis passing through a lattice 
point, then a rotation of 21t/n about a parallel axis passing through any 
other lattice point is also a symmetry transformation of the lattice. This 
imposes severe restrictions on the possible point groups. In fact, it is 
an elementary problem of solid state phy~ics2 to show that the only n­
fold rotations consistent with translational symmetry are 11=1,2,3,4 
and 6. There are altogether 32 crystallographic point groups which 
we shall enumerate below. 

If we choose the point which is invariant under the point group 

2Azaroff(1960), pp.16-17. 
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. as the origin of a cartesian coordinate system, then a point group would 
contain only the following types of operation: 

(a) rotations about any axis passing through the origin, 
(b) reflections in planes passing through the origin, 
(c) inversion. 

It should be noted that the operations of the above three types are 
not independent of each other. Anyone of these operations can be cons­
tructed by suitably combining the remaining two types of operations. 
Thus, the inversion can be thought of as a rotation through 7t about 
an arbitrary axis passing through the origin followed by a reflectio'1 in 
a plane perpendicular to the axis and passing through the origir •. 

A rotation followed by a reflection or the inversion is called an 
improper rotation as against a proper rotation. We can easily verify 
that the product of two proper rotations or of two improper rotation& 
is a proper rotation, while the product of a proper rotation with an 
improper rotation is an improper rotation. 3 

It is also expedient to note that the following pairs of point group 
operations commute with each other: (a) inversion and any other 
operation, (b) two rotations about the same axis, (c) rotations through 
7t about two perpendicular axes, (d) a rotation and a reflection in a 
plane normal to the axis of rotation, (e) a rotation through 7t and a 
reflection in a plane passing through the axis of rotation, and (f) two 
reflec1ions in perpendicular planes. These can be easily verified by per­
forming the operations on a familiar object such as a book. 

7.1.1 Enumeration of the thirty-two point groups. We shall 
now enumerate the 32 crystallographic point groups in three dimen­
sions . In Section 1 .1, we have Introduced the concept of a group by 
considering the example of a square. In general, if we have a regular 
polygon of n sides, a rotation through 27t/n about an axis normal to 
the plane of the polygon passing through its centre is a symmetry opera­
tion for it. The cyclic grou p consisting of the 11 rotations· (Cm c,.z, ... , 
cnn= E) is usually denoted by4 (the same symbol) Cn. 

The only rotational groups consistent with translational symmetry 
in crystals are C1 , C2 , C3 , C4 and CG• The geometrical patterns having 
these symmetry groups are shown in Fig. (7.1). Such figures, which 
show the projection of the atoms on a plane, are called stereographic 
projections. In this figure, and in the following figures in this chapter. we 

Sit is exactly analogolls to the products of + 1 and -1 among themselves. 
fWe shall use the Schoenflies notation for the point groups. Another notation 

known as the international notat ion is explained at the end of this section . 
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shall derote a point above the plane by + and a point below the plane 
by o. The nature of the rotation axis is denoted by a symbol in the 

(.' ... + ............ ~ .. \ 
: : 
.... i 

·"~ .............. __ •. : •.. l 

.... + ............ . 
:' .... +\. 
; ~ : 
\ ... 7: ............. / 

C1 c. c, c . C, 

FIGURE 7.1 Stereographic projections fo r the point groups Cn 

centre of the circle. Thus, a filled ellipse denotes a twOfold axis, a filled 
triangle a threefold axis, a filled squa re a fourfold axis and a filled 
hexagon a sixfold axis of proper rotations. The corresponding unfilled 
symbol (see Figs; (7.4) and (7.7» denotes an n-fold axis of improper 
rotations . 

We can c btain fh 'e more point groups by introducing an additional 
~ymmetry element- reflection in the horizontal plane denoted by a". 
We denote the group of order two, (E, all), by CII •. Noting that all 

commutes with a rotation about the vertical axis, we see that the 
resulting groups, denoted by enll, are the direct products of Cn with the 
group (E, all), or 

7 Cn,,=Cn <8> CIII. (7.1) 
The group Cn" conta ins 2n elements. The geometrical patterns having 
these symmetry groups are shown in Fig. (7.2). The presence of a hori­
zontal reflection plane is indicated by drawing a full circle rather 
than a broken circle. 

FIGURE 7.2 Stcrcographic projec tions for lhc point groups C"" 
Four more point groups can be obtained by adding a vertical 

feflection plane (passing thro ugh the n-fo ld axis) to the last four groups 
of Fig. (7. I). Such a reflection plane, pass ing through the axis of 
n-fold rotational symmetry, implies the existence of 11-1 other vertical 
reflection planes, all passi ng through the axis of rotation. These 
groups ar.;: denoted by CII. and their stereographs are sho\vn in 
Fig. (7.3). The reflection planes are shown by.solid lines. Although 
these groups also contain 211 elements, they cannot be expressed as. 
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direct products of two smaller groups. This is because a reflection 
does not commute with a rotation about an axis in the plane of the 
reflection, as can be readily seen. 

FIG U RE 7.3 Stereographic projections for the point gro~lps en v 

In the above case, since the 'vertical' and tbe 'horizontal' are not 
distinguishable for Cl , we do not have a new group such as Cl y• In 
other words, the group C l y is identical to C 1h . 

We may now add the inversion symmetry J to the fest five groups. 
Let us denote the group of order two, (E, J), by the symbol S~. This 
group is isomorphic to C1h . Since inversion COrllll1utes with a1l the 
rotations, we could have five direct-product groups, which may be 
denoted by 

S.!.II = CII @ S~. (7.2) 

But not a ll of these are new groups" In fact, if n iseven(II = 2,40r 6), 
then CII ® S2 is identical to ClIy • In the remaining two cases (II = 1 and 
3), we have two new groups S~ and S6' A third group SI' which is distinct 
from all the point groups hitherto considered, consists offour elements 
which are powers of the element JC1 = SI' i.e., Sl = (E, S~, C42, S~3), 
noting that ]2= E. These groups areshown in Fig. (7 .4). The patterns 
with the symmetry groups S2 ulid S6 have inversion symmetry, whereas 
the one with the group SI does not. The groups S2 and S6' as stated 
before, are direct products C1 ® S~ and C3 ® S~ respectively, but S4 is 
not a direct product of two smaller groups . 
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FIGURE 7.* Stcn;ographic projections for the point groups Sol 
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The 17 point groups discussed above contain only one axis of 11-

!old symmcrty. We can obtain new point groups by int roducing axes 
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of symmetry in the horizontal plane in addition to the vertical axis. A 
horizontal axis ofn-fold symmetry in conjunction with the vertical axis 
of n-fold symmetry implies the existence of n-l other horizontal 
axes of m-fold symmetry. If we take m=2, we have four new groups 
denoted by Dn and shown in Fig. (7.5) . 

. --,; ... ~ +;0 - .......... 
, . , , . . , . , . . \ 

~ -------.j.----- --~ , . . 
, I " , . , , 
.',---~-+: .... / 

02 

FIGURE 7.5 Stereographic projections for the point groups Dn 

Now we add the horizontal twofold axes to the five groups Cnh 
of Fig. (7.2). We get four new groups denoted by Dnh and shown in 
Fig. (7.6). C1h with the horizontal twofold axis is identical to C2V ' The 
group Dnh can also be thought of as arising from the groups Dn by the 
addition of a horizontal mirror plane. This can be easily seen by 
comparing Fig. (7.5) with Fig. (7.6). The groups Dnh have 4n elements 
and have inversion symmetry for even n~ 

o 
2~ 

o 
3~ 

o 
411 

o 
611 

FIG URE 7.6 Stereographic projections for the point groups Dnh 

Finally, two more groups denoted by Dnd for n=2 and 3 can be 
obtained by adding diagonal reflection planes bisecting the angles 
between the horizontal twofold axes to the groups Dn. This gives us 
two new groups shown in Fig. (7.7). 

FIGURE 7.7 Stereographic projections for the point groups Dnd 
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The 27 point groups enumerated above have one principal n-fold 
a;<.is (which wei, ha ve chosen as the vertical) and may also have n two­
fold axes in the horizontal plane. These are known as the simple point 
groups and we have discussed them in increasing order of complexity. 
These are also the point groups that would occur in two-dimensional 
crystals. There arc five more groups of higher symmetry in which there 
are more than one axes of higher than twofold symmetry (m>2), i e., 
there is no unique principal axis of higher symmetry. These groups are 
also characterized by the exi~tence of four threefold axes (e.g., the four 
diagonals of a cube) making equal angles with three mutuaIly perpendi­
cular directions. In fact, due to these symmetry properties, these 
groups refer to cubic systems. They are discussed below. 

The largest point group, known as 0", is the full symmetry group of 
a cube ; Fig. (7 .8). It has 48 elements among which there are 24 proper 
rotatio.ns and 24 improper rotations. The 24 proper rotations, which 
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FIGURE 7.8 To illustrate the symmetries ofa cube (see text) 

themselves constitute a subgroup of 0" denoted by ° and called the 
cubic group of proper rotations, are listed classwise in Table (7.1). 
Their effect on a cartesian coordinate system (x.)" z) is also indicated 
in the last co lumn of the table. 

The remaining 24 elements of 0" are obtained by combining the 
24 elements of ° with the inversion operator J, which has the effect of 
changing (x,y, =) to (-x.-.l',-z). The com posite operations are 

. denoted by JC42, JC3 • etc. Note that J itself is a symmetry o~eration 
of the cub;!-. The additional 24 elements give live new classes, there 
being 10 classes in 0" in all. It should be clear that 

0,, = 0 ® (£,J). (7.3 ) 
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TABLE 7.1 THE ELEMENTS OF THE GROUP 0 LISTED CLASSWISE 

ALONG WITH THEIR OPERATION ON A COORDINATE SYSTEM (X,y,Z) 

Class 

(E) 

OC1,3C43) 

or (6C4) 

(3 C,2) 

(4C3, 4C32) 

or (8C3 ) 

Operation 

Identity operation (1 element) 

Rotations through 90° and 270° about x , yand 
z (6 elements) 

Rotations through 1800 about x , y and z 
(3 elements) 

Rotations through 1800 about a line joining 
centres of any pair of opposite edges (6 elements) 

Rotations through 1200 and 2400 about the 
four cube diagonals (8 elements) 

(x, y, .:::) goes to 

(x, y, ;:) 

(y ; - x , ;:), etc. 

(- x , - y, z), etc. 

(y, x, - z ), etc. 

(y, z, x), etc. 

It is interesting to note that the number of permutations of (x,y, z) 
among themselves is six, and we can attach a positive or a negative sign 
to each of them in eight different ways; the total number of arrangements 
of ±x, ±y and ± z is thus 48. In other words, 48 is the numbcrofways 
in which we can choose a cartesian coordinate system with axes parallel 
to the cube edges. 

The full symmetry group of a regular octahedron is the same as 
that of a cube. This can be seen by constructing a regular octahedron 
with its vertices at the six face centres of a cube. The groups 0" 
and 0 are therefore also commonly known as the full octahedral grollp 
and the octahedral group of propel' rotations , respectively. 

Another important group is the symmetry group of a regular tetra­
hedron, usually denoted by Td . This has 24 elements and is also a 
subgroup of 0". A regular tetrahedron can be inscribed in a cube by 
joining the points a. b, c and d marked in Fig. (7.8) \vith each other. We 
note that the inversion is not a symmetry operation for the tetrahedron , 
nor is the four-fold rotation . But the two operations applied one after 
another leave the tetrahedron invariant, except for a different labeling 
of the points a, b, c, d. This can be seen from Fig. (7.9), where we have 
taken C, to be a rotation about the z axis of Fig. (7.8). The 24 elements 
or T" sep :lratecl into classes arc: (E), (3C42),(4C3, 4C32), (3JC4 , 3JC4

3) 

and (GJCJ. The group T" is isomorphic to the group O. 
The subgroup of Tel contai ning the 12 proper rotat ions (E, 3C/, 

4C3 , 4C32) ;s denoted by T. But notice that in the group T, the clements 
C3 and C3~ helong to different classes, unlike in the larger groups T""O 
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and 0". The class structure of Tis (£), (3C,2), (4C3) and (4CS
2
). This 

is because there is no operation in T which can reverse the direction of 
a cube diagonal (seethe discussion of rule (ii) for finding classes in 
Section 1.3). 

J c.! 
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FIG URE 7.9 The improper rotation JC4 is a symmetry 
transformation for a regular tetrahedron 

Finally, we can construct a group of order 24 by taking the direct 
product of T with the inversion group (£, J). This group is denoted 
by T" and is also a subgroup of 0". However, it is not the symmetry 
group of a regular tetrahedron. It is also not isomorphic to 0 or Td, 
since T" has eight classes. 

It will be convenient to list all the 32 crystallographic point groups 
enumerated above. Although we shall use the Schoenflies notation des­
cribed above, there is another notation known as the International 
notation which is often used by crystallographers. In this notation, an 
n-fold axis of proper rotations is simply denoted by n, while n is used to 
denote an n-fold axis of improper rotations. A reflection plane is denoted 
by m and is written in conjunction with n in the form nm or nlm; the 
latter symbol stands for a horizontal reflection plane. In the list below, 
the International notation is shown in parentheses after the Schoenflies 
symbol for point groups: 

T(23) 

C2 (2) 
C2h (21m) 
C2v (2mm) 
S2 (1) 

C3 (3) 

C3" (6) 
C3v (3m) 

D2 (222) D3 (32) 
DZh( g g g )D3h (6m2) 

. m m m 
D2d (42m) D3d (3m) 
Td (43m) Th (m3) 

C4 (4) Cs (6) 
C4" (4Im) CSh (6Im) 
C4v (4mm) Csv (6mm) 
S4 (4) Ss (3) 
D4 (422) Ds (622) 
D4h (4Immm) DSh (6Immm) 

0(432) 

A number of point groups are isomorphic to each other, as we 
have mentioned from time to time. The following list of isomorphic 
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groups will be helpful. The number in the parentheses after eacb 
sequence denotes the order of those groups. 

(a) C2, CIII and Sz (2); 

(b) C 4 and SI (4); 

(c) CZv , Ct" and Dz (4); 

(d) C~v and D3 (6): 

(e) C v • D4 and Dtcf (8); 

(f) Csv , D" D~h and D~{I (12); 

(g) 0 and Ttl (24). 

Before closing this section, we list in Table (7.2) the point groups 
which can occur in the seven three-dimellsionallattice systems in in­
creasing order of symmetry. A system can also have point groups of the 
systems which have preceded it in Table (7.2). The last entry for 
each system shows the point group with the highest symmetry for the 
system.s 

TAOLE 7.2 THE POI NT GRO UPS CORRESPONDING TO THE SEVEN 

LATfIC[ SYSTEMS 

System 

Triclinic 

Monoclinic 

Orthorhombic 

Trigonal 

Tetrag<>nal 

.-Iexagonal 

Cubic 

Point groups 

Ch S2: 

CII"C2,C2h: 
C2 v • D 2 , D2h : 

Ca. Ss, C311, D3• D3d ; 

S~. D2d • C4• C4". C,", D,. D4h: 

Ce, C3h • D31" C61, , Cev• D6 , D6h; 

T. T". Ttl,O, 0". 

7.2 Translation Group and the Space Groups 

Consider a linear lattice of N lattice points with the lattice cons­
tant a. We employ the periodic boundary conditions so thatx-Na=x, 
where x is the coordinate measured along the linear lattice. Such a 
bttice is invariant lInd::r translations by multiples of a along the lattice. 
Let Tl denote the operator for translation by a and let Tn denote the 
operator for translation by a distance na. Then 

T1x = x - a, Tl x=(TI )"x= x-na. (7.4) 

5 Landau and Lifshitz (1968). Chapter 13. 
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Owing to the periodic boundary conditions, we have 

TNx = (Tl)Nx = x-Na= x_ 

239 

(7.5) 

The powers of Tl clearly generate a cyclic group of order N. We shall 
denote this group, known as the tronslatioll group, by 

T={TN=E, Tl , T?'" .. , TN-I}. (7.6) 

Each element of T is a class by itself since T is an ab~lian group. 
The translation symm~try op~rators of a thr<!e-dimensional lattice 

also constitute a group. Let the lattice be generated by the three prim i­
tive translation vectors aI' az and a3. We use the following periodic 
boundary conditions; 

r-Nlal=r, r-NZa2=r, r-N3a3-r, (7.7) 

where r is the position vector of some point in the lattice and the num­
ber of primitive cells is N1NzNa• 

Let the operator T (Ill' 112,113) denote a translation (hrough a 
vector t (n1' /12' 113) given by 

T (n1' 112, 113) r = r-I'lal-llza2-113a3 = r- t(lIl' /12' 113), (7.8) 

where l :s;;,nj ::;;.Nj. It can be seen that the successive application of two 
translation operators is equivalent to another translation operator. 
Thus, 

T(m l • /1/2' 111 3) T(lI l , . lIz, lIa)r=Tl1l1,+111, 1112+ 112, IIb+ 113)r. (7.9) 

All such operators constitute a group which is of order N1NzNa. This is 
the full translation group Toe a three-dimensional lattice. The identity 
element is T(O, 0, O)=T(Nl' Nz.N2 ). All the translations of the 
group T commute with each other; the group is therefore again abelian 
though not cyclic. 

An actual three-dimensional lattice will be invariant under the 
point group transformations as well as the tra n~lation s. In the case of 
complex crystals with more than one atom per primitive cell. it may hap­
pen that the crystal is invariant under a poi nt group operation f()llowed 
by a translation, while neither of these individually is a symmetry opera­
tion of tile crystal. The system shown in Fig. (7. 10) provides an exam ple 
of such a crystal. Here we have a one-dimensional lattice with lattice 
constant a. Each lattice point, denoted by a dot, has two atoms de-

+ 

I 0 I 

:..:.<;....----a-~ 
• I I • 

+ 
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+ 
FIGURE 7.10 A onc-dimensional system with a twofold 

screw rotational symmetry 

o 

• 
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noted by + and 0 associated with it. The lattice translation vectors are 
integral multiples of a. In addition, the system is invariant unde~ a 
translation by (211+ l)a/2 followed by a two-fold rotation about the 
solid line. Such operations are called screw rotations. Thus, the system 
of Fig. (7.10) has a two-fold screw rotation axis as a symmetry element. 

Similarly, a crystal is said to possess a glide reflection plane or 
simply a glide plalle if it is invariant under a reflection in a plane followed 
by a translation through a vector lying in the plane. 6 As in the case of the 
screw rotation axis, the vector itself need not be a symmetry translation 
vector of the lattice. Note that the two constituent operations of a 
glide plane, as well as those of a screw axis , commute with each other. 

The full symmetry group of a crystal is called its space group. 
It is clear from the above discussion that the elements of the space group 
are combinations of the point group operations and translations. A 
general element of a space group may therefore be denoted by {AI.:::}, 
where A. is a point group operation and.::: is a translation, which is not 
necessarily an element of the translation group of the crystal. The 
operation of {A I.::} on the position vector is 

{A I.:::} r=Ar-.::. (7.10) 
The successive operation of two such elements can be worked out easily 
as follows: 

which gives 

{B 1'::::2} {A I'::l} r={B 1'::::2} {Ar-.!l} 

=BAr-B'::::1-.!2' 

(7.11) 

The identity element of the space group is clearly {E I O} and the inverse 
of an element is given by 

{A I .:::}-I= {A-I I -A-I.:::}, (7.12) 

which can be easily verified by using (7.11). 
The space group of a crystal will b(! denoted by S in this and the 

next chapters. It should be borne in mind that the translations do not in 
general commute with the point group operations. The apparently 
complicated notation just developed is therefore inevitable. 

The three-dimensional crystals can be divided into seven systems 
and fourteen types. The translational symmetry of a crystal is complete­
ly determined by the type to which it belongs. In c;>ther words, each 
type has its own translation group. It is known that there are altogether 

GFor a lucid exposition of screw rotations and glide planes, see Azarotf (1960). 
pp. 20-23. 
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230 crystallographic space groups.? We shall not enumerate them here. 
Suitable references may be found in the bibliography. 

We have seen during the discussion of screw axes and glide planes 
that if {A I .::} is an element of the space group, it does not necessarily 
follow that {A I O} is also in the space group. In other words, {A I O} is 
not necessarily a symmetry operation of the crystal. A space group S 
in which all such operations {A I O}(for all AE G, the point group) 
are also elements of S is called a symmorphic group. Of all the space 
groups . there are 73 symmorphic groups and 157 nonsymmorphic 
groups. It should be clear that a space group would be symmorphic if 
and only if all ::::'s are equal to t's , the lattice translation vectors. Thus. 
a symmorphic space group is one which contains no ~crew axes or glide 
planes. 

In a given space group, every point group operation A has asso­
ciated with it a characteristic smallest translation vector .2 of the form 
~=~aJ+7]a2+ ~a3 with O:::;; ~ , 7] , ~< 1. The point group element A 
always appears in the space group in the form {A I ~+t} where t is a 
lattice translation vector. If 2. is zero for all the point group ·elements . 
we have a symmorphic space group, for then operations of the 
form {A I O} are elements of the space group for all A E G. However, if 
~ is nonzero for some point group elements, we have a nonsymmorphic 
space group. Consider a crysta l of diamond as an example. The 
lattice is face centred cubic, so that the point group is the full octa­
hedral group 0". However, the crystal has a basis of two atoms per 
lattice point, one at (0, 0, O}and another at (1/4, 1/4, 1/4) in terms of 
the orthogonal translation vectors a1 , a2 and a3 of the associated si 111 pie 
cubiclaltice. Now it should be properly understood that although the 
lattice is invariant under the octahedral group 0" , 110t all the operations 
of Oh leave the cry stal invariant. . In other 'words, the diamond crystal 
which bas a tetrahedral symmetry is invariant only under the operations 
of the tetrahedral group Td . This subgroup of 0" has 24elements and 
all of thGse appear in the ~pace group in the form {A I t} with ~=O, 
where A E Td • As for the remaining 24 elements, it can be verified by 
looking at the crystal structure of diamond that an operation by one of 
these followed by a translati on through one-fourth of the cube diagonal 
leaves the crystal invariant. These elements therefore appear in the 
space group in the form {8 I ~+t} where ~= (al +a~+a3)/4 for all Bin 
0" but fi:>t in Td . In either case. t is any translation vector of the face 
centred ollbic latti-ce. 

'Buerger (1967). 
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Even in the case of symmorphic groups, the space group is not a 
direct product of lhe point group and the translation group because of 
the noncommutativity of the operations . It can, however, be shown 
that the translation group T is a normal subgroup of any space group 
(symmorphic or nonsymmorphic). Let us denote by {{A I ~+t} } the 
set of operations generated by giving all poss ible values to the lattice 

. translation vector t while keeping A and ~ fixed . Consider, then, the 
right and the left cosets of the translation group T ={ {£ I t}} with 
respect to a particular element {A I Q} of S: 

{ {£ It} }{A I ~}={ {A I ~+t} }, 
(7.13) 

{A I ~}{ {£ It} }={ {A I ~+At} }. 
As t runs over all the translation vectors of the lattice, the two sets 
on the right of (7.13) are clearly seen to be identical, whether ~ is a 
translation vector or not. The translation group is thus an invariant 
subgroup of symmorphic as well as nonsymmorphic space groups. 
It can be further shown that the factor group SIT is isomorphic to the 
point group G. 

7.3 Molecular Point Groups 

Molecules may possess any of the crystailographic point group 
symmetries enumerated in Section 7.1. In addition, they may belong 
to other symmetry groups containing, for example, fivefold rotational 
: ymmetry or the full rotational symmetry about an axis. Because 
molecules have no restrictions of translational symmetry, they can, in 
principle, possess an n-fold axis of symmetry where n is any positive 
integer or infinite. We shall discuss below a few of these additional 
point symmetry groups whic'h occur in molecules. 

C .. , C .,v. A diatomic molecule such as that shown in Fig. (7.11) 
or, in fact , any linear molecule, has the full rotational symmetry about 
the line joining the atoms. Examples of such molecules are LiH, NH, 

A 

6 

FIGURE 7.11 A diatomic molecule containing two 
distinct at':>nlS A and B has the symmetry group 
C.,V 
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CO, etc., and, in general, MX where M is an alkali or hydrogen atom 
and X is a halide atom. The rotation group which is denoted by Coo in 
the present notation is just the axial rotation group denoted by 50(2) 
in Chapter 4. Moreover, when a system ha.s axial rotationa I symmetry, 
it also has reflection symmetry in any vertical plane p1ssing through the 
IineAB. This makes the full symmetry group of tile molecule AI3 COOl' 
rather than Coo. It should be noted that a reflection in a plane pas~ing 
through AB does not commute with a rotation about the line AB : 
Coov is therefore not an abelian group. 

The class struct ure of C oov is such that reflections in a II vertica ! 
planes belong to a class. Moreover, rotations through </> and --</> abou t 
AI3 belong toaclass. This can be easily verified by looking at Fig. (7 . 12) . 
with- reference to the figure, let R(</» denote an antic10ckwise rotation 
about a vertical axis passing through the centre of the circle shown <tlld 
let Gv denote a reflection in the vertical plane </>=0. The operation of 
a.-1 R(</»CJv on an atom at position 1 with azimuthal angular co­
ordinate ex takes the atom successively to the positions 2, 3 and 4 shown 
in Fig. (7.12). The combined operation taking an atom at (Y. to one at 

, '" 
FIGURE 7. 12 The rotation ~ 

R(~) and R(-.p) are conjllgal~ 
to each other in the group 
Cmv 

ex-</> is equivalent to the rotation R(-</». Hence Gy- 1 R(</»Gv" 

R( -</», showing that R(</» and R( -</» belong to a class. 
Dooh. If the diatomic molecule of Fig. (7.11) has both identica I 

atoms as in Fig. (7 . 13a), then it has other symmetry elements also. This 
is also true of linear molecules such as ABA and ABBA shown in Fig~ 
(7 . 13 b) and (7 . 13c). In addition to the axial rotational symmetry abou t 
the line of atoms, we notice that the molecule has a reflection symme­
try in a 'horizontal' plane passing through the centre of the molecule 
denoted by CJJ, It also has a two-fold rotational symmetry C2' about 
any horizontal axis8 passing through the ce.ntre of the molecule. A 

8Thc prime is used in C3' to denote that the axis of rotation here is different 
from tbe main symmetry axis which i~ the line l r atoms. 
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rotation through 7t about the vertical axis together with CJh gives the 
inversion symmetry J. The inversion together with C2' gives reflection 

A 

A 

A B 
FIGURE 7.13 Molecules having 
the symmetry group D",h. Exam-

B pIes of type (a) arc H2 • N2• 02. 
C12 • etc.; an example of type (b) 
is CO2 while C2H2 is a molecule 

A B of type (c). 

A 

A 
(a) (b) ( cl 

in a vertical plane, cr •• The class structure of D .. h is therefore as 
. follows: the two rotations R(4)) and R( -4» belong to a class; JR(4)) 
and JR( -4» belong to a class; E and J constitute separate classes as 
they commute with all the other elements; all vertical reflections cr. 
belong to a class; finally, all Jav=Cs' belong to a class. 

The group D", (without the horizontal reflection plane) indicates 
axial rotational symmetry about the line of atoms and twofold 
symmetry about any horizontal axis passing through the centre of the 
molecule. It is then clear that 

D .. h=D .. ® (E, J). (7.14) 
Complex molecules may also possess other symmetries such as 

fivefold, sevenfold, etc. It is easy to obtain all point groups containing a 
principal axis of a given n-fold symmetry. For example, there are 
altogether five point groups each having a five- fold rotation axis. These 
are Co, Cs., CS/" D5 , and DSh. It is left as an exercise to obtain their 
stereographic projections. 

7.4 Irreducible Representations of Point Groups 

The general method of obtaining the character table and the irre­
ducible representations of point groups has been discussed fairly in 
detail by considering the example of c.c .. and C$' in Sec. 3.6. We shall 
therefore not consider the character tables of all point groups separately. 
However, as a general principle, we note that when a group can be 
expressed as the direct prod uct of two smaller groups, its character 
table can be obtained from those of the smaller groups as discussed in 
Section 3.11. We shall illustrate this byconsidering two examples here, 
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one for the cubic groups 0 and 0" and other for the continuoul 
groups C ~v or D. and D .... The character table of 0 is worked out in 
the following example. 

Example: Here we shall work out tbe character table of tbe group 
O. This sroup bas five classes given in Table 7.1. It bas five irreducible 
representations whose dimensions are found from the equation 

I~ + I~ + I~ + I] + I; = 24, (7.15) , 

which gives II .... /2 = I, I) = 2, 14 - I, = 3. By convention, we denote 
the one-dimensional representations by r l and r2, the two-dimell­
sional one by r 12, and the three-dimensional representations by r;" 
and ris . We take r l to be the identity representation. 

We note that all the classes of 0 are self-inverse, so that the charac­
ters in all the irreducible representations will be real. 

10 the second one-dimensional representation f2' tbe class (6C4) 
can have characters ± I, ± i. the classes (3q) and (6C2) can have 
characters ± I, and the class (8C) can have characters 1. CAl, ~2, 
where ~ = exp (2ft i/3). But we can exclude the complex numbers al 
noted above, so that the class (8e) must have character I, while the 
other three classes may bave characters ± 1. To make r 2 orthogonal 
to r .. the only possibility now remains 'that the class (3q) should 
have character I and the classes (6C4) and (6C2) should have 
characters - 1. 

We now come to the two-dimensional irreducible representation 
ru and denote the characters of the five classes to be (2 u bed). 
Orthogonality of r 12 with fl and r2, and normalization of r l2 gives 
the equations 

2 + fia + 3b + 6c + 8d = O. 
2 - 6a + 3b - 6c + 8d = O. 

4 + 6a2 + 3bz.+ 6c2 + 8d1 = 24. 

The first two of tbe above equations give 

2 + 3b + 8d = O. a + c = O. 

(7 .16a) 

(7.16b) 

(7.16c) 

(7.17) 

tNe need one more equation to determine tbe four constants. Witb 
this view. we wish to use (3.65) involving products of classes. The 
simplest class to deal with in the present group is (3q) or explicitly 

(Cl.. C},. Clz)' We consider the product of this class with itlClf. Not­

io, that Cl.Cl, .... Cl,C:a .... C1 •• we get 

(3C2J(3CD - 3(E) + 2 (3C~). (7.18) 
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Using (3.65) witl;l ; = j = 3, and a331 = 3, a 333 = 2, a332 = a334 = 
am = O. we find 

3b2 = 4 + 4b =- b = 2 or - 2/3. (7.19) 

When this IS used in (7.16c) and (7.17), the choice b = - 2/3 gives 
an absurdity, while b = ,2 gives d = -I, a = c = O. Thus -we have 
the characters for r 12 , 

Now we have two three-dimensional irreducible representations r;, 
:lnd r;s' Assuming. for any of them, the characters to be (3 p q r $), 
the orthogonality with the first three representations and the normali­
zation give the fOUT equations 

3+6p+3q+6r+8s= 0, 
3-6p+3q-6r+8s = Ot 

6+6(1-8s = 0, 
9+6p 2+3q2+ 6I' L t-lSs2 = 24. (7.20) 

These give the solut ion q = - I; s :0: 0, P = ± I, r = =r= 1. There is 
apparently two-fold arbitrarIness, but it is consistent with the fact that 
tbele are two three-dimensional' representatIOns to be worked out. 
Thu~ at one stroke, we get both the characters by choosing 
P - -To = 1 for r ;s and p =. ~r = -1 for r;s' The complete 
d'iarac:tet table for the groupO,as obtained above, together with the 
basilJ lunctions for the irreducible, representations, is given in Table 7.3. 
Varlo \l ~ notations are ill vogue for the irreducible representations; the 
nola ,ion used In Tllble(7 .3)and throughout this book is due to Bouck­
aert, Smol lichowskiand Wigner.o 

TABLE 7 .3 -THE CHARACTER TABLE OF THE CUBIC GROUP 0 

Basis func tions 

X"+.l"+=n (n even) 

x)':: 

! x2_)'~, 2:;2- x2_y''!J 

{X. y, ::} 

{~)'; ,=, ::x} 

lrr. 
repro 

I 

I r1 
r~ 

r 12 
Pl~' 

rIg' 

E 

2' 

3 

3 

-1 

o 
1 

'Bouckacrt. Smoluchowski and Wigner(1936). 

2 

-1 

-1 

-1 

o 
-1 

8e3 

-1 

o 
c 
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TABLE 7.4 THE CHARACTER TABLE OF Oh 

E 6C, 3C,2 6C1 SC3 J 6JC, 3JC,2 6JC, SJC3 

r t 1 1 

r 2 -1 1 -1 1 -1 -1 1 

r t2 2 0 2 0 -I 2 0 2 0 -I 
r tS ' 3 I -I -1 0 3 -1 -1 0 

r 2S' 3 -1 -1 0 3 -1 -1 0 

r' t -1 -I -I -1 -1 

r 2' -1 -I -I \ -1 -1 

r t2 ' 2 0 2 0 -1 -2 0 -2 0 

r tS 3 -\ -I 0 -3 -\ 0 

r 2S 3 -\ -I 0 -3 -I 0 

Having obtained the irreducible representations of 0, it is easy to 
obtain those of 0". Since 0,, = 0 ® (E, J), 0" will have ten irreducible 
representations which are direct products of the irreducible represen- . 
tations of 0 and those of the inversion group (E, J). The character 
table of 0" isgiven in Table (7 .4). Notice that each irreducible represen­
tation of 0 gives t~V() irreducible representations of O/hone of which 
is even and the other odd under inversion. 

As a second example, we take the case of the groups C mv or Dm. 
These are' nonab:!lian continuous groups and have the following 
classes: Cmv=(E, 2R~, G.) and Dm =--= (E,2R~. CI'). Each has two one­
dimensional irreducible representations, one of which is the identity 
representation and the other is orthogonal to the identity representation. 
Further, each group has an infinite number of two-dimensional 
irreducible representations. For this we notice that the real and the 
imaginary parts of (x+iy)n for any positive integer n generate a two­
dimensional irreducible representation of bothCmv andDm. The com· 
plete character table of these two groups is given in Table (7 . 5). These 
groups have no irri!ducible representations of dimensions larger than 
two. The notation for the irreducible representations which we have 
used here and in Table (7.6) is the conventional one used by molecular 
physicists and chemists. 

Finally. we consider the group D .. h which can be expressed as a 
direct product in several different ways. Thus, 

Dmh=Dm ® (E. (Ih)=Cmv ® (E, (IiI)=Cmv ® (E, J). (7.21) 
The classes of Dmh are E, 2R •• C/, J, 2JC. and Jc.~'=a,. Once 
again, each irreducible representation of Cm, or D .. gives two irredu-
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TABLE 7.5 THE CHARACTER TABLE OF COO. AND D. 

Basis functions 
.Irr. repro E 2R~ a" or Cz· 

Coo. D .. 

Al 1 x 2+y2 

A2 1 -1 Z 

El 2 2 COS + 0 (x, y) 

£3 2' 2 cos 2+ 0 (.\"2_.I"2,2xy) 

Ea 2 2 coS" 3+ 0 (x3_3xy 2, 3x2y- y3) 

cible representations of D .. T., one of which is even under inversion and 
the other odd. These are designated by the subscripts g and II standing 
for the German words geradf! (meaning ~ven) and ungerade (meaning 
odd) respectively. The character table of Doo/. is given in Table (7.6). 

TABLE 7.6 THE CHARACTER TABLE OF D"'h 

E 2R~ Cz' .I 2JR~ JC/ 

AIO 1 

Alu 1 -\ -\ - \ 

Azu -\ -I 

-42u - \ -I - \ 

E1V 2 2 cos 4> . 0 2 2 cos </> 0 

E1u 2 2 cos</> 0 -2 -2 cos 4> 0 

£20 2 2 cos 24> 0 2 2 cos 24> 0 

E2" 
2 2 ~os 24> 0 2 - 2 cos ~<> 0 

The irreducible representations of all the crystallographic point 
groups and some molecular point groups are listed in Table (7.7). 
Wherever available, the notation ofBouckaert et aUo for the irreducible 
representations has been shown on the left. This notation is generally 

10Bouckaert, Smoluchowski and Wigner (1936); Koster (1957). 
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TABLE 7.7 THE CHARACTER TABLES OF CRYSTALLOGRAPHIC AND 

SOME MOLECULAR POINT GROUPS 

E E 

1 ' 

-1 

C3 E C3 C32 

{ W w 2 w=exp(2,. i/3) 

w2 w 

C, E c4 C42 C43 

1 

-1 -1 

{ -i -1 

-1 -i 

C, I E C5 C,2 C,3 C54 

I 

{ I\' w2 W3 11'4 

11'4 W3 W 2 IV 

{ \1'2 W4 11'3 
w=exp(2,. i/5) 

w 
----

11'3 IV W4 W 2 
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TABLE 7.7 (continued) 

Cs I E Cs 

- 1 

{ w 

w5 

{ w~ 

lV~ 

C2~ 

Dl Gl S] Ll :£1 

D2 G2 S~ Z2 :£2 

D3 G3 S3 Z3 :£3 

D4 G4 S4 Z4 :£, 

C .. E 

WI TI ~1 1 

WI' TJ ' ~l' 1 

WI T2 ~a 

W.'Ta' ~2' 

W3 T6 ~I 2 

ELlMENTS OF GROUP TH[ORY FOR PHYSICI~TS 

C" 6- CS3 

-1 

w2 u:3 

11'-' 11'3 

wI 

,,,:! 

E C2 cr v 

-1 

- 1 

-1 -1 

1 

2 -1 

2C, C,2 

1 

1 

-1 

-1 

0 -2 

C6'\ CS5 

- 1 

1\'4 )1'5 

U°:! \I ' 

.".:! 11'4 

w4 w:! 

G v' 

- 1 

- I 

- 1 

o 

2m 

-1 

-l 

0 

2<1 

-1 

-1 

0 

11'=cxp(2r: i16) 

Xl 

X2 

X3 

X4 

MI r l 

M2 r 2 

M3 r3 

M, r, 

M5 rs 



-1 

Cnh-C" ~ C1h o 

,----
5z I E J 

-1 

54 E 54 C4
2 543 

1 

-1 - 1 

{ -1 - i 

-i - I 
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T "au: 7.7 (continued) 
S,=la Q9 S2' 

D2 t: 

,vI 

A'~ 

;\'3 

,\'4 

D, E 

XI MI 

X 2 "'[2 

X3 M3 

X,M~ 

X. Ms :! 

f>; E 

:! 

, 2 

C2x 

- I 

---1 

t: 

- 1 

l21' 

- 1 

- 1 

-I 

o 

C" :. 

-I 

- 1 

2C, Ct' 2C2 ' :2C:!" 

-I -I 

-1 - I 

-1 -1 

0 :! 0 0 

2C, :!l52 5l2' 

-- 1 

:! co, x :2 cos ~ .r 0 

~ cos ~x :! cos 4:r 0 

x=2r. 5 
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TABLE 7.7 (continued) 

D6 I E 2C6 2C6~ C63 3C2' 3C2" 

r . - 1 -1 

-1 1 -1 1 -1 

-1 - 1 -1 

2 1 -1 -2 0 0 

2 - 1 -1 2 0 0 

D2d E 254 C2 2C2' 2ad 

WI I 

WI' - I - \ 

W2 -I - \ 

IV2' -1 - 1 

1t'3 2 0 -2 0 0 

D3d.=D3 0') S2: 

Dnh=Dn lX) S2. 1l = 2, 4.6: 
Dnh=Dn (& (E, a,.), 11 =3, 5. 

{ w lr2 
w= cxp(2" i/3) 

)1 ,2 IV 

J - \ 0 0 



254 ELEMENTS OF GROUP THEORY FOR PHYSICISTS 

TABLE 7.7 (continued) 
0; see Table (7 .3) 
O,,=O(jl)S2 (see Table" (7.4» 7, E SC3 3C2 6C1d 6S4 

PI 1 

P2 -1 -1 

P3 2 -1 2 0 0 

P4 3 0 -1 -1 

Ps 3 0 -1 -1 

used for labeling the energy bands in cubic lattices. The labels used for 
the energy bands of the two-dimensional square lattice are shown on the 
r /'.t. There is no standard notation for the irreducible representations 
Jf many point groups. Pairs of complex conjugate representations will 
be degenerate in the case of time-reversal symmetry.!l This is indicated 
by bracketing them together. Groups which are direct products of 
smaller groups are indicated as such and their character tables are no~ 
listed. For the groups which are direct products of smaller groups with 
(E, J) or (E, ail), the additional representations are denoted by primes. 
For example, the five irreducible representations fo D4 are labeled' M; 
or Xj; the tcn irreducible representations of D4h will be denoted by Mj 
and M;' or XI and X;' with 1 <i<5. For a comprehensive list of the 
various notations in use, the reader is referred to the literature. i2 

7.5 The Double Group 

We have seen in Chapter 4 in connection with the discussion of 
SO(2) and SO(3) that they have single-valued as well as double-valued 
representations. We remarked that if, when the system has an integral 
angular momentum, its symmetry group is, say, SO(2) or SO(3), then 
,. half-odd-integral angular momenta, the proper symmetry group 
"ould be the corresponding double group SO'(2) or SO'(3). The above 
statement holds good even for systems with symmetries less th,~n SO(3) 
or SO(2). such as molecules or crystals. For integral angular momenta, 
if the symmetry group of a system is some point group G, then with 
half-odd-integral angular momenta, the symmetry group would be 
the corresponding double group G'. 

llSee Appendix C. 
12Tiokham (1964); Rosenthal and Murphy (1936); Koster (1957). 
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The cOI;cept of a qout;>le group arises from the fact tha.t certain 
systems do. not T'ctorn to their original states af{er undergoing a 
rotation of 2 .. about any axis. This was the need too introduce the 
element E (see page 138) which denotes a rotation through 2n about 
any axis. It is important to distinguish here tbe ·effect of a rotation 
through 2 .. 011 a coordinate system and that on a physical wave 
function. A coordinate system doC's return to its original state after 

. a rotation of 2 .. about any axis passing through the origin. However, 
spinor wave functions of particles with half-odd-integral spin angular 
momenta get multiplied by -1 after a rotation through 2 .. and return 
to their original values only after a rotation through 47>. Regarded 
as an operation on the spinor wave functions, therefore, E is not the 
identity element. 

7.S.1 Classes of a double group. The double group G', in 
general , contains all the operations of G plus the operations of. G 
combined with the element E denoting a rotation through 2n about 
some axis with the property (1;)2=E, the identity element. If A is an 
element of G, we shall denote the product EA=AEby A and call itthe 
barred operation. The order of G' is double tbatof G but the number 
of classes in G' is not necessarily twice that in G. The element E 
commutes with all the point group operations of G and hence in the 
particular case when A and Abelong to different classes for all A E G, 
the number of classes of G' is certainly double that of O. For every 
class of G such as (A, B, C. ... ), we have two classes in G', (A, B. C, • .. ) 
and (A, Jj, C, ... ). On the other hand, if the group G is such ~t A 
and A- belong to the same class for some A E G, the number of-classes 
of G' will be less than twice that of G. The following rules have been 
found13 for determining whether A and A belong to a class or not. 

. (i) The identity E and the operator E constitute two separate 
classes. In groups containing inversion symmetry, the inversion J 
and EJ=J also constitute separate classes. \ 

(ii) ' If A is a twofold rotation about some axis, A and A belong 
to one class if and only if there is either another twofoid rotation in 
G about an axis normal to the axis of A, or a reflection in a plane 
through the axis of A. For example, the group D2 contains two-fold 
rotations about three mutually perpendicular axes; these may be denoted 
by Czx. Cty and C2z . In the corresponding double group D,'. C,x and 
Clx are in the same class and similarly (C2Y' Cly) and (CII" Ct") ~ two 

13Koster (1957). 
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other classes of D.'. The group Ciy has reflection planes passing 
through the fourfold axis, so that C,2 and (;l belong to one class in 
the double group Cev'. However, in the double groups C2,,', C,,,' and 
Csh" C2 and (;2 would belong to separate classes for obvious reasons 
(here C2 denotes a twofold rotation about the axis of symmetry). 

(iii) For all other rotations (i.e., rotations through 27T/n where n 
>2), the classes of the barred and the unbarred operations are diffe­
rent. Thus, in the group CsY> the two threefold rotations are in a class 
(2C3). In the double group Cav', this gives rise to two classes (2Ca) 
and (2e3). The number of classes corresponding to these elements is 
doubled. 

(iv) If A is a reflection in some plane, A and A belong to a class 
(( and o/lly if there is either another reflection in a plane normal to 
that of the first or a twofold rotation about an axis in the plane of A. 
For example, the groups C2v , Cty and.CSY have perpendicular reflec­
tion planes, so that l1y and cr. belong to a class in the corresponding 
double groups. In the group C3 y> however, the reflection planes are 
not perpendicular to each other; cr. and cr. therefore belong to separate 
classes in the double group Ca:. For similar reasons, the horizontal 
reflection CJh and crll belong to one class in the double groups Dnh' but 
CJ y and cry belong to separate classes in D3l. 

(v) Finally, if the groLip G contains improper rotations, these 
rotations of the form JCn are subject to the same rules (ii) and (iii). 

These rules enable us to decompose any double group into it~ 

classes once the classes of the corresponding point group have been 
obtained. We shall illustrate the use of these rules below by consider· 
ing a few double groups to familiarize the reader \ ith their appli-
cation. 

Cn. This has the n elements Cn, C1l2, .•. , clln=E, each in a class 
by itself. The double groups Cn' are also cyclic groups of order 2/1 
with the elements (Cn, Cn2, ••• , C,II=E, ell, Cn2, •.• , cnn=E). 

Cny. For even ~7, these groups have a two-fold rotation about the 
main n-fold axis. Since there are reflection planes passing through 
this axis, the two-fold rotation C2=C,.',/2 and C2 belong to one class 
in the double group according to rule (ii). According to rule (iv), a 
vertical reflection a. and the correspondmg barred operation cry belong 
to the same class. For odd n, neither rule (ii) nor (iv) is applicable so 
that in CII : for·17 odd, all the barred and the corresponding unbarred 
operations belong to separate classes. The number of classes in this 
case is doublr.d. For example, the classes of Ca: are (E), (If ), (2C3 ) , 

(2(\), (3C1.) and (3cr.). The classes of e l : are (E ), (E ), (2C4), (2(\), 
(C4~' C/), (2m,2m) and (211,2ei). Here we have used the notation 
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(2C4 ) for (C,. C~3). (2m) for (mx • my), etc. 
Cnh. In all the corresponding double groups, the number of 

classes is doubled, each class of Cn" giving rise to two classes of Cn'" 
The double groups are abelian for all values of 11 just as the groups 

C"h are. 
D2• This abelian group has four elements (E, C~x, C~y, C~J. The 

last three elements come under rule (ii). The double group D 2' of 
order 8 thus has the following 5 classes: (E), (E), (C2x , (;2")' (C2Y' (\") 

and (C2z, (;2Z)' 
It is then clear that the classes of the double groups correspond­

ing to all the simple point groups can be obtained quite easily. Let lh 

now consider two groups typical of cubic systems and one continuo LIS 

group. 
T. As discussed before, this group of order 12 has the 4 classes 

(E), (3C42), (4C3 ) and (4C3~)' Since there:lrethrcc mutually pcrpcl1di 
cular two-fold axes, the second class comes under rule (ii) and in 
the double group T', there will be a class (3C42. 3C,2). The last two 
classes of T come under rule (iii) and will give rise to four classes of 
T'. The classes of T' are then: (E), (E), (3C/, 3C,~), (4Ca) , (4(;a) , 
(4Ca2), (4C32). 

O. This group with 24 elements has the 5 classes (E), (3C4 , 3C."a). 
(3C,2), (6C2) and (4Ca, 4C32). The third and the fourth classes corne 
under rule (ii) while the second and the fifth classes under rule (iii). 
The double group 0' is then found to have the classes (E), CE), (3C4• 

3C~a), (3C4 • 3C,3), (3C~2, 3C,2), (6C2 , 6(2), (4Ca, 4Ca2) and (4Ca• 4Ca2). 
C~.. This group has the classes (E), (2R~) and (a.). The class 

(2R~) contains two elements for q,:prt (excluding q,=0, which is the 
identity) and only one element C2 for q,=rt. The corresponding double 
grou p Cm: has the classes (E), (E), (2R~); (2R~). (C2 , C2), and 
(a., cry), with q,:p0 or 7T. 

7.5.2 Irreducible representations of a double group. A double 
group G' is homomorphic to the group G whose double group it is. 
This can be easily seen by choosing the two-to-one mapping as 
A, A ~ A; B, B -- B; etc. Now let AB= Cin the group G. The product 
of elements from the set (A. X) with those of the set (B, B) of G' 
then gives the set (C, C) whose elements are mapped onto C of G, 
proving the homomorphism. 

Let G be a finite group havillg c classes and let the corresponding 
double group G' have c' classes. The group G' then has c' irreducible 
representations all of which are single-valued. These can be used to 
obtain the irreducible representations of G. We shall see that of these, 
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there are c single-valued and c'-cdouble-va!ued representations of G. 
The effect of E on any basis function is clearly to give the same 

I 

function or the negative of the function depending on whether the 
system has integral or half-odd-integral angular momentum. This 
shows that the matrix representing E in any representation is either the 
unit matrix or the negative unit matrix. The character is therefore ±/; 
where Ii is the dimension of the representation. Similarly, for all 
A E G, X (, .. 4)= ±X (A) in any representation. The first c irreducible 
representations of G' can be written down simply from those of the 
smaller group G by using Z (A-)=X (A). It is easy to see that these c 
irreducible representations of G' satisfy the orthonormality relations 
for rows . For the remaining c' -c irreducible representations, we see 
that each of these can . be made orthogonal to each of the first crows 
by choosingZ(A)=-X(A) (because half the elements of G' are unbarred 
operations and the other half are barred operations). These give the 
double-valued representations of the group G. In the particular case 
when A and A belong to the same class for some A , X(A)=X(A), so 
that in all the double-valued representations, we must have 

Z(.4) = -Z(A)=O. 
Coming to some particular examples, let us start with the simple 

case of C~ with elements (E, C2) in two classes. This has two irreducible 
representations. The double group C2' has the four elements (E, c2 ' 

I:, C2) and is a cyclic group. Its irreducible representations are shown 
in Table (7.8) . It should be clear that the first two of these are 
single-valued representations while the last two are double-valued 
representations of C2 ,. 

TABLE 7.8 THE CHARACTER TABLE OF C2' 

C" 2 E C2 E Cz 

r 1 1 

r 2 -I -1 

r3 - 1 -i 

r 4 -i -1 

Next, we consider the group D2 which has four classes and four 
irreduc ible representations. The double group D z' has 8 elements in 5 
classes so that the additional irreducible representation of D 2' must be 
of order 2. Moreover, since C2x and C'2.y belong to one class, their 
characters in this fifth representation mu~t be zero. The same holds 
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good fOT e2y , CZY' ez~ and C2Z. The character table of D 2' is shown 'in 
J'able (7.9). 

TABLE 7.9 THE CHARACTER TABLE OF D 2' 

D 2' E E (C2z, C2Z) (C2v, e2.) (Cb ,C2.) 

r1 I 

r2 1 ~1 · -1 

r3 -1 -1 

r, -1 -1 

r. :! -2 0 0 O· 

It can be verified that D,: is not isomorphic to Ctv or D,. Ho",'- · 
ever, it i'i isomorphic to the group of the eight matrices generated in 
Problem (1 .7) where we have emphasized that two groups having th~ 
same number of elements and classes need not be isomorphic. In 
fact, these are just the eight matrices of the irreducible representation 
rs of D 2'· 

The double group et : has 16 elements in 7 classes whereas e4V 

has 8 elements in 5 classes. If the additional irreducible represen­
tations of e.: are denoted by rCG) and r(7). their dimensions I~ and 17 
must satisfy the relation 

7 

L 1;2=16. 
;=1 

But the dimensions of the first five irreducible representations are 
known because they satisfy the relation 

5 

L 1/"=8. 
;=1 

Hence l.z+I,2=8, glvmg 1.=/,=2, The characters of the classes 
(el, C4

2), (2m, 2m) and (2a, 2c) in both of these additional represen­
tations must be zero because. as just mentioned, the barred and the 
unbarred operations belong to the same class. The characters of E in 
both r(') and r(7) must be 2 and those of E ~2. Finally, the characters 
of e~ and of C~ in both of these representations must be negative of 
each other .. It is then'a fairly simple matter to obtain the full character 
table of e,;. In Table (7.10), we have shown the two additional 
characters of el :, 

Lastly, we consider the double group 0' of the c'ubic group O. The 
group 0 has 24 elements in 5 classes whereas 0' has 48 elements in 8 
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TABLE 7.10 THE AQDITIONAL CHARACTERS OF C4: 

(£) (£) (2C,) (2C,) (C,2, C(2) (2m, fin) (20,20) 

ne) 2 -2 V2 -V2 0 0 0 

r(7) 2 -2 -V2 V2 0 0 0 

classes. Denoting the additional irreducible representations of 0' by 
re, r7 and rs. we see that their dimensions are given by 162+/72+/s2=24, 
or 18=17=2, Is=4. Once again, the characters of the classes (3C/, 3Cl) 
and (6C2, 66;;) must be zero in all the three additional representations. 
The characters can be worked out without much difficulty by methods 
already discussed in Chapter 3. The additional characters of 0' are 
listed in Table (7.11). 

TABLE 7.11 THE AOOlTlO],-;AL CHARACTERS OF 0' 

(E) (E) (6C4) (6C~) (3C4
2, JC.;2) (6C2. 6C-;;) (8C3) (8C;~ 

r e 2 - 2 vI -v2 0 0 -1 

P 2 - 2 -vi' v2 0 0 -1 

r s 4 -4 0 0 0 0 -1 

Koster14 has listed the characters of the double groups corres­
ponding to all the crystallographic point groups. 

7.6 Crystal Field Splitting of Atomic Levels 

When an atom is placed in a molecule or a crystal, the symm'etry 
of the atom is reduced. An isolated atom has the symmetry of the full 
rotation-inversion group 0(3), whereas in a molecule or a crystal it 
has the symmetry of the point group to which the molecule or the crystal 
belongs. All the point groups are subgroups of 0(3). The (21+ 1)­
fold degeneracy of the electronic levels of an isolated atom therefore 
splits in accordance with the irreducible representations of the point 
group. This is one of the most important applications of the theory of 
Section 5.6. We shall consider below the splitting of levels in the 
octahedral groups 0 and 0". 

14Koster (1957), Section IV. 
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To begin with, we shall disregard the spin of the electrons and 
consider only the (integral) orbital angular momentum. The splitting 
of levels in double groups will be taken up later in this section . . 

Let us first consider the octahedral group O. This group consists 
of twofold, threefold and fourfold rotations. We can work out the 
characters of these elements in the representation D(L) of SO(3) by using 
the formula(4. 50). These are given in Table (7. 12) for the first few values 
of L. Comparing this w.ith Table (7.3) for the characters of 0, we nnd 
that the levels with L=O and L = 1 are unsplit. The S function of D(O) 

now generates the identity representation r l of 0, while the three P 
functions of D(I) generate r lS.' of O. The atomic levels with L > 1 must 
split under the octahedral field because there is no irreducible represen­
tation of 0 with dimensions greater than 3. Once again, comparing the 
characters of D P ) and D(3) with those in Table (7.3). we get the 

TABLE 7.12 THE CHARACTERS OF THE ELEMENTS OF THE POINT 

GROUP 0 IN THE IRREDUCIBLE REPRESENTATIONS OF SO(3) 

E 6CJl 3C42 6C2 8C3 

mO) 1 1 

D(l) 3 1 -1 -1 0 

D(2) 5 -1 1 -1 

D(3) 7 -1 -1 -1 

following scheme for the splitting of D(2) and D(3): 

D(2)=rI2 E!3 r 2S', D(3)=rs E!) r lS' E!) r2S'· (7.22) 

This shows that the five degenerate atomic D functions split into 
two levels in cubic symmetry, one twofold degenerate level whose basis 
functions transform like (X2_y2, 2z2_x2-y~)and one threefo1ddegene­
rate level with basis functions transforming like (yz. :tx, xy). Similarly, 
the sevenfold degenerate F level splits into one nooo~ner~te level and 
two triply degenerate levels. The nondegenerate level has,the basis 
function xyz while the two triply degenerate levels luPIe basis. functions 
transforming respectively like (x, y, z) and (yz, zx, ~y), a,Ji the seven 
functions being linear combinations of the spherical harmonb Ya'" of 
degree 3. 

The above analysis presents no difficulties in extending to the case 
when inversion symmetry is present, i.e., to the group 0". The L-::;:oO 
and L= 1 levels are still uriSplit but the three P functions W~ 'L= 1 



TABLE 7.13 THE CHARACTERS OF THE ELEMENTS OF THE DOUBLE GROUP 0' IN THE IRREDUCIBLE 

REPRESENTATIONS D(J) FOR HALF-ODD-INTEGRAL J; n TAKES ALL NONNEGATIVE INTEGRAL VALUES 

(E) (£) (6C4) (6<7,) (3C42,3C4") (6Cz,6<72) (SC,) (SC9) 

V2 -v24=(Sn+1)/2) -1 (J= 6nil) _ 

[)U>, 21+1 -(21+1) 0 o (J =(4n+ 3)/2) 0 0 -I 1 (J= 6ni3) 

. -V2 V2 (J =(Sn+5)/2) 0 o (J= 611i
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DOW belong to ru owing to their odd parity under invenion (see 
Table (7.4». The splitting of the D level is still as in (7.22) due to even 
parity of the D fun~tions, whereas the splitting of the F level becomes 

D(lI)=ra' EB Pu EB r". (7.23) 
Let us now consider the spin angular momenta of the electrons. 

If the atom has an even number of electrons in the unfilled shell. the 
net angular momentum is integral. The levels belonging to D(J) then 
split exactly according to the schemes just obtained. But if there is an 
odd Dum ber of e1ectr'ons, the corresponding functions will generate some 
double-valued representation D(J) wjthJ half-odd-integral. The 'Jasis 
funCtions (which will now be the products of the orbital an,d the'spin ~unc­
tions), will get mul tiplied by -Ion a rotation through 27t. We should 
the~fore work with the double group 0'. If we work out the characters 
of the (21+ I )-dimensiona 1 representation of 0' generated by these 
basis functions, we shall find that X(j)(A)=-X(J) (A) for all A.EO'. 
Such a representation will be orthogonal to all the single-valuCd repre­
sentations of 0' and hence, on reduction, will he found to contain only 
the double-valued representations of 0'. 

We shall work out the reduction of D(J) for a few half-odd-integral 
values of J. Using (4 .89) for the characters of D(J), we can obtain the 
characters of tbe elements of 0' in D(J). These are given in a compre­
hensive form in Table (7.13). Comparing this with the double-valued 
representations of 0' given in Table (7.11), we get the following scheme 
for the splitting of the total angular momentum levels: 

D(1/2)=r •• 

D(3/2)=ra• 

D(~/2)=r7 Ea r 8, 

D(7Jt)=r. EB r, EB ra, etc. (7.24) 
We notice that the degeneracies of all the decomposed levels in 

(1.24) are even-fold. This is just the consequence of the Kramers' 
theorem discussed in Section 5.9 .4 which tells that for systems with 
half-odd-integral angular momenta, all the levels must have even-fold 
degeneracies owing to the time-reversal symmetry. 

PROBLEMS ON CHAPTER 7 

(7.1) Draw the stereoarapbic projections for the point IfOUpi C ... C1 .. 

C ... Dtand Dp. 
(7.2) What arc tho point symmetry II'OUPS of the molccuJcs NH .. CH .. 

C,H .. H,O and !,,&CI? 

-
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(7.3) Show that the three functions (x. Y. z) generate the representations 
r 15' of 0 and ru of 0". 

(7.4) Write down the multiplication tables of the double groups Ct '. CZA" 

D,:, C3,,' and D3" -
(7 . 5) Obtain the additional characters for the double groups C3,,', D3. S,'. 

D,' and Cs'. 
(7.6) Consider a ligand such as Ni(CN),2- which has the symmetry of the 

point group D", (with Ni at the centre). In isolated Ni. the five d orbitals 
(yz. zx, xy, x 2_y2, 2z2_x2_y2) are degenerate. Obtain the characters of the 
representation of D,/& generated- by these nve functions and reduce this repre­
sentation. Obtain the symmetrized linear combinations of these d orbitals 
transforming according to the irreducible representations of D'h' 

(7 ; 7) Prove the statement made at the end of Section "7 . 2 that the factor 
group SIT is iSMlorphic to the point group G. Proceed along tbe following 
lines: (a) Obtain the various cosets of the translation group with respect to the 
space group elements as in (7.13). (b) Show that the number of distinct cosets 
of T is equal to the order of G. (c) Work out the law of composition for tbe 
coset multiplication arid hence prove the isomorphism of Sf T with G. 

(7.8) Show that 
(a) {A / ::.}-l {E/ t} {A / ::.}={EI A-It}, 

(b) {A / ::.}-l {B I~} {A I::.}={A-IBA I A-I (B~+~-~)}. 
(7 .9) Obtain the splitting of the atomic levels in the tetrahedral group Td • 

(7.10) Determine the point group symmetry of all the two-dimensional lattice 
types. 

(7.11) Determine the point group of the lattice and the subgroup of the point 
group which leaves the crystal. invariant in the following cases: (i) NaCl, 
(ii) 0<:;1, (iii) Zn (hexagonal phase), (iv) CU3Au (a cubic structure with Au 
atoms at the corners and Cu atoms at the face centres), and (v) MgAI20, (the 
cubic spinel structure). 

(7.12) If ~A and ~B are the characteristic nonprimiiive translations associated 

respectively with two point group elements A and B in a certain space group. 
show that the characteristic nonprimi tive translation associated with the element 

AB is A ~B+~A' 
(7.13) Work out the splitting of the levels D(4) and D(5) of an isolated atom 

in the cubic group 0". 
(7.14) Work out the splitting of the levels D(9/2) and D(l1.I2) of an isolated 

atom in the double group 0'. 
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CHAPTER 8 

Group Theory in Solid State Physics 

Having discussed the thirty two crystallographic point groups in 
sufficient detail and the elementary concepts of translation groups 
and space groups in the previous chapter, we shall come to proper 
solid state physics in the present one. Since it is beyond the scope of 
the present book to consider the various applications of the theory of 
groups to the physics or solids, we shall, in fact, deal with only one major 
problem, that of the electronic structure of crystals. We expect that this 
will help the student to establish a firm grasp on the group theoretical 
methods in solid state physics. Moreover, although a few more appli­
cations are discussed briefly in the appendices , we believe that a detailed 
discussion of the problem of electronic structure, together with the 
crystal field splitting of atomic levels ·treated in the previous chapter, 
will pave the way for any other application of group theory in solid 
state physics, such as impurity states and colour centres. crystal field 
theory and paramagnetic resonance, lattice dynamics, etc . For example, 
the role of group theory in lattice dynamics is exactly the sameas its 
role in the band structure problem. 

8 .1 The Problem of the Electronic Structure of Crystals 

The energies and the wave functions of an electron in a crystal 
are the solutions of the Schroedinger equation 

{ 
11"\7·' } 

!J{ ,p(r) = - ;11/ -+ VCr) ,p(r) = E ,per), 
(8.1) 
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where VCr) is the potential experienced by the electron in the periodic 
lattice. The full symmetry group of the crystal Hamiltonian is the space 
group to which the crystal belongs. As we shall show in the next section, 
the solutions of this equation appear in the form of Bloch functions 
rPk (r) with the corresponding energy eigenvalues E(k). The functional 
relation E-E(k) is known as the electronic band structure or simply the 
electronic structure of the crystal. A knowledge of E(k) allows us to 
determine a number of observable properties of the crystal such as, in 
particular, the transport properties and the optical properties. The 
sil1)plest inference that can be drawn from the electronic structure is 
whether the crystal is a metal, a semimetal, a semiconductor or an 
insulator. 

It must be emphasized at the beginning that we shall be working in 
the single-particle approximation already discussed in Chapter 6. We 
shall neglect the vibrations of the nuclei and assume that they are 
fixed at their respective lattice sites. We shall also neglect all the 
interactions of the electrons among themselves and assume that they 
behave as a gas of free electrons. We shall later discuss the perturbation 
caused by the periodic potential. Theeigenstatesobtained under these 
approximations are called the single-particle states and will represent 
the stationary states of the electrons. The electrons fill these states in 
accordance with the Pauli exclusion principle; each state can accommo­
date at most two electrons, one with spin up and one with spin down. 

Apart from the above assumptions, there is no restriction on the 
potential VCr) except that it be periodic with the periodicity of the 
lattice. As should be amply clear by now, group theory will be a great 
help in simplifying the secular equations, in classifying the eigenstates of 
the problem and in labeling the energy bands. It will, however, not 
give us any quantitative estimates of the energies involved. 

Since we are concerned only with the group theoretical aspect of 
the electronic structure, the cxact analytical form of the potential VCr) 
need not worry us. Forthe sakeof simplicity, we shall often consider 
the case V(r)=O, i e., the case of a constant potential. This is the 
elementary quantum mechanical problem of electrons in a box and the 
solutions of (8.1) are then just the plane waves 

1>. (r)=exp(ik.r) 
k 

(8·2a) 
with energies 

E(k) = 112 k 2 J.2m. (8.2b) 
This is known as the free electron approximation. This simple case 
serves to give a considerable insight into the problem of the electronic 
band structure of crystals. 
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8.2 Translation Group and the Reciprocal Lattice 

Owing to the translational symmetry of the crystal, the eigenfunc­
tions of the Hamiltonian in (8 .1) with a periodic potential have a specific 
form given by the Bloch theorem. According to this theorem, the 
eigenfunctions have definite translational properties determined by a 
wave vector k and the values of an eigenfunction at equivalent points 
in different unit cells are simply related by a phase factor. Although the 
proof of the Bloch theorem is fairly elementarY,l we shaH consider in 
this section its proof based on group theoretical arguments followed 
by a discussion on the nature of the wave vector k and the reciprocal 
lattice. 

8.2.1 Bloch theorem. The elements of the translation group 
of a crystal with periodic boundary conditions can be denoted. as in 
Section 7.2. by T (n l • n2, n3). We have seen that the translation group 
is an abelian group. Each element of the translation group Tis therefore 
a class by itself. It follows that all the irreducible representations of 
T must be one-dimensional. 

let 1>(r) be an eigenfunction of the Hamiltonian in (8.1). Since 
the Hamiltonian is invariant under the translation group, we may use 
4>(r) to generate an irreducible representation of T. The operation of any 
element of Ton 1>(r) is then just to multiply it by a scalar which is its 
representation with 1>(r) as the basis. let us denote by P "1 II. ". an 
operator corresponding to the translation T (nl ' n2, n3) and acting on 
functions of r. Then, choosing a general element of T (which is also an 
element of the space group S), we have 

(8.3) 
where c(nl' n2, n3) is a constant to be determined. However. by defini­
tion, the operation of the translation operator has the effect 

(8.4) 

where aI' a2 and a3 are the fundamental lattice translation \ectors, as 
in Section 7.2. In particular, we must have 

P 100 1>(r)=4>(r+al)=c(l. 0, 0) 1>(r). (8.5) 
Operating by PIOO on 1>(r) Nl times and using the periodic boundary 
conditions 4>(r+Nlal)=4>(r), we find that 

PN100 1>(r)=4>(r)=c(Nl' 0, 0) 4>(r)=[c(l, 0, O)]Nl4>(r). (8.6) 

lKittel (1976), p. 195. 
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This shows that 

c(l, 0, 0)=exp(2;-t il11l /N1) , -N1/2 < 1111< Nl/1, (8 . 7a) 

and 
C(l1l' 0, 0) = exp(27tim 1n1/N1). (8 .7b) 

We could obtain similar expressions for c(O, 112 , 0) and c(O, 0, l1a)' 
Multiplying these together, we have 

) 
[ 

_ • (1111111 1112112 lI1al1a)J 
C(l1l' n2, 113 = exp 2" I N] + N2 + Na . 

Let us now define the fundamental translation vectors 
reciprocal lattice by 

bl = 27t (a2 l< 3 a)/ l'e, bz = 27t (aa l< a]) / I'e , 

ba= 27t (all< a2)/Ve, vc = ap (a2 l< aa)· 
Jt can be verified that these have the following properties: 

(8.8) 

of the 

l~ . 9) 

bj·aj = 27t Sjj, i,j=l, 2, 3. (~ . 10) 

A general vector k of the reciprocal space can then be written as a 
linear combination of bI , b2 and ba in the form 

k = (ml/N1) b1+(m2/N2) b~+(ma/Na)ba, (S.ll' 
where mi are any integers. If all the mt's are integral multiples of the 
respective Nj's, we have a linear combination of bl , b2 and ba with 
integral coefficients. Such vectors are called reciprocal lattice vt'Ctors 
and may be denoted by 

G(h, k, I)=hbl +kb2+lba. (S . 12) 
where II, k and I are integers. The lattice generated by the end points 
of all the reciprocal lattice vectors is called the reciprocal lattice and 
the end points themselves are called reCiprocal lattice points. The 
scalar product of a vector k of the reciprocal space and a direct 
lattice translation vector t(111' n2, 11 3) can be worked out by using (8.10) 
and is found to be ---

) (
mInI m2112 man3) 

k· t(nl' 112, 113 =27t Nl + N2 + N3 . (8.13a) 

As a special case, Of we replace k by G, we have, by usint (8.12), 

G ·t=27t (hill +kI12+1I1s)=27t X integer. (8. 13b) 

Using this back in (S. S), we have 
c(nl • 11 2 , l1a) = exp[i k· t(111, 112, 113)]' (8. 14) 

Combining this with (8.3) and (S.4), we find that the eigenfunction 
<p(r) has the property 

.p(r+ t)=exp(ik.t) .p(r). (8.15) 
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This can be satisfied if and only if 4>Cr) is of the form 

4>Cr) = exp(ik.r) Uk (r), 

1269 

(8.16) 

where the function uk (r) is periodic in r with the periodicity of the 
lattice, i.e., Uk (r+ t)= Uk (r) for all the direct lattice translation vectors 
t. This is the Bloch theorem: the eigenfunctions of the Hamiltonian 
of all electron in a periodic potential must be of the form (8.16), or hare 
the property (8.15). Note that the two statements (8.15) and (8.16) of 
the Bloch theorem are equivalent. . 

The vector k is called the ware rector of an electron in the state 
4>k (r) and is d(,/ined by the behaviour of the function 4>k (r) undl!Y thl' 
translation operators, i.e., by (8.15). Thus we see that the eigenfunc­
tions and the eigenvalues of the Schroedinger equation (8.1) can be 
labeled by the wave vector k. From our discussion of Section 5.4, it 
is clear that the wave vector k is a good quantum number of an elec­
tron in a crystal so long as the transla tional symmetry of the Hamilto­
nian .is not disturbed. The wave vector k manifests itself in various 
scattering phenomena of the electron with other excitations in the 
crystal, the quantity 11 k appearing as the linear momentum of the 
electron. This linear momentum should not, however, be taken in 
the classical sense because it is not necessarily parallel to the electron 
group velocity. 

We shall write (8.1) in the. form 

..9C4>k(r)=E(k) 4>k(r) . (8.17) 

The function Uk (r) of (8.16) is not an arbitrary function. In order 
that the Bloch fy.netion (8.16) satisfy the Schroedinger equation (8.1). 
it can be shown by substituting (8.16) in (8.1) that Uk (r) must be a ' 
solution of the eigenvalue equation 

{1~n(-ti2 \72- itik .\7 + k2)+V(r)} Uk (r)=E(k) Uk (r). (8.18) 

18.2.2 Symmetry of the reciprocal lattice. We shall first show 
that the reciprocal lattice has the same point group symmetry as the 
direct lattice, i.e., if the direct lattice is invariant under a certain point 
group operation performed about one of its lattice sites, then the 
corresponding reciprocal lattice is also invariant under the same opera­
tion performed about one of its lattice points and vice versa. 

Let A be any element of the point group of the direct lattice and 
G be a reciprocal lattice vector. For any translation vector t of the 
direct lattice, At is also a translation vector. From (8.13b), we then 
have 
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G· At=27t x integer, for all t. (8 . ] 9) 

Since the operations of the point group are orthogonal -transforma­
tions, the scalar product of two vectors remains invariant under their 
action, i.e. , A-IG.A-I(At)=G.At, so that (8.19) gives 

A-IG·t=27t xinteger, for aU ·C (8 .20) 
Since this is true for all lattice vectors t, (8.20) shows that A-I G must 
be of the form q}b} + q2b2+q3ba with integral ql. In other words, 
A-I G must be a reciprocal lattice vector. 

As this holds for any element A of the point group, it is evident 
that any symmetry operation of the direct lattice is also a symmetry 
operation of the reciprocal lattice. Now the converse can also be 
easily proved either by following the above line of argument or) 
simply by noting that the direct lattice is the reciprocal of the recipro-

. cal lattice. Thus the reciprocal lattice has no other symmetry elements 
in addition to those of the direct lattice. It fo.llows that the reciprocal 
lattice has the same point group symmetry as the direct lattice. 

This result has an important consequence in terms of the seven 
systems into which lattices are divided. It follows that the reciprocal 
lattice belongs to the same system as the direct lattice. although it may 
not belong to the same type. For example, if the direct lattice is 
cubic, the reciprocal lattice is also cubic. However, talking of types, 
the reciprocal lattice of a body centred lattice is face centred and vice 
versa. 

8.2.3 Brillouin zone. Eq. (8.15) shows that every value of k gives 
us an irreducible representation of the translation group. However, 
not all of these are distinct representations. For, consider two k 
vectors related to each other by a reciprocal lattice vector G, such as 
k'=k+G. It is then evident from (8.13b) that exp(ik' .t)=exp(ik·t) 
for all t's. This shows that there is a whole host of points in the reci­
procal space of the form k+G (with fixed k and G running over all 
the reciprocal lattice vectors) which correspond to one irreducible 
representation of T. In other words, the k vector of a Bloch function 
is not unique; a Bloch function may be characterized by any wave 
vector from the set k+G. 

To avoid this ambiguity and to be able to characterize every Bloch 
function and every irreducible representation of T by a unique k vector, 
we choose a unit cell in the reciprocal lattice. From the set of equi­
valent points k+G, we choose that point which lies in the chosen 
unit cell. Any point of the reciprocal space may be reduced to an 
equivalent point in this unit cell and the ambiguity mentioned above 
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can be removed. Every allowed value of k in the unit cell then gives 
a unique irreducible representation of T. As we shall see below, there 
are as many of these as the elements of the translation group T which 
in turn are equal to the number N) N~N3 of primitive cells of the 
direct lattice. 

In a given lattice. whether direct or reciprocal , a unit cell may be 
chosen in an infinite numb;:r of ways. As an example, we have shown 
in Fig. (S.l) three different ways of choosing the fundamental transla­
tion vectors and the corresponding unit cells for a two-dimensional 
oblique lattice. Fig. (S .2) shows three different sets of fundamental 
translation vectors corresponding to those of Fig. (S.l) in the If ~ipro­

cal lattice of the oblique lattice. In each of Figs. (S.2a), (S.2b) and 
(S.2c) , we have shown two different unit cells These differ only in 
choosing the independent values of k defined in (S.11). The first unit 
cellin each of these three figures corresponds to the choice 0 < In; < N;, 
while the second to -N;/'2 < 111; < N;/2. For a two-dimensional 
lattice, note that U3 is infinite and consequently, b3=O. Fig. (S .2d) 

• • • • • • • • 

• L' • ~---~ I / 
~ . .' / I - /' 
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Col /!II 
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• 
(a) (b) ( c) 

FIGURE 8.1 (a). (b) and (c) show three of the infinite number of ways in 
which a unit cell may be chosen in a two-dimensional oblique 
lattice. Thc unit cell in eaeh case is the parallelogram com­
pleted with the fundamental translation vectors shown. Each 
unit cell ha'; the same area. 

shows an altogether different way of constructing a unit cell. A hexa­
gon shown in this figure is known as the WiK;Il'r-Seitz eel!. For a 
three-dimensional lattice, in general,- it is defined as follows. We 
choose a certQin lattice point in the given lattice (direct or reciprocal). 
The Wigner-Seitz cell is lhell the volume containing points nearer, or 
at most equidist ::! nt, to th:: chosen lattice point than to any other 
lattice point. It is evident that it is the vo lume enclosed by th~ per­
pendicular bisectors or the vecto rs from the chosen bttice point to all 
its neighbours. . 

There is a particbl<!r advantage in choosing such a unit cell-the 
/vigna-Scitz cell has the full point grollp S)'l11l11etr,1' of the lattice, which 



ELEMENTS OF GROUP THEORY FOR PHYSICISl S 

is fairly easy to prove on the basis of its definition. Finally, the 
Wigner-Seitz cell of the reciprocal lattice is known as the Bri/fouill 
zone. Owing to its full point group symmetry, the Brillouin zone is a 
particularly convenient choice for a unit cell in the reciprocal lattice 
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• [J • 
• • 

• • • • • (a) (b) 
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• 

• 
• 

o • 
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FIGURE 8.2 (a) The primitive translation vectors b1 and b2 of the recip­
rocal lattice corresponding to the lattice translation vector, 
a1 and a2 of Fig. (8 .la). The unit cell is shown in two way~ 

for this choice of bl and b2. Note that b1 is normal to a2 

and b2 to al' Moreover, the lenp-ths of bl and b2 arC' inver­
sely proportional to those of al and a2, respectively. (b) and 
(c) similarly correspond respectively to Figs . (R.lb) and 
(8.lc). (d) The Wigner-Seitz cell or the Brillouin zone as 
a unit cell of the rcciprocallattice. This is independent of the 
choice of the primitive translation vectors. Again, each 
unit cell has the same area in the reciprocal space. 

in the study of the electronic structure of crystals. It should be clear 
that for every point of the boundary (face, edge or corner) of the 
Brillouin zone, there is at least one other point on the boundary which 
diffl.!rs from the first by a reciprocal lattice vector. All such points on 
the Brillouin zone boundary must therefore be treated as equivalent 
and may be designated by the same value of k. 
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8.3 Irreducible Representations of a Space Group 

The group of the Schroedinger equation (8. I) is the space group to 
which the crystal belongs. The electronic e.lergy levels and their dege­
neracies are therefore determined by the irreducible representations of 
the space group and not by those of the translation group or the point 
group alone. In discussing the irreducible representations of a space 
group below, we shall closely follow the treatment of Koster. 2 

Suppose we have an irreducible representation of the sPilce group 
S by the m"atrices.D({A I ::})of order n, where A is an element of the 
point group G and.: is of the form ~ + t, as discussed in Section 7.2. 
Owing to the finite order of the group S, we can assume that these 
matrices are unitary. 

For any space group S, the group T of pure translations {E I t} is 
a subgroup of S. Let us pic.k out those matrices of the representation D 
which correspond to the pure translations. Since T has only one­
dimensional irreducible represe'ltations, it is possible to find a unitary 
transformation which brings all the matrices of the form D({E I t}) to 
a fully diagonal form. In other words, given an irreducible representation 
of a space group S, there exists an equivalent representation in which all 
the elements of T are represented by fully diagonal matrices. 

Now the diagonal elements of a matrix representing {E I t} can only 
be of the form exp(ik· t) because these are the only irreducible represen­
tations of T. Let us suppose that altogether q distinct wave vectors kl, 
ka, ••• , k, appear in the diagonal elements of D({E It}). We may also 
assume, without loss of generality, that all the diagonal elements having 
kl are grouped together, and so on. The matrices of our irreducible 
representation corresponding to elements of T then take the form 

exp(ikl ·t) 
o 

exp(ikl ·t) 

D({E I t})= 

exp(ikj't) 

o 
exp(;kq·t) 

Since we know that (see Problem 7.8) 

{A I ~:}-l {E I t} {A I !}={E I A-It}. 

I Koster (1957). 

(8.21) 
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the corresponding matrices must satisfy the relation 

[D({A I ~})]-ID({E I t})D({A I ~})=D({E I A-It}). (8.22) 

Making use of the fact that k·A-It=Ak·t, 
representing {E I A-It} will be 

we see that the matrix 

r exp(iAkl ·t) 

D({E I A~tl)~ I 
L 

exp(iAkl · t) 

o 

o 1 

(8.23) 
exp(iAkrt) 

If two diagonal matrices are related by a unitary transformation as in 
(8.22), they must contain the same diagonal elements except possibly 
in a different order. It follows that the diagonal elements of (8 .21) and 
(8.23) are the same except for order, perhaps. Thus, if exp(iAk:·t) 
occurs in (8 .23), it must aisoappearin (8 .21). Moreover, exp(iAkl·t) 
must appear as often in (8.23) as exp(ikl .t) appears in (8.21). Now A is 
arbitrary and we could . take any elements of the point group G for A. 
This means that elements such as exp(iAkl • t) for all A E G must appear 
in (8,21). 

We can further show that no element of the form exp(ik' .t), where 
k'is not equal to Akl for any element of G, can appear in (8 .21). For, 
ifit does, we shall show that the representation of the space group 
under co~sideration is reducible. In this case, in the matrix (8 .21), we 
can gather all terms of the type e~p(iAkl·t) for all A EG first and write 
the remaining terms of the form exp(ik' .t) later, bringing it in the form 

r 
D«(E I t})= 

L 

terms of the type 
exp(iAkl·t) 

i 

! 
I 
I 
r 
r 

o 
--~--p-.---------------------- : --------_._--------._--_ .. ----

o i remaining terms such 
I as exp(ik' .t) 
I 
i 

Let us write (8.22) in the form 

D({A I ~}) D({E I A-1t})==D({E I t}) D({A I:}). 
and assume for D({A I ~})a martix of the form 

[ 

D'({A I ~}) . X ] 
D({A I ,,})= ----.• -.y .. ---.. r;;;({A-j';})' '. 

1 

J 
(8 .24) 

(8.25) 

(8.26) 
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where D' and D" are square matrices of the same order as the first and 
the second diagonal blocks of(8 .24) respectively. Using (8.24), (8 .25) 
and (8.26). it can then be shown th3t the block matrices X and Y must 
be identically null matrices . But then (8.26) shows that the representa­
tion is reducible, contrary to our assumption that we have started with 
an irreducible representation. 

The discussion hitherto leads to the conclusion that the matrix 
(8.21) contains diagonal elements only of the form exp(iAkl • t) for all 
A E G and that each distinct element appears an equal number of times . 
If there are q distinct wave vectors in the set Akl for all A E G, as we 
have assumed, and if each appears , say, d times , then (8.21) becomes 

D({E I t})= 

r exp(ik].t)Ed I 

leXp(iA~kl .t) Ed 

o 

L 

l 
o 

(8.27) 

where Ed is a unit matrix of order d and we have divided the n X n matrix 
into q blocks each of order d so that n= qd. Moreover, A1 - E (the 
identity), A 2 , ••• , Aqare selected elements ofthe point group which when 
acting on kl give the q distinct wave vectors, i.e., 

(8.28) 

Note that each k j corresponds to a distinct representation of T. 
At this stage, we shall defer our discussion of the irreducible 

representations or ;1 space group and come back to it after the next 
two subsections. 

8.3.1 Bloch functions as basis for irreducible representations. 
The form of the matrix (8.27) corresponding to a pure translation 
suggests that the basis functions for the representation D are Bloch 
functions. This is evident because only a Bloch function has the pro­
perty of being multiplied by exp(ikj' t) under a translation through t. 

Suppose we ha ve d orthogonal Bloch functions cplj (1 ~ j ~ d), 
each corresponding to the wave vector k. Let us construct the following 
Il functions from these: 

cpjj=P({A; I .M) cp]j, 1 ~ i ~ q: (8.29) 



276 ELEMENTS OF GROUP THEORY FOR PHYSICISTS 

where ~i is the characteristic translation associated with the point group 
elerpent Ai (see Section 7 .2), P({A I ~}) is the operator correspopding 
to the element {A I 2} and acting on functions, and Ai are the selected 
elements of the point group defined previously in this section. We 
shall show that the functions r/>u are Bloch functio ns with the waye 
vector Aik. 

We can write r/>lj in the form 

r/>lAr) = exp(ik .r) uk j(r) , (8 .30) 

where uk j(r) has the periodicity of the lattice. Operating on this by 

the space group element {Ai I ~i}' we get 

tPij(r) = P({Ai I ~i}) [exp(ik.r)uk j(r)] 

= exp[ik.Ai-1 (r+~;)]ukj(Ai-l (r+~i)) 

= exp(ik. Ai-lr) lexp(ik. Ai-1§i)ukj(Ai-1r+ A i-1 ~i)]. (8.31) 

We can now show that the function in the square brackets in the above 
equation has the periodicity of the lattice. Thus, replacing r by r + t 
we find that 

(8.32) 

because Ai-It is also a lattice translation vector if t is and uk J is a 
oeriodic function . Replacing r by r+t in <P.ii of (8 .3 1), we therefore 
and 

cpij(r + t) = exp(ik. Aj-1t)r/>ij(r). 

'low, since k·Ai-1t=Aik ·t, we have finally 

r/>iAr+t) =exp(iA jk· t)r/>u(r) , 

(8.33) 

(8.34) 

;howing that r/>ij is a Bloch function with the wave vector Aik. Since 
AI I ~i} are symmetry operations for the . Hamiltonian of (8 . 1), it 
'ollows that all the n Bloch functions of (8.29) are degenerate. In other 
vords, we have £(Ak)= £(k) for all A EG, showing that the constant 
'l1t:'rgy surfaces in t he reciprocal space have the full poil1t group s),lIImetry 
'I the lallice. 

These 12 Bloch functions clearly generate the irreducible rcpresen­
ation D of the space group which we have discussed so far because the 
lUre translations would have the form (8.27) with these Bloch functions 
.s basis. The significance of the number d of orthogqnal Bloch func­
ions for a given value of the wave vector k will be explained in 
iubsection 8.3.3. 

8.3.2 The star and the group of the wa\'e \'ector. Le t us pick up -
1. certain k vector in or on the Brillouin zone of the lattice . Let us apply 
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all the transformations of the point group of the lattice on k. This will 
give us, in general, gwave vectors whereg is the order of the point group 
G. However, not all of these may be distinct, remembering that 'wave 
vectors differing by reciprocal lattice vectors are to be treated as iden­
tical. It may give us , say, q distinct wave vectors where q will turn out 
to be a divisor of g . The set of these q wave vectors is called the star 
of the wave vector. 

If q= g, which means that every element of the point group gives 
a distinct k vector, we say that we have a general k vector. If q<g, on 
the other hand, the end point of the k vector must be on a plane of 
symmetry or on a line of symmetry or must itself be a special point in the 
Brillouin zone. 

To illustrate the situation, we have shown in Fig. (8.3) the Brillouin 
zone of a plane square lattice of lattice constanta. The Brillouin 
zone is a square of side 21tja. The special points and the lines of 
symmetry for this structure are labeled with special symbols which have 

·fY The Reciprocal 
or 

k-space 

M 
/ 

/ 

, d Z 
/ / 1: 

/ 
/ 

/ 
L,-/ 

k. r 6 X 

FIG URE 8.3 The special points and the lines of 
symmetry for a plane square lattice 

become an established convention over the years. There are three spe­
cial points denoted. by r:k=(O, 0), X:k=(t, 0) and M: k=(t, t) in 
units3 of 21t ja. There are also three lines of symmetry, a general point 
on which is denoted respectively by !:::,.: k=(kx, 0), Z: k=(kx, t) and 
L: k=(kx, k x) with O< kx < t . Fig. (8.4) shows the stars of various k 
vectors for the same case of a plane square lattice. 

Le( us now consider the symmetry of the k vector. Let us think of 
all the point group elements which leave a k vector unchanged to within 

3 We ;h·all use the unit of 2Tt ja for the cartesian components of the k vector 
for square and cubic lattices throughout this chapter. 
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a reciprocal lattice vector, i.e., elements which have the property 

Bk=k+G, (8 .35) 
where G is any reciprocal lattice vector, including zero. The set of such 
transformations is clearly a group, for, if two operators separately leave 

ky ky ky 

~-t k., k .. 

(a) General k : q = 8 (b)Z : q = 4 (e)L : q = 4 

ky f' ky 
ky 

~----+-~+---
k.f : , 

I 

t 
Id) A : q = 4 (e)X : q = 2 (f) M : q = 1 

FIGURE 8.4 The stars of various k vectors for a plane square lattice. Every 
dashed vector is related to one solid vector by a reciprocal lattice 
vector and is therefore not counted separately; q denotes the 
number of distinct vectors in the star. .-

k invariant, their product also leaves k unchanged. The inverse of an 
operator and the identity are included in the same set. This group is 

- called the group of the wave vector and will be denoted by K in this 
chapter. It is clearly a subgroup of the point group G. 

For a general k vector in the Brillouin zone, the group of k consists 
only of the identity element. For a special point or a point on a line or 
a plane of symmetry, the order of Kwill be larger than one. In fact, it 
is easy to verify the following rule: 

The order of the point group = The ord?r of the 

group of k X the number of vectors in the star ofk. (8.36) 
This can be easily checked with reference to Fig. (8.4). Consider the 
point Z in Fig. (8.3). Remembering that the point group for a square 
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lattice is C,., we see that the elements of Ct. which leave this particular 
k vect~r invariant are E and my. The group K for the point Z is thus 
(E, my)=C1h' The k vector at the point X has four symmetry ele­
ments, E, Inx, my, C,2 (see Fig. (S.4e». The group K for the point X 
is therefore C2•• In Table (S.1), we have listed the various special 
points and the lines of symmetry along with their notations and the 
group of k. Note that the' point M has the full point group symmetry 

TABLE S.l THE SPECIAL POINTS AND THE LINES OF SYMMETRY 

IN THE BRILLOUIN ZONE OF A PLANE SQUARE LATTICE. 

k 

(kz • kll) I 
(kz • k z ) 

(k z. ~) 

(kz'O) 

(!.O) 

O. !) 
(0.0) 

WE HAVE O< k x, ky<t AND kx=l-ky 

Symbol 

general 

1: 

Z 

6-

X 

M 

r 

q 

8 

4 

4 

4 

2 

1 

1 

K, the 
group ofk 

C1 

ClI. 

ClII 

Clla 

CZtI 

C4t1 

C'tI 

Order of 
K 

1 

2 

2 

2 

4 

8 

8 

because all the corners of the BriIlouin zone are connected to each 
other by reciprocal lattice vectors (see Fig. (S.4f). 

We have previously defined AI' A 2, ••• , Aq as selected elements of 
the point group G which when acting on kl give q distinct vectors. 
These are just the q point group elements which generate the star of 
the vector k l • Since K is a subgroup of G, we can decompose G into 
cosets of l( with respect to the elements Ai as follows: 

G=KUA2KU A 3KU ... UAqK. (S.37) 
It can be verified that the elements of the coset AjK take kI to k/. 

8.3.3 Irreducible representations of a space group (continued). 
Let us come back to our discussion of the representations of space 
groups which we left at Eq. (8.28). We shall not go into the details 
here, but be satisfied with the important results without proofs. For 
a rigorous treatment, t~e reader is once again referred to Koster. 4 

The most important-result is that all the irreducible representations 

'Koster (1957). Sec also Heine (1960). 
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of a space group call be obtailledfrom those of the grollp K of the k 
)'ector 011 lettillg k run throughout (inside and 011 Ihe sw/ace of) the 
Brillouill zone. We shall point out the main steps in obtaining the 
irreducible representations of a space group. 

Assuming that we have an II-dimensional irreducible representation 
of the space group, we have shown in (8.27) that the matrices corres­
ponding to pure translations have a special form in which the first 
II /q= d diagonal elements ar~ exp(ik1 ·f), the next d element s are 
exp(iA 2kl ·t) = exp(ik2 ·t), etc. Considering a general element {A i::J of 
the space group, let us partition the matrices D({A I ::J) in the following 
w.ay: 

D({A I ~})= (8.38) 

L D'fl( [A I~}) ... Dqq({A I ::J) J 
. Here, each block Dlm({A I~}) with 1< 1, m:::;'j is a square matrix of 

order d. The basis functions for this representation nre 11 Bloch func­
tions, d of which have the wave vector kl' d have the wave vector k?, 
etc. It turns out that in this representation, which is said to be in the 
standard form, each row in (8.38) contains only one nonvanishing 
block. It will be our object to specify this block. 

Suppose we are considering the I-th row of the matrix (8.38). 
Let us pick up the I-th vector in the star of kj, which is k/, and operate 
on it by A. The e(fect will be to give some vector of the star of k), ~ay, 

Ak/=k,Il' (8.39) 

The only nonvanishing block in the I-th row of (8.38) is then the m-th 
block, that is, 

D/j({A I ~D=D/m({A I ::J) Ojm, I -::; j < q. (8.40) 

The nonvanishing block D/m({A I~}) can be obtained in terms of 
the irreducible representations of the group K of kl' This can be 
easily done for all k vectors inside and 011 the Brillouin zone of a 
crystal whose space group is symmorphic and for k vectors inside the 
Brillouin zone of a crystal whose space group is nonsymmorphic. For 
the remaining case of k vectors 011 the Brillouin zone of a crystal whose 
spaee group is nonsymmorphic, there exists no general method of 
obtaining the block DIm for a general element {A I:.} of the space 
group. It is still possible to obtain the block DIm, of course, by mak­
ing use of the special properties of the nonsymmorphic group under 
consideration. We shall, however, not describe this here. 
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For all k vectors in the case of symmorphic groups and for k vec­
tors if/side the Brillouin zone for nonsymmorphic groups. the method 
for obtaining Dlm({A I :::.}) is as follows. Having chosen a particular k 
vector, we denote it by k1 and find the other vectors of the star of )(1' 
which we denote by k 2• k 3 ••••• k q . We then select q point group 
clements Ai which satisfy (8.28). To obtain the (I. m)-th block of the 
matrix D. consider the elements Al and Am. Let!!1 and ~nr be the 
charact~ristic translations associated with A I and A /II respectively. 
Define the space group element {BI~} by 

{BI~] = {AII/ I~II/}-l {A I::::} {AII!!l}' (8.41) 
Working out the product on the right-hand side. we obtain 

B = AII/-l AAI, ~=Am-l (A!!I + ::::-~/II)' (8.42) 

It can be verified that B is an clement in the group K of the vector k) . 
Let us choose a particular d-dimensional Irreducible representation, 
say r. of K and define 

D(B, ~) = cx p(ikJ .~) reB). (8.43) 

The (I, m)-th block of D({A I::::}) is then the above matrix, that is 

DI/I/({A I ::: }) = D(B, ~). (8.44) 

The procedure can be repeated for all the space group elemend.by 
letting {A I:::} run over the space group S. The representation obtained 
is clearly of dimension qd. Each irreducible representation of K for 
every value ofk gives us an irreducible representation of S. However, 
not all of these arc distinct representations. To obtain all the dIstinct 
irreducible representations of S, We must let k run through a suitably 
selected I/g-th part of the Brillouin zone (g= order of the point 
group C) so as to include only one vector from a given star of k. 

To summ'arize the results obtained in this chapter so far, we first 
found that the energy eigenstates of the Hamiltonian with a periodic 
potential are Bloch functions. The dispersion relation E=E(k) is a 
multi valued function in the first Brillouin zone and the constant energy 
surfaces represented by E(k)=constallt have the full point group 
symmetry of the lattice. Owing to the Bloch form of the eigenfunc­
tions, we need to solve the Schroedinger equation only in one unit cell 
rather than throughout the crystal. . The Bloeh functions can be used 
to generate the irreducible representations of the space group S. 
Finally, the degeneracies for any value of k can be simply inferred from 
the irreducible representations of the group of k and the number of 
vectors in the star of k.. 
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8.4 Free Electron Energy Bands: One- and Two-Dimensional Lattices 

We have mentioned in Section 8.1 that under the free electron 
approximation, the energy is a quadratic function of the magnitude 
of the wave vector in the extended zone scheme. It is more con­
venient to show and to study the energy bands in the reduced zone 
scheme. In this section, we shall consider the examples of a one-dimen­
sional lattice and a square lattice. 

8.4.1 One-dimensional lattice. In the extended zone scheme, 
the energy versus tbc wave vector relation will be just a parabola 
£ - fl-!k 2 /211l as ~hown in Fig. (8.5). For representing the energy in 
the reduced zone scheme, we note that the first Brillouin zone 9f the 
lattice is the region -rr/as;,k<rr/a of the reciprocal space and thit 
the reciprocal lattice vectors are G= 2rrlll/a, where a is the direct 
lattice constant and J1/ is any 'integer. To draw the energy bands in 
this scheme, we imagine a parabola such as that shown in Fig. (8.5) 

E 

____________ ~~~ __________ ~k 

FIGURE 8.5 The energy versus wave vector relation for a 
one-dimensional lattice in the extended zone 
scheme under the free electron approximation 

drawn with its vertex at each of the reciprocal lattice points and con­
sider only that part of each parabola which is in the first Brillouin 
zone. This is shown in Fig. (8.6). The various parts of the parabola 
in tbis figure (i.e., the various bal/ds) are clearly represented by the 
equations 

£=(fl2/2111) (k-G)2, (8.45) 

where G takes the successive values 0, ...!.- 2-;-::a, ...!.· 4-;-: ,'a, etc. 

8.4.2 Square lattice. The energy versus wave vector relation fnr 
a two-dimensional lattice may be represented by a surface in three 
dimensions with two dimensions standing for kx and k y and the third 
for the energy E. For allY two-dimensional lattice, this surface in the 
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extended zone scheme and under the free electron approximation would 
be a parabolqid of revolution obtained by revolving the parabola of 
Fig. (8.5) about the E axis. In the reduced zone scheme, the same surface 

k 

FIGURE 8.6 The free electron energy bands for a one-dimensional lattice in 
the reduced zone scheme; k in units of 2;:/a and E in units 

of 2 1}21;2/ma2, which is the free electron energy at k=2;:/a 

\\.:ould assume a rather complicated form depending on the lattice. We 
can, nevertheless, show the cross-sections of this surface along various 
lines of symmetry in the first Brillouin zone. This will be illustrated 
here for a square lattice with the point symmetry group CJ ¥ . 

The reciprocal lattice of the square lattice is again a square lattice. 
The reciprocal lattice vectors are 

" " G= m k.,4-nkv, (8 .46) 

" " . \\ here k.\· and k y are orthonormal vectors 111 the reciprocal space, and 11/ 

and n are any integers . Imagine a set of paraboloids, such as mentioned 
above. with their vertices at each of the reciprocal lattice points. 
The part orthe surface of each paraboloid con tained in the first Brillouin 

. zone (-iS k." ky<!)willconstitllte a branch orthe function E=E(k) 
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in the reduced zone scheme. It is however, not possible to show this­
surface in a diagram with any ease. The problem would be still more 
complex for three-dimensional lattices because E = E(k) will then be a 
surface in the four-dimensional space (k x , k J', k=, E). 

We may considerably simplify the matter by considering the vari· 
ous cross-sections of the multivalued-function E= E(k) along different 
lines of symmetry in the Brillouin zone. For example, we may start from 
the point r at the centre of the Brillouin zone and go along the line 8. 
to the point X. Along the line rx, we would have k,, = O,O< kx< t. 
We may next go from X to M along the line Z where k_~ = k and O< ky 
::.::;;!. Finally, we may show the variation of energy with respect to 
the magnitude of kfrom Mto r a!ongtheline k where kx=ky=k/Vf. 
The free elect ron bands along these lines of symmetry are shown in 
Fig. (8.7) for a square lattice. The method of obtaining the bands 

E 

3·0 !-----'I--!-..., 

x M M r 
FIG URE 8 .7 The free electron energy bands of a square lattice along the 

lines of symmetry and their labeling by the irreducible repre­
sentations of the group of the wave vector. The plane waves 
corresponding to the bands are indicated below each band 
(see Section 8.4 .3). 
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and the labeling of the various bapds by the irreducible representa­
tions of the group of the wave vector will be explained in the following 
subsection. 

8.4.3 Metbod of obtaining free electron 'bands and tbelr labeliag. 
It is clear that the equation of a free electron paraboloid with its 
vertex at the reciprocal lattice point G(m. n) is 

E= 1i2 [(G.x-kx)2+ (Gy-ky)I]/2m. (S.47) 
where G.x and Gy are the cartesian components ofG. Converting E and 
k to the reduced units (k in units of 27t/a and E in units of21i~2/mal). 
the above rquation becomes 

E = (m-kx)2+(Tl-ky)2. -!::;;kx. ky::;; I. (S '.4S) 
The correspopding plane wave solution of the Schroedinger equation is 

(m n)=g,k (m. n)=exp [i (k-G)· r] 
= exp [i {(k.x -m)x+(ky~n)y)]. (S.49) 

We shall now consider below the three lines of symmetry 6.. Zand I. 

A. Along the line r x. we have ky = 0 anO may restrict kx to the 
open interval (0. 1) ,since the other part (- i. 0) of the interval gives 
symmetrical bands. The cross-section of the paraboloid (S.4S) along 
the line A is then 

E(6.)=(m- kx)2+ n2, 0 < kx < I. (S.5O) 

The corresponding plane wave is 
(m n)6 = exp [i{(kx-m)x'-ny}]. (S .51) 

Each set of values of the integers m and n gives us a band. It is also evi­
dent from (S . 50) that smaller absolute values of m and n will correspond 
to lower bands. We start considering the successive reciprocal lattice 
vectors in increasing order of magnitude. . 

The shortest reciprocal lattice vector is (0 0), which from(S.50). 
gives the band 

(S.S2) 
1 ne corresponding plane wave is (0 0)6 = exp( ikxx). This is the lowest 
band along the line r X shown in Fig. (S . 7). 

The group of thek vector along the line 6.. excluding the end-points 
rand X. is the subgroup (E, m.x) of C4 • • The two irreducible re­
presentations of this group will be denoted by 81 and 6.2 for points on 
the line 6.. It is then clear that the plane wave (OO) 6 transforms 
according to 6) under the group (E, YI1.x). , 

The next set of reciprocal lattice vectors is (1 0), (10), (0 1) !tnd 
(0 1). Substituting these values of m and..." olte by one in (S. 50), we get 
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three bands, two of which are nondegeherate and are generated by 
the plane waves (1 O)~and (f O)~ respectively, and the third is a doubly 
degenerate band generated by the plane wave (0 I)~ and (O'T)A' 
Each of the plane waves (1 O)~ and (I O)~ transforms according to 
Lh The two plane waves (0 I)~ and (0 D~, on the other hand, have 
the explicit forms 

(0 l)~ =exp[i(kxx-y)], (8.53) 
(0 D~=exp[i(kxx+y)]. 

It is clear that they go into each other under mx, which has the effect of 
changing y to-yo They therefore generate the representation LhE8Ll2 
of (E, mx). It is easy to see that the two linear combinations 

{

COS y 
(0 I)~±(O 1)~ocexp(ikxx) X . 

S10 Y 
transform respectively according to fj.l and b. 2' 

(8.54) 

The next sets of reciprocal lattice vectors are {(I I), (l 1), (1 1), 
(Il)}. {(2 0), (2 0), (0 2), (0 2)}, etc. The bands corresponding to 
all of these plane waves can be obtained by following the same proce­
dure and as many bands as we please may be obtained. Fig. (8.7) shows 
all the bands upto E= 3. 

Z. The group of the k vector for a general point on the line X M 
(excluding both X and M) is (E, my). Its irreducible representations 
will be denoted by Zl and Z2' The k vector is of the form a. k y) with 
0< ky < t. The energy and the plane waves are therefore given by 

E(Z)=(m-t)2+(n-ky )2, 0 <ky< 1; 
(m n)z =exp i[( l-m) x+(ky-n)y]. 

(8.55) 

Considering successive plane waves, once again, we can obtain the 
various bands along Z. It is found that each band along XM-is doubly 
degenerate because the two sets (-m, n) and (m + 1, n) for m = 
0, 1, 2,3, ... give the same energy. The two plane waves correspond­
ing to each band transform according to the representation Zt EB Z2. 

~. The group of the k vector for a general point along rM(exclu­
ding both rand M) is (E, cr.). Its irreducible representations will be 
denoted by ~1 and ~2' The k vector has the from (k", k,,). The energy 
and the plane waves are given by 

E (~)=(m-kx)2+(n-kx)2, 0 < k" < 1; 
(m nh =exp [ i {(k,,-m)x+(kx-n)y}]. 

(8.56) . 

The energy bands and the symmetries of the plane waves are easily 
obtained by the method outlined above for fj.. 

The labeling of the plane wave states at the' special points 
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r, X and M is obtained as follows. 

r. The group of the k vector at r is the full point group C". Its 
irreducible representations (for the square lattice) will be denoted by 
r/. I ::;;: i::;;: 5 (see table for C •• in Table 7.7). 

The plane wave corresponding to the lowest energy is (0 O)r which 
has £=0. This plane wave at k=O is. in fact. a constant which belongs 
to the representation r l' 

The next four plane waves (1 O)r. (I O)r. (0 l)r and (Ol)r are 
degenerate at r with energy £= 1. The explicit forms of these plane 
waves at k = O are 

, (l O)r = exp(-ix). (l O)r = exp(ix). 
(8 .57) 

(0 1)r = exp(-iy). (0 l)r = exp(iy). 
By working out the characters. it can be shown that they generate the 
representation r1ffirs<±>rs of C... The next four plane waves (1 l)r, 
(I1 )r. (I J)r and (1 I)r. are degenerate at i' with energy £=2, and 
transform according to t e representation rl<±>r.<±>rS under C.>. 

X. The group of the k vecior at X is the subgroup(£, m •. my. C,') 
of C •• and its irreducible upresentations (for the square lattice) will be 
denoted by X" 1::;;: i ::;;: 4 (see table for Ca. in Table 7 .7). We get the 
following sets of degenerate plane waves at the point X: (i) the set 
{CO O)x. (I Oh} corresponding to the representation X1EBX3 with £= 
0.25; (ii) the set {CO I)x. (0 l)x. (I I)x. (1 I)x} transforming according 
to X l ffiXt <±>X3(±)X4 with £ = 1.25; (iii) the set {(fO)x.(20)x} again 
belonging to X1<±>X3 and with £=2.25. etc. 

M. The group of the k vector at M is the full group C4 •• Its irre­
duc.ible representations are denoted by MI (I <;::;;:5). which are respec­
tivelyequivalent to ri. The following sets of degenerate plane waves 
can be obtained : (i) the set {CO O)M. (I O)M. (0 I)M. (I I)M} with £ .... 0. S 
and belonging to the representation M 1 fIJM2<±>M •• (ii) the set {(OI)M, 
(1 i)M. (2 O)M. (i O)M. (1 l)M. (2 I)M. (0 2)M. (l 2)M} with £=2.5 and 
belonging to the regular representation of C.>. etc. . 

8.4.4 Compatibility relatioDs. We sec from Fig. (8.7) that. in 
genera! .. there is more degeneracy at the special points than on the lines 

: of symmetry. Further, if we move away from the lines of symmetl:)' to 
a generai point in the Brillouin zone, where the group of the k vector 
consists only of the identity element, the degeneracY 'of all the banda 
will be completely lifte~ . 
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Consider a point, of high symmetry such as f where the group or 
the wave vector isC4 •• As we move away Trom r along a line ofsym­
metD', say b", the·groupo.fsymmetry requces to C1h. Consider an irre­
ducible representation riat the point f. As the symmetry is reduced 
from C4• to Clh. the representation fi may, in general .. split into a 
(direct) sum of the irreducible representations 6 1 and 62' The. 
reduction can be obtained by the method described in Chapter :3 simply 
by inspecting the chanicter tables of C4 • and C1h and is independent of 
the basis functions generating the particulaJ: ' representation r,: It 
depends, {however, on which elements of the larger group (C4• here) 
ar~ contained. in the smaller group (C1h here). 

For example, we get the following relations between the represen­
tations at r and those at 8.. : 

f 1-+61' f 2-62' f3"-+8..1' r,-b,,2' r li-61@6 z' (8.58) 
We then say that the representation 6 1 is compatible with fl and ra' 
1:::.2 is compatible with r: and r 4 and 6 1 and 6~ are both compatible 
with f s' Similar relations can be established between fi and .. ~1 and 
~2' and also at the special points X and M. Jt is convenient to express 
the compatibility rclatiol/s between the irreducible representations at 
the special points and those along the various lines of symmetry meeting 
at that point in a tabular form for a given point group. These provide 
a simple check on tile correctness of the labeling of the bands in a 
diagram of the .clcctronic structure of a cry~tal. The compatibility 
relations ror a square lattice with the point group C~. are given in 
Table (8 .2). 

TABLE 8.2 TH[ COMPATIBIliTY REl ;\TIO~S fOR A SQUARE L\TTICE 

r1 r2 ra r, - r5 I'd1 J{2 Ala M4 ,\.f:, 

61 62 .61 .6~ .6 /.62 
./ 

£'·' 1 Z~ Zl 22 Zj Z 2 

II ~z ~~ ~l ~l !~ ~l ~2 I2 ~1 I 1Iz 
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'.5 Free Electron Energy Bands. Three~Dimensional Lattices 

In continuation of our study of the previous section, we shall ' 
discuss in this section the free electron energy bands of the three types 
·of cubic lattices. The method of obtaining the free electron bands and 
their labeling has already been described for a square lattice. Since 
the same procedure applies to three-dimensional lattices, it will not be 
mentioned here in much detail. 

8.5.1 Simple cubic lattice. The reciprocal lattice of a simple 
cubic lattice is also simple cubic and the reciprocal lattice vectors 
are given by 

G(m n p)=mkx+nky,+pkz. 

where kx • ky and kz are orthonormal vectors in the reciprocal space, 
and m, nand p can take all i.ntegral values. The first Brillouin zone is 
a cube with edge length unity. The special points and the lines of sym­
metry in the Brillouin zone are shown in Fig. (8.8). Table (8.3) lists 
the special points, the lines and the planes of symmetry, their stars of 
k vectors and the groups of' k vectors. The tetrahedron rXMR is the 
suitable 1/48th part of the Brillouin zone since the operation of the 
48 elements of the point group Oh on this tetrahedron fills the Brillouin 
zone completely without any gaps or overlap. 

For obtaining the free electron bands in the reduced zone scheme, 
we note that the equation of a free electron hyper-paraboloid with its 
vertex at the reciprocal lattice point G(m n p) will be 

E=[G(m n p)_k]2 =(m-kx )2+ (n-ky)2+ (p-kz)2. (8.59) 

..... .... .... 

..... ..... 

.... L ______ _ 

FIGURE 8.8 The special points and the lines of symmetry in the 
Brillouin zone of a simple cubic lattice 

Fig. (8.9) shows the free electron bands for a simple cubic lattice 
along the lines rx and rR. Table (8. 4) lists the compatibility relations 
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between the special points r, X, M and k and the lines of symmetry 
emanating from them. 

8.5.2 Body-centred cubic lattice. The reciproca,l lattice of a 
body-centred cubic (bcc) lattice is a face-centred cubic (fcc) lattice and 
the reciprocal lattice vectors are 

G(lIlll p) = mb1 +l7b~+pb3' (8.60) 
with 

(8.61 ) 

The shortest nonzero reciprocal lattice vectors are the twelve vectors 
r..,.. Ai>. "" 

±kx±ky, ± ky±kz and ± kz ± k x. Thefirst"Brillouin zone is thevolume 
enclosed by the twelve perpendicular bisectors of these vectors and is 
a regular rhombic dodecahedron (12 faces) . Fig. (8.10) shows the first 
Brillouin zone along with the special points and the lines of symmetry 

TABLE 8.3 THE STARS AND THE GROUPS OF THE W AVE VECTORS FOR 

THE SPECIAL POINTS, LINES AND PLANES or SYMMETRY FOR A SIMPLE 

CUBIC LATTICE. WE HAVE O<kx, k y, k=<t AND kx =l=- k y=l=-k.=I=-kx 

k I Symbol I ~o. of vectors I K. the group I Order of K 
In star of k of k 

I 
(k x • k ll • k z) none I 48 Cl 1 

(k",. k x • k z ) none 24 C1h 2 

(k",. ky. C) none 24 Clh 2 

(k",. k ll .!) none 24 C}h 2 

(k",. k.,. 0) 1: 12 C2v 4 

(k",. !. 0) Z 12 
I 

C2t1 4 

(k",.kx• ~) S 12 Ch 4 

(k",. k",. k.,) A . 8 C.v 

I 
6 

(k",.!.;) T I 6 C,v 8 

(k",.O.O) /::,. 6 C4v 8 

(!. t. 0) M 3 D'h 16 

(t. o. 0) X 3 D'h 16 

(!.!. !) R 1 0" 48 

(0.0.0) i r 1 0" 48 
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~O'O~ 

R r or;' r x 

FIGURE 8.9 The free electron energy bands for a simple cubic lattice 
along rx and rR upto E-3. The labeling of the bands 
at r and along 6 and A is also shown. The degeneracy 
of each band is the number in the paranthescs 

TABLE 8.4 THE COMPATIBILITY RELATIONS FOR. A SIMPLE 

CUBIC LATTICE 

r l r, rl! r15' r 2S' r J ' r2' r ll ' ru r.a 

A. 6, 616 , 61'66 6.'65 61' 6,,' 61'6.' 616G 6166 

Al A, As A,A. AlAs A. Al Aa AlA, AlAs 
11 I, :&lE, :&aEa!, 11:&.:&, E, E. l:al:a E1EaE, EIEJ~ 

X. X. X. X, Xi Xl' X.' X, X, X,' 

A. A. A.' AI' 65 61' 6' ,. '62 Al All 
Z. Z. Z, Z, Z.Za Z. Z. Za Z, ' ZIZ, 
Sl S, SI S, S.S, S. S, S, S, SIS, 
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TABLE 8.4 (continued) 

Ml M2 Iv'., Af4 M"o M]' J1"~' /11[3' M,' M,' 
~ 

~l ~" "" ;4 ~2 :::-:3 ~2 ~3 ~2 ~3 " '" ~I ~1-4 

ZI ZI Z3 Z~ ZZZJ Zz Z2 Z4 Z4 Z]Z3 
T) T2 T2' TI ' Ts T' ] T' 2 T2 T] Ts 

R) R2 R12 RJ5' R 2& 
. Rl ' Rz' R]2 R)5 R25 

Al A2 A3 A2A3 A]A3 Az Al A3 AIA3 A2Aa 
SI S, SIS" S2SaS, 51S2S3 S2 S3 S2Sa SIS,S, S1S2S4 
11 T2 T1T2 TITs Tz'T, T1' T2' T1'T2' TlT" T2TS 

• - kz 

/' 

FIGURE 8.10 The special points and the lines of symmetry in the Brillouin 
zone of a bcc lattice. The reciprocal lattice points are at the 
centre of the cube and at the mid-points of the edges of the 
cube shown. The length of the cube edge is 2. 

for a bcc lattice. The electronic structure needs to be calculated only in 
the tetrahedron r H NP which is a ] /48tl1 part of the Brillouin zone. 
Fig. (8.11) shows the free electron band structure ofacrystal havingbcc 
structure with one atom per lattice point along the lines r Hand r P. 
The compatiblj-ity relations for the bee lattice are listed i!1 Table (8.5). 
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8.S.3 Face-centred cubic lattice. The reciprocal lattice of an 
fcc lattice is ~ bcc lattice and the fundamental translation vectOR of 
the reciprqcallattice are 

" ",. ,. 1\,.. """ b1=kx+ k y -kz, b2 = k x-ky +Kz, b3 =-kx+ky +kz. (8.62) 
There are eight shortest nonzero reciprocal lattice vectors which are 

. " A " 
±kx±ky±k. . (8.63) 

If we construct the perpendicular bisectors of these eight vectors, we 

p r 

E 

/ 
~.-~-r----~/616 . 6 . 

A. 

r H 

FIGURE 8 . 11 The free electron energy bands for a bee lattice along r H 
and r p up to just above E=3 

obtain an octahedron. However, tills octahedron is not the Brillouin 
zone of the fcc lattice because the regions near its corners are closer 
to other reciprocal lattice points than to the central one. The six 
corners of the octahedron therefore need to be truncated by perpendi­
cular bisectors of the vectors to the six second-neighbour reciprocal 
lattice points which are 

,. " ,. 
:!.:2kx , ±2ky , ±2k,. (8.64) 

The Brillouin zone of an fcc lattice is thus a truncated octahedron with 
14 faces which is shown in Fig. (8.12) along with the symmetry points 
and lines. The pentahedron r xu LKW (5 faces, 6 vertices) is the 
suitable '1/48th part of the Brillouin zone in which the electronic 
structure need be calculated. 
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TABLE 8.5 THE COMPATmILITY RELATIONS FOR A BODY 
CENTRED CUBIC LATI/CE. THE FIRST COLUMN 
DENOTES THE GROUP OF THE WAVE VECTOR 

r: same as in Table (8.4) . 

011 I HI Hz HIZ HIS' H2s' HI' Hz' HIZ' HIS H Z6 

C", 61 6~ 6 1 6 ~ 6I'6~ 6 ~'6s 61' f::l '!. ' 6I' {::,2' 6 16& 6265 

C3t> Fl F2 F.1 FzFa FlFa F2 Fl Fa FlFa F2FS 

C2t> Gl G-t GIG, GzGaG4 G1G2GS G2 Ga G2Ga G1GaG4 GlG2G4 

Ta. PI Pz P~ P4 Ps 

Cav Al A2 Aa A11\a A21\a 

Call Fl F2 Fa F1F3 F2Fa 

C211 Dl D2 D1Dz DI DaD4 D2DaD4 

D2h N1 N2 Ns N4 Nl ' N2' Na' N 4' 

C211 '" -1 l:z " "'a 2:4 2:1 l:z ~a 1: 4 

C211 Dl Da D4 Dz D4 D2 Dl Da 

C2v Gl Ga Gz G4 G4 G2 G3 GI 

FlOUR E 8.12 The special points and the lines of symmetry in the Brillouin 
zone of an fcc lattice. The reciprocal lattice points are at 
the centre and the corners of the cube shown. The lenith 
of the cube edge is 2. 
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TABLE 8.6 THE COMPATIBILITY RELATIONS FOR AN Fcc LATTICE. 

THE FIRST COLUMN D ENOTES THE GROUP OF THE WAVE VECTOR 
r: same as in Table (8.4). 

D41t Xl X2 Xa X4 Xs Xl' X~' Xa' X,' Xs' 

C4 V 61 62 62' 61' 65 61' 62' 62 61 65 

C2v Zl Zl Z4 Z4 Z2Z3 Zz Z2 Z3 Z3 ZlZ, 

C2~ 51 54 S] S4 S~Sa S2 S3 S2 S3 S1S4 

D3h I Ll L2 L3 L 1' L 2' La' C4v I WI W2 WI' , W!!' W3 

Cat> Al A2 A3 A2 Al Aa C~V \ 
ZI Z2 Z2 ZI Z3Z, 

Cl/I Ql Q2 QIQ2 Ql Q2 QIQ2 C1h Ql Q2 Ql Q2 QIQ2 

Fig. (8.13) shows the free electron band structure of a crystal 
having fcc structure with one atom per lattice point alo,ng the lines..r X 
and r L. The compatibility relations for the fcc lattice are listed in 
Table (8.6). 

E 

Al 

r'r ' ~ 2 I~ ~s 

~--2'O 

r-<---1·O---,~. 

l~----==:'-'r!::E--- ~--"";~~=~=----__ .J 

FIGURE 8.13 The free electron energy b~nds of an fcc latti; along rX , 
and r L upto just above E= 3 
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8.6 Energy Bands of Real Crystals 

In the previous two sections. we have been discussing the free 
electron energy bands of crystals. In this approximation. we completely 
disregard the complicated crystal potential arising from the ions and 
the electrons and assume that a single electron is moving in a constant 
potential ·inside the lattice. Although very far from truth, this model 
has helped us to gain a considerable insight into the nature of the 
electronic bands. It turns out that the energy bands of many metals, 
particularly the one-electron metals (alkalies), are not significantly 
different from the free electron bands. There are a few changes as we 
go from the free electron model to a real crystal with its periodic 
potential of which we note the following: (a) splitting of the high degene­
racy characteristic of the free electron model, and (b) hybridization 
of bands hrving the same sym!lletry. We shall discuss thes~ effects in 
this section 'it proper places. We shall discuss only one and perhaps 
the simplest method for determining the energy bands of real 
crystals-the plane wave expansion method. 

8.6.1 Plane wave expansion method. We have. seen that in the 
free electron approximation, the electronic wave functions aCe just 
the plane waves exp[i(k-'-G)·r]. As k runs over the first Brillouin zone 
and G runs over the set of all reciprocal lattice vectors, the plane waves 
constitute a complete set for the expansion of the one-electron wave 
functions in real crystals. Considering the complete Schroedinger 
equation (8.1) with the potential VCr), we can exprelis the eigenfunction 
cP(r) as a linear combination of the plane waves. Moreover, the potential 
V(r), being periodic, can be represented by its Fourier series with sum­
mation on the reciprocal lattice vectors. It is further known that a 
periodic potential mixes only plane waves whose wave vectors differ 
by recipr.)Callattice vectors. We therefore have 

cPCr)= L c(k-G) ·exp[i(k-'G).r], (8.65a) 
G 

V(r)= L VGexp(iG·r). (8.65b) 
G 

Substituting these in (8. 1) and rearranging terms, we have 
L[(Ak_G-E) c(k-G)+L V G' c(k-G-G')] exp[i(k-G).r]=O, 

G G' . 
(8.66) 

where Ak-G= 112 (k-G)2j2m is the free electron energy. Since all the 
plane waves constitute a set of independent functions for different G's, 
the coefficient of each term in the above equation must be separately 
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zero. This gives 

(>'k-G -E) c(k-G)+~ VG, c(k-G-G')=O, 
G' 

1297 

(8 . 67) 

for all G's, The unknown coefficient, c(k-G) for a particular value 
of k and difTerent values of G as well as the unknown energy eigen­
value of E= L"(k) can be determined from (8.67). W~ can obVIOusly 
\\fite down one equation such as (8.67) for every value of G. This 
gives us a se t of linear homogeneous equations in the unknown coetli­
c.:ients dk- G) . The condition for the existence of a nontrivial 
solution for these coefllcients is that the determinant of the elements 
Illultiplying c( k - G - G' ) in (8 .67) be zero. This is expressed in a 
shorthand notation as 

det I (Ak - G - E)3GG , + V G , - G I 0-0 0. (8.6S) 

Eg . (8,67) Or (8.68) is known as ~he secular cqllGtioll of the problem. 
, As an illustration, consider a monatomic one-dimensional crystal 

and suppose that only three Fourier coefficients for c=o and ± C1 

in (8.65b), where Cit is the shortest nonzero reciprocal lattice vector, 
have appreciable magnitude while the rest can be neglected. Since the 
potential is real, we have V- GI ~-= VGI ~" Vo is an additive constant 
potential and may be droppcd rrom eomicleration (in other words, we 
take Vo=O). In the wave [unction (8.65a), we similarly assume that 
only the three coefficients c(k), c(k-C1 ) and c(k + C1 ) predominate 
and the rest can be neglected. We now write (8 .67) for the three 
values C= O and ± Cp and obtain three linear homogeneous equations 
for the three unknown coefficients. The condition for them to have 
nontrivial solutions is that 

(Ak-Cl-E) V1'" 0 I 
Vj':' elk-E) VI =- 0, (8,69) 

o Vi ('\k+Cl - E) I 
where Vl = VC1' On solving, this gives us three eigenvalues (probably 
the lowest) and substituting these back in the three homogeneolls 
equations, we can solve for the three coefficients, upto a normalization 
constant, to obtain the wave function 

<pk(x)= c(k) exp(ikx) + c(k-C,) exp[i(k-C,h] 
+ c(k +( 1 ) exp[i(k + (1)x]. (8.70) 

If we wish to improve the accuracy of the calculation, the obvious 
procedure within the framework of this method is to include a larg.:: 
number of terms, say 11, in the Fourier expansion (8.65b) of the periodic 
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potential. We must then include the corresponding terms in the 
wave function (8.65a). The secular determinant will then be of order 
11 which will give us n eigenvalues, at least the lowest few of which 
will be fairly accurate. 

The problem is obvious. The more the accuracy one desires, the 
larger is the order of the determinant that must be solved. Even with 
the present-day computers, it is a fairly difficult task to solve, say, a 
30 X 30 or a 50 X 50 determinant. Group theory comes to our rescue 
with its familiar technique of block-diagonalization so that determi­
nants as large as 300 X 300 or 500 x 500 can be solved. 5 We shall 
discuss this in the next subsection. 

8.6.2 Factorization of the secular determinant. Consider a three­
dimensional simple cubic monatomic crystal. The reciprocal lattice 
vectors can be divided into sets according to their magnitudes. Thus, 
there is one reciprocal lattice vector with length zero, six vectors with 
length unity, twelve with length vi, and so on. In the expansion of 
the potential, it is reasonable to expect that the magnitude of the 
Fourier coefficients corresponding to large reciprocal lattice vectors 
will be small. We may therefore decide to include the first few terms 
in the expansion (8.65b). However, since the potential VCr) has the 
symmetry of the lattice, we must include either none or all the vectors 
of a set of equivalent reciprocal lattice vectors. Table (8.7) lists a 
number of sets of reciprocal lattice vectors for a simple cubic lattice 
in increasing order of length. We shall illustrate the procedure below 
by considering the expansion of the wave function in 33 plane waves 
(the first five sets of Table 8.7). 

Consider the point r where the group of the wave vector is ' Oh. 
The plane waves are of the form exp( -iG·r). Each set of plane waves 
listed in Table (8.7) can be used to generate a representation of Oh. 
Table (8.8) shows the characters of the representations generated by 
the first five sets and their decomposition into the irreducible represen­
tations. From each set of plane waves, we can then construct the 
symmetrized linear combinations transforming according to the irre­
ducible representations of Oh. For example, the symmetrized combi-

5 Although more rapidly convergent methods than the plane wave expansion 
are nowadays available, all of them are essentially based on. the solution of a 
secular equation. Our purpose is merely to illustrate the use of group theory 
in reduction of the secular determinant and this is served well by the simple 
plane wave expansion method. 
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nations of the six plane waves of the set {100}r are 

r 1 : (lOO)r + (lOO)r +(OlO)r +(OTO)r +(OOl)r + (OOT)r,.,..,l; 

r . {(lOO)r + (TOO)r -(OlO)r :-(OTO)r ......,x2_ y2, 
l~' (100)r +(TOO)r + (OlO)r + (OTO)r -2(OOI)r 

{

(IOO)r -(lOO)r """X, 

r 15 : (OlO)r -(OI~)r ...... y, 

(OOI)r -(OOUr """ z. 

-2(OOl)r __ X2+y2_2z~; 

TABLE 8.7 SOME SETS OF SHORTEST RECIPROCAL LATTICE 

VECTORS FOR A SIMPLE CUBIC LATTICE 

Set Length Number Cumulative 
total 

{O 0 O} 0 

{I 0 O} 1 6 '/ 

{ I 1 O} y2 12 19 

{ I I I} y3 8 27 
.r'") 0 O} 2 6 33 ,-
{2 1 O} y5 24 57 

{2 1 I} y6 24 81 

{:! 2 O} yB 12 93 

{2 2 1} 3 24 117 

{3 0 O} 3 6 123 

{3 O} y10 24 147 

{3 I} vii 24 171 
p 2 2} y12 8 179 ,-
{3 2 O} yD 24 203 

{ 3 2 I } Y14 48 251 

{4 0 O} 4 6 257 

299 
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TABLE S.S THE CHARACTERS OF THE REPRESENTATIONS OF 0" 
GENERA TED BY THE FIRST FIVE SETS OF TABLE (S. 7) 

AND THEIR REDUCTION 

Set I E 6C4 3C42 6C2 8C3 J 6JC4 3JC4
2 6JC2 8JC3 1· Representation 

{OOOj r 1 1 1 r 1 
{IOO}r 6 2 2 0 0 0 0 4 2 0 r 1c:Br 12c:Br ls 

{IlO}r 12 0 0 2 0 0 0 4 2 0 r 1c:Br 12 c:Br 15c:Br 25@ r ~;,' 

{111}r 8 0 0 0 2 0 0 0 4 0 r 18 r /c:Br lsE9r 2;;' 

{200}r 6 2 2 0 0 0 0 4 2 0 r 18 r 12c:Br ls 

The required block-diagonalization is then immediately obtained 
if we expand the wave function not in plane waves but in the symm~­
trized plane waves. If we express these in the nota.tion of Chapters 3 
and 5 by h",", we can express the wave function as 

cfkCr)= ~ Oapm hma. (S.71) 
Cl , p,m 

Using this expansion in the Schroedinger equation (8.1), we have 

[..9Co-E+ V(r)] L Oapm ljipma=O, (8 .72) 
CC,p,11l 

where .!f(o denotes the kinetic energy operator. Taking the scalar pro­
duct of this with some symmetrized plane wave ~qnll and noting that 
..9Co' E and V(r) are invariant under 0", we have 

(~qllll, L oocpm [..9Co-E+ V(r)] ~PJl,")=O, 
cx. P, m 

. or (8.73) 
p 

for all ~, q and n. This is again a set of linear homogeneous equa­
tions in the unknown coefficients 0llpn and the eigenvalue E and the 
coefficients 0 1l1'1I can be obtained by solving the determinant of the 
elements (YlJnll, [3(0- E + V(r)] Y,,,,Il). The significant difference, how­
ever, is that the order of this determinant is considerably smaller-it 
is equal to the num ber of values of p (or q) for fixed values of ~ and /I. 

Corning to the example which we have taken up, we see from 
Table (8 .8) that the representation r 1 occurs five times in the sche\lle. 
Thus I < p< 5 in this case and we have a 5 x 5 determinant to solve 
which will give us five eigenvalues corresponding to r]. The repre­
sentations r~ ' and r 25 occur only once each. These give us the 
corresponding I x I blocks which are the eigenvalues themselves. The 
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representation r 25 ' occurs twice and is three-dimensional. Correspond­
ing to the three columns of r 25' (11 = 1,2, 3; p, q= l, 2), we have three 
2 X 2 determinants. So lving anyone of these, we get two eigenvalues, 
each of which will be threefold degenerate. The representation rl~ 
occurs thrice and is two-dimensional. Corresponding to the two 
columns of r t 2 (11 = 1, 2; p, q= 1,2, 3), we have two 3 x 3 determinants. 
But only one or them need be solved to obtain three eigenvalues 
and each of these will be twofold degenerate. Finally, r 15 occurs four 
times so that we have three 4 x 4 determinants only one of which may 
be solved to obtain the four threefold degenerate eigenvalues. 
The problem of solving a 33 x 33 determinant has thus been reduced 
to one of solving two one-dimensional determinants and one determi­
nant each of order 2, 3, 4 and 5. The result is the 33 electronic energy 
levels at k=O. Additional sets of plane waves can easily be included 
without much increase in (he labour and the convergence of the 
eigenvalues can be studied. The transition from the case of the free 
electron approximation to that of the nearly free electron model is 
schematically illustrated in Fig. (8.14). As has been emphasized in 
this book, group theory gives only the splitting of the degeneracies . 
The exact ordering of the levels depends on the actual potential and 
must be obtained by solving the secular equation . . It is possible that 
a 'strong' potential may have a drastic effect on the ordering of the 
b e!s as sho wn in Figs. (8 .14c) and (8 .14d) for Si and Ge. In the 

rer e r 
r I':: ,5 

r ere r e r" e ~2 :' 
I 11 15 . ~ ) 

~ 
(a) 

r 
I r;', 
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15 
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~ 
(b) ( c) 

I 

r;'z 
r 
15 

I 

~5 

r;' 

r;'s 
C' 
2 

r' 
25 

r; 
(d) 

flGU RE S . 14 The high dcgeneracy of the electronic levels in the free 
electron mouel (a) splits under the action of a periodic poten­
tia l (b) (schematic) ; (c) and (d) show the first few levels at 
k = O in Si and Ge, respectively (not to scale) . 
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case of Si, the ordering is r l, r 2S',r]S' r 12', r 2'. r 1, ... , while for 
Ge, it is r l , r 2S', r 2'. r I5' ... . 

At any other point in the Brillouin zone with less than full cubic 
symmetry, the reduction of the secular equation is not so effective. AI-

. though, in principle, the procedure.is the same, the labour therefore 
increases. For example, the group of the wave vector along the line 
6. is C4v which has one- and two-dimensional irreducible representa­
tions. We may again consider a number of plane waves of the form 
exp(i(k-G).r), obtain suitable symmetrized combinations transform­
ing according to the irreducible representations of C4V and take up the 
problem of solving the secular determinant. The blocks will, however, 
be in general of larger dimensions than at r. At a general point where 
the group of the wave vector is only the identity element, we have to 
solve the complete determinant without any factorization (33 X 33 in 
the above example). In other words, the larger the group of the wave 
vector, the larger is the accuracy of the eigenvalues with a given 
amount of labour. It is obviously easier to obtain the eigenvalues at 
symmetry points and along symmetry lines in the Brillouin zone. 

One effect of the crystal potential on the energy bands which we 
have mentioned at the beginning of this section is the hybridization of 
bands having the same symmetry. In the free electron model. bands 

r x 

FIGURE 8.15 The band struc­
ture of copper along rx show­
ing the hybridization of two 
bands having the symmetry L\.l' 
The dotted curves are hypothetical 
bands in the absence of hybridi­
zation 

having the same symmetry may cross. Thus, there are a number of 
crossings of bands of symmetry l:J. I along r X in Fig. (8.13). With the 
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introduction of the periodic potential, such degeneracies are lined and 
we get new bands. 

Consider. for example. the tw,) bands with symmetries 6) and 
6)Etl bdB.6.:. in the range 1 < E < 2 of Fig. (8.9). The plane wave 
generating the first of these bands is (iOO)6 =exp[i(kx + 1) xl whilethe 
other band is generat.:d by the four plane waves (110)6. (110)6 • 

. ( 101)6 and (101)e:. . The linear combination of these which transforms 
according to 6 1 is th;: sum of the fOllr plane waves which gives 
exp(ikxx)(cos y+cosz). Thes;:two symmetrized functions transform 
according to 1::'1 and are degenerate at " = 1/4 with £=25/16 h the 
free electron model. When the crystal potential is taken into aC\. ount, 
there will be nonv~nishing matrix elements of the potential between 
these functions having the ~amc symmetry and the solutions will be 
the rt)ots of the corresponding blocks in the secular equation. This 
J1lean~ th~:t the proper 'eigenfunctions must be constructed by taking 
linear combinations of as many functions having the same symmetry 
as possible. This phenomcnon is known as hybridizatioll and has the 
obvious elTect of lifting the degeneracy bctween bands having the 
same symmetry: Fig. (8 15) shows the energy bands of copper (fcc 
structure) along r X obtained by Segall :6 The hybridization of two 
bands having symmetry 6.1 should be obvious. We Cln therefore 
take it as a general rule thlt hal/dol' hal'ing ,II:' same sYlllmetry elo- 1101 

cro.u. 

PROBLDIS ON CHAPTER 8 

(S . J) Show that the \vigna·Seilz cell ha~ the full poim group symmetry of 
t~~tt~e. , 

(8.2) If the group of a certain vector k i~ 1\, show th:!t the group of any 
vcctor in the star of k is also K 

(8 . 3) Obtain the compatibility relations for the double-valued representation~ 
of the cubk group 0 between the points r and the lines :::" A and ~. 

(8.4) Verify the compatibility relations given in Tables (S.4), (8 .5) and (8 .6). 
(8.5) Obtain the free electron energy bands of bec and fcc lattices shown in 

Figs. (8. I J) llnO (8 . 13) and verify the labeling of the various bands. 
(8 . 6) Construct tables such as Table (8 . 3) for bee and fcc lattices listing 

the group~ of the wavc vector at various special points and on lines and plane; 
of ~ymmctry in the respective Brillouin zones. Check your results with the 
gfl)Up~ of lhe wavc vector given in Tables (8.5) and (8.6). 

(1l . 7) Determine the groups of the wave vector at the following points for 

6 Segall (1962). Figure reproduced ",it h permission of the author. 
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an fcc lattice: (ii) U, (ii) K, a general point along (iii) WK. (iv) UL, (v) WU, 
(vi) KL. Obtain the compatibility relations for the representations at Wand 
a general point along WU. 

(S.8) Determine the groups of the wave vector for a general point on the 
planes rxp, rHN and rNP for a bcc lattice. Do the same for a general point 
on the planes rXM. rJlfR. rXR and MXR for a simple cubic lattice. 

(S.9) Obtain the free electron energy bands along the various lines of 
symmetry in the reduced zone scheme for a two-dimensional rectangular lattice 
and a hexagonal lattice. Obtain the labeling of the various bands. 

(8.10) Draw the free electron energy bands for a simple cubic lattice along 
rM. MR. XM and XR and label them by the proper irreducible representations. 
Verify that the compatibility relations of Table (8.4) are satisfied. 

(8.ll) In spite of the rule that bands having the same symmetry do not 
cross, explain why many bands apparently having the same symmetry cross each 
other in the free electron model. 

(S .12) Construct tables such as Table (8.7) for bcc and fcc lattices listing 
the various sets of reciprocal lattice vectors. 
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APPENDIX A 

Elastic Constants of Crystals 

We expect the reader orthis book to be familiar with the elementary 
considerations of the elastic properties of crystals. 1 The str~s.s, which is 
defined as t he force acting on a unit area of the solid, is a seco~d rank 
nine-component tensor whose components may be denoted by :Xx, Yy , 

Zz. y=, Z,·, Xy , Y,·, Zy and X=. The first three are the componen~s of the 
tensile stress while the last six denote the shear st ress. The notatiOi. is 
such that the capital letter denotes the direction of the force while the 
subscript denotes the normal to the plane on which the force acts. Thus, 
lor e\:tmple, Y: denotes the component of force acting along the y direc­
tion on a unit area of the solid normal to the z direction . When the 
,;olid is in static equilibrium (that is, has no resultant force or torque 
acting on it) , it can be shown that the stress tensor is a symmetric 
tensor, so that 

(A.l) 

We thus h;lve only six independent elastic stress components. 
The elastic strain tensor is similarly a symmetric second rank 

tensor with the six independent dimensionless components C.TX, l'yy, ('zz, 

<'yz = £'zy, (':x, =<'x=, £'x y =Cyx. Let us. denote the stress and the strain 
components by the six-dimen~ional columll vectors 

(A.l1 
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where we have used the curly brackets to denote a column vector. To 
the first order in stresses and strains, the Hooke's law is obeyed and the 
components are linearly dependent on each other. This is a good 
approximation for small deformations and we can write the cause­
effect relationship in the form 

x=SX, X=Cx, (A.3) 
where Sand C are square matrices~of order six and it is obvious that 
C is the inverse of S. The elements So (I ~j.j~6) of S are called the elas­
tic compliance constants or simply elastic compliances, while the elements 
Co of C are called the elastic stiffness constants. Together, they are 
just called the elastic. constants of the solid. Although there are 36 
elastic constants involved in (A. 3), they can be chosen to be symmetric, 
so that Cij=Cj/ (Sij=Sji). This reduces the number of independent 
elastic constants to 21 even for a system with no symmetry at all. A 
crystal with the lowest possible symmetry (triclinic system) has all the 
21 independent elastic constants. 

The number of independent elastic constants further reduces if 
the crystal possesses higher symmetry. This result can be deduced ~ 
follows. The elastic energy density of a solid can be expressed as a 
bilinear function of the strain components with coefficients which are 
the elastic stiffness constants in the form 

6 I 
U=}; }; (I-! ~kl) CkleHl, (A.4) 

1=1 k=l 

where we have identified the subscript~ on the stram components as 

xx=l,yy-2,zz=3,yz_4, zx 5, xy=6. (A.5) 
The general matrix is therefore of the form 

r Cll C 12 C13 C14 C15 C16 l 
C12 C22 C23 C24 C25 C26 

C13 C23 C S3 C34 C35 Cas 
C14 Cu C34 C44 C'5 C48 (A .6) 
C15 C25 Cas C45 C55 C56 

L C1S C2S Cas C,s C5G Css J 
Now, the elastic energy ~ensity should remain invariant under 

any symmetry transformation of the crystal. For example, if a strained 
cubic crystal is under consideration, its elastic energy density should 
not change by a mere relabeling of the x, y and· z axes. We shall show 

I.Note tbat Sande are really fourth rank tensors because they transform 
one second rank tenSor into another second rank tensor. 
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explicitly by taking up a couple of examples that such a condition on 
the elastic energy density is eq uivalent to conditions on the elastic 
constants. The result is that some of these constants identically vanish 
while some of the remaining ones become equal to each other, reducing 
considerably the number of independent elastic constants. 

Cubic Crystals 

Cubic crysta ls are characterized by a threefold rotational symmetry 
about each of the four cube diagonals. The effect of these rotations 
on the cartesian coordinates is illustrated in Table (A. 1). 

TABLE A . I THE EFFECT OF TilE THREE-FoLD ROTATIONS~BOU r 

THE CUBE DIAGONALS ON THE CARTl:SIAN COORDINAtES 

No. 20./3 about the axis has the effecti A clockwise rotation through . \ 

- --;.----

2 

3 

4 

[I J] 

[I 1] 
[1 r I] 

[i 1) 

Consider the first operation of Table (A .1) applied on the crystal 
so that the elastic energy density of (A. 4) takes the form 

U =t Cll eyi+C12 eyy ezz+C13 eyy e.u + C14 eyy eZX+C15 eyy exy 
+C16 eyyeyz + t C22 eZZ

2+C23 ezz exx+C24 ezz eZX+C25 e;zz e"y 
+C26 ('zz eyz + t C33 eXX2+C34 exx eZX+C35 exx eXy+C36 exx eyz 
+t c.H eZX2+C45 ezx eXy+C'6 ezx eyz+1Cs5 ('xi 
+ CS6 exy eyz+ ~ C06 e;z2. (A. 7) 

If the elastic energy density is to remain invariant under such a trans­
formation , it follows that (A. 7) must be identically equal to (A.4) for 
all values of the strain components. This is possible only if the 
coefficients of the corres ponding terms in (A. 4) and (A. 7) are identically 
equal to each other. On comparing (A. 4) and (A. 7), and remembering 
that eXy=eyx; etc., this gives 

Cll=C22=C33' C12=C2S=C13' CU=C25='C38' 
C1S=C26=C34' ClC=C24=C35' Cu = CS5= <1' .. , 
C45=CS8=C48' (A.8) 

Thus, a single symmetry transformation has reduced the number . of 
independent elastic constants from 21 to 7. The elastic energy den~ity 
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then takes the form 

U=!Cl1 (e,u2+ ey/+ ezz2)+ C12 (eXXeyy+eyyqzz+ezzexx) 
+C14 {exxt'yz+eyyezx+ezz eXy )+C15 (exx ezx+eyy eXY 
+ezz eyz)+C;. (e,u exy+eyy eyz + ezz ezx)+lCH. (eyz2 

+ ezx2+e;/)+ C45 (eyZ ezx+eZXeXy+eXY eyz). (A.9) 

Consider now another transformation, say the second one in Table 
(A. 1). We note that by the definition of the strain components, 
ey(-z) =e(-y)z=-eyz, ('(_y)(_z)=eyz, etc. The same procedure is repe-ated, 
that is, we work out the effect of the transformation on the elastic 
energy density (A. 9), and equate the coefficients of the corresponding 
terms in (A. 9) and -in the new expression to obtain 

C14=-C14, C15=-C15, C1S=-C16, C4S=-C45 • 

This-reduces the elastic energy density to 

U=ICll (exx
2+ey/+ezz2)+ Cu (exx l'yy+eyy ezz + ezz exx) 

(A.I0) 

+IC44 (eY12+ezx2+ e"y2). (A . I I) 

The remaining two operations listed in Table (A .1), or, in fact, all 
the other operations of the point group 0", leave the energy density 
(A. 11) invariant and therefore produce no further reduction. This 
shows that the cubic crystals have only three independent elastic 
constants, which are conventionally chosen to be Cll> Cn and C~ .l' 
Th~ use of the relations (A.8) and (A. 10) reduces the matrix (A.6) 
of the elastic coefficients to the form 

r C ll C12 C12 0 0 0 

1· 

Cl2 Cn C12 0 0 0 
C12 C12 Cll 0 0 0 
0 0 0 C~4 0 0 (A. 12) 

0 0 0 0 C44 0 

L 0 0 0 0 0 C4_1 J 
Note that we have used the invariance oftne elastic energy density 

only under the threefold rotations about the cube diagonals without 
referring to the fourfold symmetry about the coordinate axes. The 
result of the abov.:: analysis is therefore valid for any cubic crystal whose 
point troup may be anyone of the five cubic point groups T, Td, Th, 
o or Olt. 

Alternatively, we could also have derived the same result by app­
lying the various transformations on the stress-strain relation itself. 
without going to the elastic energy density~ To illustrate this, let liS 

write Eqs. (A.3) in full: 
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XX=ClleXX+C12eyy+C13ezz+CUeyz+Cu ezx + C18 ex" 
Yy=C12 e"",,+C22 eyy+ C23 eZZ +C24 eyz +C25 ezx +C28 exY, 
ZZ=C13 eXX+C23 eyy+C3S eZZ+C34 eYZ +C35 ezx + C38 exy, 
y.~=C14 eXX +C24 eyy +C34 ezz+Cu eYZ +C45 eZX+C48exy, 
ZX=C15 exx+ C25 eyy +C35 e ZZ+C45 eyz +C65 £'zX+C66 exy, 

309 

Xy=C16 eXX+C2eeyy+C38 eZZ+C46 eyz +C58 eZX +C66 exy. (A. 13) 
We now apply the first transformation (x_y_z_x) ofTable(A.l)on 
the above equations. This brings them to the form 

. Yy=Cu eyy+C12 eZZ+C13eXX+C14 ezx+C15eXy+CJ6eyr, 
ZZ=C12 eyy +C22 eZZ+C23 eXX + C24 eZX+C25eXy+C26eyZ' 
XX=C13 eyy+C23ezz+C33 £'xx+C3t ezx +C~5eXy+C36 eyzo 
Zx=C14 eyy+Cu ezz + C34 eX,,+C44 ezx +C45 eXy +C48 eyz> 
Xy=C15 eyy+C25 eZZ+C35 e",,+C45 eZX+C55eXy+C56 eyz , 
YZ=C18 eyy+C26 ezz + C36 e"",,+C46 ezx +C56 eXy +C'8 eyz. (A. 14) 

On comparing these with (A.l3) and equating coefficients of the corres­
ponding terms, we get the same conditions as (A.8). Similarly, apply­
ing the second transformation of Table (A. I) and uSlngtheinvariance 
of the stress-strain relationship, we would get the conditions (A. 10). 
In applying these transformations, use must be made of the fact that, 
like the strain components, the stress components satisfy therelations 
X(_~)=( -X)(y)=-(Xy). while (-X)(_y)=Xy,etc. We thus finally arrive 
at the form (A.12) for the matrix of elastic constants; 

Tetragonal Crystals 

Tetragonal crystals are characterized by the relations lZt =a2i=aa 
and (X=~=y=90°. The point symmetry group of the lattice is D4h. 
We shall take th:: x and the y axes along a1 and az respectively and 
z along a3, so that the lattice has a four-fold symmetry aboutthezaxis. 
A rotation through 90° about z has the effect x_y_-x, z_z. 
Applying this operation on the elastic energy density (A.4), and 
equating the coefficients of the corresponding terms in (A. 4) and in the 
transformed expression, we find the following conditions on the elastic 
constants: . 

-Cll=C22, C,,=Cu • C18=Czs, clI=-C26• C3,=-C36' 

CU =C25• = Cu;= Cu = Cat = C'5=C,,=C,,=0. (A. IS) 
This reduces the number of independent elastic constants to 8 and the 
clastic energy density becomes 

U=lCll (e.ul + ey/) + lCaa.ezzz+Cii e,uen +C13 (e.u+eyy)eu 
+C1• (e.u-en)e.a,+C .. (e,z-eZJf)ezz 
+lC •• (eyz l +eut)+lC .. e,ay·: (A. 16) 
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The group D4h also includes a two-fold symmetry about the x or 
the y axis. Consider a rotation through 7t about the x axis, which has 
the effect y_ -y, z_ -z, x-x. Applying this on the energy density 
(A. 16), we find that all terms remain invariant except the two involving 
coefficients CIS and C34 , which must vanish. The final form of the 
energy density is then 

U=!Cll (eu2+eyyZ)+tC33 ezz2+C12 exx eyy+Cl3 (eu+eyy) ezz 
+lC", (eYZ2+ezx2)+tCs8 e,.y2. (A. 17) 

It can be. seen that any other transformation of D 4" leaves the bilinear 
form (A. 17) invariant so that there is no further simplification. A 
tetragonal crystal thus has six independent elastic constants and the 
matrix of elastic constants reduces to the form 

r Cll C12 CII 0 0 0 l l C" Cll C" Q 
0 0 

\ 
Cu Cn Ca3 0 0 0 
o 0 0 C44 0 0 (A. IS) 
o 0 0 0 CUo 0 
0 o 0 0 0 Cea J 

_. . . . I 

-The forms of the matrices of elastic constants for various crystal 
systems are listed below.2 Only the coetl\cients on one side of the 
principal diagonal are shown; smce the martix is symmetric. 

1. Triclinic system: 21 ind~~dent constants. 
. . '''-':,,:;.~. ' : 

2. 

Cu .. Cl~ · eu C14 Cl5 CIS 

Monoclinic system: 

Cll 

Cn .. ~u C2I. C25 Cl!8 
Cas eM CSi C38 

Cu C45 C46 

C66 CrA 

CIS 

13 independent constants. 

CII CI3 0 0 CI6 

C22 C23 0 0 C2• 

Cas 0 0 C36 

C44 Cu 0 
C55 0 

Ces 

2 Bhagavantam (1966), Chapter 11. Tables reproduced with permission of 
Academic Pr~s, Inc., London, and the author. 
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3. Orthorhornhl ' sy!.lcm : 9 independent constants. 

(' I I C I " C I ~ 0 0 0 
('~ , C~3 0 0 0 

4. Tdr:lg nal sy. I~1ll : 

33 0 0 0 
CII 0 0 

C55 0 
CeG 

(i) Point glo llrs '1" P C4/i: 7 independent constants. 

C II CI ~ 13 0 0 C l6 

C II C I 3 0 0 -C 16 

C33 0 0 0 
C.14 0 0 

C44 0 
C66 

31 ] 

(ii) Po int gro ups .IV , I?~IJ, D~, D 4/. : 6 independent constants. 
See [q. (A . 18). 

5. Trigonal system : 
(i) Point group. Ca. SG: 7 independent constants. 

C I I (\ ~ CI :I C II 15 0 
CI I 13 14 15 0 

C33 0 0 0 

u 0 -C15 

CH Cu 

t(CU-C1J 
(ii) Point groups C 3v, D 3, D3d : 6 independent constants. 

CII Cn C13 C14 0 0 
Cll C13 -C14 0 0 

C33 0 0 0 
CH 0 0 

C44 C14 

! (Cl1....:.Cl~) 
6. Hexagonal sy tern: 5 independent constants. 

Cn CI ~ CI3 0 0 0 
CIl C13 0 0 0 

C33 0 0 0 
C41 0 0 

C44 0 

HCll-CI~) 
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7. Cubic system: 3 independent constants. See Eq. (A. 12). 
8. Isotropic medium: 2 independent constants. 

Cll Cn Cn 0 0 0 
Cn C12 0 0 0 

Cll 0 0 0 
- HCll-Cn ) 0 0 

HCn-C1e) 0 
HCll-Cl~) 



APPENDIX B 

Piezoelectricity and Dielectric 
Susceptibility 

Some crystals have the property or deveolping an electric dipole 
moment under the action of an applied electric field. Some q'f these 
crystals posse s an additional property of developing an electric dipole 
moment under an applied mechanical stres even in the absence 
of an electric field. 'The crystals or the latter type are called piezo­
electric and quartz is an excellent example of such crystals. Other 
examples are Rochelle salt (sodium-potassium-tartrate-tetrahydrate. 
NaKC4H 40 6 ·4H 20), anti ferroelectrics of the type of potassium dihy­
drogen phosphate (KH2P04)· 

The electric dipole moment is a result of strain produced in the 
crystal by the external electric field. The various quantities are thus 
related to each other. If We define P to be the electric polarization 
(the electric dipole moment per unit volume), x the elAstic strain, E 
the applied electric fic:ld and X the applied mechanical stress, then any 
two variables of the set (P, E, x, X) may be taken as the independent 
variables and the remaining two as the dependent variables. For low 
fields and stresses, the polarization and strain are found to depend 
linearly on E and X by the relationsl 

P=-dX+XE, x=-SEX+dE. (B.l) 

Here d is the piezoelectric strain coefficient tensor, X the dielectric 

lBhagavantam (1966), Chapter 14; Fatuzzo and Merz (1967); p. 44; Kaenzig 
(1957). p. 71. 
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susceptibility tensor and SE is the elastic compliance tensor, the 
superscript E being used to denote that the elastic compliances depend 
on the electric field and are to be evaluated at constant electric field. 

Eqs. (B.I) are not as simple as they look. This is because the 
electric field E and the electric polarization P are vectors, whereas the 
stress X and the strain x are second rank tensors. It therefore follows 
that X is a second rank tensor (since it relates two vectors), d is a third 
rank tensor (since it relates a vector with a second rank tensor) and 
SE, as discussed in Appendix A. is a fourth rank tensor. However, 
since x and X have only six independent components rather than nine, 
we can write them as column vectors (matrices of order 6 X 1) as we 
have done in Appendix A. Then, since E and P are also column 
vectors of order 3 X 1, it follows that the independent components of 
the piezoelectric strain coefficient tensor d can be written in the form 
of a 3 x6 matrix 

[ 

du d12 d13 d14 dIS d16 ] 
d= d21 d22 d23 dZ4 P2S d26 • 

d31 d32 d33 d34 das da6 

(B.2) 

X is similarly a 3x3 matrix while SE is a 6x6 matrix; din (8.1) 
denotes the transposed matrix of d and will be of order 6 X 3. Thus, 
expressed explicitly, the first of Eqs. (B.I) becomes 

PX=-dllXX-dI2Yy-dI3ZZ-d14Yz-dlSZx-d16Xy 
+XnEX+X12Ey+X13 Ez , 

,Py= -d21X x-d22 Yy-d23Zz-d24 YZ-d25ZX-d~GXy 
+X21Ex+XlZEy+XzaEz, 

Pz= -d31XX-d32 Yy-d3aZz-d34Yz-da5ZX-d36Xy 
+ XalEx+ Xa2Ey+ XJ3Ez. (B.3) 

A case of fairly general interest arises when a crystal has inversion 
symmetry. The polarization P is a polar vector and goes to - P 
under inversion. However, the mechanical stress is invariant under 

--the_ operation of inversion so that the linear relationship between P 
and X implies that P must identically vanish for crystals having a centre 
of symmetry. Thus, we arrive at the conclusion that crystals having 
inversion symmetry cannot be piezoelectric. This excludes 12 pQint 
groups and leaves only 20 point groups as the possible point groups 
of piezoelectric crystals. We shall explicitly evaluate the nonvanish­
ing piezoelectric strain coefficients for a couple of cases. 
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Cubic Crystals (Point groups T and Td) 

Crystals having point groups T", 0 and 0" are invariant under in­
version and from the di cussion of the preceding paragraph, it follows 
that dij = O for I ~i::;:; 3, I < j ::;:;6 for crystals having point groups T", 
o and 0". We are left with the two cubic groups T and Td. ' 

Applying the three·fold rotation x-+y-+z-+x on Eqs. (B.3), we find 
the following equations (it is sufficient to consider only two of the 
three equations): 

P y= - dJJ Yy - d12Zz-d13X,,-dJ4Z,,-dlSXy-d16 Yz 

+XllEy+ XI ZEz+X13E", 
P z= -d21 Yy-dZ2Zz-d23X,,-d24Z,, - d2SX y-d26 Yz 

+X2IEy+X22Ez+X23E". (B.4) 
Comparing these respectively with the second and the third equations 
of (B. 3), we find the conditions 

d~1 =d22 = ds3 , d12=d23=d31' dI3=d21 = d32, 
d14 = d2S=d36' dlS = d2S = d34> da=d24=d35' 
Xll=X22= Xa3' X12 = X23= XSI' XI3=XZI=X32' (8.5) 

Next, we apply the three·fold rotation x-+-z-+y-+x on Eqs. (8.3). 
Remembering that E and P are polar vectors so that PC-")= -P" and 
E(-x) = - Ex. etc. , we get the following equations (again, only two 
equations are written): 

-Pz= -dllZz-d12X"-d13Yy+d~4Xy-d15YZ+dI6Z,, 
- Xu Ez + XI2E,,-XI3Ey, 

P"=-d21ZZ-d22X:,,-d23Yy+d24Xy-dz6YZ+d26Z,, 
-X21EZ+X22E,,-X23Ey. (B. 6) 

Once again, comparing these respectively with the third and the first 
of Eqs. (8.3). we find in addition to (B.5) the following conditions: 

du =-d33, d12=-ds1 , d13=-ds2, d15=-d34, 
d24=-~" XI2=-X3I, X18=-X21' (B.7) 

Together with (B.5), these equations leave only three non vanishing 
piezoelectric strain coefficients only one of which is independent 
(d14=d25 = d36) and three nonvanishing dielectric susceptibility compo­
nents, again, only one of which is independent (Xu =X22=X33). For 
cubic crystals having the poi~t groups T and Td, we therefore have 

d=[~ g ~ ~u ~14 ~ J, (B. Sa) 
o 0 0 0 0 du 

[

Xu 0 0 ] 
X= 0 Xu 0 . 

o 0 Xu 
(8. Sb) 
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Eqs. (B.3) then reduce to 

P x= -d14 Yz+ X11 Ex. 
Py=-d14Zx+XllEy, 
Pz = -d14Xy+Xn Ez. 

Tetragonal Crystals (Point group C4V) 

(B .9) 

Tetragonal crystals can have one of the seven point groups C4, S4' 
C4h, D2d, C4v , D4 and D4h. Of these, C4" and D4h contain inversion 
symmetry and hence are excluded from the piezoelectric classes. Each 
of the remaining five groups leads to a different set of nonvanisbing 
piezoelectric strain coefficients. We shall treat only one case as an 
illustrative example-that of the group C4V' 

Let us take the z axis to be the axis of four-fold symmetry. A 
four-fold rotation about the z axis then has the effect x-+y-+-x, z-+z. 
Applying this on Eqs. (B.3), we have 

P y= -dll Yy-d12XX-d13Zz+d14Xz-dlSZy+d16Y x 
+ XllEy-X12Ex+X13Ez, 

-PX=-:-d21Yy-d22XX-d23ZZ+d24 X Z-d2SZy+d26Yx 
+ XnEy-X22Ex+ X23Ez• 

P z= -d31 Yy-d32X,,-d3SZz+d34XZ-d3SZy+d38 Yx 
+X31Ey-X32Ex+ X33 Ez. 

Comparing these with (B.3), we find 

dll=±d22-O, d12=±d21=O, d13= ± d23= O, 
d16= ± d2S=O, d3(= ± dss- O, X13=±X23-O, 
X31= ± X32=O, dS6 = -d36=O, d14=-d~s, 
d15=d24, d31 = d32, 1.11 =X22, X12 = -X21 • 

Eqs. (B.3) then reduce to 

Px= -d14Yz-d15Zx+ XI1 Ex+X12 Ey, 
P y= -d1sYz+daZx-X12Ex+X11Ey, 

(B. 10) 

(B . 11) 

PZ=-d31XX-d31 Yy-d33 Z Z+ X33Ez. (B.12) 
Now we apply on (B.12) a reflection in the x z plane which takes y to 
-yo It can be seen that this makes two of the above coefficients 
vanish : 

d14 = O, X1~=O. (B . 13) 

Other operations of the group C,v produce no further reduction. 
Thus, in a tetragonal piezoelectric crystal having the point group C4V, 

the electric polarization is related to the applied stress and the applied 
' electric field by the relations 
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Px= -d15ZX + XllF., 
P.I'= -d1• Y=+X ll Ey, 
P== -d31XX-d31 Yy-d33ZZ+X33E:. 
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(8.14) 
The piezoelectric strain coefficient matrix and the dielectric suscepti­
bility matrix take the forms 

d=[ ~ g ~ ~15 
d3 ) d31 d33 0 

(B. ] Sa) 

X~ U" ~u t J (B.ISb) 

A complete list of the nonvanishing piezoelectric strain coeffici­
ents for all the 20 allowed point groups can be found in the book by 
Bhagavantam.2 

2Bhagavantam (1966). p. 161. 



APPENDIX C 

Time-Reversal Symmetry and 
Degeneracy 

We have seen in Chapter 5 that symmetry is normally connected 
with degeneracy. This is because a larger symmetry group usually has 
irreducible representations of larger dimensions which immediately 
determine the degeneracies . However, when the symmetry group of a 
system also contains the time-reversal symmetry, the full symmetry 
group has operators some of which are unitary while some are anti­
unitary. It is then not possible to define a matrix representation of the 
group in the usual sense. This can be seen as follows. 

Let us denote by G the symmetry group of a system without time­
reversal. With the inclusion of the time-reversal symmetry T, which 
commutes with all the operations of G, the full symmetry group is G ® 
(£, T). Let {,pi} be a set of functions generating a representation I' of 
G and let A and B be some elements of G. T/;len we have 

B,p; = L,pj I']I(B). 
j 

Operating on this by the operator T A, we find 

TA(B,pi) = L(TA) [,pj I'j;{B)] 
j 

(C . I) 

= L (T A,pj) I'j/*(B), (C . 2) 
j 

where we have used the property (2 . 55) of antilinear operators. Now 
the operation of T A on ,pj must also be expressible as a linear com­
bination of the ,pi's, so that 
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(C.3) 

where rkATA) are th I milts or a matrix which corresponds to the 
operator TA. U in g this in ( ',2), we have 

'JAJJ~I ~ ~k rkj(T A) rjj*(B). (C.4) 
j, J.. 

But consideringthcefTccl or the operator TAB on rPl directly, we must 
have 

TABt/n (C.S) 

Comparing (C.4) and (C. 5) and remembering that rPk ar~ independent 
functions, we get the matrix relation 

r(TAB) = r(T A)r*(B) =f.: r(TA)r(B). (C.6) 
This shows that the matrices or the representation here do not satisfy 
the property (3. I) of the usual representations defined at the 
beginning of Chapter 3. These matrices therefore do not constitute a 
representation of the group in the usual sense. Wigner calls such 
a set of matrices a corepresenlation of the group containing unitary as 
well as antiunitary operators. 

In case of groups containi g unitary operators only, we have 
discussed the connection between symmetry and degeneracy in Chapter 

. 5 and have shown that the various degeneracies are equal to the dimen­
sions of the irreducible representations of the symmetry group. How­
ever, when the group contains antiunitary operators, the representation 
theory of Chapter 3 does not hold good. Nevertheless, it was shown 
by Wigner tha~ the question whether time-reversal symmetry introduces 
additional degeneracy in the system or not can be answered by a con­
sideration of the representation matrices corresponding only to the 
unitary operators of the symmetry group, that is, the symmetry group 
G disregarding the time-reversal symmetry. 

Let r be a representation of the group G. Problem (3. 3) then tells 
us that r* is also a representation of C. Now the following three 
cases arise: (a) rand r· are equivalent to the same real irreducible 
representation, that is, have the same real characters; (b)r and r* are 
inequivalent, that is, have distinct characters; (c) rand r* are equi­
valent but cannot be made real, that is, have the same characters 
which are, however, complex. 

In order to apply the Wigner's result, we must separately consider 
systems with (i) integral spin, and (ii) half-odd-integral spin. Combining 
the above three cases (a), (b) and (c) with the two cases (i) and (ii) 
according to spin, we have altogether six possibilities. Wigner's result 
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regarding the additional degeneracy can tben be expressed as follows: 
Noextra degeneracy in cases a(i) and c(ii); 
Doubled degeneracy in cases b(i), b(ii), a(ii) and c(i). (C.7) 
To determine whether a given representation of a group belongs 

to the case (a), (b) or (c), Frobenius and Schur have devised a simple 
test which depends only on the characters X of the representation r. 
The test is given by 

{ 

g - case(a), 
}; X(A2)= 0 - case(b), 

AEG -g - case (c), 
(C. 8) 

where g is the order of the group G. 
We note from the test (C.7) that in case the representations rand 

r* are inequivalent ( case (b» the degeneracy is doubled irrespective of 
'Whether the spin is integral or half-odd-integral. It is for this reason 
that complex conjugate representations have been bracketted together 
in Table (7.7) for the irreducible representations of the point groups. 
Consider the basis functions for the irreducible representations rand 
r*. Although there exists no operator in G which mixes the basis func­
tions of r with those of r*, the time-reversal operator will mix these 
functions and hence rand r* would be degenerate in the pr~sence of 
time-reversal symmetry . 

. TiJne..Reversal in Band Theury 

The symmetry group of a crystal is its space group. Since a space 
group contains a very large number or elements (practically infinite), 
the Frobenius-Schur test (C. 8) is not convenient. Herring has worked 
out a simpler test which requires only the characters of the irreducible 
representations of the group of the wave vector k. This test is 

{ 

n - case(a), 
; X(B2) = 0 - case (b), 

-n - case (c), 
(C.9) 

where the sum is over those point group elements which take k to -k 
and' n is the number of such elements. It should be clear that JJ2 will 
leave k invariant and "{ill therefore belong to the group of the wave 
vector k. 

An important result of time-reversal symmetry on the electronic 
band structur~ is that 

E(k t )=E(-k t), (C. 10) 
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where E(k t ) is the energy of an electron with wave vector k and spin up, 
etc. To prove this, we write the Schroedinger equation in the form 

..9(o/kt=E(kt)o/kt' (C . II) 
where o/k t is the product of a Bloch function with wave vector k and 
a spin-up function: 

o/kt = exp(ik.r)uk (r)x spin-up function. ( . 12) 
If the crystal possesses time-reversal symmetry, the Hamiltonian .9{ com­
mutes with the time-reversal operator T and the function To/k t mu t 
be degenerate with o/kt. Remember that T =irJyK, where K is the com­
plex conjugation operator. If we operate by Ton o/k t of (C . 12), the 
Pauli spin operator cry will operate only on the spin function and will 
turn the spin-up function into a spin-down function . We have 

Tht =icryKo/kt 
=iexp(-ik.r) Uk *(r) x spin-down function. (C.l3) 

This is clearly the product ofa Bloch function with wave vector -k and 
a spin-down function and can be denoted by <P-k ", . But we must have 

.5(<P_k-j. =E(-k~) CP-k~' (C.14) 
Comparing this with (C . II) and noting that o/kt andcp_k-j. must be 
degenerate owing to time-reversal symm!try, we immediately arrive at 
the result (C. 10). This result is l'aiid irrespective of the spatial symme­
try of the crystal. 

If, in addition, the crystal has an inversion symmetry, it can be 
easily seen that we would have 

E(k t) = E( -k t ), (C.15) 
because the space-inversion operator takes k to -k but does not operate 
on the spin. If time-reversal and space-inversion symmetries exist 
simultaneously, we can combine (C. 10) and (C.l5) and simply write 

E(k) = E(-k), (C. 16) 
for any spin. 



APPENDIX D 

Functions and Mappings 

Let X = {xt. X2, ••• , XIII} and Y = tyr. Y2, ... , Yn} be two nonempty 
sets. The set C containing all ordered pairs (XI, YJ), 1 ~ i ~ nI, 

I ~ j ~ n, is called the cartesian product of X and Y, atld is denoted 
by C = X x Y. The elements of C are thus (xt. YI), (X!>I Y2), ... , (xr. 
y,,), (X2' YI), .. . . (X2, Y,,), etc., mn elements altogether. In the ordered 
pair (x;, Yj), we shall refer to x; as the first coordinate and Yj as the 
second coordinate. 

LetJ be' a nonempty suoset of C such that no two distinct elements 
of J have the sa me first coordinate. That is, if (XI, YJ) is an element of 
the subsetJ, then no element of the form (XI, Yk) with k =F j can be 
in f In other words~ if (XI, YJ) and (x;, YI) are elements of J, then we 
must have.i = I Any such set is called a Junction I Jrom X to Y. 

The domain of the function J from X to Y is the subset of X con­
taining all the first coordinates of the elements of J. while the range of 
the function J is the subset of Y containing all the second coordinates 
of the elements of J. 

Example : Let X = {a, b, c} and Y = { p, q, r, s} be two se.ts. Their 
cartesian product is 

C = X x Y = {(a , p), (a, q), (a, r), (a, s), (b, p), (b, q), (b, r), (b, s), 
(c, p), (c, q), (c, r), (c, s)}. (D. 1) 

To define a function from X to Y, we may choose any subset of C 

!The reader will realize that this condition implies, in the ordinary sense, that 
f is a single-valued function. 
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with the restriction that no two elements of the subset having different 
second coordinates may have the same first coordinate. For example, 
we can choose the following functions from X to Y: 

.r = {(a, q), (c, s)}, 
g = {(a, p), (b, p). (c, q)}, 
" = {(a, r), (b, r). (c, r). (D. 2) 

The function f haf. th~ domain {a, c} and f;lnge {q, s}, the function g 
has the domain {a, b, c], that is the entire set X, and ran.ge {Po q}. 
while the function II a~ain has X for its domain but {r} as its range . 

A function 1 from X tp Y is said to be a mapping if the domain f 
f is the entire set X. Thus among the functions defined in (D. 2), K 
and II are mappings. A mapping is further Idivided into two elite· 
gories : f is said to be a mappin~ of X into Y if the range of/if 1\ 

proper subset of Y, and is denoted by 

f: X ~ }', (0. 3) 

while 1 is called a mopping of X onto Y if'~~e range off is the entir' 
set Y, which is denoted by 

on lO 

f : X + Y (1) . 4) 

If (x. y) is an element of a fun lion/ from X to Y, Will'/(' \ ,\ lOd 
Y t Y. then y is said to be Ihe imu1:(' of x under /, II lid " II lIoled by 
y = I(x). Thus in the example of fUllcti n dcfll\l'd III «() 2). we have 
q = 1(0), p = g(b), r = h(b), etc. A fvocllon / 1'1 0111 10) i said to 
be one-to·one if distinct elements of X I,ave dIS\IIH;1 Illlage ~ III Yunder 
f In the above example, .r is a one-to-olle fUnCIIOI\ f, 0111 X to Y whih! 
g and h are not one-to-one. 

C:oming to groups, let G =, {E, A. Il. C ... } be a group of order g 
with E as the identity elem€-nt and let G' 1 E .. £2, .... E". A" A 2 ... · 

A~, ... } be a group of order ng, wilh 1::1 as the idenlity element. Let 
us define a mapping from G' onto G such that 1 (E/) = E,/(.1,) == A. 

etc., for 1 ~ i ~ n. 1f G and G' follow mUltiplication tables such that 
AIBj=Ck in G' (for some values of i,j, k) implies f(AI)f(B)=/(Ck), 
that is AB= C, in G, then the group C ~ said to be homomorphic to, 
G. Compare with Section 1.6. 
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