

آشنايى با
نظريه گروهها

والتر لدرمن
ترجمd محمدحسن بيرّنزاده

$$
\begin{aligned}
& \text { 漸 } \\
& \text { آشنايى با } \\
& \text { نظريه گروهها } \\
& \text { والتر لدرمن }
\end{aligned}
$$

ترجمهٔ محددسن بيرنزاده

رياضى، آمار، و كامييوتر
ff

Introduction to Group Theory Walter Ledermann Oliver \& Boyd, 1973

آشنايى با نظريه كروهنا تأليف والتر لدرمن
ترجمí دكتر محمدحسن بيرنز ويراسته دكتر محمدهادى شـفيعيعيها مركز نشر دانشگاهى، تهران

جاب اول TYVV تعداد ...
حرونجينى: عبدى
ليتورافیى: كيان
جان و صحافى: سايه
حق جاب برای مركز نشر دانشگامى محفوظ است

Ledermann, Walter, 1911-	لدرمن، والت، ، 1911 ـ آشنايى با نظريم كروهها
Introduction to group theory	عنوان اصلى:
	وازئناهم: صم
	كابناهم: ص\%
- مترجم. ب. مركز نشر	1. ا.نظايـ كروهانا. الن دانشكالمى. ج. عنوان.
dir/rr	QAIM

بسم الله الرحمن الرحيم

فْهرست

صفحهd	عنوان
1	
r	1. 1 - مفاهيه مربوط بهكروهها
r	1. 1
p	
9	س.
Ir	¢.
11	
ro	
Yr	Y
rr	Y.
$r{ }^{\prime}$	人-
μ	9. 9 ز.
\%	
Yo	
YY	
Y\%	
DO	A
ΔY	ه1 1.
$\Delta 9$	¢19. 19 (

$$
44
$$

$$
4 r
$$

$$
44
$$

$$
9 V
$$

vo

$$
V r
$$

VY
AY

$$
\Delta Y
$$

$$
19
$$

$$
\begin{aligned}
& \text { عنوان } \\
& \text { ஈ. ز. زير كروههای نرمال }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ○. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 信 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Yץ. خ. خودر بختيها }
\end{aligned}
$$

$$
\begin{aligned}
& \text { هץ . هقدمات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { YV }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Qץ. روش تجز يهـ } \\
& \text { ه• مولدها و رابطهها ها } \\
& \text { اس. گرور }
\end{aligned}
$$

> rr. تعر يث رك گروه
> 9. سرى زيركروه هها
> ثץ

> وץ. گرورهوای حليذير ע V ^ی. گَرودهاى بو
> V.
> S_{n} ج.
> هץ. ترانهـشا

$$
\begin{aligned}
& \text { Y Y. }
\end{aligned}
$$

بيشكفتار

 شكفت آور نيست اگر علائم بيرى، كه با بك تجديد نظر بهآسانى بر تفع نمى گردد، در اين منن ظاهر شده با باشد.

 والتر لدرمن

MATH75.IR

 ضرب باشد، بإيل داشته باشيم محاسبه است. معلو است استه ضرب دو يا جند عدد، از قوا انين صورى مشتخصى اييروى مى كندكه برای هـهُ حاصلضر بها، صر فنظر از هتدار عدديشان، معتبر ند؛ ازجمله:

$$
\begin{align*}
& a b=b a \quad \text { (قانون تعو يضخذيرى) } \tag{1.1}\\
& (a b) c=a(b c) \quad \text { (قانون شركتيذيرى) } \tag{r.1}\\
& |a=a|=a
\end{align*}
$$

 sc=at

 سرو كار دار ند شُروع مى كند، وسيسنتايج منطقى اينا اصول موضوع ع دا بهدست مى آور ند.

T اشنا يى با زظريهتروهعا

 كار بردى امت كه موجب برترى آن برديغرى مى شود.
Y. بنداشتهاى نظريه مروهها. نظريهٔ مجرد گروهها با مجموعهاى متناهى يا نامتناهى از عناصر، جون

$$
G: a, b, c, \cdots
$$

سروكاد دارد كه در آن تنهـا يك تا نون تركيب تعريف مىشود. مطابق قرارداد، براى بيان اين قانون تر كيب، از نماد گذارى و اصطا وا كه هر دوعنصر a و b از b چون c باشند ومى نو يسيم

$$
a b=c
$$

به بيان رسهى تر گفته مى شود كه بههر زو ج مر تب (a, b) ازعناصر، يك عن عنصر منحصر بهفرد

 ييروى كند؛ این بنداشتها ددتعريف زير آملهاند.
 است، د(صو(تى يذت گرو• تشكيل مى دهد كه درشُايط زير هدن كند

وا بسته است كه بهصو(ت

$$
c=a b
$$

نوشته مىشود وحاصلضرب

$$
a(b c)=(a b) c
$$

و لذا هريك از دوطرف اين تساوى (ا هىتوان با abc نهايشّ داد. قانون عنصر واحل: هجهوعه́ G شمامل عنصرى اشت هــاند ا كه عنصرواحل

مهاهيم مر بودل بهرووهبا

$$
a \backslash=\backslash a=a
$$

$$
a a^{-1}=a^{-1} a=1
$$

$$
\begin{aligned}
& a b=b a
\end{aligned}
$$

 دراين صورت بهتر تيب مى گ夫عيم a ازیب

$$
a b=b a
$$

 هميشه a با a^{-1} تعويضهير است.

$$
: 1<s<r<n
$$

$$
a_{1} a_{Y} \cdots a_{r}=\left(a_{1} a_{Y} \cdots a_{s}\right)\left(a_{s+1} \cdots a_{r}\right)
$$

لازم است نشان دهيم
\& آشنايى با نظريه تزوهيا

$$
\left(a_{1} \ldots a_{r}\right)\left(a_{r+1} \ldots a_{n}\right)=\left(a_{1} \ldots a_{s}\right)\left(a_{s+1} \cdots a_{n}\right)
$$

طرف ڤب (

$$
\left[\left(a_{1} \ldots a_{s}\right)\left(a_{s+1} \cdots a_{r}\right)\right]\left(a_{r+1} \ldots a_{n}\right)=\left[b_{1} b_{r}\right] b_{r}
$$

$$
\left(a_{1} \cdots a_{s}\right)\left[\left(a_{s+1} \cdots a_{r}\right)\left(a_{r+1} \cdots a_{n}\right)\right]=b_{1}\left[b_{r} b_{r}\right]
$$

بنا بر بنداشت II داريمه:

$$
\left[b_{,} b_{r}\right] b_{r}=b_{,}\left[b_{\curlyvee} b_{r}\right]
$$

 از دو طرف تساوى را با

$$
a_{1} a_{Y} \cdots a_{n}
$$

$$
\begin{aligned}
a a & =a^{r} \\
(a a) a=a(a a) & =a^{r}
\end{aligned}
$$

$$
\begin{equation*}
a^{m} a^{n}=a^{n} a^{m}=a^{n+m} \tag{0.1}
\end{equation*}
$$

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

 ; ولى وتنى a و b تمو يضهذ ير نيستند، در حالت كلى مى تو ان ابُبات كرد كه

$$
(a b)^{n} \neq a^{n} b^{n}
$$

l. 1 دز صور تى كها a و b تعو يشیذير باشند،

$$
\begin{gathered}
(a b)^{n}=a b a b \ldots a b=a^{n} b^{n} \\
a^{m} b^{n}=b^{n} a^{m}
\end{gathered}
$$

مفاهيم مر بوط بد"كروهها

هى كنيم كه اين عنصر لزوماً منحصر بهفرد است. زيرا فر ض كنيم 'ا عنصر ديگری با با ههان

 (iii) زيرا فرض كنيم،

$$
a^{-1} a a_{1}=\left(a^{-1} a\right) a_{1}=1 a_{1}=a_{1}
$$

$$
a^{-1} a a_{1}=a^{-1}\left(a a_{1}\right)=a^{-1} 1=a^{-1}
$$

كه در إينجا
 هعادلات

$$
y a=b, \quad a x=b
$$

بهترتيب داراى جوا بياى

$$
y=b a^{-1}, \quad x=a^{-1} b
$$

هستند. در حا لت كلى، بر آن فرق بگگذازيم. اين جوا بها منحصر بدفردند، زيرا اگگر

$$
a x=a x_{1}=b
$$

$$
y a=y_{1} a=b
$$

. $y=y_{1}$ نتيجه هى گيز
بهعبازت ديگر، هى توا نيم حنين بيان كنيم كه درهر گَروهى قا نون حذف برقر اراست؛
هم حذف از هـب و هم حنف از از راست.

$$
1=1^{r}=1^{r}=\cdots=1^{n}
$$

$$
1^{n}=1=\left(a a^{-1}\right)^{n}=a^{n}\left(a^{-1}\right)^{n}
$$

$$
\begin{equation*}
\left(a^{n}\right)^{-1}=\left(a^{-1}\right)^{n}=a^{-n} \tag{9.1}
\end{equation*}
$$

و بهازای هر ث:صر a قرار مى گَازيم كهd

$$
\begin{equation*}
a^{\circ}=1 \tag{10.1}
\end{equation*}
$$

باشيند:

$$
\begin{equation*}
a^{k} a^{l}=a^{\prime} a^{k} \tag{11.1}
\end{equation*}
$$

اگر a a a دو عنصر دلخخواه باشنل دار يم

$$
(a b)\left(b^{-1} a^{-1}\right)=a b b^{-1} a^{-1}=1
$$

و لذا بنا بر يككا يى =كس دار يم

$$
(a b)^{-1}=b^{-1} a^{-1}
$$

و در حالـ كليتر

$$
(a b \ldots s t)^{-1}=t^{-1} s^{-1} \cdots b^{-1} a^{-1}
$$

$$
x^{\gamma}=x
$$

$$
x^{-1} x^{r}=x^{-1} x
$$

و از اینرو

$$
x=1
$$

انهـا يش داده مىشُود.
گر جه براى تر كيب شناصر گر وه ازاصطلا
 $a \circ b$

استفاده سُو د.
 جهعى انست. بلينتر تيب براى تر كيب a و b مى نو يسيم

9 مفاهيم مر بوط بِهرووهها

$$
a+b(=b+a)
$$

قانون سُر كتهـذ بزى بهصورت

$$
(a+b)+c=a+(b+c)
$$

در هى آ يل. ش:صر هما نى (خْنىى) با ه نشان داده مىشود، و لذا

$$
a+\circ=\circ+a=a
$$

عكس a هم بهصورت a a - نوشته هىشود. در ابن حالت عبارت

$$
a+a+\cdots+a=n a
$$

 جز :ك شُكل اختصارى براى عبارت سمت جب زيست. حال (پقوا نين نما يى)" بهصورت

$$
(n+m) a=n a+m a
$$

$$
n(m a)=(n m) a
$$

در ^ی آیند، و ها نداد

$$
-(n a)=(-n) a
$$

$$
n(a+b)=n a+n b
$$

را نيز خوراهيم داشت.

 "مى كنيه.

 زيرا هر شنصرى بجز 1 فا فـــد (ii) (ii)

(iii) دورانهاى هول يـه نتطهُ ثابت: اگر جسم (سهبعلى) صلبى آزادانه حول

 نام دارد.

 (x, y) Oxyz دستگام مختصات هستقيمى ثابت در نضا باشد. با نها بادهاى نوق، اكر

$$
a=\left(O_{z}, \frac{1}{r} \pi\right), \quad b=(O z, \pi)
$$

هـا نى

a

|| مغاهيم مو بوط به كرومها
(iv) بهخصوص با ضرب ما تر يسى آشنا يىدارد. معينى از ما تريسها بهدست مى آ يند.
 عادى n در n راكه عناصرشان بهدالخو اه از ميدان F انتخاب شدهاند در نظر بغير يد. اين
 و مروه خْطى كلى از درجئ n دوى F نام دارد.
 گروه تشكيل هىدهند.

士1

مفهوم را بגصوزت نمادى، حنين مى زو يسيم:

$$
\begin{equation*}
x \equiv y(\bmod m) \tag{10.1}
\end{equation*}
$$

كه هم ادز با این شبارت است كه عدو صشيهحى ما ننل k وجيد دارد بلقسمى كه

$$
\begin{gather*}
x=y+k m \tag{19.1}\\
\cdot|Y \equiv 0(\bmod r) ،-Y \equiv| Y(\bmod \Lambda) ، r \equiv \mid \wedge(\bmod \Delta) \quad \text { (1q.1) }
\end{gather*}
$$ هر علد صحيح دقيهاً با بكى از اعداو صحيح هجموعهُ

$$
Z_{m}: 0,1, r, \cdots, m-r, m-1
$$

$$
\begin{align*}
& \text { • اگر } \\
& x_{1}+x_{Y} \equiv y_{1}+y_{r}(\bmod m) \\
& x_{1} x_{Y} \equiv y_{,} y_{Y}(\bmod m) \tag{19.1}
\end{align*}
$$

ا. بمضى از مؤ لفان اين اصطلاح را وفُط براى ماتر يسهاى با دترمينان واحل بهكار مىبرنه.

 عنصر همــا نى صغر، و عكس a برا بر m-a است.
 .

 هى كیلدكـه از

$$
\cdot(m, a b)=10 \text { 玹 } \backslash ،(m, b)=1,(m, a)=1, \leqslant \text { (ii) }
$$

(iii)

$$
\cdot a u+m v=1 \Delta
$$

$$
k x \equiv k y(\operatorname{Inod} m)
$$

(Y 0.1)
نتيجه می دهدك (ro.1)

$$
1, r, r, \ldots, m
$$

 صحيح مجهوعهٔ

$$
\phi(p)=p-1
$$

باز، هر

مغاهيم مربوط بهكروهها
 مى شود كه

$$
\begin{equation*}
\phi\left(p^{r}\right)=p^{r}-p^{r-1} \tag{rr.l}
\end{equation*}
$$

معهولا" جنين مى گیير ند:

$$
\phi(1)=1
$$

بهطور كلى: فرض كنيم

$$
R_{m}: a_{1}, a_{\Upsilon}, \cdots, a_{\phi(m)}
$$

$$
a_{i} a_{k} \equiv a_{l}(\bmod m)
$$

و در R_{m} يك قانون تر كيب به صموت خرب تعرين مى كنيم، كه درهورت لزوم به دنبالـئ تبديل. بهكهترين هاندهُ هثبت بههنگت m هم بيا يد. برای هما ل

$$
r \times \Delta \equiv r(\bmod q), \quad r \times r \equiv 1(\bmod q)
$$

$$
\begin{equation*}
a_{i} a_{k}=a_{l} \tag{14.1}
\end{equation*}
$$

 ($a \in R_{m}$ هادها

$$
a u+m u=1
$$

 مى دهد.

 ازهراتب Y، ب، و Y را نها يش مىدهند.

جدول (ii)
جدول (i)

	1	a	b
1	1	a	b
a	a	b	1
b	b	1	a

	1	a
1	1	a
a	a	1

جدول (iv)
جدول

	1	a	b	c
1	1	a	b	c
a	a	b	c	1
b	b	c	1	a
c	c	1	a	b

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

倍 ac=1
 وآخرين غنصر سطر آخر) هتنارن هستند. مـُال آهوزندهر گر گروه هر تبد شُ

$$
\begin{equation*}
G: 1, a, b, c, d, e \tag{YA.I}
\end{equation*}
$$

1. A. Cayley, Phil. Mag., vol. vii (4), 1854.

10 مفاهيم مربوط بهتروهها
(v) تجلول

	1	a	b	c	d	e
1	1	a	b	c	d	e
a	a	b	1	e	c	d
b	b	1	a	d	e	c
c	c	d	e	1	a	b
d	d	e	c	b	1	a
e	e	c	d	a	b	1

بعضى از وير گيهاى گروهى از روى جلوول روشن مىشود: بسته بودن واضـحاست،

 است. تحڤيقاينكه بهازای هر انتخاب حتى براى يسك گروهكوجك كار پرزحمتى است. درجلول فوق تــانون شر كتذيرى حتماً برقرار است؛ براى مثال

$$
(a c) d=e d=b, a(c d)=a^{r}=b
$$

الا برقر ارى آن درحا لت كلى با بحثى غيرمستقيم، كه ذيلا" توضيح داده مىشود، بهبهترين وجه تاممين مى گرددد.

 $\Delta \times \Delta$ است درست نباشد. مشالا" هر بـع لا تينى

	1	a	b	c	d
1	1	a	b	c	d
a	a	1	d	b	c
b	b	c	1	d	a
c	c	d	a	1	b
d	d	b	c	a	1

را نمى توان باعنوان جلوولضرب گرووهى بذيرفت جون ك $a(b c)=a d=c$

$\Gamma:\left\{\begin{array}{lll}I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], & A=\left[\begin{array}{rr}-1 & -1 \\ 1 & 0\end{array}\right], \quad B=\left[\begin{array}{rr}0 & 1 \\ -1 & -1\end{array}\right] \\ C=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], & D=\left[\begin{array}{rr}1 & 0 \\ -1 & -1\end{array}\right], \quad E=\left[\begin{array}{rr}-1 & -1 \\ 0 & 1\end{array}\right]\end{array}\right.$
(ro.1)
نسبت بهضرب ما تر يسى بسته است؛ براى مثال

$$
B=A^{r}, A^{\varphi}=C^{r}=D^{r}=E^{r}=I, A D=C, A C=E \text { وبه هثين قياس }
$$

 كه Γ يك نمايش صامق G انیت. اين يك موردى است كسهه در آن از يك بخش ملموستر

$$
\begin{equation*}
G: 1, a, b, c, \ldots \tag{r1.1}
\end{equation*}
$$

و

$$
\begin{equation*}
G^{\prime}: l^{\prime}, a^{\prime}, b^{\prime}, c^{\prime}, \ldots \tag{rr.1}
\end{equation*}
$$

 شدهاند. فرض مى كنيم تناظرى بك بهيك ها مند

$$
\theta: G \leftrightarrow G^{\prime}
$$

$x^{\prime}=x \theta$ بين عناصر G و از ' ${ }^{\prime}$ وا بسته هى شود وهر ك كد

|V مفاهيم مر بوط به تروهبا

اين ويرَّى باشُدكه

$$
(x y) \theta=(x \theta)(y \theta)
$$

درا ين صورت گو يیم گرَوهغاى G و
است)، هستنا وهی نو يسيم

$$
G \cong G^{\prime}
$$

($\mu \Delta .1$)
هر رابطهُ بين ثناصر G بـا رابطهاى بين عناصر 'G متناظر است و به عكس؛ ما ها صرفاً با

 برانتز ذكر شاهـه است: انـو
(S (Y)

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

(ضرب هاتريسىى).
(
 بدصوزت (iv) ازصفحهُ

هثّ

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{lr}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

(ضرب ماتريسى). (

اگگر در هر حالت عناصر گَروه را با

 است ساختار متفاوت داشته بإشند. ه. كروههأى دورى. مجموعئ

$$
C: 1\left(=x^{0}\right), x, x^{-1}, x^{r}, x^{-r}, \cdots, x^{n}, x^{-n}, \cdots \quad \text { (ry.1) }
$$

ازنمادهاى متما يز راكه در آن ضرب برطبق قاعده

$$
x^{r} x^{s}=x^{r+s},(r, s=0, \pm 1, \pm r, \ldots)
$$

 مى شُود كه به تروه هورى زامتذاهیى تو ليد شده بهوسيلء x؛ موسوم است. اين گَروه با گروه جمعى اعلاد صحيح، يعنى با مجهو ثهٔ

$$
Z: \circ, \pm 1, \pm r, \cdots
$$

 بكر يختى را برقرار صى كند بهوسيلهُ

$$
x^{r} \theta=r
$$

داده مىشود؛ البته، دراينجا دا بطءُ

$$
\left(x^{r} x^{s}\right) \theta=x^{r} \theta+x^{s} \theta
$$

$$
x^{m}=1
$$

 مجموعة

$$
C_{m}: 1, x, x^{r}, \cdots, x^{m-1}
$$

مفاهيم مربوط به كروهزا 19

$$
x^{r} x^{s}=x^{r+s}(r, s=0,1, \cdots, m-1)
$$

كه در TT

$$
Z_{m}: 0,1, r, \cdots, m-1
$$

$$
\varepsilon=\exp \left(\frac{r \pi i}{m}\right)
$$

 تو جيه هى كا لـ.

 و $k>l$ l k

$$
x^{k}=x^{l}
$$

و بنا برا ين

$$
x^{k-1}=1
$$

لذا :
 هى كیا.

$$
x^{h}=1
$$

秓=1

$$
x^{m}=\left(x^{h}\right)^{q}=1
$$

 برهان. m دا بر h تقسيم و فرض مى كنيم q خارجقسمت باشل و r باقيما نده:

$$
m=h q+r
$$

در اينجا داريم

$$
1=x^{m}=\left(x^{h}\right)^{q} x^{r}=1 x^{r}=x^{r}
$$

و این با ويز گی مينيهال بودن h در تنا قض است مگر T Tككه

$$
m=h q
$$

صحت احكام ذيل دز مورد مر تبهُ عناصر گروه بهسادگى قا بل تحقيق هستند:
 (ii) عناهر x و (ii)

اگگ البطם (iii) x و y ا

قضيوץ. فرضى

برهان. فرض كنيم (h, $d=($ هس داريم

$$
h=d h^{\prime}, s=d s^{\prime}
$$

كه در T ان

$$
\left(x^{s}\right)^{h^{\prime}}=x^{s^{\prime} d h^{\prime}}=\left(x^{h^{\prime} d}\right)^{s^{\prime}}=\left(x^{h}\right)^{s^{\prime}}=1
$$

زيرا x از مر تبٔ h است. باقى هىما ند اثبات اينكه اگَر t علد صحيح هُمبتى باشد و

$$
\begin{equation*}
\left(x^{s}\right)^{t}=1 \tag{40.1}
\end{equation*}
$$

$h^{\prime} d \mid s^{\prime} d t$ آ آگاه

9. زكاشتهاى مجموءdها. فرض كنيم

$$
\Sigma: \xi, \eta, \zeta, \cdots
$$

مجموعهاى متناهى يا زامتناهى از اشياء باشد. يك زگاشت

$$
f: \Sigma \rightarrow \Sigma
$$

ازی بهتوى خود قاعدهاى است كه بهتوسط آن به هر

YI مغاهيم مر بوظ بهكروهها
مى شود؛ كا كـه در آنا ليز و توبولو
保 $f \circ g$

$$
\xi(f \circ g)=(\xi f) g
$$

, آن بدينمعنى است كه

$$
\xi(f \circ g)=\eta g \circ \text { 位 } T
$$

 قراد مىدهيم

$$
\xi f=\eta, \quad \eta g=\zeta, \quad \zeta h=\tau
$$

$$
\xi[f \circ(g \circ h)]=(\xi f)(g \circ h)=\eta(g \circ h)=(\eta g) h=\zeta h=\tau
$$

$$
\xi[(f \circ g) \circ h]=[\xi(f \circ g)] h=[(\xi f) g] h=(\eta g) h=\zeta h=\tau
$$

جون ξ عنصر دلخواهى از Σ است، نتيجه هى شود

$$
f \circ(g \circ h)=(f \circ g) \circ h
$$

هثال.

$$
\Sigma: \xi, \eta, \zeta, \ldots
$$

 است. هر گا: د $f \circ g: \xi \rightarrow \xi A B$ -ا تر يسى است. يس بر'یي اينكه ثابت كنيم گر دا يهاى جون

$$
G: f, g, h, \cdots
$$

 بك شیء
 را تعر بغ كرد.

 "אیدهد.
 و نتطهُ بينَّابت را اختيار كند. هريك از شش نگاشت

$$
\left.\begin{array}{l}
f_{1}: z \rightarrow z\left(ى(\Delta), f_{Y}: z \rightarrow \frac{1}{1-z}, f_{\gamma}: z \rightarrow \frac{z-1}{z}\right. \tag{r.r.1}\\
f_{Y}: z \rightarrow \frac{1}{z}, f_{\Delta}: z \rightarrow 1-z, f_{\varphi}: z \rightarrow \frac{z}{z-1}
\end{array}\right\}
$$

 برا'ى مــال

$$
\begin{gathered}
z\left(f_{r} \circ f_{r}\right)=\left(z f_{r}\right) f_{r}=\frac{1}{1-z} f_{r}=\frac{(1-z)^{-1}-1}{(1-z)^{-1}}=z=z f_{1} \\
\cdot f_{r}=f_{\cdot}^{-1} و \text { و ا } و \text { ا } \cdot f_{r} \circ f_{r}=f_{1}, ~ ل ذ
\end{gathered}
$$

و لذا

جدول (vi)

اگر بهجاثى

PY مناهيم مر بوط بـكروهها
 گروه مجرد داكشف كرديم.
 اهميت خاصى برخوردار است. برای سهولت، اغلب اشياىمتعلق به
 مى شود. خنين جا يخشتى را بدصو تى روشن با نماد

$$
\pi=\left(\begin{array}{cccc}
1 & Y & \cdots & j \\
a_{1} & a_{Y} & \cdots & a_{j}
\end{array} \cdots a_{n}\right)
$$

كه در آن

 بخواهيم عو

$$
\left(\begin{array}{llll}
1 & r & r & p \\
r & r & 1 & \psi
\end{array}\right)=\left(\begin{array}{llll}
r & 1 & \psi & r \\
r & r & \psi & 1
\end{array}\right)=\left(\begin{array}{llll}
\varphi & r & 1 & r \\
\psi & r & r & 1
\end{array}\right)=\ldots
$$

همگی يك جا يگشت را نشان مىدهند. نخستين اين جا يگشنها راكـه در T آن سطر فوقانى

 و اطلاعات مر بوطه برطبق T ن تنظيم شود. فرض كنيم

$$
\rho=\left(\begin{array}{llll}
1 & r & \cdots & n \\
b_{1} & b_{Y} & \ldots & b_{n}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{Y} \cdots & a_{n} \\
c_{1} & c_{Y} \cdots & c_{n}
\end{array}\right)
$$

جا يخشت ديگرى باشد كه در Tن

 است كه نگاره j بر اثر π با
 باشهـ، فورأ هى توان حاصلضرب

$$
\pi \rho=\left(\begin{array}{lll}
1 & Y & \cdots
\end{array}\right)
$$

نسوشت. زيرا بسه ازای هـر

$$
\begin{gathered}
j \pi \rho=(j \pi) \rho=a_{j} \rho=c_{j} \\
\text { براى مثال هر گاه }
\end{gathered}
$$

$$
\pi=\left(\begin{array}{llll}
1 & r & r & r \\
r & r & r & 1
\end{array}\right), \rho=\left(\begin{array}{llll}
1 & r & r & r \\
r & 1 & r & r
\end{array}\right)
$$

:س از اينكه

$$
\pi \rho=\left(\begin{array}{llll}
1 & r & r & r \\
r & r & r & 1
\end{array}\right)\left(\begin{array}{llll}
r & r & r & 1 \\
1 & r & r & r
\end{array}\right)=\left(\begin{array}{llll}
1 & r & r & r \\
1 & r & r & r
\end{array}\right)
$$

ضمناً:

$$
\rho \pi=\left(\begin{array}{llll}
1 & r & r & r \\
r & 1 & r & r
\end{array}\right)\left(\begin{array}{llll}
r & 1 & r & r \\
r & r & r & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & r & r & r \\
r & r & r & 1
\end{array}\right)
$$

كه معرف اين واقعيت است كه ضرب جايگشتها، در حالتكلى، نعويضٍذير نيست. جا يگَّت

$$
\iota=\left(\begin{array}{lll}
1 & Y \ldots & n \\
1 & Y \ldots
\end{array}\right)=\ldots=\left(\begin{array}{lll}
a_{1} & a_{Y} & \cdots \\
a_{n} \\
a_{1} & a_{Y} \ldots & a_{n}
\end{array}\right)
$$

كه تمام اشياء را بنا براين، جا يگشت همانى است. عكس π (بهصورت غير استا نده) با نماد

$$
\pi^{-1}=\left(\begin{array}{lll}
a_{1} & a_{Y} & \cdots \\
a_{n} \\
1 & Y & \cdots
\end{array}\right)
$$

مشخص مىشود؛ زيرا بهسادگى ديده مىشودكه

$$
\pi \pi^{-1}=\pi^{-1} \pi=\imath
$$

براى مثال
$\left(\begin{array}{llll}1 & r & r & \mu \\ r & r & r & 1\end{array}\right)^{-1}=\left(\begin{array}{llll}r & r & \mu & 1 \\ 1 & r & r & r\end{array}\right)=\left(\begin{array}{llll}r & r & r & \mu \\ r & 1 & r & r\end{array}\right)$
*\% وقتى قر اردادى خلاف قرارداد بالذ منظور باشد، با يد جاى م 0 با $\pi \rho$ عوض شود.

PD مفاهيم مربوط بهكروهما

 الشياء بهز

$$
\alpha=\left(\begin{array}{llll}
1 & r & r & \psi \\
r & r & 1 & \psi
\end{array}\right), \quad \beta=\left(\begin{array}{llll}
1 & r & r & \psi \\
r & 1 & r & r
\end{array}\right), \quad \gamma=\left(\begin{array}{llll}
1 & r & r & r \\
r & r & r & 1
\end{array}\right)
$$

بر اى Aحا نسه؛ حاص

$$
\begin{aligned}
& 1 \rightarrow r \rightarrow 1 \rightarrow \psi \\
& r \rightarrow r \rightarrow r \rightarrow r \\
& r \rightarrow 1 \rightarrow \psi \rightarrow 1 \\
& r \rightarrow r \rightarrow r \rightarrow r
\end{aligned}
$$

 دارد. ازايندو

$$
\alpha \beta \gamma=\left(\begin{array}{llll}
1 & r & \mu & \psi \\
\varphi & r & 1 & r
\end{array}\right)
$$

بر ای توضيح بيشتر شـش جا يخـُت

$$
\left.\begin{array}{lll}
\iota=\left(\begin{array}{lll}
1 & r & r \\
1 & r & r
\end{array}\right), & \alpha=\left(\begin{array}{lll}
1 & r & r \\
r & r & 1
\end{array}\right), \quad \beta=\left(\begin{array}{lll}
1 & r & r \\
r & 1 & r
\end{array}\right) \\
\gamma=\left(\begin{array}{lll}
1 & r & r \\
r & 1 & r
\end{array}\right), & \delta=\left(\begin{array}{lll}
1 & r & r \\
r & r & 1
\end{array}\right), \quad \varepsilon=\left(\begin{array}{lll}
1 & r & r \\
1 & r & r
\end{array}\right)
\end{array}\right\}
$$

$$
\alpha \gamma=\varepsilon, \quad \beta \gamma=\delta
$$

\&ץ آشنايى با نظر يهتروهبا كه هتناظر با زوا بط

$$
a c=e, \quad b c=d
$$

 فرض كغيم مجهو عئ د

$$
\Sigma_{1}=\{1, r, \ldots, m\}, \quad \Sigma_{r}=\{m+1, m+r, \cdots, n\}
$$

 با يكديگر تعو يضهذير ند.
 میشود. بدين گو iبا نماد

$$
\gamma=\left(\begin{array}{lll}
1 & r \ldots m-1 & m \tag{ץチ.1}\\
r & r \ldots m & 1
\end{array}\right)
$$

$$
\gamma=\left(\begin{array}{lll}
1 & Y \ldots m
\end{array}\right)
$$

$$
i \gamma=i+1 \quad(i=1, r, \ldots, m-1), \quad m \gamma=1
$$

 ازصود تهاى همازز

$$
\left.(1 r \ldots m)=\left(\begin{array}{r}
r
\end{array}\right) m m \quad 1\right)=\ldots(m \mid \ldots m-1)
$$

تأثير γ را مى تـوان بهوسيلهُ هعاد'لات (YY.1) بيان كرد ويا بهطور مختصرتر

$$
j \gamma=j+1 \quad(\bmod m)
$$

Yو مفاهيم مر بوط بـكروهها

$$
j \gamma^{r}=j+r(\bmod m)
$$

 مى ماند لزومى ندارد كه درنماد π صر احتاً ذكر كار

$$
\left(\begin{array}{lll}
1 & r & r
\end{array}\right)=\left(\begin{array}{lll}
1 & r & r \\
r & r & 1
\end{array}\right)
$$

وهر گاه $n=\Delta$

$$
\left(\begin{array}{lll}
1 & r & r
\end{array}\right)=\left(\begin{array}{lllll}
1 & r & r & r & \Delta \\
r & r & 1 & r & \Delta
\end{array}\right)
$$

دقيقتر بغويبم، نهـاد (1 Y Y Y
 اين اشياء كدام يك ثابت مىماند.

$$
\pi=\left(\begin{array}{ll}
1 & r
\end{array}\right) \quad\left(\begin{array}{lll}
r & \& & v
\end{array}\right)
$$

نسايشگر جا يگشت

$$
\pi=\left(\begin{array}{lllllll}
1 & r & r & \varphi & \Delta & \varphi & \gamma \\
r & 1 & r & \varphi & \Delta & \gamma & \psi
\end{array}\right)
$$

$$
\begin{equation*}
p, p \pi, p \pi^{r}, \cdots \tag{49.1}
\end{equation*}
$$

 اعلدادیصحيح ونامنفى حین俍 $\cdot p \pi^{s-r}=p$

$$
p \pi^{h}=p
$$

$$
\left(p, p \pi, p \pi^{r}, \cdots, p \pi^{h-1}\right)
$$

$$
\left(q, q \pi, q \pi^{r}, \cdots, q \pi^{k-1}\right)
$$

 عنصر مشتر كى نلدارنا. زيرا زير فرض كيبم

$$
p \pi^{a}=q \pi^{b}
$$

و بنابراين

$$
\begin{aligned}
& q=p \pi^{u-b} \\
& \text { ازتقسيم a-b بر h داريم } \\
& a-b=t h+r \\
& \text { كه در آن } \\
& q=p \pi^{r}
\end{aligned}
$$

 هنحصر بإهذرد استـ.
هثـال. فرض كيبم

$$
\pi=\left(\begin{array}{llllllll}
1 & r & r & Y & \Delta & \varphi & \gamma & \lambda \\
\varphi & \Delta & \varphi & 1 & \gamma & \lambda & r & r
\end{array}\right)
$$

 نشان دادهايم كه

$$
\pi=\left(\begin{array}{ll}
1 & \varphi
\end{array}\right)\left(\begin{array}{lll}
r & \Delta & \gamma
\end{array}\right)\left(\begin{array}{lll}
\mu & \& & \wedge
\end{array}\right)
$$

 آبلى نا متناهى تشكيل مى هیهند:

$$
؛\left\{r^{k} \mid k=0, \pm 1, \pm r, \cdots\right\}(1)
$$

$$
\left\{\left.\frac{1+r m}{1+r n} \right\rvert\, m, n=0, \pm 1, \pm r, \ldots\right\}(ب)
$$

. $\{\cos \theta+i \sin \theta \mid$ |r)
 يك كروه تشكيل نمیدهند؟

 برای آز؟! صادق است.

ثّا: بت كنيد عناصر ab و ba داراى يك مر تّهاند.
ا گ.
 "

كه در آن
 (1 (1) نشان دهيد كد نگاشتّهاى

$$
f_{1}: z \rightarrow z, f_{r}: z \rightarrow-z, f_{r}: z \rightarrow \frac{1}{z}, f_{r}: z \rightarrow-\frac{1}{z}
$$

از صفحهٔ هنبسط z بسهروى خودش، يك گَروه تشكيل مى دهند و أين گَروه بـا گَروه جدول (iii) صفحهٔ 1 ا يكر يخت است.

$$
\left(\begin{array}{lllllllll}
1 & r & r & r & \Delta & q & v & \lambda & q \\
r & q & q & \gamma & r & 0 & \lambda & 1 & r
\end{array}\right)
$$

و (ب)

$$
\left(\begin{array}{llllll}
a & b & c & d & e & f \\
c & e & d & f & b & a
\end{array}\right)
$$

را به دورهاى دو بهدو ازهم جدا تجزيدكيد. مر تبهٔ اين دو جا يگَشت را بيا بيد. ($(a b c \cdots k)(a l)$
$\left(a_{1} a_{Y} \ldots a_{r} x y b_{1} b_{Y} \ldots b_{s}\right)\left(a_{r} a_{r-1} \ldots a_{1} x y c_{1} c_{Y} \ldots c_{t}\right)$
$\left(a_{1} a_{Y} \ldots a_{r} x y z b_{1} b_{Y} \cdots b_{s}\right)\left(a_{r} a_{r-1} \cdots a_{1} x y z c_{1} c_{Y} \cdots c_{t}\right)$
(10)

يك گَروهآبلى ازمرتبهُ با

PI مغاهبم مربوط بهتروهها

$$
A(v)=\left(1-\frac{v^{r}}{c^{r}}\right)^{-1 / r}\left[\begin{array}{lr}
1 & -v \\
-v / c^{r} & 1
\end{array}\right]
$$

كه در آن قانون تر كيب

$$
\begin{aligned}
& A\left(v_{\cup}\right) A\left(v_{Y}\right)=A\left(v_{r}\right) \\
& v_{r}=\frac{v_{1}+v_{r}}{1+\frac{v_{1}+v_{r}}{c^{r}}} \\
& \text { يك گر وه تشكيل مىدهد (گَروه لود نتس). }
\end{aligned}
$$

r

زير تروهها

$$
A=a_{1} \cup a_{\mathrm{r}} \cup a_{\mathrm{r}} \cup \ldots
$$

 بهازای هر دو زيرهجمو $A B$ (1.r)

را بدعنوان مجمبعهٔ تمام عناصرى كـهـ بتوانئد بهصورت

اتفاقمهكناست بايد تأكيد شود كه AB صرفاً بهعنوان بك مج

 همو اره بدينمعنى تلقى خءياهد شد. البته، در حالت كلى، $A B \neq B A$
الا وقتى كه $A B=B A$ ،اين تساوى بد ينممنى نيست كه هر ع:صر A با هر عنصر B A تعو يضهذير
 . $a b=b^{\prime} a^{\prime}$ وجود دارند $b^{\prime} \in B$, $a^{\prime} \in A$

$$
(A B) C=A(B C)
$$

و لذا هريك از دو طرف (Y.Y) را با بهطور ساده با ABC هى توان نما يش داد. با استفاده

$$
A^{r}=A A, \quad A^{r}=A A A, \cdots
$$

 مجسوعةٔ A است، نوشته شو ند. قو! اءل ذيل بهسهو لت اثبات هى شو ند:
$(A \cup B) C=A C \cup B C$
$C(A \cup B)=C A \cup C B$
$(A \cap B) C=A C \cap B C$
$C(A \cap B)=C A \cap C B$
اينك حالات خاصى راكه در آنها بیضى از مجهو

 تنيير ات A a انهت. مالاحظه مى كيبم كه
$x^{-1}\left(A_{1} \cap A_{Y} \cap \cdots A_{r}\right) x=x^{-1} A_{1} x \cap x^{--1} A_{Y} x \cap \cdots \cap x^{-1} A_{r} x \quad$ ($\left.\boldsymbol{r} \cdot \boldsymbol{Y}\right)$
 $A+B$
واين:مجموعئ كليئ غناصرى است كه بتوانبل بهصورت بيان شـوند. بالذخص، زيرهجمهوعئ

$A+A$

 $A+x$
ازعناصر

 حا لتى انت كه

$$
x^{-1} A x=A \quad \text { ي } A x=x A
$$

واين بدانمعنى است كه بهازاى هر $a \in A$ عنصرى مانند $a x=x a^{\prime}$ وجود داردك $a^{\prime} \in A$
علد اصلى A، يعنى تهداد عناصر متما يز A، خو اه متناهى باشنال يـا نامتناهى، اغلب با |A نشان داده بى شود.

(${ }^{(1)}$ (
(() و و (- (بنداشت عنصرعكس) $u^{-1} \in H$ ا
 وتى كه H يك زير گر وه G باشد مىنويسيم:

$$
H \leqslant G
$$

و اين نماد برنهاد H H رجحان
 و

$$
H s=H
$$

و بهطود مــا به

$$
s H=H
$$

زير زروثيا هr

$$
s=\mid s \in H
$$

 هتعلف با شد.
 زير را هى تو ان بيانْ كرد.

$$
H S=S H=H
$$

دز حا لت خاص: كه

$$
H^{r}=H
$$

 H

قضية ع
 شناصر H بدترتيب زير شهدارد گذازى شـده باشند:

$$
\begin{equation*}
H: u_{1}, u_{r}, \cdots, u_{h} \tag{V.Y}
\end{equation*}
$$

و u يكى از اين عناصر باشد. دز اينصورت h عنصر

$$
H u: u_{1} u, u_{\curlyvee} u, \cdots, u_{h} u
$$

هـهگی به
 آزі j وجود دازد بهقس+ی كه

$$
u_{j} u=u
$$

$$
u_{k} u=1\left(=u_{j}\right)
$$

يعنى:

$$
\begin{equation*}
H^{\prime}=x^{-1} H x \tag{1.r}
\end{equation*}
$$

 و $x^{-1} \mid x=1 \in H^{\prime}$ 位

$$
u \theta=x^{-1} u x(u \in H)
$$

نگاشتى است بك بهيك از H بهروى H' و با اين ويرّ گَى كه $(u \theta)(c \theta)=\left(u v^{\prime}\right) \theta$
:س:

$H \cong H^{\prime}$

-1. هممجموعهها. فرض كيم H بكز ير گروه G و X عنصزىاز G با شد. دراينصورت

H.

 . 1 € H H ج $،$ ، $x \in H x$ جنانجه
 H1

 برای بر قرارى تـاوى

$$
\begin{equation*}
H x=H y \tag{10.r}
\end{equation*}
$$

 ماند از از وجود داز: بدفـــى كه

$$
x=u y
$$

$$
\begin{equation*}
x y^{-`} \in H \tag{11.r}
\end{equation*}
$$

ا. زير كروههاى \}

زير كروهنا
و برعكس، اگَ (II.Y) برقزاز باشد، آنگاه

$$
H . x=H u y=H y
$$

 $z \in H x \cap H y$
در اينصورت در H عناصرى حیون 1 و '

$$
z=u x=v y
$$

از اينرو

$$
x y^{-1}=u^{-1} \imath \in H
$$

 عنصر مشتركى ندار ند.

 بهطورى كه $x=\| y$ يا با عبار تى مهرازز با Tانذ هر كاه

$$
H x=H y
$$

 نتيجد هیشود

$$
\begin{align*}
& G=\bigcup_{i=I} H t_{i} \tag{IY.Y}
\end{align*}
$$

 هى نامند و به
[$G: H]$
(Ir.r)

$$
\cdot[G: H]=\infty
$$

گردايi

$$
\left\{u_{i} t_{i} \mid i \in I\right\}
$$

كa در آذ

$$
x H=y H
$$

اگر، وتنها اگر، عنصرى جون

$$
y^{-1} x \in H
$$

 G زا هى توان بهاجتما ع كليةٌ مـمجمر عدهاى جب هتما يز افراز كري؛ لذا

$$
G=\bigcup_{j \in J} s_{j} H
$$

$$
\begin{align*}
& G=\bigcup_{i \in I} t_{i}^{-1} H \tag{10.r}
\end{align*}
$$

 متها يز ند. زيرا اگر

$$
t_{i}^{-1} H=t_{k}^{-1} H
$$

نتيجه مى گير يم كد

$$
\left(t_{k}^{-1}\right)^{-1} t_{i}^{-1} \in H, t_{k} t_{i}^{-1} \in H
$$

زيركروهبا

 باشدُ: عناصر Ht عبارتاند از

$$
u_{\uparrow} t, u_{\curlyvee} t, \cdots, u_{h} t
$$

ابثات كنيم.
 زيرگروهى از مرتبة h باشيد، آنگا

$$
\begin{equation*}
G=\bigcup_{i=1}^{n} s_{i} H, G=\bigcup_{i=1}^{n} H t_{i} \tag{19.r}
\end{equation*}
$$

وجود دار ند كه بهترتيب تجزيههاى G برحسب شهمجهوعههاى راست ویپ H هستند.
برهان. با فرضـاينكه n: انديس باشد: وجود تجز بدهماى (1Y.Y) زا فبلا" دزحالت كلى انبات كرددايم. نتط با يد نشان دهيمركه

$$
g=n h
$$

 همئ و عنصر مجهوعئ G زا زا بيا هى میهد.
 عناهر G در هعادلة

$$
x^{g}=1
$$

هدت مىكند.
 و مئلا"، برابر با r !ست. از ايندو عناصر

$$
1, u, u^{r}, \ldots, u^{r-1}\left(u^{r}=1\right)
$$

\% آشنايى با نظريد تروهها
 ' $g=$ لذا با فرض اينكه s عدد صحريحى باشد

$$
u^{g}=\left(u^{r}\right)^{s}=1
$$

برهان. فرض كنيم G يك گروه ازمر تبهٔ p و p عددى اول باشد. مر تبهٔ هرزير گَروه
 بر G مiطبق.
اگر
از p است. از اينرو u از مر تبئ p است، و عناصر

$$
1, u, u^{r}, \cdots, u^{p-1}
$$

هinما يز نل و بنا براين همهٔ عناصر G هستنل.
مثال. در گَروه مر تبـهٔ . وe e ed d

بهصورت

$$
H+x
$$

نوشُه هى شود و دار يم:

$$
H+x=H+y
$$

اگگر، و فقط اگر،

$$
x-y \in H
$$

يا بهصودت همارز با آن

$$
x=y+u
$$

كه در آن u عنصرى است ازH. دراین حالت گاه هى گو يبم كه
است، و مى نو يسيم

$$
x \equiv y(\bmod H)
$$

$$
C: 1\left(=x^{0}\right), x, x^{-1}, x^{r}, x^{-r}, \cdots
$$

زيرمروتيا

$$
H: 1, x^{a}, x^{b}, \ldots
$$

$$
x^{m q}(q=0, \pm 1, \pm r, \ldots)
$$

 $a=m q+r$

كه در آن

$$
\begin{aligned}
x^{a} & =x^{m q} \cdot x^{r} \\
x^{a} x^{-m q} & =x^{r}
\end{aligned}
$$

 امر بـا حــا

قضية اصلى F. فزضى كنم

$$
\begin{equation*}
C: 1, x, x^{r}, \cdots, x^{E-1}\left(x^{6}=1\right) \tag{19.r}
\end{equation*}
$$

$$
\begin{equation*}
1, x^{n}, x^{\gamma n}, \cdots, x^{(h-1) n} \tag{Y०.Y}
\end{equation*}
$$

متها يز ناله زيرا هر تساوى بين آنبا هنجر بهر ابطداى ما نيند

$$
x^{\ln }=1
$$

YY آشنايِ با نظر يه تَروهـا هى شُود كه دز آن

$$
\circ<\ln <h n(=g)
$$

 h h

$$
H: 1, u_{r}, u_{r}, \cdots, u_{h-1}
$$

$$
u_{i}=x^{\lambda_{i}},(i=r, r, \cdots, h-1)
$$

$$
\circ<\lambda_{i}<g
$$

$$
u_{i}^{h}=1
$$

یییی

$$
x^{h \lambda i}=1
$$

 دار ند كه

$$
\begin{aligned}
h \lambda_{i} & =k_{i} g=k_{i} h n \\
\lambda_{i} & =k_{i} n
\end{aligned}
$$

 واض

$$
D=H \cap K
$$

نيز يك زیر گروه G الست. زيراكبـه اگَر x و y هتهلف بسه D باشند، داريم
位
 $H \cap K \cap L \cap \cdots$

هم يك زير گرو وه است.

$H \cup K$

درحالت كلى، يك زير گروه نيست. زيرا كه فكر كنيم $u v$ يا در H H قز
 مورد نياز است.

$$
a, b, c, \cdots
$$

 تعلق دارد. گروهى كه بـد ين طز يق سا ختا هی شهود با

$$
\operatorname{gp}\{a, b, c, \cdots\}=M
$$

$$
. M=G
$$

 مو لد a زايد خو اهلد بود هر گاه
$a \in \operatorname{gp}\{b, c, \cdots\}$
كد درجنين حالتى مىتوانيم بهجاى (YY.Y) قرار دميبم

$$
M=\operatorname{gp}\{b, c, \cdots\}
$$

 حذفكرد.

 هورد نظر است.
 صورت مى تواند بهصورت
 مى ينيم كه هريك ازشُش عنصر آن را $1=c^{\gamma}\left(=a^{r}\right), a=a, b=a^{r}, c=c, d=c a, e=c a^{r} \quad$ (Yr.Y)

ازاينرو دراين حالت مى توانيم بنو بسيم

$$
G=\operatorname{gp}\{a, c\}
$$

بهطريق ديگر، میى توان نشّان دادكه

$$
G=\operatorname{gp}\{b, d\}
$$

زيرا a و c و لذا تهام عناصر گروه را هى توان برحسب b و d d بيان كرد، يعنى

$$
a=b^{r}, \quad c=d b
$$

 آبلى خو اهد بود.

 (v)

$$
\begin{equation*}
a c=c a^{r} \tag{Y६.Y}
\end{equation*}
$$

كه با را بطئ

$$
(a c)^{r}=1
$$

زهرحروهها

$$
(a c)^{r}=a c a c=a c c a^{r}=a \mid a^{r}=a^{r}=1
$$

 اينجا درمورد كنو نى متذكر مى شو يمكه معادلات

$$
\begin{equation*}
a^{r}=c^{r}=(a c)^{r}=1 \tag{YV.Y}
\end{equation*}
$$

$$
\begin{equation*}
1, a, a^{r}, c, c a, c a^{r} \tag{Y人.Y}
\end{equation*}
$$

 هى توان تحقيق كرد كه دستگاه (YA.Y) نسبت بهضرب بسته است؛ براى مثال

$$
\begin{aligned}
& (c a)\left(c a^{r}\right)=c(a c) a^{r}=c c a^{r} a^{r}=c^{r} a^{\varphi}=a \\
& a^{r} c=a(a c)=a c a^{r}=c a^{\gamma}=c a
\end{aligned}
$$

 حر كت داده شده، تا اينكه حاصلضرب قرادداد، جلدولضرب كامل حنين خواهد شد:

جدول (vii)

	1	a	a^{r}	c	ca	$c a^{r}$
1	1	a	a^{r}	c	ca	c^{r}
a	a	a^{r}	1	$c a^{Y}$	c	ca
a^{r}	a^{r}	1	a	ca	$c a^{r}$	c
c	c	ca	$c a^{r}$	1	a	a^{r}
ca	ca	$c a^{r}$	c	a^{r}	1	a
$c a^{r}$	$c a^{r}$	c	$c a$	a	a^{r}	1

 اگَ A، B، C C . . . ز يرمجموعهها يى از گروهه G باشند، گَرومى كه اينها تو ليد مى كنند با

$$
\operatorname{gp}\{A, B, C, \cdots\}
$$

 با تكرار يـا بدون تكرار انتخاب شدهاند. هـر گاه همهُ عناصر
 مى توان ههحخنين نوشت

$$
\begin{aligned}
& \operatorname{gp}\{A \cup B \cup C \cup \cdots\} . \\
& \text { البته اگر A يك زير گروه باشد خواهيم داشت: } A=\ln \{A\}
\end{aligned}
$$

 مفروض مورد بحث قرار مىدهيم. فرض كنيم H H و K دو گر وه دلخواه باشند و مجموعةٌ تمام زوجهاى مرتب

$$
(u, v)
$$

 اين زوجهاى مر تب با

$$
G=H \times K
$$

نشان داده مىشود وحاصلضرب مستقيم (خارجى) H وK ناميده مى شود. با تخصيصقانون

$$
\left(u, v^{\prime}\right)\left(u^{\prime}, v^{\prime}\right)=\left(u u^{\prime}, v^{\prime} v^{\prime}\right)
$$

 G عبارت است از زور مرت

$$
\left(1_{H}, 1_{K}\right)
$$

كه در Tن أ ا و K ا بهتر تيب عناصر واحد H و K هستند. همخحنين

$$
(u, v)^{-1}=\left(u^{-1}, v^{-1}\right)
$$

 ازمر تبه hk خوراهد بود. درحالت كليتر، اگگر

$$
H_{1} \times H_{r} \times \cdots \times H_{r}
$$

$$
\left(u_{1}, u_{r}, \cdots, u_{r}\right)
$$

تشكيل مى گردد كه درTن ان مى گيرد. واضح است كه اگر هر Hi متناهى باشد، T آنگاه

$$
\left|H_{1} \times H_{Y} \times \ldots \times H_{r}\right|=\prod_{i=1}^{r}\left|H_{i}\right|
$$

گاهى اتفاق مىافتدكه يك گروه G ، با حاصلضرب مستفيم دو زير گروه خودش، و K

$$
G \cong H \times K
$$

ويا با استفادة اندك نابجا ازنماد، مى نويسيم

$$
G=H \times K
$$

$$
(r o . r)^{\prime}
$$

اين وضعيت درموارد ذيل ريس می آيد

$$
\begin{equation*}
u v=v u \tag{rı.r}
\end{equation*}
$$

(Y) هرعنصر x (Y

$$
G=H K
$$

بيان كرد.

$$
\begin{equation*}
H \cap K=1 \tag{}
\end{equation*}
$$

 (${ }^{\prime}$ (.v $\boldsymbol{v} \in \boldsymbol{K}, u \in H$ ن

داشته باشيم. دراين صورت

$$
\begin{equation*}
u_{1}^{-1} u=v_{1} v^{-!} \tag{rץ.r}
\end{equation*}
$$

و عنصرسمت جب ((μ) متعلق به H وعنصر سهت راستآن متعلى بهK است و بنا بر اين؛

$$
\begin{aligned}
& \text { زيرا با بذيرفتن (r) و (r)، فرض هى كينيم دو تجزية } \\
& x=u v=u_{1} v_{1}
\end{aligned}
$$

بهموجب (r)، لازم مى آيدكه اين عنصر برابر 1 باشد. لذا

 w دوتجزئ w $w=|w=w|$

$$
\text { نتيجه مى گیر يم كه } w=1
$$

 مر تبى ما نـد (u,v) را، كه در آن وجود دارند، زيرا (u,v) مشناظر با حاصلضرب (uv=x می باشد. تناظر

$$
x \theta=(u v) \theta=(u, v)
$$

يكر يختى (ץ0.ץ) را برقرار مى كند. زيرا بهموجب (1) داريم $\left(u v^{\prime}\right)\left(u^{\prime} v^{\prime}\right) \theta=\left(u u^{\prime} v v^{\prime}\right) \theta=\left(u u^{\prime}, v v^{\prime}\right)$

بهطريق مشا به، داريم

$$
G \cong H_{1} \times H_{Y} \times \ldots \times H_{r}
$$

كــه در Tن برقرار باشند
(1) هردو گروه (Y) هرعنصر X از

$$
x=u_{1} u_{Y} \cdots u_{r}
$$

كه در Tن $u_{i} \in H_{i}$ بيانكرد.

$$
\begin{equation*}
H_{i} \cap H_{1} H_{r} \cdots H_{i-1} H_{i+1} \cdots H_{r}=\{1\} \tag{r}
\end{equation*}
$$

يا به بيان ديگر بهجاى (Y) و (Y) (Y)، بى توانيم بگذاريم

$$
u_{1} u_{r} \cdots u_{r}=1
$$

از () نتيجه مى شود كه

$$
u_{1}=u_{r}=\cdots=u_{r}=1
$$

زيرا | | = | | | تنها تجزئ | است.

وتى گروهى بهصودت حاصلضر ب مستيم زير گروهfايش بيان سود ما آن را يك
حاصلضرب مستقيم داخلى •یىناميم.

زيركروهها

$$
\begin{equation*}
1, r, r, r, \lambda, \|, \mid r, i r \tag{ץ५.Y}
\end{equation*}
$$

$$
C_{\varphi}: 1, r, \varphi, \wedge\left(r^{\psi}=1 \varepsilon \equiv 1(\bmod \mid \Delta)\right)
$$

را تو ليد مى كند. بهطر ين مشابه، | \mid بك گَروه دورى ازمرتبئ Y

$$
C_{r}: 1,11\left(11^{r}=|r| \equiv 1(\bmod \mid \Delta)\right)
$$

$$
1, r, r, \lambda, l \mid, r Y, Y Y, \wedge \lambda
$$

كه بس از تبديل بههنگك 10 جنين مىشود

$$
1, r, \psi, \lambda, \|, v,|\psi,| r
$$

هين اين گروه كاملى است، شرط (Y) برقرار است، و فورآ هلاحظه مى كينم كه

$$
C_{Y} \cap C_{Y}=\{1\}
$$

اين تساوى نشان مى دمدكه اينگروه با
 خواهل شُلـ.

قضيو \&. ذرضى كنيم G گروهى متناهى باشد كه همهٔ عناهرشٌ درمعادلة

$$
\begin{equation*}
x^{r}=1 \tag{rv.r}
\end{equation*}
$$

هدت كتند، يمنى هرعنصرآن، بهاستثناى عنصر واحد، از مرتّهُ ب باشُد. در اين هورت G با يث گروه آبلى از نوع

$$
C_{r} \times C_{r} \times \ldots \times C_{r}
$$

يكريخت است، و بنابراين برتبه G توانى از است
برهان. بنا برفر ع Y، بضفحם

$$
a^{r}=b^{r}=1
$$

$$
a=a^{-1}, b=b^{-1}
$$

حال، عنصر ab را در نظر مى گِير يم. بنا بر (rV.Y)،

$$
a b=(a b)^{-1}=b^{-1} a^{-1}=b a
$$

اين رابطه نشان مىدهـد
 مر تبكردكه هرعنصر بتو انل بهشكل ("نرمال")

$$
u_{1}^{k_{1}} u_{r}^{k_{r}} \cdots u_{r}^{k_{r}}
$$

 بهر ا بطهاى ما نند

$$
u_{1}^{l_{1}} u_{r}^{l_{r}} \cdots u_{r}^{l_{r}}=1
$$

منجر هى شُد كه در T هن هر

$$
G=\operatorname{gp}\left\{u_{\wedge}\right\} \times \operatorname{gp}\left\{u_{r}\right\} \times \cdots \times \operatorname{gp}\left\{u_{r}\right\}
$$

و ازاين رو

$$
G \cong C_{Y} \times C_{Y} \times \ldots \times C_{Y}
$$

- r (عاملr

P P • بردسى

人

زيرا اگر
 (1) اگر G شامل يك عنصر ازمر تبئ خهارعنصر G عبارت بخو اهند بيد از

$$
1, a, a^{r}, a^{r}\left(a^{\psi}=1\right)
$$ (Y) در غير اينصودت، فرض مى (Y

$$
G=C_{Y} \times C_{Y}
$$

لذا G بهتوسط دوعنصر a و b تو ليد مىشود و خهازعنصر G عبارناند از

$$
1, a, b, a b
$$

$$
a^{r}=b^{r}=1, a b=b a
$$

 نشان داده بى شود.
 با ديگرى در (iii) و (iv) : صفخئ

$$
G=\operatorname{gp}\{a\}=C_{\varphi}
$$

 a ازمرتبه a

$$
1, a, a^{r}
$$

i. F. Klein

هY آشنا يى با نظزيهرموهمبا

سه عنصر متها يز G هستيد •

$$
a^{r}=1
$$

(YY.Y)
 در (YA.Y) اشُاره كرديم، شُش عنصر

$$
1, a, a^{r}, c, c a, c a^{r}
$$

متما يز ند.

 ($i=0,1, r) c^{r}=c a^{i}$

$$
(\alpha) c^{r}=1,(\beta) c^{r}=a,(\gamma) c^{r}=a^{r} \quad(\psi \psi . \gamma)
$$

 ضرب (

$$
c^{\gamma}=1
$$

 عبارت|ند از

$$
a c=c a, \quad, \quad a c=c a^{r}
$$

 كنيم. بدبن طريق اولى

$$
(a c)^{r}=a^{r} c^{r}=a^{r} \neq 1,(a c)^{r}=a^{r} c^{r}=c^{r}=c \neq 1
$$

$$
G=\operatorname{gp}\{a, c\}
$$

زير كروهها

مشروط بر آنكه روابط

$$
a^{r}=c^{r}=(a c)^{r}=1
$$

 بدبن گو نه مى بينيم كه دقيفاً دو گر وه مر تبهُ و و وجود دا دار ند اند.

سه گروه آبلى مرتبه 1 را بهساد گى مى توان نوشت، بدين قرار:

- ($\Delta \&$ (ix)

.

 (r) يكر يخت است.

ازاينرو فرض مى كنيم كه هرعنصر، غير ازمر تبئ عنصر مانند a ازمرتبه ץ وجود دارد

$$
a^{\psi}=1, a^{r} \neq 1
$$

اگَر b عنصرى ازگروه غيرواقع در gp $\{a\}$ باشد، Tنگاه هشت عنصر

$$
1, a, a^{r}, a^{r}, b, a b, a^{r} b, a^{r} b
$$

 |

 مىما نند عبارتاند از
$(\alpha) b^{r}=1 \quad$! $(\beta) b^{r}=a^{r}$
($)$ (($)$ با با
(
 را بطه حنين بهدست دی آ يد

$$
\left(b^{-1} a^{\varphi} b\right)^{r}=b^{-1} a^{\varphi} b=b^{-1} \mid b=1=a^{r}
$$

كه غير مدكن است. ازاين رو بايـ نتيجه بغگير يمّم4

گروههى كه با در: بطا

$$
a^{r}=b^{r}=(a b)^{r}=1
$$

 ba
 ($c=a b^{-1}$ از مر تبهً جون

 (β) iii)

$$
a^{\varphi}=1, a^{r}=b^{r}, b a=a^{r} b
$$

$$
A=\left[\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right], \quad B=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]
$$

I, $A, A^{\curlyvee}, A^{r}, B, A B, A^{\Upsilon} B, A^{r} B$

زيركروهها
 درنظر گر فته شد يكر يخت است.
 ياد آورى هى كنيم كه يك هار تايى عبار تست از يك عدد ابر مختلط (AV

$$
a_{0} 1+a_{1} i+a_{r} j+a_{r} k
$$

كه در آن

$$
1, i, j, k
$$

در روابط

$$
i^{r}=j^{r}=-1, i j=-j i=k
$$

يا، در دوابط همارز با آنها

$$
i^{\psi}=1, i^{r}=j^{r}, j i=i^{r} j
$$

 كامل ینج گر وه مجرد ممكن ازا اين مر تبه را ضميهـ مى كيميم:
(viii)جدول

$$
C_{\wedge}=\operatorname{gp}\{a\}, a^{\wedge}=1
$$

جدول (ix)

$$
C_{\varphi} \times C_{Y}=\operatorname{gp}\{a\} \times \operatorname{gp}\{b\}, \quad a^{\varphi}=b^{r}=1
$$

جدول(x)
$C_{Y} \times C_{Y} \times C_{Y}=\operatorname{gp}\{a\} \times \operatorname{gp}\{b\} \times \operatorname{gp}\{c\}, a^{r}=b^{r}=c^{r}=1$

	1	a	b	c	$a b$	$a c$	$b c$	$a b c$
1	1	a	b	c	$a b$	$a c$	$b c$	$a b c$
a	a	1	$a b$	$a c$	b	c	$a b c$	$b c$
b	b	$a b$	1	$b c$	a	$a b c$	c	$a c$
c	c	$a c$	$b c$	1	$a b c$	a	b	$a b$
$a b$	$a b$	b	a	$a b c$	1	$b c$	$a c$	c
$a c$	$a c$	c	$a b c$	a	$b c$	1	$a b$	b
$b c$	$b c$	$a b c$	c	b	$a c$	$a b$	1	a
$a b c$	$a b c$	$b c$	$a c$	$a b$	c	b	a	1

$$
\text { گروه دو وجtی : } a^{\varphi}=b^{r}=(a b)^{r}=1
$$

	1	a	a^{r}	a^{r}	b	$a b$	$a^{r} b$	$a^{r} b$
1	1	a	a^{r}	a^{r}	b	$a b$	$a^{r} b$	$a^{r} b$
a	a	a^{r}	a^{r}	1	$a b$	$a^{r} b$	$a^{r} b$	b
a^{r}	a^{r}	a^{r}	1	a	$a^{\gamma} b$	$a^{r} b$	b	$a b$
a^{r}	a^{r}	1	a	a^{r}	$a^{r} b$	b	$a b$	$a^{r} b$
b	b	$a^{r} b$	$a^{\gamma} b$	$a b$	1	a^{r}	a^{r}	a
$a b$	$a b$	b	$a^{r} b$	$a^{r} b$	a	1	a^{r}	a^{r}
$a^{\gamma} b$	$a^{r} b$	$a b$	b	$a^{r} b$	a^{r}	a	1	a^{r}
$a^{r} b$	$a^{r} b$	$a^{r} b$	$a b$	b	a^{r}	a^{r}	a	1

جلجول(xii)

 ترار مىدهيم.آشكار خواهد شدكه حاصلضرب دو زير گروه هميشه يسلك زير گر گروه نيست،

الا درحالت متناهى بودن اينزير گروهـا اطلاعات روشنى دربارة تعداد عناصر حاصلضرب مى توان بهدست آررد.
 هورت $A B$ يك زيرگ,روه است اگر، و فقط اگر،

$$
A B=B A
$$

$$
\begin{aligned}
& \text { ، }|B|=b ،|A|=a \text { در حالتى (ii) }
\end{aligned}
$$

$$
\begin{aligned}
& |A B|=|B A|=\frac{a b}{d}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (هr.Y) } \\
& H^{r}=A B A B=A^{r} B^{r}=A B=H
\end{aligned}
$$

كه بستارى H را ثابت هى كند. بديثى استكـه
 ايندو، بنا بر (ar.r) را كامل هى كند.
بعكس، فرض كنيم $H=A B$ يك گروه باشد. از اينرو اگر a و وb به تر تيب عناصر
 ba b اين بدانمعنى است

$B A \subset A B$

$$
\left(b^{-1} a^{-1}\right)^{-1}=a b=b_{1}^{-1} a_{1}^{-1}
$$

ينیى
$A B \subset B A$
لذا نتيجه هى گیر يمكه $A B=B A$
فــرض (ii)
بههمسجمو عهها يى برحسب D، ما نند

$$
B=D t_{1} \cup D t_{\gamma} \cup \cdots \cup D t_{n}
$$

$$
D t_{i} \neq D t_{j} \text { هر کا } i \neq j
$$

$$
n=\frac{b}{d}
$$

بهدست ^ى آوريم

$$
A B=A t_{1} \cup A t_{\curlyvee} \cup \cdots \cup A t_{n}
$$

 جون در غير اينصورت، بايد معادلهاى بهصورت

$$
u_{1} t_{i}=u_{\curlyvee} t_{j}
$$

كه در Tان

$$
t_{i} t_{j}^{-1}=u_{1}^{-1} u_{\gamma}
$$

 ك كه با (C (C ($D t_{i}=D t_{j}$ و چجون هر يك متشَكل از a عنصر ند، داريم

$$
|A B|=a n=\frac{a b}{d}
$$

واضح است كه اين بحث نسبت به A و B متقارن است، بلطورى كه داريـم

$$
|B A|=\frac{a b}{d}
$$

 باشند؛ دو عنصر x ر $x, y \in G$ را همارز سى ناميم، ومى نويسيم بوجود باشند بدقسمى كه $v \in B, u \in A$

$$
y=u x v
$$

1. Frobenius

بهساد گیى مىتوان بردسى كرد كه اين را بطْه، يك رابطهُ همارزی دز G است. زيرا
(ب) الازر لازم می آيدكه

$$
\text { u' } u^{\prime} \in A \text { (ج) (}
$$

 مى كنيم و تجز ئه

$$
G=\bigcup_{i \in I} A t_{i} B
$$

را بهدست مى آوريمكــه در آن I مجموعهٔ انديسگذارى است احتمالا" نامتناهى كـــه بـا بـا
 (B B

 عــلد اصلى هستند، زيرا هى توان عناصر آنيا را با جود كردن تناظر يك بهيك قرارداد. لذا

$$
\left|A t_{i} B\right|=\left|\left(t_{i}^{-1} A t_{i}\right) B\right|
$$

$$
\left|t_{i}^{-1} A t_{i}\right|=|A|=a
$$

با بهكار بستن قضية́ ه بر ای زيْ گر وهثایى

$$
\left|A t_{i} B\right|=\frac{a b}{d_{i}}
$$

كه در T ان
ق قضية اصلى
俍 مى باششد، بهعبارت زوشنّتر

$$
G=A t_{,} B \cup A t_{\curlyvee} B \cup \cdots \cup A t_{r} B
$$

زيرّروهها

تعداد عناهر $A t_{i} B$ برابر $a b / d_{i}$ است، كه در آن

$$
d_{i}=\left|t_{i}^{-1} A t_{i} \cap B\right|
$$

و در نتيجه

$$
g=a b \sum_{i=1}^{r} d_{i}^{-1}
$$

"موين

$$
X \cap Y \cap Z=D \cap Z, \operatorname{gp}\{X, Y, Z\}=\operatorname{gp}\{M, Z\}
$$

(r) فرض كنيم

 است.
 جدول xi).

$$
c^{r}=d^{r}=(c d)^{r}=1
$$

تعز يغ كرد.
(Y) كغيد هان تز يسياى

$$
A=\left[\begin{array}{cc}
\varepsilon & 0 \\
0 & 1 / \varepsilon
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
a^{n}=b^{r}=(a b)^{r}=1
$$

تشكيا •هىבهند.
;رض ما تريسعایى

$$
A=\left[\begin{array}{cc}
\theta & 0 \\
0 & 1 / \theta
\end{array}\right], \quad B=\left[\begin{array}{rr}
0 & 1 \\
-1 & 1
\end{array}\right]
$$

 آن حنين اند

$$
\begin{equation*}
a^{Y m}=1, b^{r}=(a b)^{r}=a^{m} \tag{9}
\end{equation*}
$$

 بكر يخت است.
 . يكر يخت اس $C_{4} \times C_{r}$
(11)

r

زير تروههاى نرمال

 را بعر فی مى كيم.

تعريف ه. عنامر

$$
\begin{equation*}
b=t^{-1} a t \tag{1.r}
\end{equation*}
$$

 انجام مى دهد ندار يم و بـا يد توجه داشته باشيم

$$
\begin{align*}
& a^{\prime}=t^{-} \backslash a t \tag{r.r}
\end{align*}
$$

(

$$
\text { باشد، آنگا。 } a \sim b \sim b t^{\text {ا }}
$$

¢
 و .$a \sim c$ بعلاوه متذكر مىشو يم كه ازدواج از قاعدهُ ههم ضر بى

$$
(x y)^{t}=x^{t} y^{t}
$$

هيروى مى كند، كه در آن

$$
(x y)^{t}=t^{-1} x y t=\left(t^{-1} x t\right)\left(t^{-1} y t\right)=x^{t} y^{t}
$$

واضح است كه مىتوان (س.

$$
\begin{aligned}
& \left(x_{1} x_{Y} \cdots x_{n}\right)^{t}=x_{1}^{t} x_{Y}^{t} \cdots x_{n}^{t} \\
& \text { با قراردادن } y=x^{-1} \text { در (ץ. } \\
& 1=x^{t}\left(x^{-1}\right)^{t}
\end{aligned}
$$

يعنى

$$
\left(x^{t}\right)^{-1}=\left(x^{-1}\right)^{t}
$$

يادآورى مى كيم كـــه وقتى يك را بطهُ همارزی در يك مجموعه تعريف شلده بــاشد، اين

 عناصرى است كه با a مزدوجاند، از جمله خود a a لذا

$$
(a)=t_{1}^{-1} a t_{1} \cup t_{r}^{-1} a t_{Y} \cup \cdots
$$

 مزدو ج جديدى تو ليد مى كند

$$
(b)=s_{1}^{-1} b s \cup s_{Y}^{-1} b s_{Y} \cup \cdots
$$

 را بهدست مى آوريم. لذا

$$
G=(a) \cup(b) \cup(c) \cup \ldots
$$

ما

$$
\cdot(x \in G) a^{\prime}=x^{-1} a_{x}
$$

وقتى G زامتناهى است؛ مهكن است بينها يت ردءٔ مزدوج مو جود بــاشد، و يك زدة

زير تروههاى نرمال

مز دوج خاص مهكن است شامل بينها يت عنصر باشد. بـههدت آوردن اطلاءات دقيعتر در

 نشان هىدهيم." لذا

$$
C(a)=\{t \in G \mid t a=a t\}
$$

 ؛ $C(a)=G$ خیثنًاً،

$$
G=\bigcup_{i} C(a) t_{i} \quad(i \in I)
$$

$$
\begin{equation*}
\boldsymbol{\theta}: C(a) x \rightarrow x^{-1} a x \tag{f.r}
\end{equation*}
$$

$$
(u x)^{-1} a(u x)=x^{-1} u^{-1} a u x=x^{-1} a \cdot x
$$

 اين نتايج را دز ذيل جمع هى كیيم:

 \% \% (a) را مر كزنساذه مى زاميم.-م.

4 أشنا يى با نظر يهتروهها

فرع. اكُر G گُوهى متناهى از مرتهة . برهان. فرض

$$
G=\left(a_{\uparrow}\right) \cup\left(a_{\Upsilon}\right) \cup \cdots \cup\left(a_{k}\right)
$$

ازاينرو، با شمارش عناصر هرطرف اين تساوى نتيجه هیشود

$$
g=h_{1}+h_{r}+\cdots+h_{k}
$$

اين تساوى، معادهً ردهاى G خو انده مىشود.
1^• مر كز كروه. هجموعئ Z ازعناصرى كه باهرعنصر G تعو يضذذير باشد، مركز G ناميله مى شود. لذا

$$
Z=\{z \mid t z=z t, t \in G \text { بهازای }\}
$$

اين مجموعـه يك زير گروه G است؛ زير ا(الف) ایگ,
 (

 خود - مزدوج مى خحو انند. قضيئ ذيل ازاين لـا را بر ای دسته مهمى از گروههـا اثبات مى كند.

اول و 0

برهان. معادلها ردهاى (س.ه) دراین حالت حنين مى شود

$$
p^{m}=h_{1}+h_{\curlyvee}+\ldots+h_{k}
$$

كه $l(\geqslant 1)$ برا بر واحل باشد ويا توانى از p

زير Fزوهبای نزمالi

$$
p^{m}=l+p s
$$

 مى گیر يم كa

$$
. \circ<\mu \leqslant m
$$

 تعو يضیذير نل، يعنى

$$
C(A)=\{t \mid t a=a t, a \in A, 0 \text { به|زای }\}
$$

 كه در حا لت كا

$$
C_{C}(G)=G \text {; }
$$

$$
\begin{equation*}
s A=A s \tag{V.r}
\end{equation*}
$$

 " شَود دٌ به

$$
N_{G}(A) \text { (N(A) }
$$

 جنين چنصرى (اعنصر بدعنصر)" با عناصر A تهو يضهذ ير انهت. لذا

$$
C(A) \leqslant N(A)
$$

1.1، در حا ا!ت كلى، نرمالساز از مر كز ساز بز گگتر است.

$$
\begin{align*}
& \text { زير گروه واحدى توليدكند. در واقع، همادلة } \\
& x^{-1} H x=y^{-1} H y
\end{align*}
$$

هم ارز است با و فقط وفتى برقر ار استكه

صفגهئ دr مالحظه شود).
 و با شد. و قتى G و (در اين مورد) نماد مخصوص

$H \triangleleft G$

را بهكار مى بر بم.

$$
\begin{equation*}
x H=H x \quad 4=x^{-1} H x: x \in G \text { بهازای هر } \tag{q.r}
\end{equation*}
$$

 آنگاه عنصرى جون آن

$$
x^{-1} u x=u^{\prime}
$$

$$
x^{-1} H x \subset H
$$

$$
H \subset x^{-1} H x
$$

 زير گ, وه واحد

 ذيا استفاده مى كنيّن:

زيرتروههاى نرهال 99

$$
G=\operatorname{gp}\{a, b, c, \cdots\}
$$

اتزر بتوانيم نشان دهيم كه

$$
a^{-1} H a=H, b^{-1} H b=H, c^{-1} H c=H, \cdots
$$

 (r) اگگ,

$$
H=g p\left\{x_{1}, x_{r}, x_{r}, \cdots\right\}
$$

آنگاه اگر بهازای هر $t \in G \in$

$$
x_{i}^{\prime} \in H \quad(i=1, r, \cdots)
$$

$$
H=\operatorname{gp}\{a\}
$$

 و از اينز;

انهت كـن ثاً بت Aى كمد N(H)=G.

$$
\cdot x^{-1} z x=z ، Z \quad z
$$

(ب) : (ب)
نرمال است: زبزا هحون (ب)

$$
x^{-1}\left(N_{1} \cap N_{r} \cap \cdots \cap N_{r}\right) x=N_{1} \cap N_{r} \cap \cdot \cdots N_{r}
$$

$$
\begin{equation*}
H=(1) \cup(u) \cup(v) \cup \cdots \tag{11.r}
\end{equation*}
$$

بدانمعنى است اسه $H \triangleleft G$ (د

 عناصرى از

 است، يعنى HهG زير گروه نرمالگَروه دو وجهى است.

$$
H x H y=H H x y=H x y
$$

 نتيجه مى شُود

$$
x^{\prime} y^{\prime}=u x x^{\prime} y=u v^{\prime} x y
$$

 متفاوت بيان كـر ב. همـأ ;ند فصال $u \in H$ قيدكيهم كه
 هماززیى است؛ يینى

$$
[x][y]=[x y]
$$

زير تروهواث نرمالJ

$$
H(H t)=(H t) H=H t
$$

بالاخره، عككس Ht عبارتست از Ht

$$
(H t)\left(H t^{-1}\right)=H=\left(H t^{-1}\right)(H t)
$$

$$
\left|\frac{G}{H}\right|=[G: H]
$$

 (1)

دزنظر گَ فته هى شون.
 نمى كنده ز يرا
(Y)

 زير گروه نرمال باشهد.

باشُد. در اين صورت دجموته

$$
H: \circ, \pm m, \pm r m, \cdots, \pm k m, \cdots
$$

 ا كر, x هون

$$
H(=H+0), H+1, H+r, \cdots, H+(m-1)
$$

 ه، \، . . . ،

$$
H+r \leftrightarrow \bar{r}
$$

اينك مشاهده هى كنيم كد قإنون تر كيب بهوسيلهُ اين تناظر دحفوظ مىما نل، زير ا رابطة

$$
\begin{aligned}
& (H+r)+(H+s)=H+t \\
& \text { كه در T ان }
\end{aligned}
$$

$$
\bar{r}+\bar{s}=\hat{t}
$$

$$
\frac{Z}{H} \cong Z_{m}
$$

俍 $a^{r}=b^{r}$ تو ليد هى كنند. از اینرو

$$
H=\cup \cup a^{r} \quad\left(a^{r}=1\right)
$$

$$
H, H a, H b, H a b
$$

زير الزييشمىدانيم كه تعגادץ

 واحد است زشان داده ^یشود؛ دز واتع

$$
(H a)^{r}=H a^{r}=H
$$

زيرا است، داريم

$$
(H a b)^{r}=(H a)^{\Upsilon}(H b)^{r}=H
$$

زير Fزوههاى زمال

 U

$$
\operatorname{det}\left(\mathbf{x}^{-1} \mathbf{u} \mathbf{x}\right)=\operatorname{det} \mathbf{u}=1
$$

$$
\frac{G}{U} \cong F^{\times}
$$

 كه $\operatorname{do} \operatorname{diag}(d, 1,1, \ldots, 1)$ بالاخخره، نتيجهاى را درمورد مر كز گَروه، كه گاهى مفيد مى| افتد ذكر مى كنيم•

 بهصورت $Z t^{i}$ بيان شونل، كه در آن t عنصر مناسبى است از G كه در Z نيست و

$$
i=0, \pm 1, \pm r, \cdots
$$

 باشيم:

$$
x=z_{1} t^{k}, \quad y=z_{\gamma} t^{l}
$$

كه

$$
x y=z_{,} t^{k} z_{\gamma} t^{\prime}=z_{\backslash} z_{\gamma} t^{k+l}=y x
$$

يعنى G T بلم خواهل بود، كه با فرض ما در تنا قض است.
فرع. يك گروه ازمرتبا
، $|Z|=p^{r}$ rرهان. بنا بر قضيهٔ اصلى آنگاه (G/Z

ا. . همريختى• ساختار يك گروه متضمن قا نونى است كه بهتوسط آن كليةء حاصلضر بهاى

 فرض كنيم ;خاشتى مانیند

$$
\theta: G \rightarrow G^{\prime}
$$

 مى شود. بدطورى كه
 زاميم هر كاه بدازای هر

$$
\begin{equation*}
(x \theta)(y \theta)=(x y) \theta \tag{iv.r}
\end{equation*}
$$

$$
1 \theta=1^{\prime}
$$

$$
\begin{equation*}
x^{-1} \theta=(x \theta)^{-1} \tag{19.r}
\end{equation*}
$$

 $x_{1} \theta=x_{r} \theta$ اتفاقافتد كه لازم T إـد كه است.

 است (كه مهكن است بر '

 بوشا باشده، يعنى اگَر آر

$$
G \theta=G^{\prime}
$$

زيرتروههاى نرمال Vه

T آغاه θ را يك !رريختى (أیى مورفيسم)هى ناهيم. هر يكر يختى (بدمعنى قبلى) بهو سيلة اين

 "

次 T $\quad u \in K$

$$
\left(x^{-1} u x\right) \theta=(x \theta)^{-1}(u \theta)(x \theta)=\left.(x \theta)^{-1}\right|^{\prime}(x \theta)=1^{\prime}
$$

 مى باشد، يعنى
$K \triangleleft G$
البته، ممكن است جنان اتفات افتدكد K زير گروه واحد G باشد. دراين بازه تذكر نتيجهُ ذيل هفيد است.
 عنصر واحد تشكيل شده باشد.

برهان. فرض كنيه θ يك بهيك و u $\boldsymbol{\theta}$ بك

$$
1 \theta=u \theta=I^{\prime}
$$

لذا كه

$$
\left(x y^{-1}\right) \theta=(x \theta)(y \theta)^{-1}=1^{\prime}
$$

يس است. اكنون بهحا لت كلى برمى گرديم و در موقعينى هستيم كه هى تو انيم يكى از مهـمترين حقا يت نظر يه گَروهها را نا بت كنيم.

 رياضى هيع اتغاقآرايى در باره شهاره گذارى T Tنها وجود ندارد.

ا;

$$
\begin{equation*}
\frac{G}{K} \cong G \theta \tag{YY.}
\end{equation*}
$$

برهان. بايد يك همريختى دوسويى بين دوگروه مذكور در (Y.r.

 هستند، درصود تى كه عناصر GX K

$$
(K x) \phi=x \theta
$$

$$
K x=K y
$$

آنگاه

 كه درجسنجوى آنيم داراست.
(1)

$$
((K x)(K y)) \phi=(K x y) \phi=(x y) \theta=(x \theta)(y \theta)=(K x) \phi(K y) \phi
$$

 (r)

$$
\begin{equation*}
(K x) \phi=(K y) \phi \tag{ro.r}
\end{equation*}
$$

 ترين

$$
\cdot K x=K y
$$

 G برهستٌ هر بوطه، يكر يخت است.

زير كروهواى نرمال VY

 نگاشت

$$
\begin{equation*}
x \nu=N x \quad(x \in G) \tag{ץ६.r}
\end{equation*}
$$

 كه (Y.r.

$$
(x \nu)(y \nu)=N x N y=N \cdot x y=(x y) \nu
$$

G واضح است كه
 $u \in N$ است اسه بهازای آنها C عنصر واحلد در N است)؛ اين با شرط
 ($/$ / N

$$
\delta: G \rightarrow F
$$

راكه بهوسيله

$$
\mathbf{a} \boldsymbol{\delta}=\operatorname{det} \mathbf{a}
$$

تعر يغ هىسود درنظر ثى گیر يم. دراين حالت

$$
U=\{\mathbf{a} \mid \operatorname{det} \mathbf{a}=1\}
$$

تشكيل مى گَـردد. و این خود به خود يك زير گــرووه نرمال G است. بنا برقضيئ اصلى ^، همجنان كه قبالا" داشتيمه، داريم

$$
\frac{G}{U} \cong F^{\times}
$$

نتخستين قضيهُ يكر يختى بينش روشنترى درموردد تأثير همر يختى مىدهد: كلئ\& عناصر Kx K داراى نگارة
 متناهى باشلد، داريم

$$
\begin{equation*}
|G \theta|=[G: K] \tag{rv.r}
\end{equation*}
$$

 مى نويسيم تا از زير مجموعء تا زير گروه

$$
\begin{equation*}
A^{\prime}=(N) \cup(N a) \cup(N b) \cup \cdots \tag{r^.r}
\end{equation*}
$$

 زيرمجموعه زير ين از G را بهدست مى آوزيم

$$
\begin{equation*}
A=N \cup N a \cup N b \cup \ldots \tag{rq.r}
\end{equation*}
$$

 يكز ير گروه است، لذا اگگر گروه است، و دقيقتر ازآن نشان دادودا

$$
\begin{equation*}
N \leqslant A \leqslant G \tag{ro.r}
\end{equation*}
$$

 كه درواقع

 نسبت به N باشد، آنگاه با درج يرانتزها، A/N را بهدست مى آوريم كه يك زير گروره

 يكبهيك بين زير گروههای G/N و زی

$$
\frac{A}{N} \triangleleft \frac{G}{N}
$$

فتط و نتط وقتى كه، بهازاى هر $x \in G$ و هر $a \in A$ ، داشته باشيم

$$
(N x)^{-1}(N a)(N x)=\left(N x^{-1} a x\right) \in \frac{A}{N}
$$

و اين همازز است با شرط

زير Fروههای زعبالـ V9

$$
x^{-1} a x \in A
$$

بهعبارت ديگر، با اين شرطكه A A A. اين نتايج را بهطريت ذيل خالاصه مى كنيم•

$$
N \leqslant A \leqslant G
$$

فتط و فقط وقتى $A / N \triangleleft G / N$ كه

$$
N \triangleleft A \triangleleft G
$$

 خارجقسهت

$$
\left(\frac{G}{N}\right) /\left(\frac{A}{N}\right)
$$

 فسهت با تضيهُ آ تيد كهتر مىشود.
 نرمال G باشند كه

$$
N \triangleleft A \triangleleft G
$$

د/ اين هو (دت

$$
\begin{equation*}
\left(\frac{G}{N}\right) /\left(\frac{A}{N}\right) \cong \frac{G}{A} \tag{ץ.ץ.ץ}
\end{equation*}
$$

برهان. تی'نُـت

$$
\phi: G / N \rightarrow G / A
$$

راكد بد توسط قاشلد؛

$$
(N x) \phi=(A x) \quad(x \in \boldsymbol{G})
$$

 را عهض نمى

مى كنيم كه ϕ بك ممر يختى است؛ زيرا بهدليل نرمال بودن A،

$$
(N x) \phi(N y) \phi=(A x)(A y)=(A x y)=(N x y) \phi
$$

واضع است كه ϕ بوشاست، زير ا، در (ץ.س (ץ)، x عنصر دلخواهى از G است، و بنا بر اين كلية هممجموعههاى A درطرف راست (ץ.

$$
\left(\frac{G}{N}\right) \phi=\frac{G}{A}
$$

($\mu \varphi \cdot \mu$)

$$
\operatorname{ker} \phi=\frac{A}{N}
$$

با استفاده از (ץ. يكر يختى است.
بار ديگر بهحا لت كلى همر يختى

$$
\begin{equation*}
\theta: G \rightarrow G^{\prime} \tag{ץ.ץ}
\end{equation*}
$$

 مى كند. این بدان معنى است كه ما نگانشت تحلـد

$$
\begin{equation*}
\theta_{A}: A \rightarrow G^{\prime} \tag{rv.r}
\end{equation*}
$$

راكه بهتوسط فاعدة بد بهى

$$
a \theta_{A}=a \theta \quad(a \in A)
$$

$$
A^{\prime}=A \theta_{A} \quad(=A \theta)
$$

$$
\operatorname{ker} \theta_{A}=A \cap \operatorname{ker} \theta
$$

اكنون هنگًام آن است كه بدبرزسى مفصلتر حالتى كه اين بر ديختى طييٌى

زيرتروههاى نرمال AI

$$
v: G \rightarrow \frac{G}{N}, \quad x v=(N x)
$$

بذز ير گروه A از A محلود شده است بهردازيم. مى تو ان گروه ;گَاره را به گونء توضيحى
حنين نوشت

$$
A^{\prime}=A v_{t}=\bigcup_{a}(N a)
$$

 حاضر نهى توانگفت خمواهد بود. قـاعدهُ يسا فتن B درصفحهة برانتزها در (rq.r)، لذا

$$
B=\bigcup N a, \quad(a \in A)
$$

مى توان اين را برحسب قرادداد زيرمجموعهها خالاصهتر بيانكرد، بدين قراد

$$
B=N A
$$

آهوز نده است كه زير گروه بودن B را بسه روش ديگرى نيز تحقيق كنيه. زيرا جین

$$
A v_{A}=\frac{N A}{N}
$$

اما بعل، حیْن

$$
\operatorname{ker} v_{A}=A \cap N
$$

و متذ كر میشويمكه جون $A \cap N$ يك هسته است، جس دز A نرمال است.

$$
\frac{A}{\operatorname{ker} v_{A}} \cong A v_{A}
$$

از قرازدادن (س. هطرح مى كنيه.
 , A يك زيرگروه دلخنوان G باشند. دراين هورت

$$
\frac{A}{A \cap N} \cong \frac{N A}{N}
$$

 نرمال بمر دازيم. اگكر

$$
G=H \times K
$$

 هرعنصر
 يك زيرگّروه نرمال استـ.

$$
G / K \cong H
$$

 استكـه در آن G باشد، آزאاه

$$
\begin{aligned}
& K . x=K u v=K \iota u=K u \\
& \text { زيرا } \\
& u_{1} u_{Y}^{-1} \in H \cap K=\{1\} \\
& \text { وبنا براين }
\end{aligned}
$$

$$
K u \rightarrow u
$$

 واخح است كه بدموجب تناظز

$$
(u, v) \leftrightarrow(v, u),(u \in H, v \in K)
$$

خو اهيم داشت:

$H \times K \cong K \times H$

شץ. كروه مشتق. به ازاى هر دو =:صر x. و y از يسك گروه G: زعو يضتَر آنها را خجين ت夫ر يث می كیيم

زير تروهییاى نرمال

$$
[x, y]=x^{-1} y^{-1} x y
$$

روشن است

$$
G^{\prime}=\operatorname{gp}\{[x, y] \mid x, y \in G\}
$$

 وفةط وتّى

شدهإنل:

 . $G^{\prime} \leqslant H$ 次

$$
[x, y]^{t} \in G^{\prime}
$$

$$
[x, y]^{t}=\left[x^{t}, y^{t}\right]
$$

$$
\left[G^{\prime} x, G^{\prime} y\right]=G^{\prime}
$$

|

$$
\begin{aligned}
{\left[G^{\prime} x, G^{\prime} y\right] } & =\left(G^{\prime} x\right)^{-1}\left(G^{\prime} y\right)^{-1}\left(G^{\prime} x\right)\left(G^{\prime} y\right) \\
& =G^{\prime} x^{-1} y^{-1} x y=G^{\prime}[x, y]=G^{\prime}
\end{aligned}
$$

زير ا
(ب) آكر H

$$
[H x, H y]=H[x, y]
$$

تبديل مى يا بد و از آنجا نتيجه مى گيريمكه
 اين بخش را با ابُبات פضيهُ ذيل بهيا يان مى درسانيم.

در اين هورت هرعنصر A با هرعنصر B B تعويضّذير است.
برهان. تعويضگر

$$
c=a^{-1} b^{-1} a b
$$

 a $a_{1}=b^{-1} a b \in A$ بنا براين $A \subset A \not \subset G$

 منطبق باشد. هر يكر يختى ما نند

$$
\alpha: G \rightarrow G
$$

از
 عكس اين درست نيست، زيرا عالاوه برا اين α با با

$$
(x y) \alpha=(x \alpha)(y \alpha) \quad(x, y \in G)
$$

 نسبت بهتر كيب ;گاشتها يك گروه تشكيل مىدهند. اگر $\beta: G \rightarrow G$
يك خود ريختى ديگــر باشد، حاصلضرب ه مو

$$
x(\alpha \beta)=(x \alpha) \beta
$$

$$
x \iota=x \quad(x \in G)
$$

 $y \alpha=x$

زير زَوههاى نرمال AD

جوْن α يك بهيك است، را حفظ مى كیג. زير ا اگر

$$
1=x^{m} \alpha=(x \alpha)^{m}=y^{m}
$$

$\tau: G \rightarrow G$
با ضا بطئ

$$
x \tau=x^{t}\left(=t^{-1} x t\right)(x \in G)
$$

را وا بسته هى كنيم. هعادله (ץ.

 است. باز. ایگ, لذا τ
 خود ريختى خارجـى ناميده مى دشود.

 ديگرى باشد كه با رابطه

$$
x \sigma=s^{-1} x s \quad(x \in G)
$$

داده شده است. در اينصورت

$$
\begin{aligned}
x \tau \sigma & =\left(t^{-1} x t\right) \sigma=s^{-1} t^{-1} x t s \\
& =(t s)^{-1} x(t s)
\end{aligned}
$$

$$
x^{t} x^{s}=x^{t s}
$$

$$
x \tau^{-1}=t x t^{-1} \quad(x \in G)
$$

$$
I(G) \cong G / Z
$$

نگاشت
$\Phi: G \rightarrow I(G)$
(\uparrow q.r.)
بيان، و با ضا بطئ

$$
t \Phi=\tau \quad(t \in G)
$$

$$
(t s) \Phi=(t \Phi)(s \Phi)
$$

$$
G \Phi=I(G)
$$

$$
x^{t}=x \quad(x \in G)
$$

اها ايسن معادله هم ارز بـا حكا ما

 منظور ما هستيد. (1) مشُر" ال آنگاه

 دقيتاً داراى دوخو

زيركروههاث نرمال AV
(

 ، y
 . $A(V) \cong S_{\Gamma}$
اكَر α بـك (

$$
\begin{equation*}
H \alpha=H \tag{ی.r}
\end{equation*}
$$

 مشخصه است؛ زير ا 1 ا (G) هر عغصر ما نتد
:

$Z \alpha \subset Z$

 ها اين بخش را با ا بثات تضيئ زير بهابايان مى مسانيم.
 در اين هورت H در G زمال است.

برهان. فرض

تمرين

(1) نشان دهيدكه عناصر مزدوج، همبر تبهاند.
 عكس ناميده هىشوند. ثابت كنيد (الف) ردهماى عكس شا با بل يـك تعداد عنصرند.
(ب) يك گروه از مرتبهٔ زوج شاسلحداقل يك رده غير از ردهاىاست كه از عنصر واحل تشكيلشده وبا عکس خودش متحدل است.

 تشكيل مىسود.
 را معين كنيد.
(() نشان دهيدكه مجموعء

$$
T=\left\{\mathrm{t}=\left(t_{i j}\right) \mid t_{i j}=0 . \mathrm{S}_{\mathrm{K}} \quad i>j, t_{i i} \neq 0\right\}
$$

از ماتر يسهای عادى بالا_مُلثى n n روى يسك ميدان، نسبت بهضرب ماتر يسى يسـك

 قطرى عادى است.

است. $[G: N(H)]$

 با

$$
(a b)^{k}=b^{k} a^{k} c^{(1 / \tau) k(k+1)}(ب) و a^{k} b=b a^{k} c^{k}(1)
$$

() هرض

 كءـا تر نيون (جار تا ييـا).
 ($x \theta=x^{-1}$ (Y Y)

((Y) ;شاندهيد كه

${ }^{\varphi}$

حر و ههاى آبلى متناهى-مو لو د

 G/H
 مو لد، در G میجود باشند بدآسیى كه

$$
G=\operatorname{gp}\left\{u_{1}, u_{r}, \cdots, u_{n}\right\}
$$

 مى توا انيم جهالا تى راكه متضهن يك مو لدند جمع آونى كرده و و بنويسيم

$$
\begin{equation*}
x=a_{1} u_{1}+a_{\mathrm{r}} u_{\mathrm{r}}+\cdots+a_{n} u_{n} \tag{1.4}
\end{equation*}
$$

$$
c_{1} u_{1}+c_{Y} u_{Y}+\cdots+c_{n} u_{n}=0
$$

 كنيم•

$$
G=\operatorname{gp}\left\{u_{1}, u_{\gamma}, \cdots, u_{n}\right\}=\operatorname{gp}\left\{v_{1}, v_{\gamma}, \cdots, v_{m}\right\}
$$

$$
\left.\begin{array}{ll}
u_{i}=\sum_{j=1}^{m} p_{i j} l_{j} & (i=1, r, \ldots, n) \\
v_{j}=\sum_{k=1}^{n} q_{j k} u_{k} \quad(j=1, r, \cdots, m)
\end{array}\right\}
$$

خو اهيم دانت كه در Tان ما تريسi
 يك تُديل از مجهوعـهُ مو لدهاى مى كنيم

 (اگگر $\quad u_{i}+h u_{j}$ (β (صحيح حإخْو اه است، گَاشا (γ (γ (

 (β (تبديل

$$
v_{1}=u_{1}+h u_{r}, v_{r}=u_{r}, \cdots, v_{n}=u_{n}
$$

را دازيم كه عكس آن از معاد'لات

$$
u_{1}=v_{1}-h v_{Y}, u_{Y}=v_{Y}, \cdots, u_{n}=v_{n}
$$

بددست می آ يد.
اعمال مذكور در بالا را مى توانيم آنمدد تكراز كنيم تا آنكه به دستگاه مو لدى كه
 در اينجا ذكر ياء نكته كه جنبهُ فنى ازلـكى دارد ضرورى است. براى Tآكــه ثا بت

F 91 كروهعایى آبلى متناهى-مو لود
 به X تعلت داشته باشُند T Tنگاه

$$
x-y \in X
$$

زيرا اگگر اين حكم برقرار باشد، هى توان x را مساوى y اختياركرد و بهدست آورد كه
 با زير گروه بودن X تحهقّ يا فته است.

 مستقيم (بخشُ ا، صفحهُ \&

مى شود

$$
G=H \oplus K
$$

 زير گروه H و K از G بسا ويز گيهاى ذيل وجود دار ند: عناصر G از كليةٌ حاصلجمعهاى مدكن

$$
x=u+v
$$

 منحصر بهفرد است. لذا اگر

$$
u_{1}+v_{1}=u_{r}+v_{r}
$$

$u_{0}+v_{0}=0$ كه
 مى كند؛ زیرا از (Y-Y) جنين بهد

$$
H \cap K=\{0\}(ب) \quad G=H+K \quad \text { (ب) }
$$

شرط دوم وقتى H و K زير گَروهزا يى متناهى از مراتب متبا ين باشند يفيناً برقر ار است. وقتى G بهصورت حاصلجمـع مستییم جندين زير گروه بيان شده باشد، نماد

$$
G=\sum_{i=1}^{r} \oplus H_{i}=H_{1} \oplus H_{Y} \oplus \cdots \oplus H_{r}
$$

كـه عناصر آن r-تا ييهاى (
 برای مـُال، هر كَاه

$$
G=H_{1}+H_{r}+\cdots+H_{r}(1)
$$

و

$$
\begin{aligned}
& \text { (ب) }
\end{aligned}
$$

$$
\begin{aligned}
& H_{i} \cap H_{1}+\cdots+H_{i-1}+H_{i+1}+\cdots+H_{r}=\{0\}
\end{aligned}
$$

$$
\begin{equation*}
F=\operatorname{gp}\left\{u_{1}, u_{r}, \cdots, u_{n}\right\} \tag{9.4}
\end{equation*}
$$

راكه مو لدهاى آن در هيج را بطهُ غير بليهى صدق نكنند، يعنى كه وجود را بطةء

$$
c_{1} u_{1}+c_{Y} u_{r}+\cdots+c_{n} u_{n}=0
$$

:

 و ها قرارداد

$$
\begin{equation*}
F=\left\langle u_{1}, u_{\mathrm{r}}, \cdots, u_{n}\right\rangle \tag{11.4}
\end{equation*}
$$

 منهصهر بهفردى بهصورت

$$
x=a_{1} u_{1}+a_{Y} u_{\gamma}+\cdots+a_{n} u_{n}
$$

كه در آن آ أها اعداد صحيح دلخوا اهى هستند، قابل بياناند.

 منجر مى شود. بخصوص، هرمولد از مر تبهٔ نامتناهى است، و ((11.ץ) ممارز است با

$$
F=\operatorname{gp}\left\{u_{1}\right\} \oplus \operatorname{gp}\left\{u_{\gamma}\right\} \oplus \cdots \oplus \operatorname{gp}\left\{u_{n}\right\}
$$

حاصلجمع مستقيم از nگروه دورى نامتناهى است. بـهـ آسانى ثى توان مثالى الى از يك گروه آلى "مجموعئ كلئ n-تا ييهاى Z^{n}

Fروههاى آبلى متناهى-مو الود 9 P

$$
u_{1}=[1,0, \cdots, 0], u_{r}=[0,1, \cdots, 0], \ldots, u_{n}=[0,0, \cdots, 1]
$$

$$
x=a_{1} u_{1}+a_{Y} u_{Y}+\ldots+a_{n} u_{n}
$$

بعلاوه اين مو لـها Tزادند زيرا تساوى

$$
c_{1} u_{1}+c_{Y} u_{Y}+\cdots+c_{n} u_{n}=\left[c_{1}, c_{Y}, \cdots, c_{n}\right]=0
$$

مستلزم تساو ئى زير است:

$$
c_{1}=c_{Y}=\ldots=c_{n}=0
$$

اكنون ار تباط بينمجمو ه4هاى مختلف مو لدهاى آزاد ر ا مودد بردسىقرارهىدهيم••
اگرداشته باشيم:

$$
F=\left\langle u_{1}, u_{r}, \cdots, u_{n}\right\rangle=\left\langle v_{1}, v_{r}, \cdots, v_{m}\right\rangle
$$

T Tنگاه دودستگاه مولد بهتوسط معادلات (Y. ما اطالاعات دقيقترى در اختيار داريم. از حذن

$$
u_{i}=\sum_{j=1}^{m} \sum_{k=1}^{n} p_{i j} q_{j k} u_{k} \quad(i=1, r, \cdots, n)
$$

اين يك را بطةٔ غيربديهى بين مساوى باشند. يس بايلد داشته باشيمر

$$
\begin{align*}
& \sum_{j=1}^{m} p_{i j} q_{j k}=\delta_{i k} \quad(i, k=1, r, \cdots, n) \\
& \text { كه } \\
& p q=i_{n}
\end{align*}
$$

كه

$$
q \mathbf{q}=i_{m}
$$

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} p_{i j} q_{j i}=n, \quad \sum_{j=1}^{m} \sum_{i=1}^{n} q_{j i} p_{i j}=m
$$

 مو لدهاى آزاد يك با يا يـ برای F است، يعنى، اینعدد بر ای هردسغگاه از مو الدهاى آزاد يكى است. اين عــدد دتبط F ;اميله مىشود. بعـالاوه، دو گروه مم آبلى آزاد فتط و زتمط

وقتى يكريخت هسستند كه دارای يك دتبه باشند؛ زيرا، اگَر اين د تبه برابر n باشله هر دو
 با دترمينان گیيرى از ()

$$
(\operatorname{det} \mathbf{p})(\operatorname{det} \mathbf{q})=1
$$

 (iv)، قسمت (ج) صفحئ l 1 (iv

$$
u_{i}=\sum_{j=1}^{n} p_{i j} l_{j} \quad(i=1, r, \cdots, n)
$$

 جون (॥.

$$
\begin{equation*}
v_{j}=\sum_{k=1}^{n} q_{j k} u_{k} \quad(j=1, r, \cdots, n) \tag{19.4}
\end{equation*}
$$

 لذا، ()

 ضرب هى شُو ند.
 كه همه با هم صفر نيسثتند، خنين نوشته هى شود:

$$
\left(a_{1}, a_{Y}, \cdots, a_{n}\right)
$$

و بنا بر تعر يف، عددى است صجيح ومثبت. بخصءص، وقتى تساوى

$$
\left(a_{1}, a_{Y}, \ldots, a_{n}\right)=1
$$

 باشد. الذا اگر مجهوعداى جلديد ازهو لدهاى آزاد به توسط (19.Y) معر فی گردد،هر مولد

كرومههاى آبلى متناهى-مو لو د

جلديد تر كيبى است خطى از مو لدهــاى قديم با ضرايب متباين. در فضيةٌ ذبل، عكس جزئى اين واقعيت انبات مى شود.

قضنية

$$
r=b_{1} u_{1}+b_{Y} u_{Y}+\cdots+b_{n} u_{n}
$$

عنصرى

$$
\begin{equation*}
\left(b_{1}, b_{Y}, \cdots, b_{n}\right)=1 \tag{0}
\end{equation*}
$$

در اين هورت عناهرى مانند

$$
F=\left\langle v^{\prime}, v_{Y}, v_{Y}, \cdots, v_{n}\right\rangle
$$

 از مو لدهاى آزاد درج شود.

برهان. فرض كنيم معدارى از

$$
u_{1}^{\prime}=u_{1}, u_{r}^{\prime}=u_{r}+u_{1}, u_{j}^{\prime}=u_{j} \quad(j \geqslant r)
$$

واضح است كه هى كند حنين مى شود:

$$
\begin{aligned}
& r=\left(b_{1}-b_{Y}\right) u_{1}^{\prime}+b_{Y} u_{r}^{\prime}+\cdots+b_{n} u_{n}^{\prime} \\
& \qquad b_{1} \mid\left(b_{1}-b_{Y}, b_{Y}, b_{Y}, \cdots, b_{n}\right)=1 \text { روشن است كه }
\end{aligned}
$$

R. Rado, 'A proof of the basis theorem for finitely generated Abelian groups', Journal of the London Mathematical Society (1951), 26, 74-75.

 كردكه

$$
H=\left\langle h_{1} v_{1}, h_{\uparrow} v_{\Upsilon}, \cdots, h_{m} v_{m}\right\rangle
$$ هدت هى كـنـد.

 داده سُده باشد. بـه هر عنصر غيرصفز

$$
\delta(x)=\left(a_{1}, a_{\Gamma}, \cdots, a_{n}\right)
$$

$$
x=a_{1}^{\prime} u_{1}^{\prime}+a_{r}^{\prime} u_{r}^{\prime}+\cdots+a_{n}^{\prime} u_{n}^{\prime}
$$

5

$$
\left(a_{1}^{\prime}, a_{Y}^{\prime}, \cdots, a_{n}^{\prime}\right) \geqslant\left(a_{1}, a_{Y}, \cdots, a_{n}\right)
$$

 مى تيا نيم نا هساوى عكس آن را انبات نها يِيم. بنا برا ين

$$
\left(a_{1}^{\prime}, a_{Y}^{\prime}, \cdots, a_{n}^{\prime}\right)=\left(a_{1}, a_{Y}, \cdots, a_{n}\right)
$$

كه يا يا يى (x) (ب) دزميان عناصر غيرصفر H گيز يم

$$
y_{1}=b_{1} u_{1}+b_{\Upsilon} u_{\uparrow}+\cdots+b_{n} u_{n}
$$

F F

بهقسمى باشدكه סى آن بهحداقل رهدارش برسده يعنى مى توانيم بنويسيم

$$
y_{1}=h_{1}\left(c_{1} u_{1}+c_{r} u_{r}+\cdots+c_{n} u_{n}\right)=h_{1} v_{1}
$$

5

$$
v_{1}=c_{1} u_{1}+c_{\gamma} u_{r}+\cdots+c_{n} u_{n}
$$

عنصرى از F با ويرُ گی

$$
\left(c_{1}, c_{Y}, \cdots, c_{n}\right)=1
$$

مى باشد. بنا بر تضئ

$$
F=\left\langle v_{1}, v_{Y}^{\prime}, v_{r}^{\prime}, \ldots, v_{n}^{\prime}\right\rangle
$$

با استفاده ازاين مجموعدمو لدها فرخ مى كنيم

$$
y=d_{1} v_{1}+d_{\gamma} v_{\gamma}^{\prime}+\ldots+d_{n} v_{n}^{\prime}
$$

عنصرى دلخواه از H باشد. مىدا نيم كه

$$
y_{1}=h_{1} v_{1} \in H
$$

وحال مى گويبم كه r r بيا بيم به قسهى كه

$$
y-q y_{1}=r v_{1}+d_{r} v_{r}^{\prime}+\cdots+d_{n} v_{n}^{\prime}
$$

عنصرى از H خو اهل بود بدهسمى كه

$$
\delta\left(y-q y_{1}\right)=\left(r, d_{y}, \cdots, d_{n}\right) \leqslant r<h_{1}
$$

$$
y-q y_{1}=d_{r} v_{r}^{\prime}+\cdots+d_{n} v_{n}^{\prime}
$$

 مىدهيم

$$
F_{1}=\left\langle v_{r}^{\prime}, v_{r}^{\prime}, \cdots, v_{n}^{\prime}\right\rangle, \quad H_{1}=H \cap F_{1}
$$

 این تسا وى بدازضمام (ץ.

$$
\begin{align*}
& F_{1}=\left\langle v_{r}, v_{r}, \cdots, v_{n}\right\rangle \\
& H_{1}=\left\langle h_{r} v_{r}, h_{r} v_{r}, \cdots, h_{m} v_{m}\right\rangle
\end{align*}
$$

كه

$$
(i=r, r, \cdots, m-1) h_{i} \mid h_{i+1}
$$

اين دو مجشوعه مو لدهاى آزاد برای

$$
v_{i}=\sum_{j} p_{i j} v_{j}^{\prime}, \quad v_{i}^{\prime}=\sum_{j} q_{i j} v_{j} \quad(i, j=r, r, \cdots, n)
$$

با هم مر بوط مى شو ند. حال گو يمبز:

$$
F=\left\langle v_{1}, v_{Y}, \cdots, v_{n}\right\rangle
$$

 غير بديثى بلشرح زير وجود داشته با بُلد:

$$
\begin{equation*}
c_{1} v_{1}+c_{Y} l_{Y}+\cdots+c_{n} l_{n}=0 \tag{rq.}
\end{equation*}
$$

n'n مشاهده هى كنيم كه
 معاديسر آنتــا را بزحسب بهدست خواهيم آورد كه در آن
 كه عناصر

$$
h_{1} v_{1}\left(=y_{1}\right), h_{\gamma} v_{Y}, \ldots, h_{m} v_{m}
$$

$$
H=\left\langle h_{1} v_{1}, h_{Y} l_{Y}, \cdots, h_{m} v_{m}\right\rangle
$$

 است. از اينرو بنا برمينيمال بودن ا بهم، .YV

Fجروهواى آبلى متناهى_مو اود 99
 داشته باشيم

$$
A=\operatorname{gp}\left\{s_{1}, s_{\gamma}, \cdots, s_{n}\right\}
$$

 صدقَكند. ما بـ A، گَروه آبلى آزاء

$$
F=\left\langle u_{1}, u_{\uparrow}, \cdots, u_{n}\right\rangle
$$

 $\theta: F \rightarrow A$

راكه بدوسيلهُ را بطءٔ

$$
\left(a_{1} u_{1}+a_{r} u_{r}+\cdots+a_{n} u_{n}\right) \theta=a_{1} s_{1}+a_{r} s_{r}+\ldots+a_{n} s_{n} \quad(ץ 0 . \gamma)
$$

 زير گروه F است. لذا عیصر دارد كه تساوى

 (Vد بدما هى گو يد كه

$$
A \cong \frac{F}{R}
$$

 F

$$
F=\left\langle v_{1}, v_{Y}, \cdots, v_{n}\right\rangle, \quad R=\left\langle\dot{h}_{1} v_{1}, h_{Y} v_{Y}, \cdots, h_{m} v_{m}\right\rangle
$$

$$
\left.R \neq\{0\} \text { مشُروط بر Tنكه } 1 \text { مشك }(i=1, r, \ldots, m-1) h_{i} \mid h_{i+1} \quad \text { (} m \leqslant n\right)
$$

ازهم تهيز دهيم:

v تو ليد شده است.

مر تبئ h است.

0 0 ا آشنايى با نغر يهـزروهيا

和

و آ

$$
\begin{align*}
& F=\left\langle x_{1}, x_{Y}, \cdots, x_{r}, y_{1}, y_{Y}, \cdots, y_{k}, z_{1}, z_{Y}, \cdots, z_{l}\right\rangle \\
& R=\left\langle e_{1} y_{1}, e_{Y} y_{Y}, \cdots, e_{k} y_{k}, z_{1}, z_{Y}, \cdots, z_{l}\right\rangle
\end{align*}
$$

(rץ. μ)
ك
 $F \rightarrow F / R$ اگَر حاصل شُله بـا شا
 (غيرصفر) از (($\lambda=1, r, \ldots, l) z_{\lambda}$ (عهومى F را مى تو ان بهصورت

$$
x=\sum_{\rho=1}^{r} a_{\rho} x_{\rho}+\sum_{\kappa=1}^{k} b_{\kappa} y_{\kappa}+\sum_{\lambda=1}^{1} c_{\lambda} z_{\lambda}
$$

$$
\bar{x}=\sum_{\rho=1}^{r} a_{\rho} \bar{x}_{\rho}+\sum_{\kappa=1}^{k} b_{\kappa} \bar{y}_{k}
$$

لذ| دز واقع

$$
\frac{F}{R}=\operatorname{gp}\left\{\bar{x}_{\imath}\right\} \oplus \operatorname{gp}\left\{\bar{x}_{r}\right\} \oplus \cdots \oplus \operatorname{gp}\left\{\bar{x}_{r}\right\} \oplus \operatorname{gp}\left\{\bar{y}_{v}\right\} \oplus \cdots \oplus \operatorname{gp}\left\{\bar{y}_{k}\right\}
$$

 جمالات آن صفرشوند. فرض كنيهم:

$$
\sum_{\rho=1}^{r} a_{\rho} \bar{x}_{\rho}+\sum_{k=1}^{k} b_{k} \bar{y}_{k}=\overline{0}
$$

Fزوتياث آبلم متناهـى-مو لود 101

كه بلدينمعنى است كه

$$
\sum_{\rho=1}^{r} a_{\rho} x_{\rho}+\sum_{n=1}^{k} b_{n} y_{n} \in R
$$

 ا
 ;س تخية بنيادى ذيال دا نا بت كردها ايم:

قضيه اصلى ($k \geqslant 0$) k و گرْ0 دو(ى متناهى استک؛ لذا
$A=\operatorname{gp}\left\{t_{1}\right\} \oplus \cdots \oplus \operatorname{gp}\left\{t_{r}\right\} \oplus \operatorname{gp}\left\{w_{1}\right\} \oplus \ldots \oplus \operatorname{gp}\left\{\mu_{H_{\kappa}}\right\} \quad(\mu \vee \cdot \psi)$
كـــه د الست.

$$
e_{\kappa+1} \mid e_{\kappa} \quad(\kappa=1, r, \cdots, k-1)
$$

 و وتّى
 آزاد، يعنى r، ر تبه A A ناميا-ه مى شود. تجز يهٔ مذ كو ر در قغييه اصلى رّا

 بخشُ بعل مورد بحث تر ارخو اها گر فت.

$$
\begin{align*}
A & =g p\left\{x_{1}\right\} \oplus \cdots \oplus \operatorname{gp}\left\{x_{r}\right\} \oplus \operatorname{gp}\left\{u_{1}\right\} \oplus \cdots \oplus \operatorname{gp}\left\{u_{k}\right\} \\
& =\operatorname{gp}\left\{y_{\imath}\right\} \oplus \cdots \oplus \operatorname{gp}\left\{y_{s}\right\} \oplus \operatorname{gp}\left\{v_{\vdots}\right\} \oplus \cdots \oplus \operatorname{gp}\left\{v_{1}\right\}
\end{align*}
$$

كه در آن ín $\iota(\lambda=1, r, \ldots, l)\left|r_{\lambda}\right|=e_{\lambda}{ }^{\prime} d_{\kappa+1}\left|d_{\kappa} \iota(\kappa=1, r, \ldots, k)\right| u_{\kappa} \mid=d_{\kappa}$, \quad,

 بی بגطودى $m n(u-l)=0$

$$
X=\sum_{\rho=1}^{r} \oplus \operatorname{gp}\left\{x_{\rho}\right\}, Y=\sum_{\sigma=1}^{s} \oplus \operatorname{gp}\left\{y_{\sigma}\right\}
$$

 هى آ يـ كـه
$A=X \oplus T=Y \oplus T$

 كه آبلى Tزاد عددى است ائبات شالـه است.

 A

 سُرط :

$$
\begin{align*}
& A=\sum_{\kappa=1}^{k} \oplus \operatorname{gp}\left\{u_{\kappa}\right\}=\sum_{\lambda=1}^{1} \oplus \operatorname{gp}\left\{l_{\lambda}\right\}
\end{align*}
$$

كرو هلاى آبلى متناهى-مو لود or

برهان. اگـر مى آيدكه

$$
m=\sum_{\kappa} \delta_{\kappa}=\sum_{\lambda} \varepsilon_{\lambda}
$$

 (

$$
x=\sum_{i=1}^{k} a_{i} u_{i}
$$

' $p x=0$ كه در آن هى توان فرض كرد كا
 b_{i} در

 -x-y=p($x^{\prime}-y^{\prime}$) A^{p}

 ازايندو فرض مى كنيم

$$
\boldsymbol{\delta}_{1} \geqslant \boldsymbol{\delta}_{\boldsymbol{\gamma}} \geqslant \ldots \geqslant \boldsymbol{\delta}_{\kappa}>1, \boldsymbol{\delta}_{\kappa+1}=\boldsymbol{\delta}_{\kappa+\gamma}=\cdots=\boldsymbol{\delta}_{\kappa}=1
$$

كه K عدد صحیيح معينى است אه در K

$$
A^{p}=\sum_{i=1}^{K} \oplus \mathrm{gp}\left\{p u_{i}\right\},\left|p u_{i}\right|=p^{\delta_{i}-1}
$$

مشا بهاً، اگگ

$$
A^{p}=\sum_{j=1}^{L} \oplus \operatorname{gp}\left\{p v_{j}\right\}
$$

كه در آن تيجه هى شود اين بهبعد، فرض هى كنيم كلd

فرض استغر اه رابر يعنى

$$
p^{\delta \curlyvee}, p^{\delta r}, \cdots, p^{\delta_{k}}
$$

$$
\operatorname{gp}\{w\}=\operatorname{gp}\{n w\} \oplus \operatorname{gp}\{m w\}
$$

$$
\begin{align*}
& { }^{4} \text { ك. } \\
& W=U \oplus V
\end{align*}
$$

خون

$$
\begin{aligned}
w & =(a n+b m) w=a(n w)+b(m w) \\
& =a u+b v
\end{aligned}
$$

اين را بطه نشان هیدهد كه W
 U W $W=U+V$

$$
m=p_{\backslash}^{\alpha} p_{\curlyvee}^{\alpha}{ }^{\top} \cdots p_{t}^{\alpha_{t}}
$$

كه

$$
\operatorname{gp}\{w\}=\sum_{\tau=1}^{t} \oplus \operatorname{gp}\left\{w_{\tau}\right\}
$$

Fروهواى آبلى متناهى_مو لود D D

كه در Tا

 فرض كنيم p عــددى اول و P هجمو عهُ عناصرى از A است

الوليء A باشيد. در اين هورت

$$
A=P_{1} \oplus P_{Y} \oplus \ldots \oplus P_{n}
$$

($\psi \vee \cdot \psi$)

 A

$$
A=P_{i}^{*} \oplus P_{\gamma}^{*} \oplus \cdots \oplus P_{n}^{\bullet}
$$

كه در Tن ن ;ـرض كنيم
 لذا

 بهقوت خود باقى هستند. آنحه براى ما معلوم است عبارت است از :

$$
A=\sum_{\kappa=1}^{k} \oplus \operatorname{gp}\left\{u_{\kappa}\right\},\left|u_{\kappa}\right|=d_{\kappa}, d_{\kappa \div 1} \mid d_{\kappa}
$$

 بهدست آور يم. فرض كنيم

$$
d_{\kappa}=\prod_{i=1}^{n} p_{i}^{\delta} \kappa_{i} \quad(\kappa=1, r, \ldots, k)
$$

كه

$$
\operatorname{gp}\left\{u_{\kappa}\right\}=\sum_{i=1}^{n} \oplus \operatorname{gp}\left\{u_{\kappa i}\right\}
$$

كــه درآن گروروها بيان كنيه، يعنى

$$
A=\sum_{\kappa=1}^{k} \sum_{i=1}^{n} \oplus \operatorname{gp}\left\{u_{\kappa i}\right\}
$$

بهازای يك i ثابت، پيلدا مى كنيم كه

$$
P_{i}=\sum_{k=1}^{k} \oplus \operatorname{gp}\left\{u_{k i}\right\}
$$

$$
\begin{equation*}
p^{\delta \backslash}, p^{\delta \gamma i}, \cdots, p^{\delta \kappa i} \tag{هـتند.}
\end{equation*}
$$

 تو انهـاى اول آروده شدهاند.

	p_{1}	p_{Y}	\cdots	p_{n}
d_{V}	$\delta_{Y I}$	$\delta_{Y Y}$	\cdots	$\delta_{V_{n}}$
d^{Y}	$\delta_{Y Y}$	$\delta_{Y Y}$	\cdots	$\delta_{Y n}$
\vdots	\vdots	\vdots	\cdots	\vdots
d_{k}	$\delta_{k \backslash}$	$\delta_{k Y}$	\cdots	$\delta_{k n}$

 عليدهاى او ليه

 بحگار يم:

$$
e_{\lambda}=\prod_{j=1}^{n} p^{\varepsilon \lambda j} \quad(\lambda=1, r, \cdots, l)
$$

تضيةُ اصلى 1Δ تضهين مى كندكـهـه در جنداول

تتيجه •هى شُود كه ($\delta_{\text {кi }}$)
 بخشیْ يـرى ى

 ץ،

	r	r
d_{1}	r	1
d_{r}	1	1
d_{r}	1	0

ازا ينجا نتيجه هیشود كه عبارت است از

$$
|A|=r r \times s \times r=r^{\Delta} \times r^{r}=r \wedge \wedge
$$

هثال Y. هقسومعليةهاى او لية و يا ياهاى گروه

$$
A=C_{r_{\bullet}} \oplus C_{1 r}
$$

را ييداكنيد.
اين حاصلجمع بسه صورت متهارف زيست، زيرا ازه
گر وهها يى ازمر تبهمای متبا ين، تجزيه مى كنيم، لذا

$$
A=\left(C_{r} \oplus C_{r} \oplus C_{\Delta}\right) \oplus\left(C_{r} \oplus C_{r}\right)
$$

با گردآورى جملات منعلى بههرغلد اول دريك مرانتز داريم

$$
A=\left(C_{\varphi} \oplus C_{Y}\right) \oplus\left(C_{r} \oplus C_{r}\right) \oplus C_{\Delta}
$$

	r	r	0
d_{1}	r	1	1
d_{r}	1	1	0

ازا ينجا ;تيجه هیُو

$$
A=C_{y_{0}} \oplus C_{q}
$$

صردت متهارْ A است كه با ياهاى آن را نشان مىدمد.

$$
\begin{aligned}
& A=\operatorname{gp}\left\{x_{1}, x_{Y}, \cdots, x_{n}\right\} \\
& \text { كه در T } \\
& \sum_{j=1}^{n} b_{i j} x_{j}=0 \quad(i=1, r, \ldots, N)
\end{aligned}
$$

 بخش PY داشتيم اين مسئله را با وازد كردن ريك گُروه آبلى آزاد

$$
F=\left\langle u_{1}, u_{Y}, \cdots, u_{n}\right\rangle
$$

ويك را بطهُ زير گَروهى

$$
R=\operatorname{gp}\left\{r_{1}, r_{Y}, \cdots, r_{N}\right\}
$$

بهصورت ديگر بيان مى كنيم، كه در آن

$$
r_{i}=\sum_{j=1}^{n} b_{i j} u_{j} \quad(i=1, r, \cdots, N)
$$

كروههاى آبلى متناهى_مو لود 109

$$
B=\left(\begin{array}{cccc}
d_{1} & 0 & 0 & \cdots \\
0 & d_{r} & 0 & \cdots \\
0 & 0 & d_{r} & \cdots
\end{array}\right)
$$

تجز ئ Z Z به گروههـاى دورى مى تواند صورت گیرد. ولى، اين. نتيجه با صورت متهار ن تبيين شدهُ در قضيهُ اصلى

 مالاحظه شود).
مىتوان مسئله را بهصورت جدو لى بهطر يق ذيل بيان كرد

	u_{1}	u_{Y}	\cdots	u_{n}
r_{Y}	b_{11}	$b_{1 Y}$	\cdots	$b_{\backslash n}$
r_{Y}	$b_{Y 1}$	$b_{Y Y}$	\cdots	$b_{Y n}$
\vdots	\vdots	\vdots		\vdots
r_{N}	$b_{N \backslash}$	$b_{N Y}$		$b_{N n}$

 F/R R (

$$
u_{1}^{\prime}=u_{1}+q u_{r}, u_{r}^{\prime}=u_{r}, u_{r}^{\prime}=u_{r}, \ldots, u_{n}^{\prime}=u_{n}
$$

كه در آن q علد صصيح دلخْواهی است، وارد نها ييهز، و گیير يم

$$
r=b_{1} u_{1}+b_{\gamma} u_{Y}+\ldots+b_{n} u_{n}
$$

بك عنصر كلى از زير گّروه زا بطه باشد. باتوجه بهمولدهاى جل يل، اين را بطه حنينمى شود

$$
r=b_{1} u_{1}^{\prime}+\left(b_{r}-q b_{1}\right) u_{r}^{\prime}+b_{r} u_{r}^{\prime} \cdots+b_{n} u_{n}^{\prime}
$$

اعمال شده است. ما اكنون يك رشته مر احلى را نشان مىدهيم كــهـ B را بسههصورت قطرى (AY.Y) تبد يل هى كند.
 فرض هى كييم كه

$$
b_{11}>0, b_{11} \leqslant\left|b_{i \backslash}\right|, b_{11} \leqslant\left|b_{\backslash j}\right| \quad(i>1, j>1)
$$

صدق كند.
 سطر قرار دارند بر

$$
\left(\begin{array}{cc}
b_{11} & 0 \\
0 & B_{\backslash}
\end{array}\right)
$$

و بهدمان قياس روى

$$
b_{i 1}-q b_{11}=b_{i 1}^{\prime}
$$

كه در Tن را را

 صحيح هُُت وخعيت لو'لايى دار نل.
 Tان روابط ذيل بر ترارنا

$$
r a-r b+\Delta c=0, \Delta a+r v c=0
$$

انجام ر شته عهميات ذيل برما تر يس را بطاهاى، هنجر بصصوزت دتهارف در آمدنى آن مىشود:

اينك گذار بهمو لدهاى جلديد و رابطهما را، كه بهمر احل مختلف مر بوطانم، نشان مىدهيم:

$$
\begin{align*}
& u_{1}=u_{1}^{\prime}, u_{r}=u_{1}^{\prime}+u_{r}^{\prime}, u_{r}=u_{r}^{\prime} \tag{1}\\
& r_{1}^{\prime}=r_{1}, r_{r}^{\prime}=r_{r}-\Delta r_{1} \\
& u_{1}^{\prime}=u_{1}^{\prime \prime}+r u_{r}^{\prime \prime}-\Delta u_{r}^{\prime \prime}, u_{r}^{\prime}=u_{r}^{\prime \prime}, u_{r}^{\prime}=u_{r}^{\prime \prime} \\
& u_{1}^{\prime \prime}=u_{1}^{\prime \prime \prime}, u_{r}^{\prime}=u_{r}^{\prime \prime \prime}, u_{r}^{\prime \prime}=u_{r}^{\prime \prime \prime}-\Delta u_{r}^{\prime \prime \prime} \\
& u_{1}^{\prime \prime}=v_{1}^{\prime}, u_{r}^{\prime \prime}=v_{r}, u_{r}^{\prime \prime \prime}=v_{r}
\end{align*}
$$

(Y) را بطهما (Y)
($)$ مو لدها
(ψ) مو لدها
(
 بسه وسيلة أامتناهی. است. بنا بر اين

$$
A \cong C_{Y} \oplus C_{\infty}
$$

از حذن مو لدهای واسط بهدست مىآور يم

$$
v_{1}=r u_{1}-r u_{r}+\Delta u_{r}, v_{r}=\Delta u_{1}+\Delta u_{r}+u_{r}, v_{r}=-u_{1}+u_{r}
$$

 در آن عمليات ستو نى كافى هستند، ستون ز ام به ${ }^{\text {T }}$ نشان هثال

$$
r a+q b-r c=0, r a+r b-r d=0
$$

را بيداكنيد.
ما تر يس را بطه را هى توان ؛هطر يق ذيل تبديل كر د:

$$
\left.\begin{array}{ccccccc}
r & q & -r & 0 & \rightarrow & q & -r
\end{array}\right)
$$

\rightarrow| μ | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | r |\rightarrow| μ | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| | 0 | r | 0 |
| 0 | | | |

$$
\left(c_{\gamma} \rightarrow c_{\gamma}-\psi c_{1}, c_{\gamma} \rightarrow c_{\gamma}+c_{1}, c_{\psi} \rightarrow-c_{\psi}\right) \quad\left(c_{\gamma} \rightarrow c_{\psi}, c_{\psi} \rightarrow c_{\gamma}\right)
$$

 دورى بهترتيب ازمراتب
$C_{Y} \oplus C_{Y} \oplus C_{\infty} \oplus C_{\infty}$
يكر يخت است.

تموين
 ($\left.b_{1}, b_{Y}, \ldots, b_{n}\right)=1$
. است $b_{1}, b_{Y}, \cdots, b_{n}$

 (ץ) زشان دهيد كه گروه (ضر بی) ردههاى ما ندهماى اعداد هتبا ين با ץץ، گروه او ليهُ آبلى از هر تبه ه 1 است.
 تعر يف شدهاند بيداكنيد: (الف)
 \& $a-1$ ₹ $b=0$ بيان كنيد.

$$
. r a+r b-r d=0
$$

 است كه بدوسيلهُ

$$
r_{1}=k u_{1}+u_{r}+u_{r}, r_{r}=u_{1}+k u_{r}+u_{r}, r_{r}=u_{1}+u_{r}+k u_{r}
$$

F I r F

 گرورهای آبلى. (

$$
\text { ه } 0 \text { (. . . } 1 \text { - } 1 \text { باشند. }
$$

(1 (1) نشان دهيدكــه دز يك گروه آبلى او اليه ازمر تبهٔ به تعداد

آنها يكى ولى تو تيبشان منختلف هستند متما يز گرفته مىشو ند.

 . $d_{\|}\left|d_{Y Y} \ldots\right| d_{k k}, .$.

o

مو لمها و رابطهاها

 اينجا عرضهوكنيم.

 با مرلدها و رابطههاى متناهى مى رخوا انيم.

$$
\begin{equation*}
w=x_{a}^{\alpha} x_{b}^{\beta} \cdots x_{r}^{p} \tag{1.0}
\end{equation*}
$$

متشكل از تعداد متناهى عامل را، تئكيلمىدهيم. زير نها يههاى a، b، . . . ، r ازمجموعئ

مو لدها و رابكلها

$$
x_{i}^{c}=e \quad(i=1, r, \cdots, n)
$$

ضرب دو وازة غير خا لــى $\|$ و متُكلم ازعاملمهاى

$$
u=u_{0} x^{\alpha}, \quad v=x^{\beta} v_{0}
$$

$$
x^{\alpha} \lambda^{\beta}=x^{\alpha+\beta}
$$

 برسيم. در اين صورت حنين این تعر يف مى كنيم

$$
u \dot{i}=p_{0}
$$

$$
u e=e u=u
$$

 (1.0) بدتوسط

$$
w^{-1}=x_{r}^{-\rho} \cdots x_{b}^{-\beta} x_{a}^{-\alpha}
$$

$$
(u v) w=u(v w)
$$

.A. G. Kurosh, 1955, The theory of groilps, 1, p, 126 بی
 در اين صورت بهسهولت ديله مى شو دكه

$$
\left(u_{0} x^{\alpha}\right)\left(x^{\beta} w_{0}\right)=u_{0}\left(x^{\alpha+\beta} w_{0}\right)=\left(u_{0} x^{\alpha+\beta}\right) w_{0}
$$

$$
\left(u x^{\alpha}\right) w=u\left(x^{\alpha} w\right)
$$

زيرا فرض كنيم

$$
u=u_{0} \cdot x^{\pi}, \quad w=x^{\phi} w_{0}
$$

كه صفر باشند. لذا داريم

$$
\begin{aligned}
\left(u x^{\alpha}\right) w & =\left[\left(u_{0} x^{\pi}\right) x^{\alpha}\right]\left(x^{\phi} w_{0}\right) \\
& =\left(u_{0} x^{\pi+\alpha}\right)\left(x^{\phi} w_{0}\right) \\
& =u_{0}\left(x^{\pi+\alpha+\phi} w_{0}\right) \\
& =u_{0}\left[x^{\pi}\left(x^{\alpha+\phi} w_{\mathrm{c}}\right)\right] \\
& =u_{0}\left[x^{\pi}\left(x^{\alpha} w\right)\right] \\
& =\left(u_{0} x^{\pi}\right)\left(x^{\alpha} w\right) \\
& =u\left(x^{\alpha} w\right)
\end{aligned}
$$

(ج) با'لاخره، براى ايُبات (ه. متوسلمى شويم. حالتى كــه v به ذتط يك عامل مى شود. حال نرض كيبم كه

$$
v=v_{0} x^{\alpha}
$$

و قانون شر كتهذ يرى بهجاى v

$$
\begin{aligned}
(u v) w & =\left(u v_{\circ} x^{\alpha}\right) w=\left[\left(u v_{\circ}\right) x^{\alpha}\right] w \\
& =\left(u v_{\circ}\right)\left(x^{\alpha} w\right)=u\left[v_{\circ}\left(x^{\alpha} w\right)\right] \\
& =u\left[\left(v_{\circ} x^{\alpha}\right) w\right]=u(v w)
\end{aligned}
$$

اين امر تحفيّي (ه.

IIV مو لدما و رابطادها

$$
\begin{aligned}
\left(x y^{-r} x\right)(y x) & =x y^{-r} x y x \\
\left(x y^{r}\right)\left(y^{-1} x\right) & =x y x \\
\left(x y x^{-1}\right)\left(x y^{-1} x\right) & =x^{r}
\end{aligned}
$$

$$
x_{i} x_{i}^{-1}=x_{i}^{-1} x_{i}=e \quad(i=1, Y, \cdots, n)
$$

 يك گروه آزاد بر قراد نيـت.

$$
G=\operatorname{gp}\left\{g_{\backslash}, g_{\gamma}, \cdots, g_{n}\right\}
$$

 كه G يك گروه ازاد نباشد، مهادلاتى غير بديثى ها نتد $g_{a}^{\alpha} g_{b}^{\beta} \ldots=g_{c}^{\gamma} g_{d}^{\delta} \ldots$

ֵِا با زهاد هختصر تو

$$
\begin{equation*}
r\left(g_{1}, g_{\gamma}, \cdots, g_{n}\right)=1 \tag{4.د}
\end{equation*}
$$

وجود دازند كه دز آن، سهت جب معر ف

$$
\left(g_{a}^{\alpha} g_{b}^{\beta} \cdots\right)\left(g_{c}^{\gamma} g_{d}^{\delta} \cdots\right)^{-1}
$$

 را دز نظر هى گییر يم و سِس نگًانُت $\theta: F \rightarrow G$

را از F بهروى G با ضا بطهٔ

$$
w\left(x_{1}, x_{Y}, \ldots, x_{n}\right) \theta=w\left(g_{1}, g_{Y}, \cdots g_{n}\right)
$$

$$
e \theta=1
$$

 دو عنصر دلخواه F باشند، آ; آاه

$$
\left(w_{1} w_{\gamma}\right) \theta=\left(w_{1} \theta\right)\left(w_{\gamma} \theta\right)
$$

$$
x_{i} \theta=g_{i} \quad(i=1, r, \cdots, n)
$$

$$
\begin{equation*}
G \cong \frac{F}{R} \tag{10.0}
\end{equation*}
$$

از جهعبندى نتا يج خوق مى توا نيم قضيهٔ اصلى ذيا زا بيان كنيم•.

 زو
 انتخابت يك زير گر وه زرمال R

$$
q\left(x_{1}, x_{Y}, \cdots, x_{n}\right) \in \boldsymbol{R}
$$

F .

$$
\begin{equation*}
\rho_{k}\left(g_{\backslash}, g_{r}, \cdots, g_{n}\right)=1 \quad(k=1, r, \cdots, m) \tag{11.2}
\end{equation*}
$$

تو !

مولدها و رابطاها 19

$$
\begin{gathered}
\sigma\left(g_{1}, g_{Y}, \quad, g_{n}\right) \quad \tau\left(g_{1}, g_{Y}, \quad, g_{n}\right)=1 \\
\left\{\sigma\left(g_{1}, g_{r}, \quad, g_{n}\right)\right\}^{-1}=1 \\
g^{-1}\left\{\sigma\left(g_{1}, g_{r}, \quad, g_{n}\right)\right\} g=1
\end{gathered}
$$

كه در آن g يك عنصر دالخخ اه G انست، نيز در G رابطثانل. هر رابطه مانند

$$
\rho\left(g_{1}, g_{Y}, \quad, g_{n}\right)=1
$$

حاصل از رابطدهاى مفروض (1 اله) با اجراى غمليات فوق، بههر جند باركه باشد، يك
 $r=\rho\left(x_{1}, x_{Y}, \ldots, x_{n}\right)$ با

$$
g_{1} g_{r} g_{r}^{-r} g_{i} g_{r}^{-1}=1
$$

را هجاز ندیهار يم بلكه بهجاى آن

$$
g_{1} g_{r}^{-1} g_{1} g_{r}^{-1}=1
$$

را می گَاريم. زابطههاى (11.ه) متناظر با وازمهای

$$
r_{k}=\rho_{k}\left(x_{1}, x_{Y}, \cdots, x_{n}\right) \quad(k=1, r, \ldots, m)
$$

$$
R_{0}=\left\{r_{1}, r_{Y}, \cdots, r_{m}\right\}^{F}
$$

زشان داده و بستار نرمال
 از F: تو اليد مىشود. متذكرمىشو بم -یشُود. بهموجب تخيئ اصلى
 ($\left.g_{1}, g_{r} . \quad, g_{n}\right)=1$ بـ R R.

$$
R_{\circ} \leqslant R
$$

$$
\begin{equation*}
R_{\mathrm{o}}=R \tag{10.0}
\end{equation*}
$$

$$
G_{\circ}=\frac{F}{R_{\circ}}
$$

اين گروه بدوسيلة n همدججموعه

$$
g_{i}^{\circ}=x_{i} R_{v}(i=1, r, \cdots, n)
$$

$$
\text { تو ليد شدهكه درههةٌ رابطدهاى (د. ا } 1 \text {) صدق مى كند. دز واقع }
$$

$$
\rho_{k}\left(g_{i}^{\circ}, g_{r}^{\circ}, \cdots, g_{n}^{\circ}\right)=\rho_{k}\left(x_{1}, x_{r}, \cdots, x_{n}\right) R_{\circ}=r_{k} R_{\circ}=R_{\circ}
$$

زيرا (صفحئ 11) تعر يث شده است. دز اين صرزت

$$
G_{\circ} \cong \frac{F}{R}
$$

اگـر

$$
r\left(g_{1}^{\circ}, g_{Y}^{\circ}, \cdots, g_{n}^{\circ}\right)=r\left(x_{1}, x_{Y}, \cdots, x_{n}\right) R_{\circ}=R_{\circ}
$$

|Y| مو لدها و رابطهاها

كد دز (1) حصن مى كند. اين هطلب بدوسيلةٔ تضية احلى ذيلِ دقيتَر بيان شده است.

$$
\rho_{k}\left(g_{1}, g_{r}, \ldots, g_{n}\right)=l_{c}(k=1, r, \ldots, m)
$$

$$
\rho_{k}\left(h_{1}, h_{r}, \cdots, h_{n}\right)=I_{H}(k=1, r, \cdots, m)
$$

و احتهالا" در نستجهاى ديگگى كه نتيجه آنها نيستند هدذ كند، در اين هصورت H يت نگارi

$$
g_{i} \varepsilon=h_{i} \quad(i=1, r, \cdots, n)
$$

داده شُده الست.

$$
\theta: F \rightarrow G \quad \eta: F \rightarrow H
$$

$$
R=R_{\nu}
$$

 دمازز است با عبازت

$$
S \geqslant R_{c}(=R)
$$

اينك بهساختهان نگاشـت

$$
\varepsilon: G \rightarrow H
$$

的 $z=w\left(x_{1}, x_{1}, \cdots, x_{n}\right)$

$$
z \theta=u
$$

شـكل

$$
\begin{equation*}
u \varepsilon=z \eta \tag{Y0.J}
\end{equation*}
$$

$$
(z r) \eta=(z \eta)(r \eta)=z \eta
$$

$$
\left(u_{1} \varepsilon\right)\left(u_{\curlyvee} \varepsilon\right)=\left(u_{1} u_{\curlyvee}\right) \varepsilon
$$

 قرار دهيم

$$
g_{i} \varepsilon=x_{i} \eta=h_{i} \quad(i=1, r, \cdots, n)
$$

 مى كنيم G=gp $\{a, c\}$ بدوسيلة زا بطدهاى

$$
a^{r}=c^{r}=(a c)^{r}=1
$$

 (Y|.

$$
r_{1}=x^{r}, \quad r_{r}=y^{r}, \quad r_{r}=(x y)^{r}
$$

را وا بسنه مى كنيم. فرخن كنيم

$$
R_{o}=\left\{r_{1}, r_{\gamma}, r_{r}\right\}^{F}
$$

 مى توان ديدكه هرمهسبهوعه بر ابر بكى ازهممبهوعهداى

MYY مو لدها و رابثلها

$$
\begin{aligned}
& R_{\mathrm{o}}, x R_{\mathrm{o}}, x^{\curlyvee} R_{\mathrm{o}}, y R_{\mathrm{o}}, y x R_{\mathrm{o}}, y x^{\curlyvee} R_{\mathrm{o}}
\end{aligned}
$$

$$
\begin{aligned}
& r=r_{1}^{-1}\left(x r_{\gamma}^{-1} x\right) r_{r}
\end{aligned}
$$

$$
\alpha=(1 \quad r \quad r), \gamma=(1 r)
$$

تو ليا مىشود و

$$
\alpha^{r}=\gamma^{r}=(\alpha \gamma)^{r}=1
$$

 |مر هنجر به| فزوده شدن رابطا

$$
g_{i}^{-1} g_{j}^{-1} g_{i} g_{j}=1 \quad(i<j)
$$

 روشهاى فصل ب ييداكرد.

مثال: ساختار 'G/G را وقتى G گروه جار تا يِهایى

$$
a^{\psi}=1, \quad a^{r}=b^{r}, \quad b a=a^{r} b
$$

باشد بيداكيهيل.
گروه

$\varphi \bar{a}=0, \quad r \bar{a}=r \bar{b}, \quad \bar{b}+\bar{a}=r \bar{a}+\bar{b}$
اين معادلات به
$r \bar{a}+r \bar{b}=0$
تبديل ^یشوند. ماتريس رابطهاى متناظر با آن فبلا" بهصورت قطرى بوده است، اذاينجا بهدست مى آ وريمكه

$$
\frac{G}{G^{\prime}} \cong C_{Y} \oplus C_{Y}
$$

 ك يك F/F' گرووهإى آزاد با تعداد
 باشُند. بس وس

 گروهى اسـت آزاد، را بدون ابُبات ذكر مى كيبم.

تموين

 $. b^{r}=(a b)^{r}=a^{r}(r) ؛ a^{\varphi}=1$ (ب)
$b^{-1} a b=a^{r}: a^{-1} b a=b^{r}$ (; $\boldsymbol{F}=\{1\}$

سرى زير تر وهها

 زير گرودهزا يیى است نظير

$$
\begin{equation*}
A_{1} \geqslant A_{Y} \geqslant \cdots \quad \text { ᄂ } \quad B_{1} \leqslant B_{Y} \leqslant \cdots \tag{1.9}
\end{equation*}
$$

 هر يك ازاين زير گروه

 از آناليزدانها).

زیريف و: يلت زيرگــروه نرهال
 $G \triangleright H \triangleright A$
 ندارد همارز است. لذا تعرين نوق را هى توان هجدداً دز والب زير مطر عرد. ضا بطه. يك ;يرگ,روه نزهال

 و هم در مر تهء متفاوت باشند. اگر

است .

تلريغ V• رشنتؤ زيرگروه+ا

$$
\begin{equation*}
A_{1}, A_{Y}, \cdots, A_{r} \tag{Y.9}
\end{equation*}
$$

از يك گ̧, گو
(1)

$$
\begin{equation*}
G \sqsubset A_{1} \triangleright A_{r} \triangleright \cdots \triangleright A_{r} \triangleright\{1\} \tag{r.5}
\end{equation*}
$$

, هركا
(ب) $\quad \frac{G}{A_{1}}, \frac{A_{1}}{A_{Y}}, \cdots, \frac{A_{r-1}}{A_{r}}, A_{r}$
گ,روههايى سماده باشيند.

 ناميده •ییشو ند.

 عاملجاى تركيبى، هرذنظر از توالى آنها، دربهدو يكريختاند.

$$
\begin{equation*}
\boldsymbol{G}\left(=A_{\circ}\right) \triangleright A_{1} \triangleright A_{Y} \triangleright \cdots \triangleright A_{r} \triangleright\{1\} \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
G\left(=B_{\mathrm{c}}\right) \triangleright B_{1} \triangleright B_{\mathrm{r}} \triangleright \cdots \triangleright B_{s} \triangleright\{1\} \tag{II}
\end{equation*}
$$

$$
\begin{align*}
& \frac{G}{A_{1}}, \frac{A_{1}}{A_{Y}}, \cdots, \frac{A_{r-1}}{A_{r}}, A_{r} \tag{I}\\
& \frac{G}{B_{1}}, \frac{B_{1}}{B_{Y}}, \cdots, \frac{B_{s-1}}{B_{s}}, B_{s} \tag{II}
\end{align*}
$$

 اين را بطه يك زا بطأه همازز

دازيمكه از (II)~ (I) نتيجه هىشود كه r=s.

$$
G \sqsubset\{1\}
$$

دزاين ها لت يقيناً سرينجاى (I) و(II) يكى دستند وداريم
 صادن است.

 بهدست مى آور يم، بد بنقر ار

IYA T T ا

$$
A_{1} \triangleright A_{Y} \triangleright \cdots \triangleright A_{r} \triangleright\{1\}
$$

$$
A_{1} \triangleright B_{Y} \triangleright \cdots \triangleright B_{s} \triangleright\{1\}
$$

خون |

$$
\frac{A_{1}}{A_{Y}}, \frac{A_{Y}}{A_{r}}, \ldots, \frac{A_{r-1}}{A_{r}}, A_{r}
$$

$$
\frac{A_{1}}{B_{1}}, \frac{B_{r}}{B_{r}}, \cdots, \frac{B_{s-1}}{B_{s}}, B_{s}
$$

 (I) ~ (II)
(ب)

$$
C=A_{\backslash} B_{1} \quad\left(=B_{\backslash} A_{\backslash}\right)
$$

$$
G \geqslant C \geqslant A_{1}
$$

اما
 كه با اين واقعيت كه

$$
G=A_{\backslash} B
$$

$$
\begin{equation*}
\frac{G}{A_{1}} \cong \frac{B_{1}}{D}, \quad \frac{G}{B_{1}} \cong \frac{A_{1}}{D} \tag{0.9}
\end{equation*}
$$

 فرض كـيم

$$
D \triangleright D_{1}\left\llcorner\cdots \triangleright D_{t} \mid \triangleright\{1\}\right.
$$

يك سرى تر كيبى ازD باشـد. دزاين صدرت مى تو انيم دو سزى تر كيبى براى G بساذ يمَ، بدينقرار

MY سرث ز!

$$
\begin{align*}
& G \triangleright A_{1} \triangleright D \triangleright D_{1} \triangleright \cdots \triangleright D_{t} \triangleright\{1\} \tag{III}\\
& G \triangleright B, \triangleright D \triangleright D_{1} \triangleright \cdots \triangleright D_{t} \triangleright\{1\} \tag{IV}
\end{align*}
$$

دز واتـع كلئه هاملثباى تر كيبى

$$
\begin{array}{l:l}
\frac{G}{A_{1}}, \frac{A_{1}}{D}, & \frac{D}{D_{1}}, \frac{D_{1}}{D_{Y}}, \cdots, \frac{D_{t-1}}{D_{t}}, D_{t} \quad(I I I)^{\prime} \\
\frac{G}{B_{1}}, \frac{B_{1}}{D}, & \frac{D}{D_{1}}, \frac{D_{1}}{D_{r}}, \cdots, \frac{D_{t-1}}{D_{t}}, D_{t} \quad(I V)^{\prime}
\end{array}
$$

 بدطر يق مشا به؛ (IV)~ (II) مىشود.

 رابطهدای

$$
a^{r}=b^{r}=(a b)^{r}=1
$$

 $G \triangleright A \triangleright\{1\}$

يك سرى تركيبى است: زيرا =املزاى

$$
\begin{equation*}
A \cong C_{r}, \quad \frac{G}{A} \cong C_{r} \tag{5.5}
\end{equation*}
$$

از مر تبئ اول. و بنا بر این سادحداند.
 يك $A_{Y}=\operatorname{gp}\left\{S^{\Upsilon}\right\}$ نرمال|ند، سرى تر كيبى

$$
G \triangleright A_{Y} \triangleright\{1\}
$$

را با شإـهأى تركيبى

$$
\begin{equation*}
A_{Y} \cong C_{r} \quad, \quad \frac{G}{A_{Y}} \cong C_{r} \tag{Y.5}
\end{equation*}
$$

سرى تر كيبى

$$
G \triangleright A_{\Gamma} \triangleright\{1\}
$$

$$
A_{r} \cong C_{r} \quad, \quad \frac{G}{A_{r}} \cong C_{r}
$$

 هرتبهاى اپ
 ذيل مفيد زاتـع مىشود.

برهان. اگگر این شر ايط محتق بُشْنده سرينّى تز كيبى

$$
\begin{align*}
& H \triangleright H_{1} \triangleright \ldots \triangleright H_{r} \triangleright\{1\} \\
& \frac{G}{H} \triangleright \frac{G_{1}}{H} \triangleright \cdots \triangleright \frac{G_{s}}{H} \triangleright H \tag{9.9}
\end{align*}
$$

| | | سزى زير تروهيا

$$
\frac{G_{i-1} / H}{G_{i} / H} \cong \frac{G_{i-1}}{G_{i}} \quad\left(G_{\circ}=G\right)
$$

نتيجه می گیر يم كه

$$
G \triangleright G, \triangleright \ldots \triangleright G_{s} \triangleright H \triangleright H_{1} \triangleright \ldots \triangleright H_{r} \triangleright\{!\}
$$

 Tآگاه سرى تر كيبى

$$
A \triangleright\{1\}
$$

 البته P است كه مر تبه آن كوتچكتر از و بنا بزا اين بهموجب وضيه
 ضهيفتر از شر إيط تعريت اصلى (صغحهٔ هسا ا) را بدميان مى آورد.
 هانند

$$
G \triangleright B_{1} \triangleright B_{Y} \triangleright \ldots \triangleright B_{s} \triangleright\{1\} \quad\left(G=B_{0},\{1\}=B_{s+1}\right) \quad(10.4)
$$

; هر يكت

$$
\begin{equation*}
(i=1, r, \cdots, s+1) \quad \frac{B_{i-1}}{B_{i}} \tag{11.8}
\end{equation*}
$$

آبلى باشطد.
هرهان.

 مى آود يم كه، بنا بر استقر اء، نتيجهمى شود
 VV

 بد ين تر تيب ر شتهُ

$$
\begin{align*}
& G\left(=G^{0}\right), G^{\prime}, G^{\prime \prime}=\left(G^{\prime}\right)^{\prime}, \cdots, G^{(i)}=\left(G^{(i-1)}\right)^{\prime}, \ldots \\
& \text { را مى سازيم. جون } \\
& \boldsymbol{G} \geqslant \boldsymbol{G}^{\prime} \geqslant \boldsymbol{G}^{\prime \prime} \geqslant \ldots \geqslant \boldsymbol{G}^{(i)} \geqslant \ldots \tag{1Y.9}
\end{align*}
$$

 داشته باشيم
 از گروههاى حلِّير را بهدست مىدهل.

قضيه اصلى
 جرهان. (الف) فرض كنيم كه

$$
G>G^{\prime}>\ldots>G^{(s-1)}>\{1\}
$$

 حلیذير است.

سرى زير تروهبا بץ
(ب) فرض كنيم كه G حللذير باشد، از اينرو داراى يك رشته زير گروه است كه در

$$
\begin{equation*}
G^{(i)} \leqslant B_{i} \quad(i=1, r, \cdots) \tag{14.9}
\end{equation*}
$$

 بهاستقر اء فرض مى كنيم كه آ هر كاه

$$
G^{(i)}=\left(G^{(i-1)}\right)^{\prime} \leqslant B_{i-1}^{\prime}
$$

i

$$
G^{(s+1)} \leqslant B_{s-1}=\{1\}
$$

در مى آيد. لذا سرى مشتّق بهگروه واحد ختم میشود.

$$
\begin{equation*}
[A, B]=\operatorname{gp}\{[a, b] \mid a \in A, b \in B\} \tag{10.9}
\end{equation*}
$$

را تشكيل دهيم• جون داريم

$$
[a, b]^{-1}=\left(a^{-1} b^{-1} a b\right)^{-1}=b^{-1} a^{-1} b a=[b, a]
$$

از آنجا نتيجه هى شود كه

$$
\begin{equation*}
[A, B]=[B, A] \tag{19.9}
\end{equation*}
$$

$$
\cdot[A, B] \leqslant[A, C] \text { •|گ; } T \cdot B \leqslant C
$$

بديك گروه دلخو
زير تعر يف مىشو ند:

$$
\begin{equation*}
\Gamma_{1}=G, \Gamma_{Y}=[G, G]=G^{\prime}, \ldots, \Gamma_{k+1}=\left[\Gamma_{k} . G\right] \tag{1y.4}
\end{equation*}
$$

حالنشان مى دهيم كه با فرض

$$
\Gamma_{k+1}=\left[\Gamma_{k}, G\right] \leqslant\left[\Gamma_{k-1}, G\right]=\Gamma_{k}
$$

لذا (IV.q) درو اقع يك سرى نزولى است

$$
\begin{equation*}
G=\Gamma_{1} \geqslant \Gamma_{Y} \geqslant \ldots \geqslant \Gamma_{k} \geqslant \Gamma_{k+1} \geqslant \ldots \tag{10.8}
\end{equation*}
$$

هـر
 G $\alpha=G$ است، داريم [ا $k=1$, بدييى است، نتيجه مى شُود كه

$$
\Gamma_{k-1} \alpha=\left[\Gamma_{k}, G\right]=\Gamma_{k-1}
$$

كه تساوى زير را ثابت مى كند

$$
\Gamma_{k} \alpha=\Gamma_{k}(k=1, r, r, \ldots)
$$

درنتيجه

 برهان. فــرض كیيم بنى مثلال از از بايد نشان دهيم كه

$$
[\bar{u}, \bar{x}]=[u v, x \nu]=[u, x] \nu
$$

بنا بر تهر يغ أخ
 اين سرى بر اساس مطلب زير صودت گَر فنه است.
 V يت زيرگرو, مشخهـة G است.
 تعو يضذذير است توصيغ كرد، يمنى

$$
[V, G] \leqslant U
$$

در واقع، اگر از نگاشت طبيئى اين رابطه جنين هى شود

سرى زير تروهـا د٪|

$$
[V \mu, G \mu]=\{\overline{1}\}
$$

كه در Tن آ عنصر واحد G/U است؛ اين بدان معنى است كه هرعنصر

 از اينرو بهموجب ماكسيمال بودن V V داريم
 T نجا نتيجه هى شود كه V V. بدين طريت V V يك زير گر وه مشخصه است. اكنون تراد هىدهيم

 تعرين می كنيم كه زير گرو هوای مشُخصه سا ختها يمب:

$$
\begin{equation*}
\{1\}=Z_{\circ} \leqslant Z_{1} \leqslant \cdots \leqslant Z_{j} \leqslant \cdots \tag{19.9}
\end{equation*}
$$

 مهكن است كه اين سر يها در جملهُ اول مستها اولك شو نا

$$
\begin{array}{r}
G=\Gamma_{1}>\Gamma_{r}>\ldots>\Gamma_{k}>\ldots>\Gamma_{r}>\Gamma_{r+1}=\{1\} \quad(\text { ro.q }) \\
(k=1, Y, \ldots, r) \quad \Gamma_{k+1}=\left[\Gamma_{k}, G\right] \leftrightarrow
\end{array}
$$

$$
\begin{align*}
& \{1\}=Z_{\circ}<Z_{1}<\cdots<Z_{j}<\cdots<Z_{s}=G \tag{r1.9}\\
& \text { كه }
\end{align*}
$$

هـهحنان كه در لم بالا داشتيم، هی توان

$$
\begin{equation*}
\left[Z_{j}, G\right] \leqslant Z_{j-1} \tag{YY.4}
\end{equation*}
$$

از G توصين كرد.

 سرى طرل واحلى دار ند.

$$
\Gamma_{r \div-i} \leqslant Z_{i} \quad(i=0,1, \cdots, r)
$$

 فرض ما بيان مىدارد كده است كه
 اين بدين هینى است كاري

$$
\begin{equation*}
s \leqslant r \tag{Yץ.9}
\end{equation*}
$$

$$
\begin{equation*}
\Gamma_{i} \leqslant Z_{s: 1-i} \quad(i=1, r, \cdots, s+1) \tag{Y0.4}
\end{equation*}
$$

 خو اهيم دادكه

$$
\Gamma_{i+1}=\left[\Gamma_{i}, G\right] \leqslant\left[Z_{s+1-i}, G\right] \leqslant Z_{s-i}
$$

 مى كیيم كه زي (1A.广)

 عنوان اين بخشُ ذكر شده بودند صور تبناى هى كینيم.
i) تعريف
 نا نيده هى هيشود.

IPV سرى زيرتروهها

شثال ا. اگر A يك گروه آبلى از هر تبهُ بزر گتر از يك باشد، آنگاه سرى مر كزی
زبربن آن به

$$
\{1\}=Z_{0}<Z_{1}=A
$$

بـدل مى شود. بدين تر تيب، هجموعـهُ گروههاى آبلى (هوحتو ان از ردهُ يك، يكى است.

 است. حال گو ييم \P/ نيز يك p
 اگر بههمهين دوش ادامه دهيم يك سرى اكيدأ صهودى بهصورت

$$
\{1\}=Z_{,}<Z_{1}<Z_{Y}<Z_{r}<\cdots
$$

-هىسازيم•

 در پا يان این كتاب مجلدواً بهآن اشاره خواهيم كرد.
 ، H

 اينرو عدد صحيح منحصر بهفردى مازند k وجود دارد كه

$$
Z_{k} \leqslant H, Z_{k+1} \nLeftarrow H
$$

$$
u^{-1} H u=H
$$

$$
\left[u, h_{1}\right] \in\left[Z_{k+1}, G\right]=Z_{k} \leqslant H
$$

اين بدين معنى است كه داريم هو ن ' استفاده از مهين :بـرهان، وتى كــه بهجاى

A / آشنا يى با نظر يه Fروهوا

تموين

تر كيبى را تعيين زما ييل.

$$
\begin{align*}
& {[x y, z]=[x, z]^{y}[y, z]} \tag{الe}\\
& {[x, y z]=[x, z][x, y]^{\prime}} \tag{ب}
\end{align*}
$$

. $a^{t}=t^{-1} a t$ در
 است و برای چنين گروهى اتحادهای

$$
[x y, z]=[x, z][y, z],[x, y z]=[x, z][x, y]
$$

را نتيجه بعير يد.

 (() ;رض كنيم ((F1

$$
a^{r n}=b^{r}=(a b)^{r}=1
$$

دادهشدهاست. ثا بت كنيدا گرا تتيجه بگير يد كه

r

تَرو ههاى جايتشتى

S S_{n} ($n=1, r, \ldots$)
 گرووها
دد اين بخشُ هسئلئ تجز يهٔ

$$
\alpha=\left(\begin{array}{cc}
1 & r \ldots n \\
a_{1} & a_{1} \cdots a_{n}
\end{array}\right)
$$

اين نماد دا بهصورت اختصارى

$$
\begin{equation*}
\alpha=\binom{i}{a_{i}} \tag{Y.Y}
\end{equation*}
$$

$$
\tau=\left(\begin{array}{lll}
1 & r & \ldots \\
\prime^{\prime} & r^{\prime} \ldots & n
\end{array}\right)=\binom{i}{i^{\prime}}
$$

كه در T T

$$
\tau=\binom{a_{i}}{a_{i}^{\prime}}
$$

كه سطر اول (Y.V) همـان سطر دوم (I.V) است. اما داريم

$$
\tau^{-1} \alpha \tau=\binom{i^{\prime}}{i}\binom{i}{a_{i}}\binom{a_{i}}{a_{i}^{\prime}}=\binom{i^{\prime}}{a_{i}^{\prime}}
$$

 !برعبارت α يعنى بردوسطر (I.Y) بهدست مى آور يم. لذا

$$
\tau^{-1} \alpha \tau=\binom{i \tau}{a_{i} \tau}
$$

مثّال. $n=\psi$ وض

$$
\alpha=\left(\begin{array}{llll}
1 & r & r & \psi \\
r & \psi & 1 & r
\end{array}\right), \tau=\left(\begin{array}{llll}
1 & r & r & \psi \\
1 & \psi & r & r
\end{array}\right)
$$

با اعهال τ بر هر نماد α ملاحظه هى كنيم كه

$$
\tau^{-1} \alpha \tau=\left(\begin{array}{llll}
1 & r & r & \mu \\
r & r & 1 & r
\end{array}\right)=\left(\begin{array}{llll}
1 & r & r & r \\
r & 1 & r & r
\end{array}\right)
$$

بعل، اين دوش را بر ای يك دوره از دزجهُ m، ما نند

$$
\begin{gathered}
\gamma=\left(a_{1} a_{Y} \ldots a_{m}\right)=\left(\begin{array}{lll}
a_{1} & a_{Y} \cdots a_{m-1} & a_{m} \\
a_{Y} & a_{Y} \cdots a_{m} & a_{1}
\end{array}\right) \\
\tau^{-1} \gamma \tau=\left(\begin{array}{lll}
a_{1}^{\prime} & a_{Y}^{\prime} \cdots a_{m-1}^{\prime} & a_{m}^{\prime} \\
a_{Y}^{\prime} & a_{r}^{\prime} \cdots a_{m}^{\prime} & a_{1}^{\prime}
\end{array}\right)=\left(a_{1}^{\prime} a_{Y}^{\prime} \cdots a_{m}^{\prime}\right)
\end{gathered}
$$

|f| \mid |f

يا بهطور خلاصهـر

$$
\tau^{-1} \gamma \tau=\left(\alpha_{1} \tau, \alpha_{\curlyvee} \tau, \ldots, a_{m} \tau\right)
$$

$$
\alpha=\gamma_{1} \gamma_{r} \cdots \gamma_{r}
$$

كه در آن

$$
m_{1}, m_{r}, \ldots, m_{r}
$$

براى بحث حاضر رناسبآن است كه دورهاى بهطول واحد را نگهلدار يم بهطورى

 كه اين اعداد در

$$
1 \leqslant m_{1} \leqslant m_{r} \leqslant \cdots \leqslant m_{r}
$$

$$
m_{1}+m_{r}+\cdots+m_{r}=n
$$

 ا و بعوسيلةُ اعداد صحیيح نامنفى

$$
e_{1}, e_{Y}, \cdots, e_{n}
$$

ييانكرد كه در تساوى

$$
e_{1}+r e_{r}+\cdots+n e_{n}=n
$$

صدق مى كنند.
تضيةُ آتيه قا لبُاى دورى را با ردهماى مزدو ج مر بوط هىسازد.
كضية Y Y. دو جايگَشت ذقطط ;نقط وقتى در
واحدى باشيند.
برهان. فرض كنيم α بهدورهاى ازهمزجدا تجز يه شاه باشد، لذا

$$
\alpha=\gamma_{1} \gamma_{Y} \cdots \gamma_{r}=\left(x_{1}, x_{Y} \cdots\right)\left(y_{,} y_{Y} \cdots\right) \cdots\left(w_{1} w_{Y} \cdots\right)
$$

كه دز آن

$$
m_{1}+m_{r}+\cdots+m_{r}=n
$$

$$
\begin{aligned}
\beta & =\tau^{-1} \alpha \tau=\left(\tau^{-1} \gamma_{1} \tau\right)\left(\tau^{-1} \gamma_{r} \tau\right) \cdots\left(\tau^{-1} \gamma_{r} \tau\right) \\
& =\left(x_{1}^{\prime} x_{r}^{\prime} \cdots\right)\left(y_{1}^{\prime} y_{r}^{\prime} \cdots\right) \cdots\left(w_{1}^{\prime} w_{r}^{\prime} \cdots\right)=\gamma_{1}^{\prime} \gamma_{r}^{\prime} \cdots \gamma_{r}^{\prime}
\end{aligned}
$$

كه دز آن , كَ

جا يکگت

$$
\tau=\left(\begin{array}{cccc}
x_{1} & x_{Y}, \cdots, y_{1} & y_{Y}, \cdots, w_{1} & w_{Y}, \cdots \\
x_{1}^{\prime} & x_{Y}^{\prime}, \cdots, y_{1}^{\prime} & y_{Y}^{\prime}, \cdots, w_{1}^{\prime} & w_{r}^{\prime}, \cdots
\end{array}\right)
$$

دارای اين ويز گیى اسـ كه
 ديگر، عدهٔ ردههاى مزدوج إ

$$
1^{e} r^{e} r \ldots n^{e n}
$$

 بر ای هـُ ال.

$$
j^{r} r \text { rr }
$$

جدول (xiii)

n	1	r	r	Y	Δ	q	γ	\wedge
k	1	r	r	0	γ	11	1Δ	$r r$

برای منال، وتتى كه $n=0$ افرازهاى (IIVV) عبارتاند از

$$
1^{\Delta}, 1^{r} r, 1^{r} r, 1 r^{r}, 1 \psi, r r, \Delta
$$

 قراد دازد.

است با

$$
h_{\alpha}=\frac{n!}{1^{e} \cdot e_{1}!r^{e} \cdot e_{Y}!\cdots n^{e_{n}} e_{n}!}
$$

برهان. تالب دورى α زا هى توان بدوسيلة ديا گ̌رام

$$
\begin{equation*}
\underbrace{(\cdot)(\cdot) \cdots(\cdot)}_{e_{1}} \underbrace{(\cdots)(\cdot) \cdots(\cdot \cdot)}_{e_{r}} \ldots \tag{1r.v}
\end{equation*}
$$

در (طز يق. غ:صرى از

 رخ دهد؛ بعدأ هر دوز

$$
\left(a_{1} a_{Y} \ldots a_{j}\right)
$$

را به ز طر يت هختلف بى توان نونُتْ، ز ير ا

$$
\left(a_{1} a_{r} \cdots a_{j}\right)=\left(a_{r} a_{r} \cdots a_{j} a_{1}\right)=\ldots=\left(a_{j} a_{1} \cdots a_{j-1}\right)
$$

لذا هر ه:حر

 "مى شود.
 لذا تتيجئ ذبا را داربـم.

$$
1^{e^{\prime}} e_{1}!r^{e} e_{Y}!\ldots n^{e_{n}} e_{n}!
$$

است.

$$
\phi=\left(\begin{array}{ll}
1 & Y \cdots n
\end{array}\right)
$$

دراين حالت،
 اند يكى مىشود.

$$
\tau=(a b)
$$

 مى شُويم كه

$$
\tau^{r}=\iota, \tau=\tau^{-1}
$$

$$
x_{1}, x_{1}, \ldots, x_{n}
$$

$$
x_{i} \alpha=x_{a_{i}} \quad(i=1, r, \ldots, n)
$$

$$
f\left(x_{1}, x_{Y}, \ldots, x_{n}\right) \alpha=f\left(x_{a_{1}}, x_{a_{1}}, \cdots, x_{a_{n}}\right)
$$

بويرُ ه، حاصلضرب تفاضلى زيز را دز نظر مى گيريم

$$
\begin{align*}
\Delta=\prod_{i<j}\left(x_{i}-x_{j}\right)= & \left(x_{1}-x_{Y}\right)\left(x_{1}-x_{r}\right)\left(x_{1}-x_{r}\right) \cdots\left(x_{1}-x_{n}\right) \\
& \times\left(x_{r}-x_{r}\right)\left(x_{r}-x_{r}\right)\left(x_{r}-x_{\Delta}\right) \cdots\left(x_{r}-x_{n}\right) \\
& \times\left(x_{r}-x_{r}\right) \cdots\left(x_{r}-x_{n}\right) \\
& \cdots \\
& \times\left(x_{n-1}-x_{n}\right)
\end{align*}
$$

Fروههاى جايكشتى د ان

$$
\Delta \alpha=\zeta(\alpha) \Delta
$$

كه درآن
 ($\zeta(\alpha)=-1$ "مهمترين خصوصيت اين تا بع در تضيها ذيل ييان شده است. قضية FF. اكر,

$$
\begin{equation*}
\zeta(\alpha \beta)=\zeta(\alpha) \zeta(\beta) \tag{ro.r}
\end{equation*}
$$

 حاهلضرب يك جايگثت فرد در يك جايگگت زو ج جايگشتي است ذرد.

برهان. نتيجهٔ ائر β را بسردوطرن ($19 . \gamma$) بهدست ى آوريم، و متذكر مىشويم كه بنا بر نر يت تر كيب عملياتى تى

$$
(\Delta \alpha) \beta=\Delta(\alpha \beta)
$$

$$
\Delta(\alpha \beta)=\zeta(\alpha) \Delta \beta
$$

ميدار ثابت (

$$
\zeta(\alpha \beta) \Delta=\zeta(\alpha) \zeta(\beta) \Delta
$$

را بهدست مى آوز يم كه از آنجا حكم تضيه نتيجه بى شود. درحالت كليتر

$$
\zeta\left(\alpha_{1} \alpha_{r} \cdots \alpha_{r}\right)=\zeta\left(\alpha_{1}\right) \zeta\left(\alpha_{\gamma}\right) \cdots \zeta\left(\alpha_{r}\right)
$$

 . $1 \leqslant i<j \leqslant n$ از

 شامل (مى شود مر كاه (i, j) دا مودد توجه قراد مىدهيم تعدادكل انعكاسها t باشد. دراين صودت

$$
\zeta(\alpha)=(-1)^{\ell}
$$

عدد t فورآ بهطر يت زير پيدامىشود: جا يگشت α را بهصردتاستا نده مى نويسيم، بر ای منال

$$
\alpha=\left(\begin{array}{llllll}
1 & r & r & r & \Delta & q \\
r & r & q & r & \Delta & 1
\end{array}\right)
$$

 مر بوط بهآن دا نبت مى كنيم، از T Tنجا امتياز كل، مثال،

$$
\zeta(\iota)=1
$$

حال براى هر جايگشت ג، داريم

$$
\zeta(\alpha) \zeta\left(\alpha^{-1}\right)=\zeta(\iota)=1
$$

كه از اينجا نتيجه مىشود

$$
\zeta(\alpha)=\zeta\left(\alpha^{-1}\right)
$$

$$
\zeta\left(\beta^{-1} \alpha \beta\right)=\zeta\left(\beta^{-1}\right) \zeta(\alpha) \zeta(\beta)=\zeta(\alpha)
$$

از
فرض كيم

 دود :دجئ m، از فرمول

$$
\left(a_{1} a_{Y} \cdots a_{m}\right)=\left(a_{1} a_{Y}\right)\left(a_{1} a_{Y}\right) \cdots\left(a_{1} a_{m}\right)
$$

$$
a_{1} \rightarrow a_{r}, a_{r} \rightarrow a_{1} \rightarrow a_{r}, a_{r} \rightarrow a_{1} \rightarrow a_{r}
$$

و قس عليغذا.

$$
\zeta\left(a_{1}, a_{Y}, \cdots, a_{m}\right)=(-1)^{m-1}
$$

نتيجهٔ حاصل از (YY.V) به شرح زير فا بل بيان است.

 است از ترا نثششها بدين طريق مسلماً دازيم

$$
\alpha=\tau_{1} \tau_{\gamma} \ldots \tau_{s}
$$

 زوجنايى ازعوامل نظير
(ab) (ba)
 اگَ

$$
(a b)=(1 a)(1 b)(1 a)
$$

 و جون (ζ (

فرع. گ, گo اين نتيجه (ا دقيقتر بيان كرد.

قضية ه Y. گرو0

$$
(1 r),(1 r), \ldots,(1 n)
$$

توليد شيده است.

 باب يك گروه جايگشثّى دلخواه، يعنـى يك زيرگَوه

مى كنيم.
قضيا غ مىدهند كه يا با G هساوى و ديا داراك انديسى دو در G اسا

 از H است. فرض كنيم δ يك جا يخشت فرد دلخـوواه از G باشد. يس

 حا لت (د) صنمحه H ، Vo در G ور نرمال است. حالت $G=S_{n}$ حا لتى است كه ما يشـشتر به آَ ن خو اهيم هر داخت.

تعريف
($1 / Y$ /)n!
بر ای مثال، گروه برطبق ردههاى مزدوج ${ }^{\text {م }}$ مر تب شدهان اند) تشكيلى مىشود

$$
A_{\varphi}=C_{0} \cup C_{1} \cup C_{Y}
$$

كه در Tن

$$
\begin{align*}
& C_{0}=\imath \\
& C_{1}=(1 r)(r \varphi) \cup(1 r)(r \psi) \cup(1 \psi)(r r) \quad \text { (r^.r) } \\
& C_{r}=(1 r \mu) \cup(1 r \psi) \cup(1 \mu r) \cup(1 \mu r) \cup(1 \psi r) \cup(1 \psi r) \cup(r \mu r) \cup(r \psi r)
\end{align*}
$$

ممكن است سؤال شود كه Tا يا

 رددٔ متشكل از عنصر واحده ردoمای

$$
\iota,(I r) \cup(I r) \cup(Y r),(I r r) \cup(I r r)
$$

Fزوهياى جإِثتثى

 كه اين شرط لازم براى زير گروه بودن است. در واقع

$$
A_{r}=\iota \cup(\mid r r) \cup(\mid r r)
$$

و لذا اين تنها زير گروه نرمال خاص گَتروه
 با قيما نده عبارتانداز

$$
C_{r}=(\mid r) \cup(\mid r) \cup(\mid \psi) \cup(r r) \cup(r \psi) \cup(r \psi)
$$

$$
C_{\psi}=(1 r \mu \psi) \cup(1 r \psi \mu) \cup(1 \mu r ץ) \cup(1 r ץ r) \cup(1 \psi r \mu) \cup(1 \psi \mu r)
$$

جیون

$$
V=C_{0}\left(!C_{1}, A_{\varphi}=C_{0} \cup C_{1} \cup C_{r}\right.
$$

دارای اعداد اصلى علاد كیناهه (قبا>" ديدها ايم كه

$$
V=\iota \cup(1 r)(r \psi) \cup(\mid r)(r \psi) \cup(\mid \psi)(r r)
$$

位 (صix (
 تر كيبى (بخش هـ

$$
\begin{aligned}
& S_{r} \triangleright A_{r} \triangleright\{\iota\} \\
& S_{r} \triangleright A_{\varphi} \triangleright V \triangleright\{\iota\}
\end{aligned}
$$

 بيدا هى كیند.

 $(\mid Y \mu),(\mid Y ץ), \cdots,(\mid Y n)$

 ؛ بنا براين هى توا نيم فرض كنيم كه در هر زو ج

$$
\begin{equation*}
(1 i)(1 j)=(1 i j) \tag{ro.v}
\end{equation*}
$$

اكَ مى باشند. اگر

$$
(1 i)(1 r)=\left(\begin{array}{ll}
1 & i
\end{array}\right)=\left(\begin{array}{ll}
1 & r
\end{array}\right)^{r}
$$

$$
\text { با'لخره، اگَر } i>r>r \text { و } i>1 \text { از را بـلة }
$$

$$
(1 i j)=\left(\begin{array}{lll}
1 & r & j
\end{array}\right)(1 r i)(1 r j)^{-1}
$$

 با تو جه بهمفهوم گَروه ساده (صفتحهٔ متناوب زا؛ كه هنسوب به ا. گا لوال است، ثا با كتيمر.

قضية اصلى YY. وقتىكه

 همارز است: ا گر اس $\delta^{-1} \alpha \delta \in N$ N وبنا براين (اي لـ

$$
\alpha=\left(\begin{array}{lll}
a & b & c
\end{array}\right)
$$

بانُد. دزاين حالت ثا بت خو اهيمكرد كه N شامال همهُ دوزهاى سهنتايى

$$
\xi=\left(\begin{array}{ll}
x & y z
\end{array}\right)
$$

است، كه در آن x‘

1. E. Galois

جا يگثت

تروههاى جايتشتى $|\Delta|$

$$
\phi=\left(\begin{array}{lll}
a & b & c \\
x & y & z
\end{array}\right)
$$

 بنا بر (V.V) داريم

$$
\phi^{-1} \alpha \phi=\xi
$$

جون

$$
(\tau \phi)^{-1} \alpha(\tau \phi)=\xi
$$

 بوده نتيجه هی گیر يم كی
(ب) در مر حلهُ بعد فرض هى كنيم N شامل جا يعگث

$$
\omega=\gamma \delta \varepsilon \ldots,
$$

باشد كه در T T

$$
\gamma=\left(a_{1}, a_{r}, a_{r}, a_{\varphi}, \cdots, a_{m}\right), m>r
$$

 تعغيضّذير است. لذا

$$
\omega_{1}=\sigma^{-1} \omega \sigma=\left(\sigma^{-1} \gamma \sigma\right) \delta \varepsilon \ldots
$$

 تعو يضيذير است ملاحظه هع كنيم كه

$$
\begin{aligned}
\omega_{1} \omega^{-1} & =\sigma^{-1} \gamma \sigma \gamma^{-1} \\
& =\left(a_{\curlyvee} a_{r} a_{1} a_{\uparrow} \ldots a_{m}\right)\left(a_{m} a_{m-1} \ldots a_{\uparrow} a_{r} a_{\curlyvee} a_{1}\right) \\
& =\left(a_{1} a_{\curlyvee} a_{m}\right)
\end{aligned}
$$

از اينزو N شامل يلك دور سه تايى است واز (الت
 باشند، كه درجات اين يورما ب

$$
\begin{aligned}
& \omega=\alpha \beta \lambda
\end{aligned}
$$

$$
\sigma=\left(a_{\curlyvee} a_{\curlyvee} b_{\uparrow}\right)
$$

-شاهله مى كنيم كه σ با λ جا بهجا هىشود. از ايندو N شاهل عنصر

$$
\begin{aligned}
& \sigma^{-1} \omega \sigma \omega^{-1}=\left(\sigma^{-1} \alpha \sigma\right)\left(\sigma^{-1} \beta \sigma\right)\left(\alpha^{-1} \beta^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(a_{1} a_{Y} b_{1} a_{Y} b_{Y}\right)
\end{aligned}
$$

 (د) وقتى كسه فقط وجود يك دور سهتايسى در هيان عاملها مجاز باشل، يك عنصر

نوعى آن بدصورت

$$
\omega=\left(a_{1} a_{\curlyvee} a_{\Upsilon}\right) \lambda
$$

است كه λ حاصلضر بى از تر انfشهُاى ازهم جلداست. لذا

$$
\omega^{r}=\left(a_{1} a_{r} a_{r}\right)
$$

 ر خ مىدهسـد و به گروه V V هذ كور درصفحهُ كه يك عنصر نوعى N بهصودت

$$
\omega=\left(a_{1} a_{Y}\right)\left(b_{1} b_{Y}\right) \lambda
$$

هست
 استفاده مى كنيم تا بتوانيم از ω عناصر ديغرى از N ر را بهروش ذيل بسازيم:

$$
\begin{aligned}
& \omega_{1}=\sigma^{-1} \omega \sigma=\left(a_{1} b_{1}\right)\left(b_{\curlyvee} a_{\curlyvee}\right) \lambda \\
& \omega_{Y}=\omega_{\Upsilon} \omega^{-1}=\left(a_{1} b_{\Upsilon}\right)\left(b_{Y} a_{Y}\right)\left(a_{1} a_{Y}\right)\left(b_{1} b_{Y}\right) \\
& =\left(a_{1} b_{Y}\right)\left(a_{Y} b_{\Upsilon}\right) \\
& \omega_{r}=\delta^{-1} \omega_{\gamma} \delta=\left(b_{\gamma} c\right)\left(a_{Y} b_{1}\right) \\
& \omega_{Y} \omega_{Y}^{-1}=\left(b_{Y} c\right)\left(a_{Y} b_{\uparrow}\right)\left(a_{\uparrow} b_{Y}\right)\left(a_{Y} b_{\Upsilon}\right) \\
& =\left(a_{1} b_{Y} c\right)
\end{aligned}
$$

Fروههاى جايكثتى
لذا، برخلاف فرضى كدكرده بوديم، سرانجا؟ N شامل يك دور سهتايى مىشود و برهــان تضيه تمام.

 يرهان. فرض كنيم ازهر تبهُ ץ باشد. براى اين منظور فرض هی كنيم

$$
H=\left\{\iota, \xi \mid \xi^{r}=\iota\right\}
$$

 عنصر خو اهل داشت. بعل، فرض هى كنيم كه

 حداقل نصف عناصر H زوزاند، ازاينرو، اگر

$$
A_{n} \leqslant H
$$

جون H يك زبر گروْناص

 مطا لعة گروههاى جا يعشَ

$$
G: a_{1}, a_{4}, \cdots, a_{g}
$$

[^0]2. C. Jordan
 حاصلضر بياى
$$
a_{1} x, a_{Y} x, \cdots, a_{g} x
$$

ديگری از (
\[

x \rho=\left($$
\begin{array}{llll}
a_{1} & a_{Y} \ldots a_{g} \\
a_{1} x & a_{Y}, \dot{x} & a_{E} x
\end{array}
$$\right)
\]

 خود، عناصر گروهاند. استناده از ترادراد

$$
x \rho=\binom{a_{i}}{a_{i} x} \quad(i=1, r, \cdots, g)
$$

اغلب هوجب ساد گیى Aیسود. اثز u

$$
x \rho=\binom{a_{i} u}{a_{i} u x}
$$

اينك فرض كنيم y عنصر ديگرى از G و

$$
y \rho=\binom{a_{i}}{a_{i} y}
$$

$$
(x \rho)(y \rho)=\binom{a_{i}}{a_{i} x}\binom{a_{i}}{a_{i} y}=\binom{a_{i}}{a_{i} x}\binom{a_{i} x}{a_{i} x y}=\binom{a_{i}}{a_{i} x y}
$$

لذا

$$
(x \rho)(y \rho)=(x y) \rho
$$

كه نشان مىدهد ;گاشت

$$
\rho: G \rightarrow S_{E}
$$

كروهواى جايتشتى

$$
x \rho=\iota
$$

$$
a_{i} x=a_{i} \quad(i=1, r, \cdots, g)
$$

كهT شكارا نتيجه هىدهد كه
 درمرحله́ بعد،

باشد، كذا

$$
x^{r}=1
$$

 متضهن دور

$$
\left(a, a x, a x^{r}, \cdots, a x^{r-1}\right)
$$

است كه شامل r عنصر متها يز G مى باشُله هر گاه

$$
\left(b, b x, b x^{r}, \ldots, b x^{r-1}\right)
$$

 نتيجه مى شد كه
 آ يند. لذا فى المثل

$$
x \rho=\left(a, a x, \cdots, a x^{r-1}\right)\left(b, b x, \cdots, b x^{r-1}\right) \cdots\left(f, f x, \cdots, f x^{r-1}\right)
$$

 نتا يج خود را بهصورت ذيل خلاصه مى كنيم:

قضية اصلى FM. (كيلى)• ذرضى كنيم

$$
G: a_{1}, a_{Y}, \cdots, a_{g}
$$

$$
x \rho=\left(\begin{array}{llll}
a_{1} & a_{Y} \cdots & a_{g} \\
a_{1} x & a_{Y} x \cdots & a_{g} x
\end{array}\right)
$$

(ا وا بسته هیکنيم. نگاشت

آنگا0

 است.
 عناصر نمايش منظم راست، بهطر يق ذيل، بهدور ها يـى تجز يه مىشو

$$
\begin{array}{rl}
1 \rho & =\left(\begin{array}{llllll}
1 & a & b & c & d & e \\
1 & a & b & c & d & e
\end{array}\right)=(1)(a)(b)(c)(d)(e) \\
a \rho & =\left(\begin{array}{llllll}
1 & a & b & c & d & e \\
a & b & 1 & d & e & c
\end{array}\right)=\left(\begin{array}{lllll}
1 & a & b
\end{array}\right)\left(\begin{array}{llll}
c & d & e
\end{array}\right) \\
b \rho & =\left(\begin{array}{llllll}
1 & a & b & c & d & e \\
b & 1 & a & e & c & d
\end{array}\right)=\left(\begin{array}{llll}
1 & b & a
\end{array}\right)\left(\begin{array}{llll}
c & e & d
\end{array}\right) \\
c \rho & =\left(\begin{array}{lllll}
1 & a & b & c & d
\end{array} e\right. \\
c & e \tag{e}
\end{array} d
$$

F

$$
e \rho=\left(\begin{array}{llllll}
1 & a & b & c & d & e \\
e & d & c & b & a & 1
\end{array}\right)=(1
$$

e) $(a$
d) $(b$
 نو شُته شود. لذا هى توان

$$
a \rho_{x}=a x(a \in G)
$$

بيانكرد.

در حا لت كليثر هى توانيم هـر بيختيهاى

$$
\theta: G \rightarrow S_{n}
$$

 يك زير گروه G و

$$
G=H t_{1} \cup H t_{\curlyvee} \cup \cdots \cup H t_{n}
$$

 شدهاند. لذا

$$
x \theta=\left(\begin{array}{lll}
H t_{1} & H t_{\gamma} & \cdots H t_{n} \\
H t_{1} x & H t_{\gamma} x & \cdots H t_{n} x
\end{array}\right)
$$

 است يعنى

$$
(x \theta)(y \theta)=(x y) \theta
$$

$$
H t_{i} k=H t_{i} \quad(i=1, r, \cdots, n)
$$

كه همارز با اين شُرط است كه هو هو

آهـا آي با نظريهتروهبا

$$
y^{-1} H y=t_{i}^{-1} u^{-1} H u t_{i}=t_{i}^{-1} H t_{i}
$$

 ما كلية اين نتا يج دا دزتضيه اصلى ذيل گَردآ وزدهايم.

$$
x \theta=\left(\begin{array}{lll}
H t_{1} & H t_{\Upsilon} & \cdots H t_{n} \\
H t_{1} x & H t_{\Upsilon} x & \cdots H t_{n} x
\end{array}\right)
$$

 مى توان براى دستيا بى بهاطالا تى دز باب ساختار يك گروه استفادهكرد.
 ديگر، ما إدیا مى كنيم كه هر گاه H كا
 اصلى

 بانُيم

 G بر T T

تعويف

 جا يگشتّى ك夫

واضت است كــه گروه متقارن
 ازسوى ديگر گروه هر تبهٔ

$$
V_{1}:(1),(1 \gamma),(\mu \psi),(1 \gamma)(\mu \varphi)
$$

ناتراياست زيسرا هيـع يك از جا يگشتهاى آن ا را به س تبديل نمى كند. اتفاقاً اين گروه با گروه

$$
V_{r}:(1),(1 r)(r \psi),(1 r)(\gamma \psi),(1 \psi)(\gamma r)
$$

كه بعكس V تراياست، يكريخت است. هردوى اين گروهها باگر وه مر تبهُ چهار (جلدول
 G| مجموعهُ جايخشتيايى از G كـــه نماد
 هرعنصر آن و حاصلضرب هردو تاى آنها.

برهان. (الف) فرض كنيم G تر ايا باشد. بنا بر فرض، G شامل جايگْتهاى

$$
\boldsymbol{\theta}_{11}, \boldsymbol{\theta}_{1 r}, \cdots, \boldsymbol{\theta}_{1 n}
$$

 راست

$$
G_{1} \theta_{11}, G_{1} \theta_{1 r}, \cdots, G_{1} \theta_{1 n}
$$

 با عناصر
 یس

$$
\left[G: G_{1}\right]=n
$$

$$
G=G_{1} \tau_{1} \cup G_{1} \tau_{\gamma} \cup \cdots \cup G_{1} \tau_{n}
$$

$$
\boldsymbol{\tau}_{1}, \tau_{Y}, \cdots, \tau_{n}
$$

اثر واحدى برشّء ا ندارند. زير ا فرض كنيم
 (G $_{\text {(}} G_{1} \tau_{i}=G_{1} \tau_{j}$

 بر قرار باشد. بالانخره، اگــر

 مفهوم تر ايا يى را هى توان تعهبيم داد.

تعويف

 مشتركى داشتنه جاشنُد)؛ يعنى
 k تايى باشُد و k
 خو اهل بود. فر ض كنيم "l بر آنيا اثر ڤی كند، باشُ. دراين صورت

$$
v=n(n-1) \cdots(n-k+1)
$$

$$
1, Y, \cdots, k
$$

تروهجاى جايتُتى

$$
n(n-1) \cdots(n-k+1)
$$

كّابل قسهت است•
 ضا بطهُ ذيل گسترش دهيم.

قضيه ه

بسر ای هدُال، در حالت
عبارت است از

$$
G_{1}: \iota,(\gamma r \psi),(Y \psi r)
$$

لـذا ترايانست؛ اين امر را مى تـوان بايدارساز r است، زتيجه گرفت. چجون كه (دقيقاً) تر اياى مضاعن است
 ، r>1)rs (s>

$$
\left.\begin{array}{cccc}
a_{1}, & a_{r}, & \cdots, & a_{s} \\
b_{1}, & b_{Y}, & \cdots, & b_{s} \\
\cdot & \cdot & \cdots & \cdot \\
k_{1}, & k_{r}, & \cdots, & k_{s}
\end{array}\right\}\left(b_{\mathrm{m}} r\right)
$$

جنان است كه جا يگشتهاى G يا جاى اشُياى هر سطر را با جاى انُياى همان سطر عوض

$$
\begin{aligned}
& \text { ८, (IYYY), (Ir)(YY), (IFry) } \\
& \text { تشكيل شده است، غير اوايه و داراى دستگاه غير او ايهُ } \\
& \begin{array}{l}
1 \mu \\
r y
\end{array} \\
& \text { است. در واقع، حثار جایگشت G اين دستگاه را بتر تيب به }
\end{aligned}
$$

مشال Y• يك گروه مهكن است داراى بيش از يك دستگاه غير اوليه باشد. لــذا در

$$
\text { ८, }(1 \gamma)(\mu \psi),(1 \gamma)(\gamma \psi),(1 \psi)(\gamma r)
$$

هريك از آرايههاى

مى تواند بهعنوان يك دسنگاه غير او ليه بهكار روند.
 اجبارأ شارل جا يگشتى مىشود كه زوج

 ب) نتيجه مى شود كه تَارنهای هيج دوران غير بديثى كه

تروهوای جايتشتى IFY

(الن) گروههاى دووجtى
 (شاكل

 محود z بهاندازه Z /

$$
\iota\left(=\alpha^{\circ}\right), \alpha, \alpha^{r}, \ldots, \alpha^{n-1}
$$

$$
\alpha^{n}=\iota
$$

خواهيم داشت كه
($\psi Y \cdot \gamma$)

زيرا

$$
\alpha^{k} \beta^{l}(k=0,1, \cdots, n-1 ; l=0,1)
$$

 نشان ^یدهد كه

$$
\alpha \beta=\beta \alpha^{-1}
$$

$$
(\alpha \beta)^{r}=\iota
$$

روا بط هعرف

$$
\alpha^{n}=\beta^{r}=(\alpha \beta)^{r}=\iota
$$

يا آورى مى كنيم كد اين گر وه درفصل Y

 بتر تيب دزخالف جهت حر كت شتر بدهاى ساءت باشل. عمل α بدوس

$$
x \alpha \equiv x+1(\bmod n)
$$

بيان مى شود. بـاز، اگَ, بنويسيم شُ. لذا دار يمر

$$
x \beta \equiv r-x(\bmod n)
$$

 فى ا!مئل، داريم

$$
\begin{aligned}
& x \alpha \beta \equiv(x+1) \beta \equiv r-(x+1) \equiv 1-x \\
& x(\alpha \beta)^{r} \equiv(1-x) \alpha \beta \equiv 1-(1-x) \equiv x
\end{aligned}
$$

كه مؤيد را بطءء ا=

 درمجهمو ع
 اين گروه با يك زير گروه از

با

 رورانعبارتانداز عمل، ازجمله عهل هما نى، وجود دارد

شكل ه

كروههاى جايثشتى IFY

 اين دو تطر جديد نيز برممديگر عورودند

 يكريهت است.

شكل 9

تمرين

(1) زشان دهيد
$(a b \ldots l x)(x \alpha \beta \ldots \lambda)=(a b \ldots l \alpha \beta \ldots \lambda x)$
كه كa
(r) ثابتكيد هر گاه يكجايگثت درجهُ n، حاصلضربr r دور دو باهدو ازهمجهدا (ازجملل

1\& 1 آشنا يـى با نغر بهكروهوا
دورهاى هز تبه ا) باشد، زوج يا فرد است برحسب اينكه n-r زوج يا فرد باشد. نشان دهيدكه

$$
\begin{equation*}
(1 r),(r r), \cdots,(n-1, n) \tag{r}
\end{equation*}
$$

تو !يد كرد.
نشان دهيدكه

$$
\gamma=(1 \upharpoonright \cdots n), \quad \tau=(1 \upharpoonright)
$$

توليد شود.
 و بعكس، اگر (
 $\gamma^{n-1} ، . . . ، \gamma$ ثا بت تشكيل شده است.
;

 از G يك جا يغثـت位 G وتى كa
 -هבدارى از . $\eta=\lambda_{u}$ ، u u ازدارى
(10) ثابت كنيدكه اگر G

$$
\cdot[G: H] \geqslant 4 \cdot!\bar{x}_{i} T
$$

 (
 درميان خود g (n (1 خرف دارند.

^

قضيههاى سيلو

 ازمر تبهٔ

 جا يگشتها هورد استفاده قر ار گر اوفته است.

برهان. (1 (1) هى نويسيم

$$
g=p_{z}^{b}
$$

كه z عدد صحيح مثُتى است كه لزومى ندارد با p متبا ين با شد. فهرست كامل زيرمجهوعههايى از G را كه شامل

$$
\mathscr{K}: K_{1}, K_{Y}, \cdots, K_{n}
$$

 زير گَر وه است.
 F

$$
|K|=p^{b}
$$

 داشت. درواقع، زگا شت

$$
K_{i} \rightarrow K_{i} x(i=1, r, \cdots, n)
$$

 كنيم؛ ز يرمجموعهمایى داشته باشل بهطورى كه همارزی برقرارند مشكلى نخو اهد داشت. درنتيجه، K

 زيرمجموعههاى متها يـسز O(K) بهصورت

$$
\mathscr{K}=o(K) \cup o\left(K^{\prime}\right) \cup o\left(K^{\prime \prime}\right) \cup \ldots
$$

بيان میشود كه در آن عناصر هرطرف بهدست مى آوريم

$$
n=|o(K)|+\left|o\left(K^{\prime}\right)\right|+\left|o\left(K^{\prime \prime}\right)\right|+\ldots
$$

|V| تخنيهاها سيلو
(Y) اینك يكى از ملارها، مـُلا

$$
S=\{u \in G \mid K u=K\}
$$

 است. فرض كنيم كه

$$
G=\bigcup_{i=1}^{r} S t_{i} \quad\left(t_{1}=1\right)
$$

$$
K t_{1}, K t_{Y}, \cdots, K t_{r}
$$

 ${ }^{\bullet} S t_{i}=S t_{j}$ زيرا الگر

 اينرو $K x=K u t_{i}=K t_{i}$. بدين گونه ثنا بت كردها يم كه

$$
|o(K)|=[G: S]
$$

اطال ع بيشتردد هورد S را مىتوان از اين واقميت كه علد اصلى K بهصورت علدى است

$$
K S=K
$$

$$
\begin{align*}
& \text { اگر . } \\
& K=v_{1} S \cup v_{\gamma} S \cup v_{\gamma} S \cup \ldots
\end{align*}
$$

لذا K اجتما ع هممجموعههاى حب S است. مى دانيم هر دو تا از اين هممجموعهما بـا هـا متها مز نل ويأ بكى هستند وهر يك داراى | | متهايز در (Y.A) برابر f f باشد، داريم

$$
p^{b}=f|S|
$$

از ا ينجا نتيجه مى شود كه |S| توانى از p است، مثـلا"

$$
|S|=p^{c}
$$

كه در آن c c . الم دوحالت را بايد ازهم تميز یاد.

الف) (الف (ا
اما اگر اينحالت ر خ دهد، آزگاه داريم

$$
|o(K)|=\frac{g}{p^{b}}=z
$$

كه z در (1-1) تعرين شهه است. جون حالا | |

$$
K=v S \quad(v \in K)
$$

روشن است كه زيرمجهو عئ

$$
H=K v^{-1}=v: S v^{-1}
$$

 نتيجه هى شود كه

$$
[G: H]=z=|o(K)|
$$

$$
H w_{1}, H w_{y}, \cdots, H w_{z}
$$

فرض كنيم

 (ب)

$$
|o(K)|=\frac{g}{p^{c}}=z p^{b-c}
$$

از اينرو

$$
|o(K)| \equiv \circ(\bmod p z)
$$

 سازش تـرار خخـواهد گرفت، زيرا شا . $|S| \geqslant|K|=p^{b}$

TVY تضيههاى سيلو

(r) اكنون به ((

 بر

$$
\begin{equation*}
n \equiv m z(\bmod p z) \tag{11.1}
\end{equation*}
$$

 رو تْهٔ را صر يحاً حنْين بنو يسبيم

$$
n=m_{G} z+k_{G} p z
$$

كه در آن درباب n بهدست آوزيم اين نتيجه زا بزا بها سيتناد تضيئ اصلى بنا براين

$$
n=z+k_{c} p z
$$

ازمساوى قزار دادن دوعبار تى كه برائ n بيدا كرديم خيو اميم داشت

$$
z+k_{c} p z=m_{G} z+k_{G} p z
$$

از اينجا با تقسيم دوطرف ;..اوى بر z، خواهيم داشت

$$
m_{G} \equiv 1(\bmod p)
$$

و اين همان جیيزى است كه ادءا شده بود.
 آنها را در اين بخش بيان مى كينيم.
 p باشد كه مرته گروه G G,

اشنايم با نظريهرووهوا IYץ
برهان. اين يك حالت نحاص تضيةٌ اصلى YV است. اين تضيه متناظر با بزد خترين مقدار ممكن براى نماى b است.
 كه p-F
بها ازاى يك عدد اول، يك گرووه G ممكن است بيش از يك گروره سيلو داشنه باشد.
 نيز يــك زير گروه از مر تبهُ
 مى گويدكه هيحج گروه سيلوى ديگرى وجود ندارد.

قضيه اصلى YQ (دومين قضيغ اصلى سيلو). همه گروههاى سيلوى G كــه متناظر با بك عدد اول هستند با يكديخر در G مزدو جاند.

برهان. همجون تعرين اها، قرارمىدهيم

$$
\begin{align*}
& G=A t_{1} B \cup A t_{\gamma} B \cup \cdots \cup A t_{r} B \\
& g=p^{\gamma a} \sum_{i=1}^{r} d_{i}^{-1} \\
& d_{i}=\left|t_{i}^{-1} A t_{i} \cap B\right|
\end{align*}
$$

از تقسيم سراسر (I Y ا بر م

$$
g^{\prime}=p^{a} \sum_{i=1}^{r} d_{i}^{-1}
$$

اهر ال

 . $d_{j}=p^{a}$. $p^{a} d_{j}^{-1}=1$

$$
p^{\prime}=\left|t_{j}^{-1} A t_{j} \cap B\right|
$$

هون گروهواى

قثنيههاى سيلو IVD

هر تبةٌ p

$$
B=t_{j}^{-1} A t_{j}
$$

فرع I ـ يلث گرو0 متتاهى G هتناظر بــا يك عدد اول مفروضى p نقط و نتط وختى داراى يل گروه سيلوى يكتاي P اسيت كه P P در G نرمال باشند.

 تضيه اصلى ه م: (سومين قضيه اصلى سيلو). ذرضكنيم r تعداد p
 هرتةه G.
 باقى مىها ند ائبات اينكه

$$
\Phi: P_{1}(=P), P_{r}, \cdots, P_{r}
$$

 (AA

$$
r=[G: N(P)]
$$

 كردن نگاشت

$$
P \rightarrow x^{-1} P x \quad(P \in \mathbb{P})
$$

 يعنى تمام P P مدار P است، و داريم

$$
|o(P)|=r
$$

 (1 (Δ.)

 بهازاى يك عدد اول، منحصر اً داراى يك گروه سيلو باشد.

قضي2 اس. ذرضى كينم G از مرتبة ($q \neq 1(\bmod p)$,

برهان. فرض كنيم تعداد p-p
 مى شود كـه (q ، q =1 (mod p)
 مىدهيم. بنا برا اين

$$
P \triangleleft G, P=\operatorname{gp}\{u\}
$$

 آنگاه زير گروه نرمال Q از مر تبءٔ q با مو لد Q است. لذا

$$
Q \triangleleft G, Q=\operatorname{gp}\{v\}
$$

هون مرتبدهاى P P

$$
P \cap Q=\{1\}
$$

$$
u v=\imath u
$$

حاصلضر بهاى

IVY كضيههاى سيلو

$$
u^{\alpha} v^{\beta}(\alpha=0,1, \cdots, p-1 ; \beta=0,1, \cdots, q-1)
$$

 زيرا جون

 يكتا از مر تبءٔ Y ب بءده و بنا برا ين ساده نيست.

 عناصر از م تجاوز خواهدكرد. -هطلب را با بك تتيجهُ كليتر در باب تروهروهاى سيلو ادامه مىدهيم.
 از
 P نيز، كه با $u^{-1} P u$ با

$$
h_{1}^{-1}\left(u^{-1} P u\right)=P
$$

اين بدينمعنى است كه

تمام گروههای هو حتو ان هتناهى است.
ق قضيه اصلى $p_{1}^{\alpha \prime} p_{r}^{\alpha_{r}} \cdots p_{r}^{\alpha_{r}}$. .
 اول
(الi) $\quad P_{i} \triangleleft G \quad(i=1, r, \ldots, r)$
(!) $\quad G=P_{1} \times P_{Y} \times \cdots \times P_{r}$

$$
\Gamma_{i}(K \times L)=\Gamma_{i}(K) \times \Gamma_{i}(L) \quad(i=1, r, \cdots)
$$

از ایندرو اگر (

 بعنى قضئ
 روشناست كه وقتى

$$
P_{1} P_{Y} \ldots P_{r}=P_{1} \times P_{Y} \times \ldots \times P_{r}
$$

اين يكنز ير گروه از مر تبة́
(1) نشان دهيدكه
 داده شلده درصفحات 0
(F (

(p

IY9 9نيبهاياي سيلو

$$
\begin{aligned}
& \text { K (ه) فرض كيم p }
\end{aligned}
$$

$$
\begin{aligned}
& \text { سيلم ترّر دارد. }
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } H \cap P
\end{aligned}
$$

جواب تمرينها

$$
\begin{align*}
& \cdots a^{n}=\alpha^{n} x+\beta\left(\alpha^{n}-1\right) /(\alpha-1) \tag{r}\\
& \cdot a b=(a b)^{-1}=b^{-1} a^{-1}=b a \tag{r}
\end{align*}
$$

$$
\begin{align*}
& \cdot a^{m} b^{n-1}=b\left(a b^{-1}\right) b^{-1} \quad a^{m-\gamma} b^{n}=a^{-1}\left(a^{-1} b\right) a \text { توجهك كيد } \tag{}
\end{align*}
$$

$$
\begin{align*}
& . z=x^{u m}, y=x^{r n} \tag{4}
\end{align*}
$$

(u,
جواب استكه يكى ازآنجا ا 1 است.

$$
\begin{align*}
& \text { اختيا كري } \\
& .\left(a_{r} y c_{1} c_{Y} \ldots c_{r}\right)\left(x z b, b_{Y} \ldots b_{s}\right)(\Xi) \\
& \text { فصل } \\
& \text { هر گا } \tag{r}
\end{align*}
$$

جون
|A| جواب تمرينيا

هر گگـاه G دورى باشُد، نتيجه از قضيهُ اصلم ب به دست مى آيد. هر گاه G دوزی نبا شد، قرار مىدهيم

است.

$$
\cdot \operatorname{gp}\left\{a b, a^{r} b\right\} \operatorname{gp}\left\{a^{r}, b\right\} \operatorname{gp}\{a\}
$$

كافى الهت نشان دهيم اين روا بطط وجيد ايجاب عناصر را بهصورت

$$
\begin{aligned}
& b^{r}=b^{-1} b^{\curlyvee} b=b^{-1} a^{\prime} b=a^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text {.gp }\{r\} \times \operatorname{gp}\{r \circ\} \text { يعنى (}
\end{aligned}
$$

هر گاه

 ر $h_{1}=1$ را بلزءج

 وتى $p_{n, 1}=1:(i<n) p_{i, i+1}=1$ نا نا , و بقية

- ($\Delta \mid$ | \mid)
 بـا قطـر

آشنا يى با نغر بهتروميا

توج_ه ك:يدك_ه

گ/ G / N

(Y O 1 $b c=c b, a c=c a, a b=b a c$ هردو تسـت با اسنة, اء روى k و با استفاده از انُبات مى تُود.

 ، $a^{\gamma}=[a, b]$ (10)
 . $G^{\prime}=Z=\operatorname{lol}$ براين (${ }^{\prime}$ (

 . $C \neq G$ مساوى باشد. لذا N ("یْ

 ‘ $\alpha^{-1} \tau \alpha \in I(G)$ ‘ $\alpha \sigma=\tau \alpha$ li_-! $\cdot a=s^{-1}(x \alpha) s: x \tau \alpha=\left(t^{-1} x t\right) x$.$I(G) \triangleleft A(G)$
(

$$
\text { . } G^{\prime} \alpha=G^{\prime}
$$

F

 كه

ويرَ گَى مطلمب است.
قرار دهيد گروه دورى انست. هـلُ ازمر تبئ فزضل كیْ

جواب تمرينبا
e, (ץ) (

$$
\begin{aligned}
& \text { - } C_{\infty} \oplus C_{r} \oplus C_{\varphi} \\
& . e_{1}=r \quad r=r(ب) e_{1}=r \quad r=1 \text { (l) } \\
& { }^{6} v_{r}=-u_{r}, r_{r}=u_{r}-u_{r}, v_{1}=u_{1}+u_{r}+k u_{r} \\
& s_{r}=r_{1}+r_{r}-(k+1) r_{r}{ }^{\prime} s_{Y}=r_{Y}-r_{r} \quad s_{1}=r_{r} \\
& \cdot e_{r}=(k-1)(k+r) \cdot e_{r}=k-1 \cdot e_{1}=1
\end{aligned}
$$

بهموجب قضيةٔ اصلى P ما نند . $\left|P_{i}\right|=p^{8 i}$

 باشد. دومين برداز مبنا،
 كه وجود دازند. لذا بدتعداد

$$
\left(p^{r}-1\right)\left(p^{r}-p\right)\left(p^{r}-p^{r}\right)
$$

$$
\begin{equation*}
R=\operatorname{gp}\left\{r_{1}, r_{Y}, \cdots, r_{m}\right\} \tag{1Y}
\end{equation*}
$$

را با تساوى $r_{i}=\sum_{j} b_{i j} u_{j}$ خربب B از داست در Q و ازحب در P مىشود.

فوض
 روشن استكــه F

U U
 $$
\begin{equation*} C_{F}(ب) \cdot C_{Y} \times C_{Y}(1) \tag{r} \end{equation*}
$$

(r (

فصل 9

دز هر دو حا تر كيبي در آوزد.
; فض كنيم

 هیءن
همجهو ن تهنبی (Y) است.

جحدن يعنى |.1.$d \in Z$
$v^{-1}[x, y] v=v^{-1}\left(x^{-1} y^{-1} x y\right) v=c^{-1} d^{-1} c d[x, y]=[x, y]$! !
 (G/M ششاها M با بشا $\left.\alpha=0,1, \cdots, r^{n}-1\right) a^{\alpha} b^{\beta}$ ~ناص-ز , بيان كرد. جون

 آ آ داراى انديس Y هستنا.

فـرض كــنيــم . $n=m_{1}+m_{Y}+\cdots+m_{r}$ با 1 . $i=1, r, \cdots, r$) از از
| جواب كرينها

 عباد نثاى استفادهكيد. فسـت اول از فرمول

$$
\prod_{\lambda=1}^{k}\left(a_{1}^{(\lambda)} a_{\curlyvee}^{(\lambda)} \ldots a_{r}^{(\lambda)}\right)=\left(a_{1}^{(1)} a_{1}^{(\Upsilon)} \ldots a_{1}^{(k)} a_{\uparrow}^{(\lambda)} a_{\Upsilon}^{(\gamma)} \cdots a_{\Gamma}^{(k)} a_{\Gamma}^{(1)} \cdots\right)^{k}
$$

 Y، صفحة ديگرى نيست.

تمرينات (צ) و (Y) تعر يف شدها
،

$$
؛ a \lambda_{u} \rho_{x}=u^{-1} a x=a \rho_{x} \lambda_{u}(a \in G) \text { (ج) }
$$

ونتط اگر بهازاى هر

 تنيير هى كند

 مطلب براى هر يك از حروف ديگر نيز صادق است.

 انتخاب سه شیء از از بين خها جا يگشتشای (

 ابن يك

 كه در يك گروه مر تَهٔ
 $1+y q \mid p^{r} q$ ايجاب مى كین
 مساوى
 فرض

$$
G=K t_{,} P \cup K t_{\gamma} P \cup \cdots \cup K t_{r} P
$$

 . $K \leqslant t_{j}^{-1} P t_{j}$ دادد بهطورى كه به استناد تهر ين (ه)، فرض كیيم
 روشن است كه، $P \leqslant H P$. لاگَانز مىدهد كه HP/

 خيزى است كه بدان نياز داشتيم•

وازُ هنامة ازگليسى بهفارسى

alternating character alternating group automorphism	شُاخص تناو يى كروه تناو بیى خود زيختى
canonical form	صورت
cardinal number	علد اصلى
centralizer	مرى كز ساز
central series	سرى مرك كزى
characteristic subgroup	
class equation	رهاد دلهٔ ردها
commutative group	
commutator group	گروه نعو يضخر
conjugacy class	ردهٔ هز دور
conjugate element	عنصر هزدونج
conjugate groups	
coprime numbers	اعداد متبا ين
coset	هصمهجهو
cycle	درد
cyclic group	گّروه دورى
cyclic Pattern	فالب دورى
derived group	كروه هسشق

derived series
dihedral group
direct product
direct sum
dodecahedral group
double coset

$$
\begin{aligned}
& \text { سرى •تُتْ } \\
& \text { گَروه دووجنڭى } \\
& \text { حاصلضرب مستقيّم } \\
& \text { حاصلجمع هستقيم } \\
& \text { گروه دوازدهوجڭڤى } \\
& \text { هــججموعهُ مضضا }
\end{aligned}
$$

epimorphism
بر ريختى
factor group
faithful representation
finitely generated group
four_group
syn:vierergruppe
free group
گروه آزاد
general linear map
generator
مو لد
hexahedral group
homomorphic group

گروه هـر يخت
icosahedral group
idempotent element
identity element
imprimitive group
intransitive group
invariant subgroup
isomorphic groups
isomorphism

kernel

گروه ييستوجئى
عنصرخْودتوان عنصرهمهانى گَروه غير او ليه

گروه زاترايا
زير گروه بإيا
گروهرهاى يكر يخت
يكر يختى
k-ply transitive
ترايا يى k-تايى
latin square
مر بعلاتين

وازءنامه انگليسى بهفارسى 1A9
left regular representation lower central series
نها يش منظم جـب سرى مر كزى زيرين
maximal normal subgroup
modulus
monomorphism
زير گروهنرمالما كسيمال هـخگ
;كر يختى
nested subgroups
neutral element
nilpotent group
normal closure
normalizer
زير گروهياى تودز تو
عنصرخنتى
گَروه بو جّتوان
بستار نر. ال
زرمال ساز
octahedral group
order
گروه هثتو جڭثى

مر تبه
pattern
period
permutation representation primary component
proper subgroup
زير گَروه حنثبنیى
quaternion group
quotient group

$$
\begin{aligned}
& \text { گروه جار تايى } \\
& \text { گروه خارج جـسهت }
\end{aligned}
$$

tetrahedral group
كروه خڭاروجهىtorsion subgrouptransitive group
زير گروه پيحشّىگروه تراياtranspositionترا انهُ
transversalترا گرد
unimodular groupunit subgroup
گروه يكهُخیى
زير گروه واهد
vierergruppe \rightarrow four-group

واءزهنامة فارسى بهانگليسى

coprime numbers	اشداد بتبا بن
epimorphism	برز يختى
normal closure	بسانزا ز
stabilizer	بالدار ساز
transversal	ترا گرد
transposition	ترانجا
k-ply transitive	ترايايا يا k-تايّى
monomorphism	;
right regular permutation	جا يخشّ منظم راست
direct sum	حاصلجهع مستهيم
direct product	حاصلضرب دستقيم
automorphism	خدد ر يختى
cycle	دور
period	د:رءّ تناوب
rank	ر i'به

subgroup
invariant subgroup
torsion subgroup
proper subgroup
Characteristic subgroup
maximal normal subgroup
unit subgroup
nested subgroups

زير گروه
-
- يـيخّى
ـ
-
- نرمال ما كسيهال
-
- هاى تودرتو

central series	سرى مركزى
lower central series	- زيرين
derived series	سرى مشتّ

alternating character
standard form
canonical form
cardinal number
neutral element
idempotent element
conjugate element
identity element
pattern
cyclic pattern
صورت استا نده
صودت قانونى

اصلى خرختى نصر نوردنو برْ هور ज100

group	گروه
free group	- آزاد
icosahedral group	-
nilpotent group	- بوهتّوان
transitive group	- ترايا
commutative group	- تّعويضهير

وازدناءهُ فارسى بهانتليسى IPr

commutator group	- تهو يضگر
alternating group	- تناو بیى
quaternion group	- جارتايى
four-group, vierergruppe	- -جار ينه
tetrahedral group	-
soluble group	- حلمدير
quotient group	
self-conjugate group	-
dodecahedral group	- دوازدهوهو
cyclic group	- دورى
dihedral group	-
hexahedral group	- شسوجهئى
factor group	- عاملى
imprimitive group	- غيراو لـ
symmetric	- متحّارن
finitely generated group	
derived group	-
intransitive group	- نا
conjugate groups	- هایى هزدورج
isomorphic group	- هاى يكر يخت
octahedral group	- هـتو هـ¢
homomorphic groups	- همر يخت -
unimodular group	-
primary component	مؤ لفئ او ليه
double coset	همهجموعة مضاءف؛
latin square	مر بـع لاتين
order	هر تر
centralizer	مركز ساز
class equation	معاد الهٔ دوهاى
generator	مو لد
normalizer	ترما لساز
general linear map	
permutation representation	نـايش جايخشتى

faithful representationleft regular representation
نها يش صادق

نما يش منظمهجب
word
reduced word ـ ـ كاستهkernelهستهcosetmodulusهمמجـجوعههنگگisomorphismيكر يختى

مراجع

Burnside, W ., 1911. Theory of groups of finite order, 2nd edition. (Reprint by Dover Publications, 1955.)

Coxeter, H. S. M., and Moser, W. O., 1965. Generators and relations for discrete groups, 2nd edition (Springer).
Hall, Marshall Jr., 1959. The theory of groups (Macmillan).
Hupert, B., 1967. Endliche Gruppen I (Springer).
Kurosh, A.G., The theory of groups, 2 vols. (transl. from the Russian by K. A. Hirsch, Chelsea, 1955).

Miller, G. A., Blichfeld, H. F., and Dickson, L. E., 1916. Theory and application of finite groups (John Wiley: reprint by Dover Publications, 1961).

Zassenhaus, H., The theory of groups (transl. from the German by S. Kraivety, 2nd edition New York, 1958)

فهرست راهنما

حاصلضرب	\|شتراك زا
-	انديس
-	
-	برد يختى Vه
-	lov بإيا
-	109 109
人 خودتوان	
خץ	Ir
-	ترا
-	
خو	تراياى k'إی 190
	تر كيب
دستغاه غير إو ليه \|	\% ${ }^{\text {\% }}$
دور	A r
دورة 19 تناوب	FY تكر بختى
1^ دورى	
رابطه ¢ 11	-
-	-
رتبه	1的 -
ردء هز دوج	جدولضرب
زير گروه	حاصلجهع مستقيم گر وهي

	-
^ر	-
40 40 هر كز	1sY ${ }_{\text {- }}$
484 48	-
¢ 4 ¢	-
\| 10 V ، 10 Y Y	- اY¢ -
-	11 -
- زایه	-
- غيرزا	-
-	-
	- נو و -
$9 \vee$ j ${ }^{\text {j }}$	-
1000ر\%	IIr \% - رابطها -
Yo \%\%	4^0 -
VV -	-
نهائ	-
1 DV جا	VI
-	- غير اوإيه \| ا¢
1ヶ人 -	- ra -
1 $1 \Delta 9$ - منظم	- 1\% -
1oyع	-
	4V -
110 وازؤكاسته	Ar -
	10^
VD هـ	-
VF	VY - هـر -
**atar	IV -
-	
- راست	
09 9 -	
11 skion	متباين
IV	10-10

[^0]: 1. Cauchy
