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Preface

The aim of this series of problem-solvers is to provide a selection of
worked examples in algebra designed to supplement undergraduate
algebra courses. We have attempted. mainly with the average student
in mind, to produce a varied selection of exercises while incorporating
a few of a more challenging nature. Although complete solutions are
included. it is intended that these should be consulted by readers only
after they have attempted the questions. In this way, it is hoped that
the student will gain confidence in his or her approach to the art of
problem-solving which. after all, is what mathematics is all about.

The problems. although arranged in chapters, have not been
'graded' within each chapter so that, if readers cannot do problem n
this should not discourage them from attempting problem n + 1. A
great many of the ideas involved in these problems have been used in
examination papers of one sort or another. Some test papers (without
solutions) are included at the end of each book; these contain questions
based on the topics covered.

TSB,EFR
St Andrews
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Background reference material

Cour~e~ on ab~tract algebra can be yery different in ~tyle and content.
Like\\'ise. textbooks recommended for thesE' courses can yary enorm­
ousJ.y. not only in notation and expo~ition hut al~o in their leyel of
sophistication. Here is a list of somE' major tE'xts that are widely used
and to which the reader ma~' refer for background material. The
subject mattE'r of these texts cO\'ers all six of the presE'nt yolumes. and
in some ca.SE'S a great deal more. For the cO!l\'enience of the readE'r there
is giyen O\'erleaf an indication of \\,hich parts of which of these texts
are most releyant to the appropriate ~ection~ of this yolume.

[1 j 1. T. Adam,;on. llltrodurtioll to Field Theory. Cambridge
l'niYersity Pre"s. 19S:!.

[:!] F. Ayrt·,; ..Jr. Jlodern Algebm. Schaum's Outline :-;eries.
}IcGraw-Hill. 196;).

[3] D. Burton. A .fir.,t I'OII/'.'e ill rillg" (llId ideal". Addi"on-\Yesley.
HliP.

[-!j P. }!. Cohn. Algebra \'01. I. \Yiley. HIS:!.
[,')j D. T. Finkbeiner ll. IlItrodurtioll to JIatrire" alld Linear

Tra l14'orlllatioll.'. Freeman. 1!liS.
[H] R. (;odement. Algebm. Kershaw. I!lS;3.
[ij ./. A. Green. -'d.' olld (;roUjJ8. Routledge and Kegan Paul.

19l);).
[S1 1. X. Herstein. '['opic8 ill Algebra. \Yill,.\·. 19'i'i.
[!II K. Hoffman and R. Kunze. Lillear Algebra. Prpntice Hall.

I !li'!
1111 :-;. Lang. IlItroductioll tl) LiNear Algebra . •-\ddi"on-\Yesley. 1\liO.
I 1I :-;. Lipsch utz. Lillea I' Algebra. :-;d1a um's Outline :-;erie~.

}(d;nm-Hill. 1!li-!.
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[12J 1. D. }Iacdonald. The Theory oJ OroujJs. Oxford l'niH>rsity
Press. 1968.

[13J S. }lacLane and G. Birkhoff. Al~7ebra. }Iacmillan. 1968.
[14J X. H. }lcCoy. Introduction to JIodern Algebra. ~-\llyn and

Bar·on. 19i;").
[1;,)J .J ..J. Rotman. The Theory oJOrouJ)8: An Introduction. Allyn

and Bacon. 19i:3.
[16J 1. Stewart. Oalois Theory. Chapman and Hall. H)i;').
[liJ I. Stewart and D. Tall. The Foundations oJ JIathematics.

Oxford l"niYersity Press. 19ii.

References useful for Book 5
1: Subgroups [4. Sections 9.1. 9.6J. [6. Chapter I].
[8. Sections 2.1. :U1J. [12. Chapters 1-6J.
[13. Sections 13.1. 13.4J. [15 Chapters 1-4J.
2: Automorphisms and Sylow theOl'~' [4. Sections 9.4.9.8].
[8. Section 2.12]. [12. Chapter I]. [13. Section 13.;)].
[15. Chapter ;')].
:L Series [4. Sections 9.2.9.,5]. [12. Chapters 9.10].
[13. Sections 13.&--13.8J. [15. Chapter 6J.
-1: Presentations [4. Section 9.9]. [12. Chapter 8J.
[15. Chapter 11 J.
In [8J morphisms are written on the left but permutations are
written as mappings on the right. In [4J and [12J all mappings
(including permutations) are written as mappings on the right.
In American texts' soh'able' is lIsed where we haye used
.soluble'.

IX



1: Subgroups

The isomorphism and correspondence theorems for groups should be
familiar to the reader. The first isomorphism theorem (that if f : G -+ H
is a group morphism then G/ Ker f ~ Im f) is a fundamental result from
which follow further isomorphisms: if A :::; G (i.e. A is a subgroup of
G), if N <1 G (i.e. N is a normal subgroup of G), and if K <1 G with
K:::; N, then

AI(AnN)~NAIN and GIN ~ (G I K)/(NI K).

The correspondence theorem relates the subgroups of GIN to the sub­
groups of G that contain N.

Elements a, b of G are said to be conjugate if a == g-l bg for some
9 E G. Conjugacy is an equivalence relation on G and the correspond­
ing classes are called conj ugacy classes. The ::mbset of G consisting of
those elements that belong to singleton conjugacy classes fonus a normal
subgroup Z(G) called the centre of G. For H :::; G the subset

)jc;(H) = {g E G I (Vh EH) g-lhg E H}

is called the normaliser of H in G. It is the largest subgroup of G in which
H is normal. The derived group of G is the subgroup G' generated by
all the commutators fa, b] = a-lb-lab in G, and is the smallest normal
subgroup of G with abelian quotient group.

Examples are most commonly constructed with groups of matrices
(subgroups of the group GL(n, F) of invertible n x n matrices with entries
in a field F), groups of permutations (subgroups of the symmetric groups
Sn), groups given by generators and relations, and direct (cartesian)
products of given groups.



Book 5 Groups

An example of a presentation is

Since l(b}1 = 3 and (b) <0 G with G/(b} ~ C2 (the cyclic group of order
2), we see that IGI = 6. The generators a and b can be taken to corre­
spond to the permut ations (1 2) and (1 23) which generate 53, or to the
matrices

which generate SL(2, :l2), the group of 2 x 2 matrices of determinant 1
with entries in the field :l2. Thus we have that G ~ 53 ~ SL(2, :l2)'

1.1 Let G be a group, let H be a subgroup of G and let K be a subgroup
of H. Prove that

IG: KI = IG : HIIH : KI·
Deduce that the intersection of a finite number of subgroups of finite
index is a subgroup of finite index. Is the intersection of an infinite
number of subgroups of finite index necessarily also of finite index?

1.2 Let G be a group and let H be a subgroup of G. Prove that the only
left coset of H in G that is a subgroup of G is H itself. Prove that the
assignment

'P: xH f-> Hx- 1

describes a mapping from the set of left cosets of H in G to the set of
right cosets of H. Show also that 'P is a bijection. Does the prescription

?jJ : xH f-> H x

describe a mapping from the set of left cosets of H to the set of right
cosets of H? If so, is ?jJ a bijeetion?

1.3 Find a group G with subgroups Hand K such that H K is not a sub­
group.

1.4 Consider the subgroup H = ((1 2)} of 53. Show how the left cosets of H
partition 53. Show also how the right cosets of H partition 53' Deduce
that H is not a normal subgroup of 53.

1.5 Let G be a group and let H be a subgroup of G. If 9 E G is such that
I(g) I = n and gm EH where m and n are coprime, show that 9 E H.

2



1: Subgroups

1.6 Let G be a group. Prove that

(i) If H is a subgroup of G then H H = H.
(ii) If X is a finite subset of G with XX = X then X is a subgroup of

G.

Show that (ii) fails for infinite subsets X.

1.7 Let G be a group and let Hand K be subgroups of G. For a given
x E G define the double coset H xK by

HxK = {hxk ! hE H, k E K}.

If yK is a left coset of K, show that either HxK n yK = I/) or yK ~

HxK. Hence show that for all x, y E G either HxK n HyK = I/) or
HxK = HyK.

1.8 Let n be a prime power and let Cn be a cyclic group of order n. If H
and K are subgroups of Cn, prove that either H is a subgroup of K or
K is a subgroup of H. Suppose, conversely, that Cn is a cyclic group of
order n with the property that, for any two subgroups Hand K of Cn,
either H is a subgroup of K or K is a subgroup of H. Is n necessarily
a prime power?

1.9 Let G be a group. Given a subgroup H of G, define

He; = ng-1 Hg.
gEl;

Prove that He; is a normal subgroup of G and that if K is a subgroup
of H that is normal in G then K is a normal subgroup of He;.

Now let G = GL(2,4;)) and let H be the subgroup of non-singular
diagonal matrices. Determine He. In this case, to what well-known
group is He isomorphic?

1.10 Let H be the subset of Mat2X2 (<[) that consists of the elements

[1 0] [-1 0] [ 0 1] [0 -1]
o l' 0 -1' -1 0' 1 0'
[0 i] [0 -i] [-i 0] [i 0]i 0' -i 0' 0 i' 0 -i'

Prove that H is a non-abelian group under matrix multiplication (called
the quaternion group). Find all the elements of order 2 in H. Find also
all the subgroups of H. Which of the subgroups are normal? Does H
have a quotient group that is isomorphic to the cyclic group of order 4?

3



Book 5 Groups

1.11 The dihedral group D2n is the subgroup of GL(2, «:) that is generated by
the matrices

where 0' = e2tri / n .

Prove that ID2n l 2n and that D2n contains a cyclic subgroup of
index 2.

Let G be the subgroup of GL(2, ~IL) given by

Prove that G is isomorphic to D2n . Show also that, for every positive
integer n, D2n is a quotient group of the subgroup D oc of GL(2,~) given
by

1.12 Let 4:)+, IR+, «:+ denote respectively the additive groups of rational, real,
complex numbers; and let lQ' ,IR' ,«:' be the corresponding multiplicative
groups. If U = {z E «: I izl = I} and lQ~o, IR~o are the multiplicative
subgroups of positive rationals and reals, prove that

(i) {+ /IR+ -::= IR+;
(ii) {" /IR~o -::= U;

(iii) (" /U -::= IR~o -::= IR' /C2 ;

(iv) IR' /IR~o -::= C2 -::= 4:)' /4:)~o;
(v) 4:)' /C2 -::= lQ~o'

1.13 Let p be a fixed prime. Denote by ~p= the pnth roots of unity for all
positive integers n. Then ~P' is a subgroup of the group of non-zero
complex numbers under multiplication.

Prove that every proper subgroup of ~p x is a finite cyclic group; and
that every non-trivial quotient group of ~p x is isomorphic to ~P' .

Prove that ~px and lQ+ satisfy the property that every finite subset
generates a cyclic group.

1.14 Show that if no element of a 2-group G has order 4 then G is abelian.
Show that the dihedral and quaternion groups of order 8 are the only

non-abelian groups of order 8. Show further that these two groups are
not isomorphic.

4



1: Subgroups

1.15 According to Lagrange's theorem, what are the possible orders of sub­
groups of 84 ? For each kind of cycle structure in 84 , write down an
element with that cycle structure, and determine the total number of
such elements. State the order of the elements of each type.

What are the orders of the elements of 84 , and how many are there
of each order? How many subgroups of order 2 does 84 have, and how
many of order 3? Find all the cyclic subgroups of 84 that are of order
4. Find all the non-cyclic subgroups of order 4.

Find all the subgroups of order 6, and all of order 8. Find also a
subgroup of order 12.

Find an abelian normal subgroup V of 84 , Is 84 /V isomorphic to
some subgroup of 84 ?

Does A4 have a subgroup of order 6?

1.16 Consider the subgroup of 88 that is generated by {a, b} where

a = (1234) (5678) and b = (1537) (2846).

Determine the order of this subgroup and show that it is isomorphic to
the quaternion group. Is it isomorphic to any of the subgroups of order
8 in 84 ?

1.17 Suppose that p is a permutation which, when decomposed into a product
of disjoint cycles, has all these cycles of the same length. Prove that p
is a power of some cycle {J.

Prove conversely that if {J = (1 2 ... m) then {JS decomposes into a
product of h.c.f.(m, s) disjoint cycles of length m/h.c.f.(m, s).

1.18 Let SL(2, p) be the group of 2 x 2 matrices of determinant 1 with entries
in the field lLp (where p is a prime). Show that SL(2, p) contains p2(p_1)
elements of the form

where a i- O. Show also that SL(2, p) contains p(p - 1) elements of the
form

Deduce that ISL(2,p)1 = p(p - l)(p + 1).
If Z denotes the centre of SL(2,p) define

PSL(2, p) = SL(2, p)/Z.

5



Book 5 Groups

Show that IPSL(2,p)1 = ~p(p - 1)(p + 1) if p =f- 2.
More generally, consider the group SL( n, p) of n x n matrices of de­

terminant 1 with entries in the field 7l.p . Using the fact that the rows of
a non-singular matrix are linearly independent, prove that

n-l

1 IT .ISL(n,p)1 = _ (pn _ p').
p-1

;=0

1.19 Let F be a field in which 1 + 1 =f- 0 and consider the group SL(2, F)
of 2 x 2 matrices of determinant 1 with entries in F. Prove that if
A E SL(2,F) then A2 = -h if and only if tr(A) = 0 (where tr(A) is
the trace of A, namely the sum of its diagonal elements).

Let PSL(2, F) be the group SL(2, F)IZ(SL(2, F)) and denote by A
the image of A E SL(2, F) under the natural morphism q : SL(2, F) -+

PSL(2,F). Show that A is of order 2 if and only if tr(A) = O.

1.20 Show that C2 x C2 is a non-cyclic group of order 4. Prove that if G is
a non-cyclic group of order 4 then G ~ C2 X C2 .

1.21 If p, q are primes show that the number of proper non-trivial subgroups
of Cp x Cq is greater than or equal to 2, and that equality holds if and
only if p =f- q.

1.22 If G, H are simple groups show that G x H has exactly two proper
non-trivial normal subgroups unless IGI = IHI and is a prime.

1.23 Is the cartesian product of two periodic groups also periodic? Is the
cartesian product of two torsion-free groups also torsion-free?

1.24 Let G be a group and let A, B be normal subgroups of G such that
G = AB. If A n B = N prove that

GIN ~ AIN x BIN.

Show that this result fails if G = AB where the subgroup A is normal
but the subgroup B is not.

1.25 Let f : G -> H be a group morph ism. Suppose that A is a normal
subgroup of G and that the restriction of f to A is an isomorphism onto
H. Prove that

G ~ A x Ker f.
Is this result true without the condition that A be normal?

Deduce that (using the notation defined in question 1.12)

(i) {+ ~ IR+ x IR+;

6



1: Subgroups

(ii) 4;)" ~ 4;)~o X C2 ;

(iii) IR" ~ IR~o x C2 ;

(iv) {' ~ IR~o x U.

1.26 Find all the subgroups of C2 x C2 . Draw the subgroup Hasse diagram.
Prove that if G is a group whose subgroup Hasse diagram is identical

to that of C2 x C2 then G ~ C2 X C2 .

1.27 Find all the subgroups of C2 x C2 X C2 and draw the subgroup Hasse
diagram.

1.28 Consider the set of integers n with 1 -:::: n -:::: 21 and n coprime to 21.
Show that this set forms an abelian group under multiplication modulo
21, and that this group is isomorphic to O2 x 0 6 . Is this group cyclic?

Is the set
{n E 7l. I 1 -:::: n -:::: 12, n coprime to 12}

a cyclic group under multiplication modulo 12?

1.29 Determine which of the following groups are decomposable into a carte­
sian product of two non-trivial subgroups:

1.30 Let G be an abelian group and let H be a subgroup of G. Suppose that,
given hE Hand nE IN, the equation xn = h has a solution in G if and
only if it has a solution in H. Show that given xH there exists y E xH
with y of the same order in G as xH has in G/ H. Deduce that if G/ H
is cyclic then there is a subgroup K of G with G ~ H x K.

1.31 Let G be an abelian group. If x, y E G have orders rn, n respectively,
show that xy has order at most rnn. Show also that if Z E G has order
mn where rn and n are coprime then z = xy where x, y E G satisfy
xm = yn = 1. Deduce that x and y have orders rn, n respectively.

Extend this result to the case where z has order rnl rn2 .. rnk where
rnl, ... ,rnk are pairwise coprime.

Hence prove that if G is a finite abelian group of order

where PI, ... ,Pk are distinct primes then

G = HI X H 2 X ... X H k

where H, = {x E G I xp
" = I} for i 1, ... ,k. Show also that if r

divides IGI then G has a subgroup of order r.

7



Book 5 Groups

1.32 Let H be a subgroup of a group G. Prove that the intersection of all
the conjugates of H is a normal subgroup of G.

If x E G is it possible that

is a subgroup of G? Can A be a normal subgroup? Can A be a subgroup
that is not normal?

1.33 Are all subgroups of order 2 conjugate in 54? What about all subgroups
of order 3?

Are the elements (123) and (234) conjugate in A 4 ?

1.34 Show that a subgroup H of a group G is normal if and only if it is a
union of conjugacy classes.

Exhibit an element from each conjugacy class of 54 and state how
many elements there are in each class. Deduce that the only possible
orders for non-trivial proper normal subgroups of 54 are 4 and 12. Show
also that normal subgroups of orders 4 and 12 do exist in 54'

1.35 Exhibit an element from each conjngacy class of 55. How many elements
are there in each conjugacy class? What are the orders of the elements
of 55? Find all the non-trivial proper normal subgroups of 55.

Find the conjugacy classes of A5 and deduce that it has no proper
non-trivial normal subgroups.

1.36 If G is a group and a E G prove that the number of elements in the
conjugacy class of a is the index of Ne; (a) in G. Deduce that in Sn the
only elements that commute with a cycle of length n are the powers of
that cycle.

Suppose that n is an odd integer, with n ?: 3. Prove that there are
two conjugacy classes of cycles of length n in An. Show also that each
of these classes contains Hn - I)! elements.

Show that if n is all ~ven integer with n ?: 4 then there are two
conjugacy classes of cycles of length n - 1 in 5n , and that each of these
classes contains ~n (n ~ 2)! elements.

1.31 If G is a group and a E G prove that the conjugacy class containing a
and that containing a-I have the same number of elements.

Suppose now that IG! is even. Show that there is at least one a E G
with ai-I such that a is conjugate to a-I.

1.38 Find the conjugacy classes of the dihedral group Dzn when n is odd.
What are the classes when n is even?

8



1: Subgroups

1.39 Let C be a group and let Hand K be conjugate subgroups of C. Prove
that Nc(H) and Nc(K) are conjugate.

1.40 Let H be a normal subgroup of a group C with IHI = 2. Prove that
H ~ Z(C).

Is it necessarily true that H ~ Cl?
Prove that if C contains exactly one element x of order 2 then (x) ~

Z(C).

1.41 Suppose that N is a normal subgroup of a group C with the property
that N n Cl = 1. Prove that N ~ Z(C) and deduce that

Z(C/N) = Z(C)/N.

9



2.1

2: Automorphisms and Sylow theory

An isomorphism f : C --> C is called an automorphism on C. The auto­
morphisllls on a group G form, under composition of mappings, a group
Aut C. Conjugation by a fixed element 9 of C, namely the mapping
'Pg : C --> C described by x --> <Pg (x) = g-1 xg, is an automorphism on
G. ThE.' inner automolphism group Inn C = {<pg I 9 E C} is a normal
subgroup of AutC, arid the quotient group AutC/InnC is called the
outer all tomorphism gPJUp of C. For example, the cyclic group Cn (be­
ing abeljan) has trivial inner automorphism group, and {} : Cn --> Cn

given by lJ(g) = g-1 is an (outer) automorphism of order 2. A subgroup
JI of a group C is normal if and only if lJ(H) ~ H for every {} E Inn C,
and is called characteristic if fJ(H) ~ H for every 19 E Aut C.

For finite gn"lps, the convelse of Lagrange's theorem is false. How­
ever, a I'artial crmverse is provided by the important theorems of Sylow.
A group P is called a p-group if every element has order a power of p
for a fixed prim'~ p. In this case, if P is finite, IPI is also a power ,)f p.
If C is a group with IC = pn k where .'; is coprime to p then a subi;roup
of order pn is «,lled a Sylow p-subgruup. ri' this situation we have the
following results, with which v;e assume the reader is famili:tr :

(a) C has a subgroup of order pm for every m S; n;
(b) evelY p-suhgroup of C is contained in a Sylow p-subgroupj
(c) any two Sylow p-subgroups are conjug1lte in Cj
(d) the number of Sylow p-subgroups of C is congruent to 1 modulo p

and divides ICj.

Let p be a prime. Usc the class equotion to show that every finite p­
group has a non-trivial centre. Ded'lce that all groups of order p2 are
abelian.

:



2: Automorphisrns (Ind 5ylow theory

List all the groups of order 9.

2.2 Let G be a group and let {} C Aut G. If A and B :tre subgroups of G
prove that {)(A, B) is a Sll bgr(·up of ',; A n {} B. Is it li,"cessarily true th:tt
l~(A n E) = {}A n {}B?

2.3 Let G be a group and ld Inn G be tb" group of inner autollwrphislll., on
G. Prove that Inn G is a normal suhbl'Oup of Allt G and tj,·,t

InnG::= G/Z(G).

The two non-abelian groups of order 8 are the dihedral group Ds with
presentation

Ds = (a, b I a2 = 1, b4 = 1, a-Iba = b- 1
)

and the quaternion group Qs with presentation

Qs=(x,y I x4=1,X2c~y2,y-lxyo--'X-l).

Show that Z(Ds ) = (b 2 ) ::= G2 and Z(Qs) = (x2 ) ::= C2. Deduce that
Inn Ds ::= Inn Qs.

2.4 Let G be a group with the property that it cannot be decomposed into
the direct product of two non·trivial subgroups. Does every subgroup
of G have this property? Does every quotient group of G have this
property?

2.5 If G is a group such that G/ Z( G) is cyclic, prove that G is abelian.
Deduce that a group with a cyclic automorphism group is necessarily
abelian.

2.6 Find the automorphisl11 group of the ~ymmptric group 83 .

2.7 Prove that C2 x C2 and 8 3 have isomorphic automorphism groups.

2.8 Let G be a group with Z(G) = {I}. Prove that Z(Aut G) = {I}. Is the
converse true in general?

2.9 Let 71.p denote the field of integers modulo p where p is a prime, and let
71.; be an n-dimensional vector space over 71./.. Prove that the additive
group of 71.; is isomorphic to the group

Gp x Cp x ... x Gp

consisting of n copies of Cl}'

Show that every element of Au t G corresponds to an invertible linear
transformation on 71.;.

Deduce that
Aut G::= GL(n,p).

2.10 Find all groups G with Aut G = {I}.

11



Book 5 Groups

2.11 A subgroup H of a group G is called fully invariant if tJ(H) ~ H for
every group morphism tJ : G --4 G. Which of the following statements
are true?

(a) The derived group of a group is fully invariant.
(b) The centre of a group is fully invariant.
(c) A 4 contains a normal subgroup that is not fully invariant.
(d) Gn = (gn ! 9 E G) is a fully invariant subgroup of G.
(e) Gn = (g E G I gn = 1) is a fully invariant subgroup of G.

2.12 Let G be a group and C a conjugacy class in G. If 0' E Aut G prove that
O'(C) is also a conjugacy class of G.

Let K be the set of conj ugacy classes of G and define

N = {O' E Aut G I (VC E K) O'(C) = C}.

Prove that N is a normal subgroup of Aut G.

2.13 Let G be a group and N a normal subgroup of G. Let A = Aut Nand
I = Inn N. If 0 is the centraliser of N in G prove that NC is a normal
subgroup of G and that GINO is isomorphic to a subgroup of the outer
automorphism group AI I of N. Show also that NC IC ~ I.

Prove that if the outer automorphism group of N is trivial and Z(N) =
{I} then G = N x C. Deduce that a group G contains 53 as a normal
subgroup if and only if G = 53 X C for some normal subgroup C of G.

2.14 Prove that if G is a group then

(a) a subgroup H is characteristic in G if and only if {}(H) = H for
every {} E Aut G;

(b) the intersection of a family of characteristic subgroups of G is a
characteristic subgroup of G;

(c) if H,K are characteristic subgroups of G then so is HK;
(d) if H, K are characteristic subgroups of G then so is [H, K];
(e) if H is a normal subgroup of G, and K is a characteristic subgroup

of H, then K is a normal subgroup of G.

2.15 Suppose that G is a finite group and that H is a normal subgroup of G
such that IHI, is coprime to IG : Hi. Prove that H is characteristic in G.

2.16 Let G be a group and let F be the subset consisting of those elements
x of G that have only finitely many conjugates in G. Prove that F is a
subgroup of G. Is F a normal subgroup? Is F characteristic in G?

2.17 Ht E G;)\{O} prove that {}t: G;)+ --4 G;)+ given by {}t(r) = trisan automor­
phism of the (additive) group (Q+. Deduce that the only characteristic
subgroups of (Q+ are {I} and G;)+.

12
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2: Automorphisms and Sylow theory

2.18 Suppose that G is a finite group and that H is a subgroup of G. Show
that every Sylow p-subgroup of H is contained in a Sylow p-subgroup
of G. Prove also that no pair of distinct p-subgroups of H can lie in the
same Sylow p-subgroup of G.

Now suppose that that H is normal in G and that P is a Sylow p­
subgroup of G. Prove that H n P is a Sylow p-subgroup of H and that
HP/H is a Sylow p-subgroup of G/H. Is HnP a Sylow p-subgroup of
H if we drop the condition that H be normal in G?

2.19 Prove that a normal p-subgroup of a finite group G is contained in every
Sylow p-subgroup of G.

Suppose that, for every prime p dividing JGI, Ghas a normal Sylow p­
subgroup. Prove that G is the direct product of its Sylow p-subgroups.

2.20 Determine the structure of the Sylow p-subgroups of A" and find the
number of Sylow p-subgroups for each prime p.

2.21 Let G be a finite group and let K be a normal subgroup of G. Suppose
that P is a Sylow p-subgroup of K. Show that, for all g E G, g-l Pg
is also a Sylow p-subgroup of K. Use the fact that these Sylow p­
subgroups are conjugate in K to deduce that G = N(P) K. Deduce
further that if P is a Sylow p-subgroup of G and N(P) :::; H :::; G then
N(H) = H.

2.22 Let G be a finite group with the property that all its Sylow subgroups
are cyclic. Show that every su bgroup of G has this property.

Prove that any two p-subgroups of G of the same order are conjugate.
Let Hand N be subgroups of G with N normal in G. Show that

IN n HI = h·c.f·(INI, IHf),

IHNI = l.c.m·(INI, IHI)·

Deduce that every normal subgroup of G is characteristic.

2.23 Use the Sylow theorems to prove that

(a) every group of order 200 has a normal Sylow 5-subgrouPi
(b) there is no simple group of order 40;
(c) there is no simple group of order 56;
(d) every group of order 35 is cyclic.

2.24 Use the Sylow theorems to prove that

(a) every group of order 85 is cyclic;
(b) if p, q are distinct primes then a group of order p2 q cannot be simple.

13



Book 5 Groups

2.25 LC)t G be a group of order pq where p, q are distinct primes such that
q t'- 1 nwdulo p. Prove that G has a normal Sylow p-subgroup. Show
that this result fails if q == 1 modulo p. Show that if IGI = pq where
p, q are distinct primes then G is not simple. Deduce further that if p, q
are distinct primes with p t'- 1 modulo q and q t'- 1 modulo p then every
group of order pq is cyclic.

2.26 Suppose that a group Ghas the property that if n divides IGI then Ghas
a subgroup of order n. Does every subgroup of G have this property?

2.27 Let G be a finite group and P a Sylow p-subgroup of G. Suppose that
x, y E Z(P) and are conjugate in G. Show that x, y are conjugate in
N(P).

2.28 Let G be a group with a subgroup H of index n in G. Show that there
is a largest nODllal subgroup K of G that is contained in H and that
G/ K is isomorphic to a subgroup of Sn.

Deduce that if G is a simple group with IGI = 60 (there is exactly
one such group, namely As, but this bct is not required) then G has no
subgroups of order 15, 20 or 30.

2.29 Let Gbe a simple group with IGI = 168. Prove that Ghas eight Sylow
7-subgroups. Show also that if P is a Sylow 7-subgroup of G then

'I NdP)1 = 21. Deduce that G contains no subgroup of order 14.

14



3: Series

Given subgroups A, B of a group G we obtain the subgroup

lA, BJ = (la, b] i a E A, bE B).

In particular, [G, Gl is the derived group of G. We define the derived se­
ries of G to be the most rapidly descending series with abelian quotients
(factors), namely

G(O) = G, (Vi ~ 1) G{i) = [GU-I), G(i-I)].

We say that G is soluble of derived length n if n is the least integer with
G(n) = {I}.

Similarly, the most rapidly descending central series and the most
rapidly ascending central series of G are the lower central series and the
upper central series, defined by

fl(G) = G,

Zo = {I},

(Vi ~ 1)

(Vi ~ 1)

fi+I(G) = [fi(G),G],

Zi/Zi-I = Z(GjZi-d

respectively. The lower central series reaches {I} in a finite number of
steps if and only if the upper central series reaches G in a finite number
of steps. In this case G is said to be nilpotent, and the number of factors
in either series is the class of G.

Every subgroup H of a nilpotent group G is subnormal, in the sense
that there is a series

H = Ho <J HI <J ••• <J Hr = G.

The final type of series with which we assume the reader is familiar
is called a composition series. This is a subnormal series from {I} into
which no further terms can be properly inserted.



Book 5 Groups

3.1 Let G be a group. Establish each of the following results concerning
commutators.

(a) If S ~ G and T ~ G then [S,T] == [T,S].
(b) If H <I G and K <I G then [H, K] ~ H n K. What does this imply

whenHnK=={l}?
(c) If x,y,z E G then

[xy,z] == y-l[X,Z]Y[Y,z].

Deduce that if H, K, L are normal subgroups of G then

[HL, K] == [H, K] [L, K].

(d) Define [a,b,e,] == [[a,b],e]. Prove that

[a, be] == [a, cl [a, b] [a, b, cl

and that
[ab, e] == la, cl [a, e, b] lb, e].

3.2 Find the upper and lower central series of G == Qa x Cz and show that
they do not coincide. Show, however, that the upper and lower central
series of Qa do coincide.

3.3 Prove that if G is generated by its subnormal abelian subgroups then any
quotient group of G is generated by its subnormal abelian subgroups.

Show that every subgroup of a nilpotent group is subnormal. Deduce
that a nilpotent group is generated by its subnormal abelian subgroups.

3.4 Let A, B, C be subgroups of a group G with B <I A. Prove that

AnC '" B(AnC)
BnC - B

If, in addition, C <I G prove that

AC A
BC ~ B(A n C)'

Use the above results to show that if H is a soluble group then every
subgroup and every quotient group of H is soluble.

Prove that if K is a group with H <I K and both H and KI Hare
soluble then K is soluble.

Let G be a group with normal subgroups A and B such that GIA and
GIB are soluble. Show that AI(A n B) is soluble and deduce that so
also is G/(A n B).

16
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3.5 Which of the following statements are true? Give a proof for those that
are true and a counter-example to those that are false.

(a) Let G be a group and let H, K be normal soluble subgroups of G.
Then HK is a normal soluble subgroup of G.

(b) Let G be a group and H, K normal abelian subgroups of G. Then
H K is a normal abelian subgroup of G.

(c) Let G be a group and H, K normal p-subgroups of G. Then H K
is a normal p-subgroup of G.

3.6 Let G be a non-trivial finite nilpotent group. Use induction on IGI
to prove that every proper subgroup of G is properly contained in its
normaliser. Deduce that every Sylow subgroup of G is normal.
[Hint. Use question 2.21.]

3.7 Suppose that G is a group with the properties

(a) G is nilpotent of class 3;
(b) IGI = 16.

Prove that G contains a unique cyclic subgroup of order 8.
Give an example of such a group.

3.8 A group G is said to be residually nilpotent if it has a series of subgroups

G = HI ~ H2 ~ ... ~ Hi ~ ...

with [Hi,G]::; Hi+ 1 and n~1 Hi = {1}.
Show that a finite group is residually nilpotent if and only if it is

nilpotent. Give an example of a residually nilpotent group that is not
nilpotent.

Prove that every subgroup of a residually nilpotent group is also resid­
ually nilpotent. Show that a quotient group of a residually nilpotent
group need not be resid ually nilpotent.

3.9 Establish the identity

[xy, z] = y-I [x, z]y[y, z].

Hence show that if A is a subgroup of a group G then [G, A] is normal
in G.

Prove that if G is a group with a non-trivial subgroup A such that
A = [A, G] then G cannot be nilpotent.

A minimal normal subgroup of a group is a non-trivial normal sub­
group which properly contains no non-trivial normal subgroup of the
group. Deduce from the above that every minimal normal subgroup of
a nilpotent group is contained in the centre of the group.

17
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l. ;

3.10 Let p be a prime. Prove that every finite p-group is nilpotent.
Let G = H x K where IHI = p2 and IKI = p3. Prove that if G is

non-abelian then G is nilpotent of cb,s 2 and IZ( G) 11 = p3.

3.11 Let G be the multiplicative group

Find the centre of G and the derived group of G. Prove that G is
nilpotent and that the upper and lower central series for G coincide.

Let t l2 , t13 , t':J3 denote the matrices

[ ~ ~ ~], [~ ~ ~], [~ ~ ~1
00100 1 0 0 1J

respectively. Pruve that

G = (t12, t13, t23 ),

Find a subnormal series for each of the subgroups

(t12), (t I3 ), (t 23 ).

3.12 Let X, Y, Z be subgroups of a group G and let

A=[X,Y,Z], B=[Y,Z,X], C=[Z,X,Y]. 1

Prove that if N is a normal subgroup of G that contains two of A, B, C
then N contains the third.
[Hint. Use the identity [x,y-l,zIY(y,z-l,x]Z[z,x-l,yjX = 1.]

Deduce that if G has subgroups Hand K such that

H = Ho ~ HI ~ H2 ~ , '

is a series of normal subgroups of H with [Hi, K] :::; Hi +1 for all i ~ 0
then [Hi, f n(K)J :::; Hi+n for every nE IN where f n(K) is the nth term
of the lower central series for K.

Suppose that G has lower central series G = f l ~ f 2 ~ "', upper
central series {I} = Zo :::; ZI :::; "', and derived series G = G(O) ~

GP) ~ "'. Prove that

(a) [fm,fn]:::; f m +n ;

(b) IZm, f n] :::; Zm-n;
(c) [Zm, f m ] = {I};
(d) G(r) :::; f 2 ,;

(e) if G = G(ll then ZI = Z2.

18



3: Series

3.13 Let C be a group with iC/Z(C)1 = pn. Let x E Z2(C) and N = {[x, g)
9 E C). Prove that IN, < pn.

Use induction to prove that C' is a p-group of order at most ptn(n-l).

3.14 Let C be a finite group and let <I> be t he intersection of all the maximal
subgroups of G. Prove that if H is a subgroup of C such that G = <I>H
then H = G.

Let T be a Sylow p-subgroup of <I> and let 9 E C. By considering T
and Tg, prove that 9 E Nc;(T)<I>. Deduce that every Sylow p-subgroup
of <I> is normal.

3.15 A group G is said to satisfy the maximum condition for subgroups if for
every chain of subgroups

HI :::: H2 :::: ... :::: Hn :::: ...

there is an integer N such that (Vm ~ N) Hm = H N .

Prove that C satisfi,s the maximum condition for subgroups if and
only if every su bgroup of C is finitely generated.

A group C is called polycyclzc if C has a series

C C:~ Ho ~ HI ~ .. ~ Hr = {I}

with Hi <J Hi- 1 and Hi-I! Hi cyclic for i = 1, ... , r.
Prove that a group C is polycyclic if and only if C is soluble and

satisfies the maximum condition for subgroups.

1.16 Suppose that A and Bare abelian subgroups of a group C such that
C = AB. Use the relation

[xy,z) = y-l[X,Z)y[y,z]

to prove that [A, Bl is normal in G and hence show that C' = [A, B].
Prove further that if ai, a2 E A and b1 , b2 E B then

(a2b2)-1 [ai, bda2b2 = (b2a2)-1 [ai, bdb2a2

and deduce that [A, B) is abelian.
Conclude that C is soluble of derived length at most 2.

3.17 Let C be a finite nilpotent group. PFNe that every maximal subgroup
of C is normal.

Let S be a Sylow p-subgroup of C and suppose that Ne(S) is properly
contained in G. Let M be a maximal subgroup of G containing Ne(S).
Show tha.t if 9 E C then Sand g-l S g are Sylow p-subgroups of M and
derive the contradiction that gEM. Hence deduce that Ne(S) = C
and that C has just one Sylow p-subgroup for each prime p that divides
the order of C.

Prove also that C is the direct product of its Sylow subgroups.

19
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3.18 Let M be a maximal subgroup of a finite soluble group G. Let K be the
intersection of all the subgroups of G that are conjugate to M. Prove
that K is the largest normal subgroup of G contained in M.

Let HI K be a minimal normal subgroup of GIK. Prove that G =
HM and that H nM = K.

Deduce that the index of M in G is equal to the order of HIK.

3.19 A group G is called metacyclic if it has a normal subgroup N such that
Nand GIN are cyclic.

Prove that every su bgroup and every quotient group of a metacyclic
group is also metacyclic.

Show that the group described by

is metacyclic.

3.20 Let F be a field. If a E F and 1 ~ i < j ~ n let tij(a) be the matrix
in GL(n, F) that differs from the identity in having a in the (i,j)-th
position. Let

Tn(F) = (t;j(a) I 1 ~ i < j ~ n, a E F).

Prove that Tn(F) is the subgroup of GL(n, F) consisting of all upper
triangular n x n matrices over F of the form

1 * * *
o 1 * *
o 0 1 *

000

For 1 ~ k ~ n -1 let Hk = (tij(a) I j - i::::: k, a E F). Prove that

is a central series for Tn(F).
If F = 7l.p for some prime p, show that T,,(F) is a Sylow p--subgroup

of SL(n, F).

3.21 Show that the groups 53, 54 and 5" have unique composition series.
Find the composition series for each of these groups.

What can you say about a composition series of 5" when n ::::: 5?

20



3: Series

1.22 Let G be a group of order prqs where p and q are distinct primes. Sup­
pose that G has composition series

G = Al > Az > '" > A r+ s+ l = {I},

G = B I > Bz > ... > B r + s+ l = {I}

such that IAr+11 = qS and IBs+II = pr. Show that Ar+ l and BS+ I are
normal subgroups of G and deduce that G is the direct product of these
subgroups.

21



4: Presentations

Given an abelian group G with a presentation

the relation matrix of the presentation is the m x n matrix A = [ajj]

where Qjj is the exponent sum of Xj in the relation rj = 1. Now A can
be reduced by elementary row and column operations, in which only
integer multiples are used, to a diagonal matrix D = diag{ d1 , ••• , dt }

where t = min{n, m}. This is equivalent to finding invertible integer
matrices P, Q such that P AQ-l = D. We can assume that d1 , •.• , dk
are non-zero and dk + 1 , .•. , dt are zero. Then if C is the direct product
of n - k copies of Coo we have

G"" Cd, X Cd, X ... X Cd. X C.

If G is a group then G/G' is abelian, and G is called perfect if G/G' is
the trivial group. If G is given by the presentation (X I R) then G /G'
is given by the presentation (X I R, C) where

C = {[Xj, Xj] I Xi, Xj EX}.

This is a special case of von Dyck's theorem which shows that adding
relations to a group presentation leads to a quotient group. In fact,
von Dyck's theorem lies behind the method of showing that a given
presentation defines a particular group.

4.1 Let G be the abelian group

( a, b, c I a37 b27
C

47 = a52 b37
C

67 = a59 b44 c74 = 1,

ab = ba, be = cb, ca = ac).



4: Presentations

Express G as a direct product of cyclic groups.
By adding th" relation a3 b2 e4 = 1 to those of G show that a3 b2 e4 is

not the identity of G. Deduce that a3 b2 e4 is an element of order 5 in G.
Find an element of (,rder 7 and an element of order 35 in G.

4.2 Express each of the fo]1owing as a dir,ct product of cyclic groups:

(a) (a,b,e I a2 b3 e6 =a4 bg e4 = 1, ab=ba, be=eb, ea=ae);
(b) (a, b, e I a2 b3 e6 = a4 bg e4 = a"bee2 = 1, ab = ba, be = cb, ae =

ca ).

4.3 Let G be the group wit,h presentation

G = (a,b I al-ab2 = 1).

Show that G is abelian. Describe the structure of G.

4.4 Let G be an abelian group. Show that the elements of finite order form
a subgroup T. Let Q consist of the elements of infinite order together
with the identity element. Find a nec,~ssary and sufficient condition for
Q to be a subgroup of G.

Let IT be the set of primes and define a group G as follows. Let
X = UPETI 71.p and let G be the set of mappings f : IT --> X such that
ftp) E 71.p for every p E IT. Given f, '1 E G define f + g : IT --> X to be
the mapping given by

(Vp E IT) (f + g)(p) = ftp) + g(p).

Show that G is an abelian group containing elements of prime order for
every prime, and elements of infinite order.

Prove that the subgroup T in this case consists of those mappings
f E G with the property that there are only finitely many p E IT with
ftp) -# o.

45 Let G be the group with presentation

Prove that GIG' is infinite if and only if m = n or 2m = -no
Show further that G is perfect if and only if G is the trivial group.

4.6 If n is an integer that is coprime to 6 show that there is an integer k
such that the group

(x,y I, x2 ~= (xy)3, (xy4xytln+ll)2ynx2k = 1)

is perfect.
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4.7 Find GIG' when G is given by

Groups

where n is an odd integer.

4.8 Let G be the group generated by R, S, T, U, V, W, X subject to the rela­
tions

R X = SaTbuc ,

SV RY = 1,

VYTaUd = 1,

T-1WV z = 1,

W-zU a = 1,

UX-1W t = 1,

X t = 1.

Find a presentation for G on the generators R, S, T, U.
Show that whether GIG' is finite depends only on x, y, Z, t, a. Give

precise conditions for GIG' to be finite. Find values of a, b, c, d, x, y, Z, t
so that

(a) G is perfect;
(b) GIG' ~ C16 ;

(c) GIG' ~ C2 x C4 X Cg.

4.9 Let G be the group with presentation

where the subscripts are reduced modulo 2m to lie between 1 and 2m.
Prove that G = (ai, a2)'
Define the Fibonacci sequence by

It = 1, h = 1, (Vn 2=: 1) fn+2 = fn+l + fn.

Prove that
(Vn 2=: 2)

If gn = fn-l + fn+l show that

if m is even;
if m is odd.
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4: Presentations

'.10 Let G be defined by

and let H be defined by

2" -2 2 2
H = (a, b I a = b = (ab) ).

Prove that G ~ H by showing that the relations of G imply those of H
and conversely.

'.11 Show that the groups

G = (a, b I a4 = 1, a2 = b2
, ab = ba3

)

H = ( a, b I a = bab, b = aba )

K = (a, b I ab = c, be = a, ca = b)

are isomorphic.
Show that

[ 0 1] [0 i] [i 0]
a = -1 0' b= i 0' c = 0 -i

satisfy the above presentations, and that the multiplicative group gen­
erated by a and b is the quaternion group. Deduce that all of the above
presentations are presentations of the quaternion group.

'.12 Let G be a group and suppose that

G = ( ai, ... , an ).

If an E G' n Z(G), prove that

Deduce that if HIA ~ Qg with A ~ Z(H) n H' then H ~ Qg.

'.13 Let G be the group with presentation

Prove that (xy)4 = 1 and y8 = 1.
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4.14 Let G be the group with presentation

G = (a, b I a7 = (a'2W = (a3 b? = (ab 5
)2 = 1).

Prove that G may also be presented as

(x,y I x2 = y3 = (xy)7 = ((y- 1xyx)4 y-l x )'2 = 1).

4.15 Let G be the group with presentation

( a, b, c, d, e I ab = c, be = d, cd == e, de = a, ea = b).

By eliminating c, d, e show that

(1) a == babab'2 ab,

(2) b == ab'2 aba.

Replacing the final a in (2) by the expression given by (1), show that
b5 = a-'2. Deduce, by multiplying (1) on the right by a and using (2),
that a = b-8 .

Conclude that G ~ ell'
4.16 Show that the group

G 0:= (a,b I ab = b'2 a, ba = a'2b)

is the trivial group.
More generally, consider the group

Gn=(a,b f abn = b,,+la, ban=an+1b).

Prove by induction on i that

Using the relations obtained by taking i = nand i = n + 1, deduce that
Gn is the trivial group.

4.17 Let SL(2,7) denote the group of 2 x 2 matrices of determinant 1 with
entries in 7L 7 , and let

PSL(2,7) = SL(2, 7)jZ(SL(2, 7)).

Let q: SL(2, 7) --> PSL(2, 7) be the natural map and let

a=q[~ ~J b==q[~ ~J
Show that (a, b) is the dihedral group of order 8.
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618 Let GL(2, 3) be the group of 2 x 2 nOJ;-singular matrices with entries in
!L3. Show that IGL(2,3)] = 48.

Prove that SL(2,3) is the derived group of GL(2, 3).
The quaternion group Qs may be presented by

Qs = a, b, c ab = c, bc = a, ca = b).

rrom this presentation it is clear that Qs has an automorphism {} of
order 3 which permutes a, b, c cyclically. Let H be Qs extended by this
automorphism {} of order 3. Show that H is isomorphic to SL(2,3).
Hence show that GL(2, 3) has derived length 4.

6 19 Let H be the group with presentation

(a, b i a2 = b3 = 1, (ant = (ab-lab)k).

Show th:tt H is generated by ab and ab-lab. Deduce that ((abt) is
contained in the centre of H. Prove also that ((abt) is contained in
the derived group of H.

6:!O Let C be the group with two generators a, b subject to the relations
x3 = 1 for all x E C. Show that [a, bl belongs to the centre of C.
Deduce that C is finite.

, :! 1 For any integers a, b, c define a group C by

C = (x,y I x2 = 1, xy"xyhxyc = 1).

Prove that y"( xyb-c x) y-b = xy"-C x and find two similar relations with
a, b, c permuted cyclically.

Deduce that y2(,,+h+c) commutes with xy,,-c x . Prove also that if
h.c.f.(a - c,b - c) = 1 then y2(a+b+c) commutes with xyx.

Finally, show that if h.c.f.(a - c,b - c) = 1 then

y2((J+b+c) E Z(C).

&:!2 Let C be the group

(x,t I xtm +l =t2x2, xt2xtx2t= 1).

Prove that

(a) xt2m +2X- 1 = tx- 2t- l ;
(b) [t2 , xt x] = 1;
(c) xt2x- 1 = t2m+lx-2t-l;
(d) xt2m x- 1 = t-2m .

Deduce that t2m E Z( C) and t 4m = 1.
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4.23 Let SL(2, il) be the group of 2 x 2 matrices of determinant 1 with entries
in 7l. Let

[11] [0 -1]s=01,t=10'

Prove that if [~ ~] E SL(2, il) then [~ ~] E (s, t ).

Suppose, by way of an inductive hypothesis, that [:: ~: ] E SL(2, il)

with Id'j < jdl implies [~: ~:]E (s,t). If

prove, by considering tsnm where Ib+ndl < Idl, that m E (s, t). Deduce
that SL(2, il) = (s, t).

Now let u = st and denote by tt, l the images of u, t under the nat­
ural map q : SL(2, il) ---> PSL(2, 7l). Use the above results to show

that PSL(2, il) = (u,l). Show also that u3 = l2 = 1, the identity of
PSL(2,71).

Suppose, if possible, that some word of the form

is equal to I in PSL(2, 7l). Show that there is a word of the fonn

that is equal to ±I in SL(2, 7l) and, by considering the trace of w, obtain
a contradiction.

Finally, show that

PSL(2,il) ~ (a,b I a2 = b3 = 1).
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Solutions to Chapter 1

Let G be partitioned by the set {H X a I a EA} of cosets of H, and let
H be partitioned by the set {KY{3 I f3 E B} of cosets of K. Suppose
that g E G. Then we have g E HX a for some a E A and so g = hXa

for some (unique) h E H. But h E KY{3 for some f3 E B and so we
have that g = kY{3x a for some k E K. Thus we see that every element
of G belongs to a coset K Y{3x a for some f3 E B and some a E A. The
result now follows from the fact that if KY{3x a = KY{3'x a , then, since
the left hand side is contained in the coset H X a and the right hand side
is contained in the coset H X a ', we have necessarily X a = X a ', which
gives KY{3 = Kyf3' and hence Y{3 = Y{3"

Now observe that (HnK)x = HxnKx for all subgroups Hand K of
G. Then, if Hand K have finite index, the fact that there are finitely
many cosets H x and K x implies that there are only finitely many cosets
of H n K, so H n K is also of finite index. The result for the intersection
of a finite number of subgroups now follows by induction.

The result is not true for an infinite number of subgroups each of finite
index. To see this, consider the additive group 71.. The subgroup n71. has
index nj but nn?:l n71. = {O} which is not of finite index in Z.

2 If xH is a subgroup of G then we have 1 E xH which gives X-I E
x-lxH = H and hence x E H, so that xH = H.

That 'P is a mapping (or, as some say, is well-defined) follows from
the observation that

xH = yH ==> y-lx E H

==>Hy-lx=H

==> Hy-l = Hx- l .
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~]

We have that

l]H
2 '

which is immediate from the observation that if

A=[10] B=[l
1 l' 1

It is clear that 'P is a bijection.
1/J on the other hand is not a mapping. To see this, take for example

G = GL(2,()) and

H= {[ ~

[~ ~]H = [ ~

then

However,

1.3

H[l O]i- H[l 1]
1 1 12'

since equality here would give the contradiction

BA- 1 =[ ° l]EH.-1 2

Consider the subgroups Hand K of the group G = GL(2, ()) given by

H={[~ n:bE()}, K={[~ n1aE()}.
It is readily seen that

H K = {[ 1 : ab nI a, b E () } .

But H K is not a subgroup of G since, for example, the matrices

[~ ~l
are each in H K but the product

is not.
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.. The right cosets are

H(l) = {(1), (12)}

H(13) = {(13), (132)}

H(23) = {(23), (123)}.

The left cosets :lre
(l)H = {(1), (12)}

(13)H = {(13), (123)}

(23)H = {(23), (132)}.

It is clear from this that H is not normal in G.

; Since m and n are coprime there exist integers a and b with am+ bn = l.
Then, using the fact thz1.t gn = 1, we have

Since it is given that gTll EH we have that (gm)a E H and hence 9 E H.

" (i) If H is a subgroup of G then clearly H H <;;; H; and, since every
subgroup contains the identity element, we have H = 1H <;;; H H.

(ii) Given x E X we have xX <;;; X X = X. Since y >--> xy is injective
(by the cancellation hw) we deduce that IxXI = IXI and hence, since
X is finite, that xX = X. Consequently, x = xe for some e E X. The
cancellation hw gives e = 1, and so we have that 1 E X. We now observe
from 1 E xX that 1 = xy for some y CC X, which gives X-I = Y E X. It
now follows from the fact that XX <;;; X that X is a subgroup of G.

That (ii) no longer holds when X is infinite may be seen, for example,
by taking G to be the additive group of integers and X to be the set of
non-negative integers.

: 7 Suppose that t E HxK n yK f 0. Then (with a notation that is self­
explanatory) we have t = hxk and t =~ yk l . If now sE yK then

and hence yK <;;; HxK.
Suppose now that t E HxK n HyK f 0. Then we have t = hIxk l

and t = h2 yk2 . If now sE HxK then

Thus HxK <;;; HyK, and similarly HyK <;;; HxK.
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1.8 Let Cn = (a) with n = pm where p is prime. If Hand K are subgroups
of Cn then we have H = (as) and K = (at). Now we can assume that
s = p" and t = pV where 0 :::; u :::; m and 0 :::; v :::; m. For, if s = kp"
where h.c.f.(k,p) = 1 then there are integers x,y with xk + ypm = 1.
Then (akp")X E Hand (apm)yp" EH since apm = 1. Thus

and so H = (aP''). It now follows that if u :::; v then we have K ~ H,
while if v :::; u then H ~ K.

The converse is also true. Suppose that n = pq where h.c.f.(p, q) = 1.
Then if Cn = (a) we have that l(aP)1 = q and l(aq)1 = p. Since p and q
are coprime, we have (aP ) n (a q

) = {I}. But this is not possible under
the assumption that, for any two subgroups Hand K, either H ~ K or
K~H.

1.9 Since g-IHg is a subgroup of G for every 9 E G we have that HG =

ngEGg-1Hg is a subgroup of G. Let x E HG. Then x E g-IHg for
every 9 E G and so, for every y E G, we have

which shows that y-l xy E H G • Thus we see that H G is a normal
subgroup of G.

Suppose now that K is a subgroup of H that is normal in G. Then if
k E K we have gkg- 1 E K for every 9 E G and so

which shows that k E ngEG g-1 H 9 = HG.
In the case where G = GL(2, 4:)) and H is the subgroup of non-singular

diagonal matrices, i.e.

H = {[ ~ ~] I a, b E Q, ab # o} ,
consider the subset K of H described by
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Clearly, K is a normal subgroup of G and so, by the above, we have

K~HG' ButifX=[~ ~]EHGthenfrom

[~ ~1][~ ~][~ n=[~ a~b]EHG~H
we deduce that a - b = 0 whence x E K and so HG = K.

K is isomorphic to the group of non-zero rationals under multiplica­
tion.

That H is a group is routine. The only element of order 2 is [ - ~ - ~l

([ -~ _~]) ~ C2 and is a subgroup of all the three cyclic subgroups

of order 4 given above.
The only other subgroups are H and {I}. For, if K is a subgroup

of H then IKI divides IHI = 8, so IKI is 1, 2, 4, or 8. The subgroups
of orders 1,8 are {I}, H respectively. There is only one subgroup of
order 2 since there is only one element of order 2. If IKI = 4 then
either K is cyclic (and so is given above) or K has all its non-trivial
elements of order 2 (since the order of an element divides the order of
the group). This is impossible since there is only one element of order
2. All these subgroups are normal (although the group is not abelian).
H cannot have a quotient group isomorphic to C4 • For, if HI K ~ C4

then K ~ C2 so K = ([ -~ _~]). But every non-trivial element has

square equal to [-1 0] so every non-trivial coset xK has order 2.o -1

Consequently HI K i'- C4 ·
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1.11 Let a = [0 1] and b = [0: 0] where 0: = e27fi
/

n
. Then clearly a is

1 0 0 0:- 1

of order 2 and b is of order n. Moreovei",

Thus (b) is a normal subgroup of D2n . Now

D2n /(b) = {(b), a(b)}

and so [D2n /(b)[ = 2 and [D2n l = 2n. The subgroup (b) is cyclic and of
index 2.

We observe that IGI = 2n; for E takes two possible values and k takes
n possible values. Now it is readily seen that the assignment

[-1 0]
ac-> 0 l'

sets up an isomorphism between D2n and the subgroup of G that IS

generated by

Since this subgroup has order 2n, which is the order of G, it must coin­
cide with G and so G is isomorphic to D 2n .

Consider now the mapping from D oo ---> D2n described by the assign­
ment

k (mod n)]
1 .

It is readily seen that this is a group morphism. Since it is clearly
surjective, it follows by the first isomorphism theorem that D2n is a
quotient group of D oo .
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:.12 (i) Define f: ([+ -> IR+ by f(a+ib) = a. Then f is a group morphism
which is surjective. Since

the result follows by the first isomorphism theorem.
(ii) Define f : ([" -> U by

b
a . b

a+i -> ~+~~.
va2 + 62 va2 + b2

Then f is a surjective group morphism with

Ker f = {a --- i6 E ([" I 6 = 0, .~ = I} ~ IR;o.
va2

The result now follows by the first isomorphism theorem.
(iii) Define f : {" -> IR;o by a+ i6 -> vla2 + b2 , and define 9 : IR" ->

IR;o by a -> 14 Then f and 9 are surjective group morphisms and the
result follows from the observation that

Ker f = {a + ib E ([" I Ja2+b2 = I} ~ U;

Ker 9 = {I, ~ I} ~ C2 ·

(iv) Define f : IR" -> G2 by

f(a)={!l
if a> OJ
if a < O.

Then f is a surjective group morphism with Ker f = IR;o'
Also, define 9 : IQ" -> G2 by

if a> 0;
if a < O.

Then 9 is a surjective group morphism with Ker 9 = IQ;o.
(v) Define f : IQ" -> G);o by a -> la!.

1.19 We have the chain of subgroups

with 7lp ' = Un>! Gp'" Here the cyclic subgroup Gpn is generated by
a primitive pnth-root of unity. To see that every proper subgroup of
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7l.poo is cyclic note that, given any subset X of 7l.poo, there is a smallest
member of the chain that contains X (this, of course, might be 7l.poo
itself). Now if X is finite then it is clear that this smallest member is
Gpn for some nj but if X is infinite then it must contain pnth roots of
unity for arbitrarily large n and so must generate 7l.px.

To see that 7l.px)Gpn ~ 7l.px , consider the mapping f : 7l.poo ----> 7l.poo
described by

It is readily seen that f is a surjective group morphism with Ker f = Gp",
so the result follows by the first isomorphism theorem.

For Q+, suppose that

X={E!.,
ql

Then clearly we have that

Xc/_1_)
- \ qlq2 ... qn

which is a cyclic group. Hence (X) is a subgroup of a cyclic group and
therefore is itself a cyclic group.

1.1..f. If no element of G has order 4 then clearly every element has order 1 or
2 and so x2 = 1 for every x E G. But then (xy? = 1 gives

xy = (xy)-l = y-1x- 1 = y2 y-I x-I x2 = yx

and so the group is abelian.
It follows from this that if G is non-abelian of order 8 then G contains

an element of order 4. Let this element be a. Clearly, {I, a, a2
, a3

} has
index 2 in G and so is nOTIllal. Suppose that b i- a2 is of order 2 in G.
Then b- l ab i- a (otherwise G would be abelian) and so b- l ab is of order
4 in (a) and so must be a3

• Thus G is the group

(a, b I a4 = b2 = 1, b-1ab = a-I)

which has order 8.
If G does not contain any other element of order 2 we can choose

b rf- (a) of order 4. Then b2 has order 2 and so b2 = a2. As in the above,
b- l ab i- a and so b- l ab = a3 and G is the quaternion group

(a,b I a4 =b4 =1, a2 =b2
, b-1ab=a- I

).

These groups are not isomorphic since the number of elements of order
2 in each is different.

36



Solutions to Chapter 1

1.15 The possible orders are the positive divisors of 24, namely 1, 2, 3, 4, 6,
8, 12, and 24.

(1)
(12)

(123)
(1234)

(12)(34)

1 element
6 elements
8 elements
6 elements
3 elements

order 1
order 2
order 3
order 4
order 2

There is one element of order 1; nine elements of order 2; eight elements
of order 3; six elements of order 4. There are nine subgroups of order 2,
and four subgroups of order 3 (each of which contains two elements of
order 3).

The cyclic subgroups of order 4 are

{(I), (1234), (I3)(24),(I432)}

{(I),(I324),(I2)(34),(I423)}

{(I),(I243), (I4)(23),(I342)}.

The non-cyclic subgroups of order 4 (~ C2 x C2 ) are

{(I),(I2)(34),(I3)(24),(I4)(23)}

{(I), (13), (24), (I3)(24)}

{(I), (14), (23), (I4)(23)}.

The subgroups of order 6 are those that fix one of 1, 2, 3, or 4. Hence
there are four such subgroups; for example, 4 is fixed by

{(I), (12), (13), (23), (123), (I32)}.

There are three subgroups of order 8, namely

{(I),(I3),(24),(I3)(24),(I2)(34),(I4)(23), (1234), (I432)}

{(I), (12), (34), (12)(34), (13)(24), (14)(23), (1324), (I423)}

{(I), (14), (23), (14)(23), (12)(34), (13)(24), (1243), (I342)}.

A4 is a subgroup of 84 of order 12.
An abelian normal subgroup of 84 is

V = {(I), (12)(34), (13)(24), (14)(23)}.

84 /V has order 6 and is isomorphic to 83 (which is a subgroup of 84 ),

A subgroup of A4 is necessarily a subgroup of 84 , Hence, if A4 had a
subgroup H with IHI = 6 then H must be one of the subgroups of 84 of
order 6. But none of these consist only of even permutations. Hence A4

has no subgroup of order 6. This, incidentally, shows that the converse
of Lagrange's theorem is false.
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1.16 We have that

The assignment

Groups

a = (1234)(.5678)

a2 = (13)(24)(.57)(68)

a3 = (1432)(.5876)

a4 = (1)

b = (1.537)(2846)

b2 = (13)(.57)(24)(86) = a2

b3 = (173.5)(2648)

b4 =(1)=a4

ab = (1836)(274.5)

ba = (1638)(2.547)

(ab)2 = (13)(86)(24)(7.5) = a2

(ab)3 = (1638)(2.547) = ba.

[
0 1] f------> (1234) (.5678)

-1 0

[~ ~] c-> (1.537)(2846)

extends to give the following isomorphism:

[~ ~]f------>(1)

[-~ _~]f------> (13)(24)(.57)(68)

[
0 1]f------> (1234)(.5678)

-1 0

[~ -~] f------> (1432)(.5876)

[~ ~] >--+ (1.537)(2846)
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[_~ -~ }-----> (1735)(2648)

[-~ ~]~ (1638)(2.547)

[~ _~]~ (1836)(2745).

It is easy to see that the quaternion group is not isomorphic to any of the
subgroups of order 8 in 54. For, in the quaternion group, there is only
one element of order 2 whereas the subgroups of order 8 in 54 have five
elements of order 2. The subgroups of order 8 in 54 are all isomorphic
to the dihedral group Ds . These are, in fact, the only two non-abelian
groups of order 8 (see question 1.14).

1.17 Suppose that

Then we have tllat p = ,,)' where

Conversely, suppose that ,J = (12 ... m). Then

6 8 =(1 8+1 28+1

0(2 8 + 2 28 + 2

o ...

(k-1)8+1)

.. (k - 1)8 -1- 2)

m m m
o (k 8 + k 28 + k

m
(k-1)s+-)

k

where k is the least positive integer such that ks is divisible by m. Hence
k = m/h.c.L( m, s) and the cycles have length m/h.c.L( m, s). Also, there
are m/k = h.c.f.( m, 8) cycles in the decomposition as required.

1.18 We can choose a in p - 1 ways since 7l.p contains p - 1 non-zero elements.
The elements band e are arbitrary while d is uniquely determined by
the condition that ad - be = 1 (i.e. d = a-I (1 + be)). Thus there are
p2(p _ 1) elements of this form.

Consider now [~ ~]. As d is arbitrary it can be chosen in p ways.

Since -be = 1 the element b must be non-zero, so can be chosen in
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p - 1 ways. Then c = _b- 1 is uniquely determined. There are therefore
p(p - 1) elements of this form.

We thus have

ISL(2,p)[ = p2(p - 1) + p(p - 1) = p(p - l)(p + 1).

The centre Z of SL(2,p) is

Hence, if p f= 2, we have IZI = 2 and so

ISL(2,p)/ZI = !p(p - l)(p + 1).

Since SL(2,2) is a group of order 6 and is non-abelian, it must be the
symmetric group 83 .

We count the number of n x n matrices over lL p with linearly inde­
pendent rows. The first row can be any n-tuple except zero, so there
are pn - 1 possible first rows. Now there are p multiples of the first
row and the second row can be any except these; so there are pn - p
possible second rows. Again, there are p2 linear combinations of the first
two rows and the third row can be any but these; so there are pn _ p2
possible third rows. Continuing in this way, we see that there are

n-lIT (pn _ pi)
;=0

such matrices.
Finally, consider the morph ism from the group of these matrices to

the multiplicative group of non-zero elements of lLp that is described by
the determinant map. The result follows from the fact that SL(n, p) is
the kernel of this morphism.

1.19 Suppose that A = [: ~] and that tr(A) = 0, i.e. d = -a. Then since
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we have that _a2 - be = 1. Consequently,

Conversely, suppose that A E SL(2, F) is such that A2 = -/2' Then

if A = [: ~] we have ad - be = 1 and

[
a2 + be ab + bd] = [-1 0]
ea + de eb + d2 0 -1 .

Suppose that a + d i O. Then since (a + d)b = 0 and (a + d)e = 0 we
have b = e = O. From ad - be = 1 we then have ad = 1. But a + d i 0
so a2 + ad = a(a + d) i O. This contradicts a2 = -1 and ad = 1. Thus
a + d = 0 as required.

Now if tr(A) = 0 then A2 = -/2 and hence je is the identity since

Z(SL(2,F)) = {[ ~ ~l [-~ -~]}.

Conversely, if:A
2

is the identity of PSL(2, F) then we have either A2 = 12

or A2 = -/2' If A2 = -/2 then tr(A) = 0 as required. If A2 = /2 then
it is easily seen that either A = /2 or A = -h, and in either case :A is
the identity of PSL(2, F) so is not an element of order 2.

1.20 Every element of C2 x C2 has order 2 so, since IC2 x C2 1 = 4, it follows
that C2 x C2 cannot be cyclic.

Suppose now that G is non-cyclic and of order 4. Then every element
of G has order 2 and the multiplication table is uniquely determined.
Since this is the same as that of C2 x C2 the result follows.

1.21 If p i q then Cp x Cq ':::' Cpq and, since a cyclic group has only one
subgroup of each order and the order of a subgroup divides the order of
the group, there can be only two subgroups of Cpq other than {I} and
Cpq •

However, Cp x Cp has more than two proper non-trivial subgroups;
for {I} x Cp, Cp x {I} and ((a, b)) (where a, b are non-trivial) are all
isomorphic to Cp'
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1.22 Let K be a normal subgroup of G x H with K =f {(I, I)}. Suppose that
(x, 1) E K for some x =f 1 in G. Then for every 9 E G we have, since K
is normal,

(g-1 xg, 1) = (g-1, l)(x, 1)(g, 1) E K.

Now ((g-1 xg, 1) I 9 E G) is a subgroup of K and (g-1 xg I 9 E G) is a
normal subgroup of G. Hence (g-1 xg I 9 E G) = G (since x =f 1) and
so G x {I} is a subgroup of K. Now

GxH
------c- '" H
G x {I} -

and K corresponds to a normal subgroup of H under the isomorphism.
Hence either K = G x H or K = G x {I}.

Similarly, if (1, Y) E K where y f- 1 then {1} x H is a subgroup of K
so K = {I} x H or K = G x H.

The only other case to consider is when K contains only (1,1) and
elements of the form (x, y) where x, y =f 1. But if 9 E G then there exists
hE H with (g, h) E K since the mapping described by (x, y) f-> (x, 1) is
a morph ism whose image would be a proper non-trivial normal subgroup
of G if 9 E G did not appear in some element of K. Now either G is
abelian or there exist g,x E G with g-1 xg =f x. Then (g,h) E K gives

(x- 1gx, h) = (x- 1, 1)(g, h)(x, 1) E K.

Let g' = x- 1gx =f g. Then (g'-1,h- 1)(g,h) E K gives (g'-1 g,l) E K,
which is a contradiction.

Hence G, Hare abelian and so cyclic of prime order. Clearly, IGI = IHI
by question 1.21.

1.28 Suppose that G and H are periodic. If (g, h) E G x H then 9 E G so
gn = 1, and hE H so hm = 1. Consequently we have that (g, h)mn =

(1,1) and G x H is also periodic.
Suppose now that G and H are torsion-free. If (g, h)n = (1,1) then

gn = 1 and h'l = 1, which is a contradiction; hence G x H is also
torsion-free.

1.24 Suppose that G = AB where A, B are normal subgroups of G with
An B = N. That GIN ~ A;N x BIN follows from the following
observations:

(i) AIN and BIN are normal subgroups of GIN;
(ii) If gN E GIN then gN = aN.bN where 9 = ab;

(iii) If xN E A/N n BIN then xN = aN = bN gives a- 1b E N so
that b = an E A and hence b E A n B = N and consequently
xN = bN = N.
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Consider 53 and the subgroups A = ((123)) and B = ((12)). We
have 83 = AB and An B = {I} but 53 is not isomorphic to C3 x C2 .

1.25 That G ::= A x Ker I follows from the following observations.

(a) A and Ker I are normal subgroups of G.
(b) If 9 E G then I(g) E H so there exists a E A with I(a) = I(g).

Then 9 = a(a- 1 g) where a E A and a-I 9 E Ker I.
(c) If 9 E An Ker 1 then IA(g) = 1(9) = 1 whence, since lA : A -T H

is an isomorphism, 9 = 1.

The result is not true if A is not normal in G. For example, consider
the mapping I: 53 -T C2 = {I, a} (w;lere a2 = 1) e;>,'en by

I(X)={i
if J: = 1;
if :r has order 2;
if :r has order 3.

It is readily seen that I is a morphi~m with Ker 1= ((123)) ::= C3 . The
subgroup A = {(I), (I2)} of 53 is not normal in 53, and the restriction
of I to A is an isomorphism onto C2 . However, 53 is not isomorphic to
C2 x C3 .

The isomorphisms slated in (i), (ii), (iii) and (iv) follow from the
morph isms of question 1.12.

1.26 Suppose that C2 x C2 is generated by x and by y. Then the subgroups
of C2 x C2 are

{I}, (x), (y), (:ry), C2 x C2 •

The subgroup Hasse diagram is then

('2 x ('2

/i~<x) .~i/.<Z)
•

{l}
Suppose now that G is a group and that the subgroup Hasse diagram

of G is G

./i~.c
.'1 ~I/

•D
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Clearly, D = {I} and A, B, C must be cyclic of prime order since they
contain no proper subgroups other than 1. Let A = (a) and B = (b).
We show first that C ~ A x B. For this purpose, we observe that A
and B are normal in C. Suppose in fact that this were not the case.
Then (ab) would not be the whole of C (for otherwise A and B would
be normal) and so we must have (ab) = C (since (ab) = A and (ab) = B
lead to contradictions). Consider now (b-1ab). This subgroup cannot be
C, B, Cor D and so it must be A. Similarly, (a-Iba) = B. Now C must
be generated by a and b (otherwise (a, b) would be properly contained
in C). Hence A and B are normal in C, their intersection is {I}, and so
C = A x B.

It remains to show that A ~ B ~ C2 • For this purpose, consider
(ab-I). It is easy to see that this subgroup must be C, since the other
possibilities lead to immediate contradictions. Now, since C is abelian,
we have a2 = abab- l E C. But a2 E A, so a2 E An C = {I}. In a
similar way we have that b2 = 1. Consequently, C ~ C2 X C2 •

1.27 C2 x C2 X C2 has 16 subgroups. Suppose that it is generated by a, b, c.
Then the subgroup Hasse diagram is

('2 X ('~ x ('2

•

("").~.~.(".,)

1.28 Consider the subgroups

H = (2) = {I, 2, 4, 8, 11, 16} ~ Co ;

K = (13) = {I, 13} ~ C2 •

We have that

(i) Hand K are normal subgroups of C;
(ii) C = H K (this is easily checked: for example, 5 = 2.13,10 = 4.13,

etc.);
(iii) H n K = {I}.
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Consequently, G ~ C2 X Co. This group is not cyclic since 2 is not
coprime to 6.

The set of integers n with 1 :=:; n :=:; 12 and n coprime to 12 is
{1,5, 7, 11}. Since

52 == 1 (mod 12), 72 == 1 (mod 12), 112 == 1 (mod 12),

we see that every non-trivial element has order 2. Hence the group is
C2 x C2 and is not cyclic.

1.29 The only normal subgroups of 84 (other than {1} and 84 ) are

v = {(1), (12)(34), (13)(24), (14)(23)}

and A4 , with V c A4 C 84 .

The only normal subgroup of 85 is A5 •

The only normal subgroup of A4 is V above.
The group A5 is simple.

Consequently 84 ,85 , A4 , A5 are indecomposable.
IRe ~ IR;o x C2 (see question 1.25), and Co ~ C2 X C3 .

Cg is indecomposable. For, if H and K are subgroups of Cg then
either H ~ K or K ~ H (see question 1.8).

([+ ~ IR+ X IR+ (see question 1.25).
lLpx is indecomposable. For, if Hand K are subgroups then either

H ~ K or K ~ H.

1.30 If xH has order n then xn = h E H so, by the hypothesis, there exists
h' E H with hln = h. Now let y = xh'-l. We have that yn = 1. If G/ H
is cyclic, take xH as a generator and let K = (y). Then we have

(i) Hand K are normal in G;
(ii) y H generates G/ H and so, given 9 E G, we have 9 E ym H for some

m, whence 9 = ymh;
(iii) if t EH n K then t = ym for some m < n. But ym r:f:- H so we must

have t = 1.

Consequently, G ~ H x K.

1.31 Let x have order m and y have order n. Then we have that (xy)mn = 1,
and so xy has order at most mn. Suppose now that zmn = 1 where m
and n are coprime. Then there are integers a and b such that am + bn =
1, wheilce z = zhn zam = xy where x == zhn and y = zam. It follows that
xm == z',mn = 1 and yn = zamn == 1. The orders of x and y are m and
n respectively, for if their orders were less, say m' and n', then z would
be of order at most m' n', a contradiction.
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A similar argument extends this result to the case where z is of order
ml m2 ... mk where ml, ... ,mk are pairwisc coprime. In this case ml

is coprime to 07=2 mi so, by the first part, we have z = xy where x has

order ml and y has order 117=2 m,. The result now follows by induction
on k.

X Hk foll,)ws from the fact that

(i) each Hi is a norm:ll subgroup of C;
(ii) C = HIHz ... Hk (by the above);

(iii) if x E H, then Xl" = 1 which shows that x does not belong to the
product HI ... Hi - I H'+I ... Hk.

If finally r divides ICl then r is necessarily of the form

where 0 :::: {3i :::: a, for each i. If K, = {x E C I xr<" = I}, then C has a
subgroup of order r, namely the cartesian product of the subgroups K i .

1.32 Let 1= nXEG X-I Hx. If t E I then t E X-I Hx for every x E C. Given
9 E C we then have g'ltg E x-IHx for t E (xg- 1)-IHxg- 1. Hence
g-Itg E I and so I is a normal subgroup of C.

If A = {g-I xg I 9 E C} is a subgroup of C then it must contain 1
and so g-1 xg = 1 for some 9 E C, which implies that x = 1. Thus we
see that A is a subgroup of C if and only if A = 1, in which case it must
be normal.

1.33 The subgroups {(I), (12)} and {(I), (12)(34)} of 8 4 are not conjugate.
All elements of order 3 in 8 4 are conjugate, so all subgroups of order 3
are conj ugate.

The elements (123) and (234) are not conjugate in A4 , for there is
no 9 E A4 such that g(123)g-1 = (234). In 84 there are three such g,
namely (1234), (1324), (14).

1.34 Let {CA I ), EA} be the set of conjugacy classes of C. Suppose that H
is a subgroup which is a union of conjugacy classes, say H = UAEA1 CA

where Al S;; A. If h E H then hE CA for some), E Al and so g-Ihg E
C\ S;; H. Thus we see that H is a normal subgroup of C. Conversely, if
H is a normal subgroup of C then clearly every conjugate of h E H is
contained in H and so H contains the conjugacy class of C containing
h. Thus H is a union of conj ugacy classes.
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In 8 4 the conjugacy class of

(1)
(12 )

(123)
(1234)

(12)(34)

has 1 element
has 6 elements
has 8 elements
has 6 elements
has 3 elements.

A normal subgroup is a union of conjugacy classes including the class
{I} with one element. By Lagrange's theorem, the order of a subgroup
must therefore divide 24. The only possibilities are 1 + 3 and 1 + 3 + 8,
so the only possible orders for non-trivial proper normal subgroups are
4 and 12.

The group 8 4 has the norn~al subgroup A4 with IA4 1 = 12. Note that
A4 consists of all the even permutations and is the 1+ 3 + 8 case above.
The 1 + 3 case gives the subgroup

{(I), (12)(34), (13)(24), (14)(23)}.

To see that this is a normal subgroup, it suffices to check that it is a
subgroup; this follows easily from the fact that

(12)(34) . (13)(24) = (14)(23), etc.

1.S5 The conjugacy classes :lre as follows.

(1) 1 element of order 1 even

(12) 10 elements of order 2 odd

(123) 20 elements of order 3 even

(1234) 30 elements of order 4 odd

(12345) 24 elements of order 5 even

(12)(34) 15 elements of order 2 even
(12)(345) 20 elements of order 6 odd

The only normal subgroup of 85 is A5 (use the method of the previous
question). The conj ugacy classes of A5 are the classes marked 'even'
above, with the exception that the 24 elements of order 5 break into two
classes of 12 elements, one containing (12345) and the other (13524).
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1.96 The first statement is a consequence of the observation that two con­
jugates x-lax and y-Iay are equal if and only jf (xy-l)-laxy-l = a,
which is equivalent to xy-l E Nc(a), which is the case if and only if
Nc(a)y = Nc(a)x.

Now the conjugacy class of a cycle of length n in Sn consists of all
the cycles of order n. Thus it contains (n - I)! elements. For a given
cycle a, the index of Nc(a) in Sn is therefore (n -1)1. Since ISnl = n! it
follows that INc(a)1 = n. Since a has n distinct powers which commute
with it, no other elements of Sn can commute with a.

Suppose now that n is odd with n ?: 3. Cycles of length n are even
permutations, so are in An. Suppose that a is a cycle of length n. Only
the n powers of a are in Ns,,(a) (by the above argument) and so the
conjugacy class of a contains ~n!/n = Hn - I)! elements. Since there
are (n - 1)1 cycles of length n, there must be two conjugacy classes each
containing ~(n - 1)1 elements.

Suppose now that n is even with n ?: 4.Then n - 1 is odd, so a cycle
of length n - 1 is even and therefore belongs to An. There are n(n - 2)!
cycles of length n - 1. Let a be such a cycle. Then in Sn the conjugacy
class of a contains n(n - 2)! elements and so iN"'n (a)! = n - 1. But
if x E NsJa) then, since n - 1 is odd, x is an even permutation, so
x E An. Thus we have that Nsn(a) = NAJa), so the conjugacy class
of a in An contains ~n!/(n - 1) = ~n(n - 2)! elements. Thus there are
two conj ugacy classes of cycles of length n - 1 in An each containing
~n(n - 2)! elements.

1.97 x E G commutes with a E G if and only if it commutes with a-I. Hence
Nc(a) = Nc(a- l ). The number of conjugates of a, being the index of
Nc(a) in G, must therefore be the same as the number of conjugates of
a-I.

Suppose now that IGI is even and that 1 is the only element of G that
is conjugate to its inverse. For each conjugacy class A; let B; be that
containing the inverses. Then we have

from which we obtain

IGI = 1+ IAII + ... + IAkl + IBII + ... + IBkl
= 1+2fAII+· .. +2iAkl

since IB;I = IA;I for each i. This contradicts the fact that IGI is even.
Thus we conclude that there is at least one element a =f- 1 with a conju­
gate to a-I.

48



Solutions to Chapter 1

1.98 Consider D2n with generators a and b such that a2

aba = b- I . The elements of D2n are

Now since

1 and

b-I(abi)b = b-Iabi+ 1 = ab.bi+ 1 = abi+2

we see that abi is conjugate to abi+2 for every i. Also, since abia = b-i

we see that bi is conjugate to b-i .

Suppose that n is odd. Then the conjugacy classes are

{I}, {a, ab, ... ,abn - I }, {bi, b-i }

where 1 ~ i ~ Hn - 1).
If n is even, the conjugacy classes are

where 1 ~ i ~ ~ (n - 2).

1.99 Suppose that K = X-I H x. We show that Na(K) = X-I Na(H)x. For
this purpose, let a E Na(K). To show that a E X-I Na(H)x we must
show that xax- I E Na(H). So let hE H and consider

(xax- I )-1 hxax- I = xa- IX-I hxax- I .

Now x- Ihx = k E K since x- IHx = K, and a-Ika = k l E K since
a E Na(K). Hence

(xax-I)-Ihxax- I = xk'x- I = hI E H

since xKx- 1 = H. Thus xax- I E Nc;(H) as required.

1.40 Let H = {I,h}. For every 9 E G we have g-Ihg EH, so g-Ihg = 1 or
g-I hg = h. The former gives the contradiction h = 1. Hence g-I hg = h
and H ~ Z(G).

That H is not necessarily a subgroup of the derived group of G can
be seen by taking G = C2 . Here we have that C2 is a normal subgroup
of C2 but the derived group of C2 is {I}.

Suppose that x is the only element of order 2 in G. Let 9 E G and
consider g-I xg = y say. We have y2 = g-1 x29 = 1 and certainly
g-I xg f= 1 (since otherwise x = 1). Thus y is an element of order 2
and so, by the hypothesis, we have y = x. Consequently g-I xg = x and
x E Z(G).
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1.41 Let n E Nand 9 E G. Then [n,g] = n- 1g- 1ng E G' . Since N is a
normal subgroup of G we have n- 1 (g-1 ng) EN. Consequently [n,g] E
N n G' = 1. It follows that rn, g] = 1 and hence that nE Z(G).

Clearly, if z E Z(G) then

zN.gN = zgN = gzN = gN.zN

and so Z(G)/N ~ Z( G / N). To obtain the converse inclusion we observe
that

zN E Z(G/N) => (Vg E G) zN.gN = gN.zN

=> (Vg E G) Z-l g-1 zgN = N

=> (Vg E G) [g,z] EN

=> (Vg E G) [g, z] E N n G' = 1

=> z E Z(G).

50



Solutions to Chapter 2

2.1 Let IGI = pCl.. The class equation gives

IGI = IZ(G)I + L IG : N(g~)1

where g~ E C)., for IC).,1 > 1. Now p divides both IGI and IG: N(g~)I, so
p divides IZ(G)I. Hence Z(G) is non-trivial.

Now suppose that IGI = p2. Since Z(G) is non-trivial we have
[Z(G)I = p or IZ(G)I = p2. Now if IZ(G)I = p then IG/Z(G)I = p so is
cyclic. Let aZ(G) be a generator of G/ Z(G). Then two arbitrary ele­
ments of G are amx and any where x, yE Z(G). But amxany = anyamx
since x, yE Z(G). Hence G is abelian, and so 1GI = IZ(G)I = p which is
a contradiction. It follows that we mllst have iZ(G)1 = p2 = IGI whence
G is abelian.

The groups of order 9 are C3 x C3 and Cg .

2.2 If x E An B then 6(x) E 6(A) and 6(x) E 6(B) and consequently we
see that 6(A n B) :S 6(A) n 6(B). Now 6- 1 is an automorphism and so
we also have that 6- 1 (X n Y) :S 6- 1 (X) n 6- 1 (Y). Now put X = 6(A)
and Y = 6(B) to get 6- 1 [6(A) n 6(B)] :S An B, whence 6(A) n 6(B) :S
6(A n B). Hence we have the equality 6(A n B) = 6(A) n 6(B).

2.9 Let "Px E Inn G be the automorphism "Px : g f-> X-I gx. Let 6 E Aut G;
we have to show that 6-1"Px6 E InnG. Now

6- 1"P,,6: g f-> 6- 1(x- 16(g)x) = 6'-I(X- 1) g6-1(x).

But if 6- 1(x) = y then 6-1(x- 1) = y-l and we have

6- 1"Px 6 : g f-> y-l gy,
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so IJ-1<f!xIJ E lnnG. To show that G/Z(G) ~ lnnG define 'Ij; : G -->

lnnG by 'Ij;(x) = <f!x-1 : 9 f-> xgx- 1 • Then

./'( ) -1 -1'11 xy = <f!(xyj-l = <f!y-1x-1 : 9 f-> xygy X

= 'Ij;(x)'Ij;(y).

Clearly, 'Ij; is surjective, and

x E Ker'lj; ===;. (Vg E G) xgx- 1 = 9 ===;. x E Z(G).

Thus Ker'lj; = Z(G) and lnnG = lm'lj; ~ G/Ker'lj; = G/Z(G).
Clearly, b2 E Z(DB) since a- 1b2a = (a- 1ba)2 = (b- 1)2 = b2. Now

we have DB = {1,b,b2,b- 1 ,a,ab,ab2,ab-1 } and a,b rf-. Z(DB) since oth­
erwise DB would be abelian. Hence b- 1 rf-. Z(DB). Since b2 E Z(DB)
and a rf-. Z(DB) we have ab2 rf-. Z(DB). Also ab, ab- 1 commute with
a if and only if b commutes with a, so ab, ab- 1 rf-. Z(DB). Hence
Z(DB) = (b 2

) ~ C2 •

DB/Z(DB) ~ (a,b I a2 = 1, b4 = 1, a-Iba = b- 1
, b2 = 1)

= (a, b I a2 = 1, b2 = 1, ab = ba)

~ C2 X C2 .

Similarly, Z(QB) = (x2) ~ C2 and QB/Z(QB) ~ C2 X C2.

2.4 Both questions have a negative answer. The same group, namely the
dihedral group of order 8, serves to provide counter-examples.

Let DB = (a,b I a2 = 1, b4 = 1, (ab? = 1). If DB were the direct
product of two non-trivial subgroups, one must be of order 4 and the
other of order 2. But a normal subgroup of order 2 is central, so DB =

A x B where IAI = 4 and B = Z(DB ) = W). Now b rf-. A since
An B = {I}, so Ab E DB/A ~ C2. Hence (Ab)2 = Ab2 = A, showing
that b2 E A. Thus B t;:: A, which contradicts An B = {I}. Thus DB is
indecomposable.

However, there is a subgroup and a quotient group of DB each of which
is isomorphic to C2 x C2; for the subgroup, take (a,b 2) (or (ab,b2)), and
note that DB/Z(DB) ~ C2 x C2 since Z(DB) = W).

2.5 Since G/Z(G) is cyclic, every element is a power of a single element, say
aZ(G). Thus, given 9 E G, we can write 9 = anz for some z E Z(G)
and n E 7L.. If 91,92 E G then, with an obvious notation, we have
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since Z2 is central; and

since ZI, Z2 are central. Thus G is abelian.
Suppose that Aut G is cyclic. Then Inn G is cyclic. But G/ Z( G) ~

Inn G, so G/ Z( G) is cyclic and hence G is abelian.

2.6 If a E Aut 83 then a must map an element of order 2 in 83 to an
element of order 2. Hence a permutes the set A = {(12), (23), (13)}. If
a leaves all three of these elements fixed then, since the elements of order
2 generate 83 , a must be the identity map. Hence if a, 13 E Aut 83 give
the same permutation of A then aj3-1 leaves the elements of A fixed,
whence aj3-1 = id and a = 13. Hence IAut 83 1::; 6.

Now since Z(83 ) = {I} and 83 /Z(83 ) ~ Inn 83 it follows that 83 has
six inner automorphisms. Then

6= IInn83 1::; IAut83 !::;6

gives Inn 83 = Aut 83 , so that Aut 83 ~ 83 /Z(83 ) = 83 as required.

2.7 Let C2 x C2 = (a,b I a2 = b2 = a- 1 b- 1 ab = 1). Then we have
C2 x C2 = {I, a, b, ab} and each element in the set {a, b, ab} is of order
2. If a E Aut(C2 x C2) then a fixes 1 and permutes a, b, ab. Thus a is
completely determined by its action on {a, b, ab}. Hence Aut(C2 x C2 ) ::;

83 . To show that Aut(C2 x C2 ) = 83 , it remains to show that every
permutation on {a, b, ab} gives an automorphism of C2 x C2 • This follows
easily on noting that the product of any two distinct elements of {a, b, ab}
yields the third element, and this property is preserved under a bijection.

Now, as shown in question 2.6, Aut 83 = 83 , Hence we have that
C2 x C2 and 83 have isomorphic automorphism groups.

2.8 If {} E Z(Aut C) and 'Pg is the inner automorphism given by 'Pg(x) =
g-1 xg then we must have {}'Pg = 'Pg{}' Hence, for every x E C, we have

and so g{}(g-1 ){}(x) = {}(x)g{}(g-I). Since {} is surjective, we see that
g{}(g-l) E Z(C) = {I} and therefore {}(g) = g. Since this holds for all
9 E C we have that {} = id as required.

To see that the converse is false, note that 83 = Aut(C2 x C2 ) (by
question 2.7) and Z(83 ) = {I}, yet Z(C2 x C2 ) = C2 x C2 i= {I}.
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2.9 It is clear that the additive group of the vector space if; is isomorphic to
Gp x Gp x ... x Gp (with n terms). Suppose that '1J is an automorphism
of the additive group of if;. To see that '1J is a linear mapping on if; it
suffices to observe that

gives
'1J[m(al"'" an)] = '1J(mal"'" man)

= m'1J(al"'" an).

Thus '1J is an invertible linear map. This shows that Aut C is isomorphic
to the group of invertible linear maps on the vector space if;. Now fix
a basis B of if;. Then the mapping that associates with each invertible
linear map on if; its n x n matrix relative to B is clearly an isomorphism
onto GL(n,p).

2.10 If Aut C = {I} then G must be abelian. For, given 9 E C, the inner
automorphism of conjugation by 9 is trivial if and only if 9 E Z(C).
Hence C = Z(C) and so is abelian.

Suppose now that C contains an element 9 of order greater than 2.
Since C is abelian, the mapping described by '1J : x >---t x-I is a group
morphism. Since '1J(g) = g-1 i' 9 we see that '1J is a non-trivial element
of Aut C, a contradiction. Thus every element of C must have order 2.

It now follows that C is a vector space over if2 . If the dimension of
this vector space is greater than 1 then every non-trivial permutation of
the basis elements induces a non-trivial automorphism on C. Hence the
dimension is at most 1. Consequently we have that either C ~ G2 or C
is trivial.

2.11 (a) True. Let '1J : C -t C be a group morphism. Then for a, bE C we
have

'1J([a, b]) = 1J(a-1b- 1ab) = '1J(a)-I'1J(b)-I'1J(a)'1J(b)

= ['1J(a), '1J(b)] E C'.

Hence '1J( C') <;;; C'.
(b) False. Consider G2 x 83 where G2 = (a). Z(G2 x 83 ) is the

subgroup ((a, 1)). Consider the mapping '1J : G2 x 8 3 -t G2 X 83 given
by setting

{
'1J(a, 11") = (1, (12)),

'1J( 1, 11") = (1, 1).

Then '1J is a group morphism but '1J(Z(G2 x 83 )) ~ Z(G2 x 83 ),
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(c) False. A 4 contains only one non-trivial proper normal subgroup
V ~ C2 X C2 • Suppose that 13 : A4 -> A 4 is a group morphism. Then
Ker13 must be {I}, V or A 4 and it follows from this that V is fully
invariant.

(d) True. If {} : G -> G is a group morphism then from {}(g") = [(}(g)]"
we obtain {)( Gn ) <;;; Gn .

(e) True. If {} : G -> G is a group morphism then

gn = I ==> {}(gn) = I ==> [{}(g)]n = I

gives (}(Gn ) <;;; Gn .

2.12 It suffices to show that x is conjugate to Y if and only if O'(x) is conjugate
to O'(Y). But

x = g-l yg <===;> O'(x) = O'(g-l yg ) = [O'(g)rlO'(y)O'(g)

so the result follows.
To show that N is normal in Aut G we must show that if 0' E N, (3 E

Aut G then ((3-1 0'(3) (C) = C. But (3(C) is a conjugacy class by the first
part of the question, so O'[(3(C)] = (3(C) by the definition of 0'. Hence
((3-1O'(3)(C) = (3-1 [(3(C)] = C as required.

2.19 To show that N C <J G it suffices to show that C <l G since N is given to
be normal. So let 9 E G and c E C. Given n E N there exists n' E N
such that gn = n'9 and so, since C centralises N,

g-l cgn = g-l cn'g = g-ln'cg = ng- 1 cg.

For 9 E G we have !jJg E A where l/Jg : n f-> gng- 1 E N. Define
l/J : G -> A by l/J(G) = !jJg. Note that Ker!jJ = C. We show that
l/J(NC) <;;; I, whence l/J induces a morphism from GINC to AI I. Now
l/J(C) <;;; I since C = Ker l/J; and if n E N then l/J(n) = l/Jn E I so
l/J(N) <;;; I whence l/J(NC) <;;; I.

To show that the mapping from G / NC to AI I induced by l/J is injec­
tive, we must show that {g E G I l/J(g) E I} = NC. But this is clear
from the fact that l/J(N) = I and Kerl/J = C.

Also, since NIZ(N) ~ I and Z(N) = N n C we have

I ~ NI(N n C) ~ NC IC.

If Z(N) = {I} then NnC = {I}. Also, since All is trivial so is GINC.
Hence G = NC and we have shown that G = N x C.

Since Z(83 ) = {l} we have Inn 8 3 ~ 83 IZ(83 ) ~ 83 . But Aut 53 =

83 (see question 2.6), so every automorphism of 8 3 is inner. T!;l~" Se
satisfies the conditions required of the subgroup N and the result f d wO'.

55



Book 5 Groups

2.14 (a) If !J(H) ::; Hand !J-l(H) ::; H then from the latter we have
H::; !J(H) whence equality follows.

(b) If x E nHA where each HA is characteristic then for every !J E
Aut G we have !J(x) E HA for all >., whence !J(x) En HA'

(c) If x E HK then x = hk gives !J(x) = !J(h)!J(k) E HK.
(d) Let c E C = [H,K]. Then c = t 1t 2 "t n where t; E [h;,k;]'i

with f; = ±1. Then !J(c) = !J(tJl··· !J(tn ) with !J(t;) = !J[h;, k;I" =
[!J(h;), !J(k;)]".

(e) H is normal in G, so if If! is an inner automorphism of G then
If!(H) ::; H. But if If!H is the restriction of If! to H we have If!H(K) ::; K,
for certainly If!H is an automorphism (not necessarily inner) and K is
characteristic in H. But If!(K) = If!H(K) so If!(K) ::; K gives K <J G.

2.15 Let!J E Aut G and let K = !J(H). We have to show that K ~ H.
Suppose that IHI = nand IG/HI = m. Since HK/H ::; G/H we
have that IHK/HI divides m. But we know that HK/H ~ K/(H n
K), so IHK/ HI divides n. But h.c.f.(n, m) = 1 by hypothesis. Hence
]HK/HI = 1, so HK = Hand K::; H as required.

2.16 If a E F then a-I E F since (g-l ag)-1 = g-l a-l g. But if a,b E F
we have ab E F, for g-l abg = g-l agg- 1 bg. Hence F ::; G. Now F
is characteristic in G. To see this, let a E F and !J E Aut G. Writing
9 = !J(g') we have g-I?3( a)g = ?3(g,-1 ag') and so there are only finitely
many conjugates of !J(a). Thus !J( a) E F.

2.17 !J t is clearly an additive group morphism which, since t i= 0, is injective.
Since !Jt(t-l x) = x we see that 1Jt is also surjective. Hence!Jt is an
automorphism.

Let H be a non-trivial characteristic subgroup of Q+. For every t E

Q \ {O} we have !Jt{H) = H. We show as follows that H = Q+. Since
H is non-trivial, choose x E H with x i= 0 and let yE Q \ {O}. Then for
t = yx- 1 i= 0 we have

y = tx = !Jt{x) E !Jt{H) = H,

from which H = Q+ follows.

2.18 A Sylow p-subgroup of H is a p-subgroup of G that is contained in
a Sylow p-subgroup. Let PI and P2 be Sylow p-subgroups of H. Let
PI ::; P and P2 ::; P where P is a Sylow p-subgroup of G. Then HnP is
a p-subgroup of H and PI ::; HnP, P2 ::; HnP implies PI = HnP = P2 •

Now suppose that H <JG and that P is a Sylow p-subgroup of G. Then
HnP is a p-subgroup of H so is contained in a Sylow p-subgroup PI of
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H. Now PI ::; P where P is a Sylow p-subgroup of C. Then P = g-1 Pg
for some 9 E C since Sylow p-subgroups of C are conjugate. Now since
H <l C we have

PI = P nH = g-1 Pg nH = g-1 (P n H)g.

Hence IPnHI = IP11 and, since PnH::; PI' it follows that PnH = PI'
Let ICI = pn k. Then IPI = pn. Let IHI = pmt. Then IH nPI = pm.

Now IC/HI = pn-m s where st = k and

IHP/HI = IPI/IP nHI = pn-m.

Hence HP/H is a Sylow p-subgroup of C/H.
Suppose now that we drop the condition that H be normal in C.

Consider C = 83 and H = ((12)). We have that P = ((13)) is a Sylow
2-subgroup of 83 , but IHI = 2 and H n P = {I}.

2.19 Let H be a normal p-subgroup of C. Then H::; P where P is a Sylow
p-subgroup of C. But every Sylow p-subgroup of C is of the form g-1 Pg
for some 9 E C, and H::; P implies H = g-1 Hg::; g-1 Pg since H <l C.

Let HI, ... , Hn be distinct normal Sylow p-subgroups of C. Since a
normal Sylow p-subgroup is unique, every element of p-power order is
contained in this Sylow p-subgroup. Now observe that

(a) HI, ... , Hn <l C by hypothesis.
(b) C = HI··· H n . This follows from the fact that Hi n Hi = {I} for

if. i and IHI ··· Hnl = IH1 1·· ·IHnl = ICI·
(c) Hi n HI··· Hi - l Hi+1 ... Hn = {l}. This follows from the fact that

if a E Hi and bE Hi with if. i then [a,b] E Hi n Hi = {I}.

Thus we see that C is the direct product of its Sylow p-subgroups.

2.20 We have that I A5 1 = 60 = 5.3.22 . Hence the Sylow 5-subgroups are C5 ,

the Sylow 3-subgroups are C3 , and the Sylow 2-subgroups are C2 x C2

since A5 has no element of order 4.
There are 1 + Sk Sylow S-subgroups where 1 + Sk divides 60; thus

there are six Sylow S-subgroups. There are 1 + 3k Sylow 3-subgroups
where 1 + 3k divides 60; thus there are four or ten Sylow 3-subgroups.
There are in fact ten Sylow 3-subgroups as a little computation will
show. There are 1+ 2k Sylow 2-subgroups where 1+ 2k divides 60; thus
there are three, five or fifteen Sylow 2-subgroups. There are in fact five
Sylow 2-subgroups as a little computation will show.
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2.21 Let 9 E G. Then g-1 Pg ::::: g-1 Kg = K since K <I G. Thus, since
Ig-l Pg\ = IPI, we have that g-1 Pg is also a Sylow p-subgroup of K.
Hence, by Sylow's theorem, P and g-1 Pg are conjugate in K. It follows
that g-1 Pg = k- 1Pk for some k E K. Then (gk- 1)-1 Pgk- I = P and
so gk- I E N(P) whence 9 E N(P)K. Since this holds for all 9 E G, we
have that G = N(P)K.

Let N(P) S H ::::: G. Since P ::::: H ::::: C, we have that P is a
Sylow p-subgroup of H. Let L = N(H). By the first part of the
question, L = NdP)H where NdP) is the normaliser of P in L. But
NdP) ::::: N(P) ::::: H, so L = H as required.

2.22 Let S ::::: G and suppose that P is a Sylow p-subgroup of S. We have to
show that P is cyclic. Now P is a p-subgroup of G so P ::::: P for some
Sylow p-subgroup P of G. Since P is cyclic, so then is P.

Suppose that PI and P2 are p-subgroups of C with IFII = jP21. We
have PI ::::: PI and P2 ::::: P2 where P;, P2 are Sylow p-subgroups of C.
But PI is conjugate to P2 , so there exists 9 E G with g-1 Pig = P2 . But
now g-IP1g::::: P2 and [g-IP1gl = 1F1! = iP2j, so g-IPI g and P2 are
subgroups of the same order in the cyclic grou p P2 . Hence g-I PI 9 = P2

as required.
Certainly INn HI divides I,;VI and IHI and so divides h.c.f.(INI, jHI).

Let p be a prime divisor of h.d.(INI, IHI) and suppose that pn is the
highest power of p that divides it. Then pn divides 1Nl and IHI and so
there exist PI ,P2 with PI ::::: N,P2 ::::: Hand IP1 1 = pn = IP2j. Now
PI is conj ugate to P2 , and since N <J C we must have P2 ::::: N. Hence
P2 ::::: H n Nand IH n NI is divisible by pn. Thus

IH n NI = h.d.(jHI, 1Nl)

and from the isomorphism H NIN ~ HI(Hn N) we obtain

IHIIN[ IHilNI .
IHN[ = rH n NI = h.c.f.(\Hi, IINi) = I.c.m·(IHI, 1

N l).

Finally, suppose that N <I G and v E Aut C. Then jv(N)1 = iNI so
Iv(N) .nNI = h.c.f.(lv(N)" IN;) = IN and hence v(N) = N as required.

:'.23 (a) 200 = 52 .23 . Hence C contains k Sylow 5-subgronps of order
25 where k = 1 + 5x and k divides 200. Since (k,5) = 1 we have that
k divides 8 and hence x = O. Thus G has a unique Sylow 5-subgroup
which is therefore normal.

(b) 40 = 5.23 . Hence C contains k Sylow 5-subgroups where k =
1 + 5x and k divides 40. Here again we have x = 0 and so C contains
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a unique Sylow S-subgroup which is therefore normal. Hence G is not
simple.

(c) .56 = 7.23 . There are 1 + 7k Sylow 7-subgroups where 1 + 7k
divides 056. If the group is simple then there must be eight Sylow 7­
subgroups with 49 distinct elements. Also there must be seven Sylow
2-subgroups and the group now has more than 056 elements.

(d) 305 = 7· S. The number of Sylow S-subgroups is congruent to 1
mod 05 and divides 305. Hence there is only one Sylow S-subgroup which
is therefore normal. By the same argument, there is only one Sylow
7-subgroup which is therefore normal. Let the Sylow S-subgroup be H
and the Sylow 7-subgroup be K. We show as follows that G,"", H x K.

(i) H, K <I G has already been seen.
.. IH! IKI 05 . 7

(ll) IH KI = IH n KI = -1- = 305 so H K = G.

(iii) H n K = {I} since h.c.f.(IHI, IKI) = 1.

It follows that G '"'" H x K '"'" C5 X C7 '"'" C35 as required.

2.24 (a) If IGI = 805 = 05 ·17 then the number of Sylow S-subgroups IS

congruent to 1 modulo 05 and so is one of

1, 6, 11, 16, 21, 26, etc.

But the number of Sylow S-subgroups divides 805. Hence G has only one
Sylow S-subgroup, H say, which is then normal. Similarly, there is a
unique Sylow 17-subgroup, K say, which is also normal. Now

(i) H, K <I G;

(ii) G=HKsinceIHKI= IHIIKI =05·17 =805'
IHnKI 1 '

(iii) H n K = {I} since h.c.f.(iHI, jKI) = 1.

Thus G,"", H x K,"", C5 X Cl7 '"'" Cs;,;.
(b) Let G be a group of order p2 q. Suppose that G is simple. Let G

have n l ) Sylow p-subgroups and nq Sylow q-subgroups. Then np > 1
and nq > 1. Since np divides q we must have np = q. Also np == 1 mod p
so q > p. Again nq divides p2 so n q is either p or p2.

There must be n q (q - 1) distinct elements of order q. Hence if nq = p2
there are p2 q - p2 (q - 1) = p2 elements that are not of order q. But since
the Sylow p~subgroup of G has order p2 we have n p = 1, a contradiction.
Thus we must have n q = p. But n'i == 1 mod q and so p > q which is
also a contradiction. We conclude therefore that G cannot be simple.
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2.25 By Sylow's theorem, the number n of distinct Sylow p-subgroups of G
is a divisor of g, and n == 1 mod p. Since g is prime, we have n = 1 or
n = g. Since g 1'- 1 mod p it follows that n = 1. Thus G has a unique
Sylow p-suogroup P, say, and P <l G.

Consider 83, We have 1831= 2·3 and 3 == 1 mod 2. In this case the
result fails since 83 has no normal 2-subgroup.

To show that G is not simple when IGI = pg we can assume that
p > g, so that g - 1 is not divisible by p. Then G has a normal Sylow
p-subgroup so cannot be simple.

Now suppose that IG! = pg where p 1'- 1 mod g and q 1'- 1 mod p. Then
G has a normal Sylow p-subgroup P and a normal Sylow g-subgroup
Q. Since P and Q have prime orders they are cyclic. Let P = (x) and
Q = (y). Now P n Q = {I} so xy = yx. Hence xy has order pg and
G = (xy) is cyclic.

2.26 The answer is no, and the symmetric group 8 4 provides an illustration.
First we must show that 8 4 contains a subgroup of order n for every
divisor n of 24. The cases n = 1 and n = 24 are obvious. As for
subgroups of order 2, 3, 4, 6, 8, 12 we have

(1) 1((12))1 = 2;
(2) 1((123))1 = 3;
(3) 1((1234))1 = 4;
(4) 83 C 84 and 1831 = 6;
(5) 24 = 3·8 so a Sylow 2-subgroup of 8 4 has order 8;
(6) A4 has order 12.

Consider now the subgroup A 4 • We claim that this does not have a
subgroup of order 6. To see this, suppose that H were such a subgroup.
Then H cannot be abelian (since 8 4 has no element of order 6) and so
H ~ 83. But every subgroup 83 in 8 4 fixes a point and contains odd
permutations. Hence no such subgroup H can exist.

2.27 Let y = g-1 xg for some 9 E G. Then y E P and y E g-1 Pg. Hence,
since y E Z(P) and y E Z(g-1 Pg), we have that P and g-1 Pg both
centralise y. Thus

(P, g-1 Pg) «; Nc(Y).

But P and g-1 Pg are Sylow p-subgroups of G and so are Sylow p­
subgroups of Nc;(y). Therefore P and g-1 Pg are conjugate in .Alc;(y).
Thus P = C 1g- 1Pgc for some c E .Ale(y). Now gc E .AI(P) and

(gC)-l xgc = c-1g- 1xgc = c- 1yc = y.

Hence x and y are conjugate in .AI(P).

60



Solutions to Chapter 2

2.28 Let £1 = {aH I a E G} and for every 9 E G define a permutation q on
£1 by

q : aH f-> gaH.

Then <p : G -> 8 0 defined by <p(g) = q is readily seen to be a group
morphism. Now 9 E Ker<p if and only if aH = gaH for all a E C,
which is the case if and only if 9 E aHa- I for all a E G. Thus we see
that Ker <p = naEC a-I Ha which is easily seen to be the largest normal
subgroup of G contained in H. By the first isomorphism theorem,

C / Ker <p ~ Im <p :::; 8n .

Now suppose that G is simple with IGI = 60. If H is a subgroup with
iHI = 15 then H has index 4. But K = {I} since G is simple, and
C/ K = C which (by the above) must be isomorphic to a subgroup of
8 4 . Howev:er, 60 does not divide 24, and so we have a contradiction.

In a similar way we can show that G has no subgroups of order 20 or
30.

2.29 The number n of Sylow 7-subgroups is such that n == 1 mod 7 and
n divides 168. Now n -I 1 since otherwise G has a unique Sylow 7­
subgroup which is therefore nonnal. The only other divisor of 168 that
is congruent to 1 modulo 7 is 8. Hence C has eight Sylow 7-subgroups.

Since Nc(P) must have index 8, we have !Nc(P)1 = 2l.
Suppose now that H :::; G with IHI = 14. We derive a contradiction

as follows. Consider the number m of Sylow 7-subgroups of H. We have
that m =.: 1 mod 7 and m divides 14. Thus m = 1 and H has a normal
Sylow 7-subgroup K. However, IKI = 7 so K must be a Sylow 7­
subgroup of C. Now since K is normal in H we must have H :::; Nc(K).
This shows that IHI = 14 divides INc(K)! = 21 which is the required
contradiction.
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3.1 (a) Given [s, t] EiS, T] we have [s, tJ- I = It, s] E [T, S]. Hence
[S, T] t;;: [T, S] and similarly for the reverse inclusion.

(b) We have that

and
h-Ik-Ihk = k'k E K since K <l G.

Hence [H, K] ~ H n K. In the case where H n K = {I} we have
[H, K] = {I} and the elements of H commute with those of K.

(c) The first part follows from [xy, z] = y-I X-I Z-I xyz and

y-I [x,z]y[y, z] = y-I X-I Z-I xzyy-I Z-l yZ .

Clearly [H, K] ~ [HL, K] and [L, K] ~ [HL, Kl, so

[H,K] [L,K] ~ [HL,K].

But [hZ, k] = Z-I rh, kJl[I, k] E [H, K] [L, K] since [H, K] <l G. Hence the
required equality follows.

(d) This follows immediately on expanding the commutators.

8.2 Let Q8 = (a,b I a2 = b2 = (ab)2) and C2 = (c I c2 = 1). Then
Z(G) = (a 2 ,c) and the upper central series is

{I} < (a 2 ,c) < G.

The derived group of G is
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and the lower central series is

Thus G is nilpotent of class 2 and the upper and lower central series de
not coincide.

Q8 has derived group (a2 ) and Z(Q8) = (a2 ). Thus the upper and
lower central series of Q8 are both equal to

Q8 > (a 2 ) > {I}.

3.3 Suppose that G is generated by its subnormal abelian subgroups. Then

G = (GAl GA subnormal abelian ).

Now since GA is subnormal in G we have a series

GA = Ra :::: RI :::: ... :::: Rn = G

with Ri normal in Ri+ 1 for 0 :::: i :::: n - 1. But if H is a quotient group
of G then H ~ GIK and so

G>.K G>.Ro G>.R I G>.R" G--=--<--< .. <--=-K K-K- -K K

. . f b . h G>. Ri I' G>. Ri+If'
IS a senes 0 su groups Wit --g- norma III K or 0 :::: t :::: n - 1.

Now
GAK~_~

K G>.nK
which is abelian since G>. is abelian. Hence

~ = (G~K I G~K subnormal abelian in ~).

Therefore H ~ GI K is generated by its subnormal abelian subgroups.
Suppose now that G is a nilpotent group and that H:::: G. Let

G = Go :;:. G I :;:. ... :;:. Gr = {I}

be a central series for G. Consider the series

H = HG r :::: HG r - 1 ::::

Now HG; <JHG;_I, since for h,h' E H,gi E Gi,gi-I E G;_I we have

(h' )-Ih h' -I h,-I h h'
gi-I gi gi-I = gi-I gi gi-I·

But, for any x E G, xgi-I = 9i-1 xg: for some g: E G i so it follows that
gi__\h,-Ihgih'gi-I E HGi as required. Since every group is generated
by abelian subgroups (the cyclic subgroups generated by its elements),
a nilpotent group is then generated by its subnormal abelian subgroups.
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.'],4 Apply the fundamental isomorphism

H HK
--~--

HnK - K

to the case where G = A, H = An C and K = B; then since B <l A we
obtain

An C ~ (An C)B
BnC - B

Now apply the isomorphism to the case where G = AC, H = A and
K = BC to obtain

A A(BC)
AnBC~~'

But A n BC = B(A n C) and A(BC) = AC, and the result follows.
Suppose that G is a soluble group with a series

{I} = Go ~ GI ~ ", ~ Gn = G

where each G;jG;_1 is abelian. Let H ~ G and consider the series

{I} = Go n H ~ G I n H ~ ,., ~ Gn n H = H.

We have
G;nH G;_I(G;nH) G;

_..:-.--.-_-~ <--
G;_I n H - G i - I - G;_I

and so G; n HH is abelian (being a subgroup of an abelian group).
G;_I n

Also, if K <l G then

K = GoK < GI K < ". < GnK = G
K K -:- K - - K K'

Now we have

G;K/K ~ G;K ~ G;
G._IK/K - G._IK - G._I(G; n K)

h' h ' . t f G; H G;K/K , b I' (b'w IC IS a quotJen group 0 -G' . ence . K/K IS a e Ia.n emg
.-1 G._ I

a quotient group of an abelian group).
If H <l K and both Hand K/ H are soluble then we have

K Ko K I K r H-=->-> ... >-=-
H H-H- -H H
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and H = Ho ~ H 1 ~ ... ~ H s = {I}, whence we have that

is a series for K with abelian factors.
For the last part, suppose that GI A and GIB are soluble. Then

A AB G
--~-<­
AnB B - B

and so AI(A n B) is soluble. Then GIA soluble and AI(A n B) soluble
gives GI(A n B) soluble.

9.5 (a) True. We have H KI K ~ HI(H n K) which is soluble, being a
quotient group of the soluble group H. But then H KIK is soluble and
K is soluble, so H K is soluble.

(b) False. For example, consider

G = Q8 = (a, b I a2 = b2 = (aW)·

H = (a) and K = (b) are normal cyclic subgroups but H K = Q8

which is not abelian.
(c) True, by the same argument as in (a).

9.6 Let H be a proper subgroup of G. If Z(G) !l H then Z(G)H normalises
H and the result follows. Suppose then that Z( G) S;; H. Suppose, by
way of induction, that the result holds for groups of order less than IGI.
Since Z(G) i' {I} we can apply the induction hypothesis to HIZ(G) as
a subgroup of GI Z( G). This shows that HIZ( G) is properly contained
in its normaliser, K IZ( G) say. Then H is normal in K and properly
contained in K as required.

Let P be a Sylow subgroup of G. Using the result of question 2.21, we
have that N(P) is equal to its own normaliser in G and so, by the first
part of the question, N(P) cannot be a proper subgroup of G. Hence
N(P) = G and so P is normal in G.

9.7 If IZ(G)I > 2 then IGIZ(G)I ~ 4 and so GIZ(G) is abelian. This
contradicts the class of G being 3. Hence we have that IZ( G) I = 2 and
IGIZ(G)I = 8. Now GIZ(G) must contain an element xZ(G) of order 4,
otherwise GIZ( G) would be abelian. Let H = (x, Z(G)) so that H is
an abelian subgroup of G with IHI = 8. We show first that H is cyclic.

Suppose that H is not cyclic, so that H = (x) x Z(G). Consider the
subgroup (x2 ). There must be some 9 E G such that [x2 , g) i' 1, for
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otherwise x 2 E Z(C). Now consider the non-trivial element x- 2 g- 1 x2 g.
Since H is normal in G, we have that g-I xg E Hand g-I x 2 9 must be
a non-trivial square of an element of H. This gives g-1 x2 9 = x2 and so
ix2 ,g] = 1, a contradiction.

Suppose now that Hand K are cyclic subgroups of order 8 with
H i= K. Then G = H K and so H n K ~ Z(G). However, this gives
H n Kt ~ 2, which contradicts

Thus we conclude that H = K.
An example of such a group is the dihedral group DIG.

3.8 If G is a finite nilpotent group then it has a lower central series which
satisfies the conditions required for G to be residually nilpotent. Con­
versely, if G is finite and residually nilpotent then Hi cannot properly
contain Hi+1 except for finitely many i, so Hi = Hi+1 for all i ~ N.
But now, since

00 NnHi = nHi = HN,

i=1 i=1

we have H N = {I} and so G is nilpotent.
The group

Doo = (a, b I b2 = 1, bab = a-I)

is residually nilpotent. For, taking Hi = (a2 ' ) we have that [Hi, C] ~

Hi+! and n~1 Hi = {I}. However, Doo is not nilpotent. To see this,
take K = (a3 ) and observe that

which is not nilpotent.
If H is a subgroup of a residually nilpotent group G then intersecting

the series of G with H shows that H is residually nilpotent (the argu­
ment generalises the usual proof that a subgroup of a nilpotent group is
nilpotent).

Consider D oo again. We have seen above that 53 is a quotient group.
But since 53 is finite and not nilpotent, it fails to be residually nilpotent
(by the first part of the question). Thus we see that a quotient group of
a residually nilpotent group need not be residually nilpotent. (In fact,
every group is a quotient group of a residually nilpotent group.)
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3.9 It is readily seen by expanding the commutators that

[xy Zi = y-llx zlyr1y z!
, ~ l 'J 1 j'

Now IC, A) is generated by ig, a] where 9 E C and a E A. It is therefore
sufficient to check that X-I [g, a]x E IC, A] for all g, x E C and a E A
But

x- 1 ig, aix = igx , a. [x, ar 1 E [C, Aj

and so [C, A] <J C.
Suppose that A = iA, C] and that G is nilpotent of class n say. Then

we have
A = [A, C, C, ... , C] = {I}.
~

Thus if A I- {I} then G cannot be nilpotent.
Let A be a minimal normal :mbgroup of a nilpotent group C. Then

:C, A] s:: A and so, siuce [C, A] <J C, we must have either [C, Ai = A
or [C, A] = {I}. The former is impossible since C is nilpotent. Hence
:C,Aj = {I} and A is in the centre of C.

3.10 Let C be a finite p-group. First we show that the centre of C is non­
trivial. Note that a cOI,jugacy class has one element if and only if the
elements of the class are central. Now C is the union of its conjugacy
classes, and {I} is a conj ugacy class. Any conjugacy class containing
more than one element has k elements where P'lk. Hence C has more
than one conjugacy cbss containing one element and so Z(C) I- {I}.

Let Z~(C)jZ(C) be the centre of C/Z(C). Continuing in this way, we
obtain a series

{I} s:: Z(G) s:: Z2(C) s:: .. s:: C

and, since C is finite, Zn (C) = C for some n. Thus C is nilpotent.
Suppose that C = H x K where IHi = p2 and IKi = p3. Now we have

that Z(C) = Z(H) x Z(K) and Z(H) = H since a group of order p2 is
abelian. Consequently, iZ(C)] = p~'Z(K)I. It follows that iZ(K)1 is p,
or p2, or p3; for IZ(K) i 1 since K is a p-group. But if !Z(K): = p2
then IK/Z(K)I = p and so K;Z(K) is cyclic, say K/Z(K) = (aZ(K)).
Then k '"= K gives k == a'z for some z E Z(K). Then any two elements
of K commute, whence it follows that IZ(K)I = p3 which contradicts
the hypothesis that Z(K)I = p~. W,' now n,)te that IZ(K)i I- p3 since
otherwise C is abelian. Thus we have that Z(K) must be p, whence
Z(C)! = p3 and ICjZ(G)i = p2. Using again the fact that a group of

order p2 is abeli3.n, we see tint

C> Z(C) > {I}

is the upper central series of C, and hence that C is nilpotent of class 2.
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3.11 Consider the matrices

Groups

where a, b, c, d, e, f E 71.. Then [x, y] is given by

[ ~ ~a ac_~ b][~ ~d df_i e][~ ~ ~][~ ~ ;]
001001001001

which reduces to

[ ~ ~ af ~ de].

001

Now if x is central in C then [x, y] = h for all y E C, which gives
af - de = 0 for all d, f E 71., whence a = c = O. Thus we see that the
centre of C is

The derived group of C is ( [x, y] I x, yE C). From the above calculation
of [x, y] it is easy to see that the derived group of C is Z. To see that
C is nilpotent, we show that [Z,CJ = {I3 }. Again, this follows from the
above calculation.

The upper central series is

For, we have shown that Z is the centre of C, and C / Z is abelian since
Z is the derived group of C. This is also the lower central series of Cas
our calculations have shown. Hence the upper and lower central series
of C coincide.

For the given matrices we have

[

1 n 0]
t~2 = 0 1 0 ,

o 0 1
t;, ~ [~ ~ nt;, ~ [~ ~ n
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Now since

[ ~ ~ ~]= [~ ~ ~][~ ~ ~][~ ~ b~ac]
001001001001

it follows that we have G = (t 12' t l3 , tn ).
A subnormal series for (t 12 ) is

(t I 2) <J (t 12 , t 13 ) <I G.

A subnormal series for ( t23 ) is

(t n ) <J (t 23 , t l3 ) <J G.

A subnormal series for (t I3 ) is

(t I3 )<JG.

9.12 Suppose that N <lG and A S N, B S N. Then for all x E X, yE Y, z E Z
we have

[x, y-I, z]Y EN and [y, Z-I, xJz E N.

Hence [z, X-I, y]X E N and so [z, X-I, Y] E N, whence (z, X-I] commutes
with y modulo N, whence [Z, Xl commutes with Y element-wise modulo
N, and consequently C S N.

For the next part, use induction. The result is clearly true if n = 1.
Assume then that [Hi,fn-dK)] S Hi +n - I . Let

X = fn-I(K), Y:= K, Z = Hi, N:= Hi+n.

Then we have

A:= [rn-I (K), K, Hi] = [rn(K), Hi]

B = [K,Hi,fn_I(K)] S [Hi+l,fn_I(K)] S H i +n = N

C = [Hi, f n-I (K), K] S [Hi+n- I , K] S Hi+n = N

and hence A S N as required.
For the last part, take G = H = K and the series to be the lower

central series. Then
(a) and (b) follow immediately;
(c) follows from (b) with m = nj
(d) is proved by induction. We have GID) = f l . Suppose that

G(r-I) S f 2 .-1; then, by (a),

G lr) - [G(r-I) Glr-I)] < [f f ] < f- , _ 2 r - 1 , 2,--1 _ 2'"'

(e) [Z2, f 2 ] = {1} and so [Z2, Gl = {1} gives Z2 S ZI whence Z2 = Zl
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3.13 Since x E Zz(G) we have [x, g] E Z(G) so N S Z(G). Now in this case
we have

[x,gJ! [x,gz] = x-lg-;lxglx-lg2Ixgz

= x-lg2IX.X-lg-;lxgj.gz

= [x, gl 9z]

and hence

N = {[x, g] I 9 E G}.

Now
!x,gd = [x,gz] <=> g-;l xg1 = g21xgz

<=> J./ (x) 91 = J./ (x)gz .

This gives 1Nl = IG : J./(x)l. However, Z(G) S J./(x) and x '/:. Z(G), x E
J./(x) and so Z(G) is properly contained in J./(x), whence 1Nl < pn.

If n = 1 then G is abelian and G' = {I} so the result holds. Suppose,
by way of induction, that the result holds for all groups with factor
by the centre of order pk for k < n. Consider Z( G / N). Certainly
Z(G)/N S Z(G/N). But xN E Z(G/N) since [x, Gl c;;:: N so Z(G/N)
properly contains Z(G)/N. Hence

IG/N : Z(G/N)i = pk

for some k < n, and so by the inductive hypothesis

1
IG'/NI S p2"(n-l)(n-Z).

But 1Nl Spn-I and so IG/I Sp~n!n-I) as required.

3.14 Suppose that H is a subgroup of G with G = ipH. Then if H =I- G
we have that H is contained in a maximal subgroup M of G, whence
G = ipH S ipM and consequently G = ipM. But ip S M since ip is the
intersection of all the maximal subgroups of G. Hence G = ipM S M
which is a contradiction. Thus H = G as required.

Since T S ip we have Tg S ipg. First we show that ip is normal in
G. If M is a maximal subgroup of G then g-I Mg is also maximal,
since otherwise g-I M 9 < K < G for some subgroup K and then M <
gKg- 1 < G, a contradiction. Suppose now that x E ip. If g-I xg 1'- ip
then g-I xg '/:. Af for some maximal subgroup M, and then x'/:. gMg- 1

which is a contradiction. Therefore T'/ S ip'/ = ip and so T and Tg are
Sylow p-subgroups of ip. Thus Tg = T h for some h E ip, by Sylow's
theorem. It now follows that Tgh-

1 = T and so gh- I E J./c;(T) whence
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9 E Nc(T)Ip. Hence we see that Nc(T)1p = G and, by the first part of
the question, that Nc(T) = G. Thus T is normal in G and so is norma:
in Ip.

Thus every Sylow p-subgroup of Ip is normal.

3.15 Suppose that G satisfies the maximum condition for subgroups and let
H be a subgroup of G. Choose Xl EH and let HI = (Xl ). If HI < H
choose X2 EH \ HI and let H2 = (Xl, X2)' Continuing in this way, we
obtain a chain of subgroups

in which, by the maximum condition, Hr = H for some r. Hence

is finitely generated.
Conversely, if G fails to satisfy the maximum condition then G con­

tains an infinite chain of distinct subgroups

HI < H2 < ... < Hn < Hn+ l < ....

Let H = Ui>l Hi and suppose that H is finitely generated. If, say,
H = (Xl, ••. ,-x r ) then we have

and consequently each Xi E H s where s = maxlSiSr Si. It follows that
H = Hs, a contradiction. Hence H cannot be finitely generated.

Let G be a soluble group that satisfies the maximum condition for
subgroups. Let

G = Ho ~ HI ~ ... ~ Hr = {1}

be a series for G with each quotient Hi-I! Hi abelian. Now Hi-I, being a
subgroup of G, is finitely generated and so therefore is Hi- l / Hi. Thus
we may insert between Hi and Hi- l a finite number of subgroups to
obtain a series in which quotients of consecutive members are cyclic.
Thus we have that G is polycyclic.

Conversely, if G is polycyclic let

G = Ho ~ HI ~ ... ~ Hr = {1}
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be a series with each quotient Hi- 1/ Hi cyclic. Then if K :::; C we have,
writing Kj =: H n Hi, the series

K =: Ko ~ K1 ~ ... ~ Kr =: {1}

in which consecutive quotients are cyclic. Let Kjai-l be a generator of
K i - d K i . Then it follows th at

K =: (ao, aI, ... , ar -l )
and so K is finitely generated as required.

8.16 Rewriting the given relation in the form

(1) y-l[X,z]y = [xy,z] [y,zr 1

we see that, for all x, yEA and all z E B,

y-l [x, z]y E lA, B]

and so A normalises [A, Bj. Similarly, B normalises [A, Bj and so rA, Bl
is normal in C.

Replacing z by zt in (1) gives

[xy,zt] = [x,ztjY[y,ztj.

However, [x, zt] =: [zt, X]-1 and [1/, zt] = [zt, y]-1 so we can use (1)
again to express [xy, zt] as a product of conjugates of commutators of
the form [a,b] where a,b E {x,y,z,t}. Hence if x,z E A and y,t E B
then using the fact that [x, z] =: 1 = [y, t] and the fact that [A, Bl is
normal in C we see that [xy, zt] E [A, B]. Thus Cl <:;; [A, BI. However,
[A, B] <:;; [AB, AB] =: C' and so C' = [A, B].

Since AB = BA we have

b~2 = a3 b3 and a~' = b4a4
for some a3, a4 E A and b3,b4 E B. Now

[al,bd a,b, = [a~',b~,]b, =: [al,a3 b3]b,

= [a~',b31 = [b4a4,b3]

=: [a4' b3 ].

Similarly we can show that

lal, b1]b,a, = [a4, b3 ]

and so [aI, b1]a,b, =: [aI, bdb,a, as required. It now follows that

[al,bd!b,.a,1 = [al,bd

and so [A,B] is abelian.
The derived series for C is now

C ~ [A,B] ~ {1}

and so C is soluble, of derived length at most 2.
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3.17 Let M be a maximal subgroup of G. Then M is subnormal in G
question 3.3) so we have

M <I HI <I ... <I Hr <I G.

But M < HI < G is impossible, so M <I G.
S is a Sylow p-subgroup and M is a maximal subgroup of G wit!::.

)le(S) ~ M < G.

Let 9 E G. Then 9- 1 S9 ~ g-1 Mg. But 9- 1 Mg = M since M ~,

normal. Therefore Sand g-IS g are Sylow p-subgroups of M. Now.
using the Sylow theorems, we have that Sand g-1 S9 are conjugate in
M. Hence there exists m E M with g-ISg = m-ISm. This shows that
mg- 1Sgm- l = S and so (gm- l )-IS gm-l = S whence gm- l E )le(S).
It now follows that 9m-l E M whence gEM since m E M. This is
clearly impossible since we now have the contradiction M = G. We
deduce, therefore, that )lG(S) = G and so S is normal in G.

Suppose now that S is a Sylow p-subgroup of G. Then S = g-ISg
for some 9 E G, by Sylow's theorem. Hence S = g-1 S9 = S since S <I G
and so S is unique.

Let SI,"" Sr be Sylow subgroups, each corresponding to distinct
prime divisors of IGI. Since Si is the only Sylow subgroup for its asso­
ciated prime, we have Si <I G. Clearly, if i f i then Si n SJ = {I} since
h·c.f·(ISil, ISJI) = 1. Hence

G = SI X S2 X ... X Sr'

9.18 Let k E K. Then k E 9- 1 Mg for every 9 E G. If x E G we then have

(Vg E G)

and so X-I kx belongs to every conjugate of M. Hence X-I kx E K and
so K <I G.

If N <I G and N ~ M then for every 9 E G we have

from which it follows that N ~ K.
Since H / K is a minimal normal subgroup of G/ K we have H <I G

and K c H, so HiM. Therefore G = M H since M is maximal an:
G;::=: MH>M.
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Now HnM is nonnal in M and so (HnM)1K is normal in MIK. But
(HnM)IK is normal in HIK since HIK is a minimal normal subgroup
of a soluble group and is therefore abelian. Thus every subgroup of HIK
is normal.

Now (H n M)IK is normalised by MIK and is also normalised by
HIK. Hence HIK· MIK normalises (H n M)IK. But

HIK· MIK = HMIK = GIK.

Consequently, (H nM) I K is normal in GIK. It now follows that H nM
is normal in G.

Now HnM ~ M and HnM<JG imply that HnM ~ K. But K ~ H
and K ~ M, so we have H n M = K.

Finally,IMH : MI = IH : HnMI gives IG : MI = IH : KI·

S.l 9 Suppose that G is met acyclic and that N <J G with Nand GIN cyclic.
Let H ~ G. Then H n N <J Hand H n N is cyclic (since it is a subgroup
of the cyclic group N). Also,

HI(HnN) ~ HNIN ~ GIN

so HI(H n N) is cyclic (being isomorphic to a subgroup of the cyclic
group GIN). Hence H is metacyclic.

Suppose now that K<JG. We have K<JNK and NKIK ~ NI(NnK)
which is cyclic (being a quotient group of the cyclic group N). Also,

GIK G GIN
NKIK ~ NK ~ NKIN

which is cyclic (being a quotient group of the cyclic group GIN). Hence

NKG. N K I' d GI K I' GIK . I'K <J K wIth K cyc IC an N KI K cyc IC, so IS metacyc IC.

If

G = I a, b I a2 = 1, bS = 1, aba = b7
)

then we have a-Iba = b- I so (b) <J G since then a-Ibia = b-i for all
integers i. But

GI( b) = I a, b I a2 = 1 = b}

and so G/I b) ~ C2 · Also, I b) ~ Cs so G is metacyclic.
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3.20 Consider the following matrices (in each of which the entries not 5:. ­

are all 0) :

Aa =

An - 1 =

al2 al3 al n

an a2n
a3n

1

-an-l,n

It is readily seen that AaA l ... A n- l = In. Also,

1

1

Expanding the other matrices in a similar way, the description of Tn (F)
follows.
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A similar argument shows that H is the set of all upper triangular
matrices over F of the form

al,i+l al,i+2 aln
a2,i+2 a2n

To show that

is a central series for Tn(F), first note that if In + A E Tn(F) where

o
o

A = 0

o

Now let In + B E Hi. Then we have

[In + A,In + Bl = (In + A)-I(In + B)-I(In + A) (In + B)

= (In - A + . .. )(1n - B + .. .)(1n + A)(In + B)

= In + AB + higher powers of A and B

E H i+ 1 •

Tn(l:p) consists of all upper triangular matrices with diagonal entries
alII and arbitrary elements of l:p in the ~n(n - 1) positions above the

main diagonal. It follows immediately that ITn(l:p)1 = ptn(n- ll . But
we know that

n-l
1 IT .ISL(n,p)[ = _ (pn _ p')

p - 1 .,=0
(see question 1.18), and the highest power of p that divides [SL(n,p)[ is
therefore pt n(n-lj. Hence Tn(~p) is a Sylow p-subgroup of SL(n, p).
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3.21 83 can have non-trivial proper subgroups only of order 2 or 3. Only the
Sylow 3-subgroup ((123)) is normal and so the only composition series
is

8 3 > ((123)) > {I}.

No Sylow subgroup of 8 4 is normal, nor is any subgroup of order 2.
Thus the only possible orders for proper non-trivial normal subgroups
are 4,6, and 12. But a subgroup of order 6 contains a Sylow 3-subgroup
and so, if it is normal, contains all four Sylow 3-subgroups which is
impossible since 4 does not divide 6. Any subgroup of order 12 contains
all Sylow 3-subgroups and so is A4 (observe that An is generated by the
3-cyc1es). As A4 has index 2, it is normal. It is easy to see that the only
normal subgroup of order 4 is

v = {(I), (12)(34), (13)(24), (14)(23)}

and so the only composition series is

8 5 has only one non-trivial proper normal subgroup and so

is the only composition series. To see this, we again use Sylow theory.
If {I} i= N <I 85 and 5 divides 1Nl then N contains all six Sylow 5­
subgroups of 8 5 so 1Nl is 30,60, or 120. But each of these possibilities
means that N contains one and so all Sylow 3-subgroups of 8 5 and so
contains A5 as above. Thus N is either A5 or 85 , Now if neither 3 nor
5 divides the order of N then N contains an element of order 2. But
then, by conjugation, it contains at least 15 elements of order 2. Thus
A5 is the only possibile N. The above argument applies to subgroups of
A5 which is therefore simple, and 8 5 has only one composition series.

If n ~ 5 then the only composition series of 8n is

8n > An > {I}.

3.22 As Ar +1 is a Sylow q-subgroup of Ar and Ar +1 <I Ar we see that A r
has only one Sylow q-subgroup. We show by induction on i that Ar- i

has only one Sylow q-subgroup, namely Ar +1 • Suppose that Ar -.+ 1

has only one Sylow q-subgroup Ar +1 • Then Ar-i+l <I Ar-i implies that
if 9 E Ar- i then g-lAr+1g::::: g-lAr_i+1g = Ar - i+ 1 and so, by the
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assumption, g-1 A r+ 1 9 = Ar + 1 • Thus A r+ 1 <1 Ar-i. and so is the only
Sylow q-subgroup of Ar - i . Hence, by induction, A r + 1 <1 Al = G. Thus
Ar + 1 , and similarly BB+l, are normal subgroups of G.

For 9 E A r + 1 and hE B S + 1 we have

Thus Ar+ 1 and B s+1 generate their direct product and the order of this
shows that A r + 1 BS+ 1 = G.
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4.1 The first part is achieved by a standard matrix reduction using the
elementary operations of the forms

(a) add an integer multiple of one row / column to another;
(b) interchange two rows/columns;
(c) multiply a row/column by -1.

In this case the reduction begins and ends as follows:

[

37
52
59

This then shows that

27 47]
37 67 '"'"
44 74 [

1 0 0]
... '"'" 0 35 0 .

o 0 0

G ~ (x, y, z i x = 1, y35 = 1, ZO = 1) ~ C35 X Coo.

If we now add the relation a3 b2 c4 = 1 to those of G then a corre­
sponding matrix reduction gives

f

37 27 47] [1 0 0152 37 67 0 7 0
59 44 74 ,"", ... '"'" 0 0 0 .

3 2 4 0 0 0

Thus adding the relation a3 b2 c4 = 1 to the relations of G changes G to
the group C7 X Coo. Hence the relation a3 b2 c4 = 1 cannot hold in G.
However, it follows immediately from the first two relations of G that
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a15blOc20 = 1 and so the order of a3 b2 c4 divides 5. As the order is not
1, it must then be 5.

From the second and third relations it is clear that (abc)7 = 1 and so
abc has order 1 or 7. Adding the relation abc = 1 to those of G gives a
matrix that reduces to

r

1 0 0]050
o 0 0 '
o 0 0

which corresponds to the group C5 x Coo' Thus we see that abc i- 1 in
G and that consequently abc has order 7.

Now in an abelian group, if x has order m and y has order n then xy
has order l.c.m.(m, n). Thus we deduce that

has order 5·7 = 35.

.4-2 (a) The relation matrix for G reduces as follows:

[2 3 6] [1 0 0]
4 9 4 ~ ... ~ 0 -2 O'

Consequently, G ~ (x, y, z I x = y-2 = zO = 1) ~ C2 X Coo.
(b) The relation matrix for G reduces as follows:

[
2 3 6] [1 0 0"
494~ .. ·~01 O.

3 3 2 0 0 -66
Consequently G ~ C66 •

4..'1 From abab2 = 1 we have bab = b-1a- 1 . Hence babab = 1 and so
bab-1a- 1 = 1, from which it follows that G is abelian.

G is the infinite cyclic group. In fact, a relation matrix for the abelian
group G is

Alternatively, it is easy to see that G = (ab) since b
a = (aW.
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4.4 Suppose that g, hE Ghave orders m, n respectively. Then g-I has ord,,~

m and gh has order that divides mn. Thus the non-empty subset T ;~

closed under multiplication and taking inverses, so it is a subgroup~:

G.
If g E Q and hET \ {l} then gh E Q. Thus, if Q is a subgroup, we

have h = g-I.gh E Q. It follows that a necessary condition for Q to be
a subgroup is that T = {I}. This condition implies that Q = G and so
is also sufficient.

Given a prime p, the element f of G defined by f(p) = 1 and f(q) = 0
for q E IT \ {p} is an element of order p.

The element g of G defined by g(q) = 1 for all q E IT has infinite order.
Let f E G be such that f(p) =I 0 for only finitely many p E IT.

Suppose that {PI,"" Pn} is the finite subset of IT on which f takes
non-zero values. Then if P = PIP2 ... Pn it is readily seen that the order
of f divides P (and in fact is equal to P), so P has finite order.

Conversely, suppose that f E G has order n say, so that nf = O.
We show that if f(p) =I 0 for P E IT then P must divide n. This will
complete the proof since n can have only finitely many distinct prime
divisors. Now f(p) =I 0 and f(p) E l:p imply that f(p) has order p. But
since nf = 0 we have nf(p) = 0, and so p divides n.

4.5 The relation matrix for G is

This red uces as follows :

[; : :]~ [; :~; m~n]
m m n m 0 n-m

~ [2m: n n~ m ~].
m 0 n-m

The determinant is zero if and only if m = n or 2m = -n, whence the
result follows.

If G is perfect then 2m + n = 1 and n - m = 1, so m = 0 and n = l.
Thus

G = (a, b, c I a = 1, b = 1, c = 1)

which is the trivial group.
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4.6 The relation matrix for G is

Groups

For G to be perfect, we require the determinant of this matrix to be ±1.
Now the determinant is

~ = 2n + 9 - 3(4 + 2k) = 2n - 3 - 6k.

Since, by hypothesis, n is coprime to 6, there are two cases to consider.
(a) n = 6m+ 1. In this case ~ = 12m+ 2 -3-6k and we can choose

k = 2m to obtain ~ =-1.
(b) n = 6m - 1. In this case ~ = 12m - 5 - 6k and we can choose

k = 2m - 1 to obtain ~ = 1.

4.7 The relation matrix is

[ ; ~]~ [; ~]~ [; ~].
n+9 4 n 1 0 1

Hence G/G' is cyclic, of order h.c.f.(3, n). Therefore G/G' ~ C3 if n is
divisible by 3, and is trivial if n is coprime to 3.

4.8 We have
v = S~l R-Y

W = TV- z = T(RY sy

X = WtU = (T(RYSy)tU

and hence

G=(R,S,T,U IRx=saTbu c , (RYS)Y=TaUd ,

(T(RY S)T = Ua, ((T(RY S)Z)tU)t = 1).

The relation matrix for G /G' is therefore

[,
-a -b

~'1y2 Y -a -d
M= 2 z2 Z -ayz

yzt2 zt2 t 2 t
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We can simplify this relation matrix using elementary row or colu:;:~~

operations over 71.. Add -y times column 2 to column 1, then -z tir::e;:
column 3 to column 2, then -t times column 4 to column 3, and we
obtain

M _ [X ~ ay ~a++a:z =~: ~~
o 0 z + at

o 0 0

Now IGIG'I = det M = (x -t- ay)(y + az)(z + at)t.
if and only if (x + ay)(y + az)(z + at)t =1= o.
(a) IGIG'I = 1 requires

-Cj-d
-a
t

Hence GIG' is finite

x + ay = ±1, y + az = ±1, z + at = ±1, t = ±1

so we can take, for example, a = 0, t = x = y = z = 1.
(b) Take, for example, t = 16, x = Y = z = 1, a = b = C = d = O.
(c) Take, for example, t = 2,z = 4,y = 8,x = 1,a = b = C = d = O.

4.g To see that G = \ aI, a2) we use induction. Suppose that ai E \ aI, a2 )
for all i < n. Then an = an-l an-2 shows that an E (aI, a2 ). Since
aI, a2 E (aI, a2) it follows that ai E (aI, a2) for 1 :s; i :s; 2m and so
G = \ aI, a2)'

To see that fn-dn+l - I,; = (-1)n we again use induction. The
result is readily seen to hold for n = 2. Now

In-dn+l - f~ = fn-d 2In-1 + fn-2) - (fn-2 + fn_d
2

= 2f~_1 + fn-dn-2 - f~-2 - f~-l - 2fn-2fn-1

=f~-l - In-2(fn-2 + fn-d

= I~-l - fn-2In
= _( _1)n-1

= (-It,

the penultimate equality resulting from the inductive hypothesis.
Now in GIG' the relation ai+2 = ai+lai allows us to write

Substituting these values of ai into ai = ai+2ai+m+1 we obtain only two
relations. From i = 1 we obtain

afmal+fm+l - 1
I 2 -,
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and from i = 2 we obtain

Groups

Hence we see that a relation matrix of G / G' is

[
Im

1 + Im+1

Consequently,

l+lm+l] [ Im
1+lm-t-2 ~ l+lm-1

1 + Im+l]
Im .

IG/G'I = 1/;'" - (1 + Im+d(1 + Im-IlI

from which the result follows on using the equalities

Im+l/m-I - I;'" = (_l)m and gm = Im+1 + Im-I.

4.10 Since b2 = a2n -
2

is a relation of both G and H we need only show that
the relation (ab)2 = b2 holds in G to see that the relations of G imply
those of H. But clearly bab- I = a-I implies abab- I = 1, i.e. (ab? = b2.

To show that the relations of H imply those of G, we need only show
that bab- I = a-I and a2n -

1 = 1 hold in H. Now b2 = (ab)2 implies
bab- I = a-I immediately. Raise bab- I = a-I to the power 2n - 2 to
obtain

But since a2n
-2 = b2 we see that a2n

-2 commutes with b. It follows that
2 /1 - 2 _ _2"-2. 2"-1 _

a - a , I.e. a-I.

-i11 It is easy to see that Hand K are isomorphic. For, eliminating c from
the presentation of K by setting c = ab gives the presentation for H.

We now show that the relations of H are consequences of those of G.
In fact,

=a

since ab = ba3

since b2 = a2

since a4 = 1.

Also,
aba = ba3 a since ab = ba3

= b since a4 = 1.

84



Solut£ons to Chapter '"

Next we show that the relations of C can be deduced from thooe ,"
H. In fact,

since a = bab
since aba = b,

and
since a = bab
since b2 = a2 .

Finally, b = aba = ba3 a = ba4 so a4 = 1 as required.
Since the matrices

= [ 0 1] b = [0 i]a -1 0' i 0

generate a group of order 8, the last part of the question is routine.

,,{12 Let K = (al, ... ,an-I)' Then setting L = (an) we have C = KL,
and since L :S Z(C) we must have K normal in C. Now ClK ':::' L, an
abelian group, so c' :s: K. But since an E C' we have L :s: K. Hence
K L = K and so C = K as required.

Take as presentation for Q8

Since HI A,:::, Qs and A :s: Z(H) n H' we have, by the above result, that
H = (cx,/3) and cx 4 E A,cx2/3-2 E A,cx/3-1 et/3 E A. Now [et,/3] = et- 2 a

where a E A and so [et,/31 commutes with et since a E Z(H). But
et2/3-2 E A so [et,/3] = /3-2 a, where a' E A and so [et,/3] commutes
with /3. Thus H' = ([et"B]). However, et 2 commutes with /3 since
et2 j3-2 EA :S Z(H) and so we have

[et,/3]2 = [et,/3]a- 1/3-1 a/3

= et-I [et, /3]/3-1 et/3

= et-2/3-1 et 2/3

=1.

Therefore H' ':::' C2. But A :s: H' and so, since HIA ':::' Qs, we 22.\'''
HIH' ':::' C2 X C2 whence IHI = 8 and A = {I} as required.
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~.lS We have x2 = y2 xy-l and so

1 = XS = (y2 xy-l)4 = (y.yX.y-l)4 = Y(YX)4 y-l.

Hence (YX)4 = 1 and so (xy)4 = 1.
Also, y2 = x2yx-1 so

y8 = (x.xy.x- 1)4 = X(xy)4 x -l = xx- 1 = 1.

4.14 Let x = a3b and y = (a2b)-1. Then since xy = a it is clear that x and
y generate G.

Writing a = xY,b = (xy)-3 X = y-1x-1y-1x-1y-l we obtain

G = (x, Y I (xy)7 = y3 = x2 = (xy(y-1x-1y-1x-1y-l )5)2 = 1).

~ow the final relation can be written in the fonn

(xyy-l x-1y-l x-1y-l (y-l x-1y-l x- 1y-l)4)2 = 1.

Taking the inverse of this we obtain

((yxyxy)4 yxy )2 = 1.

:\ow conjugate by y to get

((y2xyx)4y2X)2 = 1.

Since y3 = 1 we have y2 = y-l and the required form follows.

4.15 Substituting
e = ab,

d = be = bab,

e = cd = ab2ab

into the relations of G we obtain (1) and (2).
Now

b = ab 2aba

= ab2ab2abab2ab by (1)

=ab5ab by (2).

Thus we have b5 = a- 2
. Also,

a2 = babab2 aba

= bab2 by (2).

Hence b-5 = a2 = bab2 and so a = b- 8 as required.
Replacing a by b-8 in (1) and (2) produces bll = 1 and b22 = 1, so G

is the cyclic group C ll .
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4.16 From ab = b2 a = b.ba = b.a2 b = ba.ab we obtain ba = 1. Hence a = a- l
•

and substituting into ab = b2 a we obtain b = 1. Now substitute t =
in ba = a2 b to obtain a = 1. Hence C is the trivial group.

Consider now C n . The relation

holds for i = 1. Also, assuming this equality we have that

ai+1 bn'+1 a- 1i+ 1 ) = a(aibn' a- i )n a-l

= abnln+ll' a-I

= (abna- 1 )(n+l)'

= (b n+1 )(n+l l'

= b(n+l)'+l,

whence the result follows by induction.
Taking i = n we obtain from the above

It follows that

and hence that

(1 )

But taking i = n + 1 gives

and so, raising (1) to the power n we obtain

from which it follows that b(n+l)" = 1. Substituting this into (1) now
produces bn" = 1. Since nn is coprime to (n + It we then have that
b = 1, so a = 1 also and C n is trivial.
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4.17 Let H = (a, b). Then H is not abelian. To see this, let

A=[l 1]
5 6'

so that we have
ab = q(A), ba = ~(B).

Now q(A) =1= q(B) since otherwise we would have AB- 1 = ±I2 which is
false.

A simple computation shows that

where q[~ ~] is the identity of P8L(2, 7). Hence H is an image of

Dg =(a, b I a2 =b4 =(ab? =1)
using von Dyck's theorem. However, any proper image of D g has order
1, 2, or 4, and so is abelian. This then shows that H ~ Dg .

4·18 By question 1.18, 8L(2,3) has order 24. The elements of GL(2,3) have
determinant 1 or 2, and the same argument that counts the elements of
determinant 1 clearly shows that there are 24 elements with determinant
2. Hence

IGL(2, 3)1 = 48.

Since 8L(2, 3) has index 2 in GL(2, 3) it must be normal and contain the
derived group. But

and

[-~ n[~ n[-~ n[~ -n=[~ n
[-1 0][1 0][-1 0][ 1 0]= [1 0].° 1 1 1 ° 1 -1 1 1 1

It is now straightforward to check that

SL(2'3)=([~ ~l[~ ~])
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and so 8L(2,3) is the derived group of GL(2, 3).
We now have

H = (a,b,c,tJ [ab = c, bc = a, ca = b, tJa = 1, 6- 1atJ = 0,

tJ- 1 b6 = c, t9- 1 ctJ = a).

A little trial and error soon produces the correspondence

[0-1]
a <-----> 1 0'

[-1 1]
c <-----> 1 l'

b<----->[~ -n,
tJ~[~ -~l

This then shows that H ~ 8L(2, 3) since each has order 24.
The presentation for H may be simplified by eliminating band c using

the fifth and sixth relations, to obtain

Now HI H' ~ Ca and is generated by 19. Hence H' ~ Qa and the derived
group of Qa is (a2 ) ~ G:;. with quotient group C2 x C2.

The derived series of GL(2, 3) is now seen to be

• GL(2, 3)

C2!

• 8L(2,3) = H

Ca I
• H' = Qa

C2 x C2!

• C2

I
• {I}

4.19 Let T = ( ab, ab- 1ab) :<:; H. Then

ab- 1 = ab- 1ab(ab)-1 ET

89



Book 5 Groups

and so b = b- 2 = (ab)-l ab- 1 ET and a = ab.b- 1 ET. Hence T = H
and so H is generated by ab and ab- 1 ab.

Let M = ((ab)n) ::; H. We show first that M is central in H.
Since H = (ab, ab- 1 ab) it is sufficient for this purpose to show that
Jabt,ab] = 1 and [(abt, ab-lab] = 1. Now the first of these is clear,
and the second follows on substituting (ab- 1 ab)k for (ab)n. Since also

(ab)" = (ab- 1 ab)k = (a- 1 b- 1 ab)k E H'

we see that M ~ H' as required.

4.20 To show tht the commutator [a, b] is in the centre of G, it suffices to
prove that it commutes with each of the generators a and b. Now

a- 1 Ia,b]a = a- 1 (a- 1 b- 1ab)a

= a(b- 1 a)ba since a3 = 1 gives a- 2 = a

= a(a- 1 ba- 1 b)ba since (b- 1 a)3 = 1 gives b- 1 a = (a- 1b?

= ba- 1 b- 1a since b2 = b- 1

= b(baba)a since a- 1 b- 1 = (ba)2

= b- 1 aba- 1 since b2 = b- 1 ,a2 = a-I

= a- 1 ba- 1 bba- 1 since b- 1 a = (a- 1b)2

= a- 1 ba- 1b- 1a- 1 since b2 = b- 1

= a- 1 bbabaa- 1 since a- 1 b- 1 = (ba)2

= a- 1 b- 1 ab since b2 = b- 1

= [a, b],

and so we have that [a, bl commutes with a. A similar proof shows that
:a, b] commutes with b.

Since the commutator la, b] is thus in Z(G) we have that GjZ(G)
is abelian and Z( G) is abelian. But an abelian group must be finite
whenever it is generated by a finite number of elements and is such
that, for all x and a fixed n, xn = 1. Hence Z(G) is finite, GjZ(G) is
finite, and so G is finite.

4. 21 We have yaxyb = xy-C x and y-cxy-b = xyu x , so

(1)

Similarly,

(2)
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and

(3)

From (1) and (3) we have

and using (2) we obtain

Hence
2iL+b( b+2c a-" -2a-b) -b-2c a-cy y xyxy y = xy x

and so

Similarly
[y2(a+b+c), xy"-b X] = 1.

If h.c.f.(a - c,c - b) = 1 we have '\(a - c) + J-L(c - b) = 1 and then

and so [y2(a+b+ c ), xyxj = 1. But now

so [y2(a+b+c), y-cxy-bj = 1, giving [y2(a+b+C), xl = 1 as required.

4.22 Call xtrn +1 = t2x2 relation (1) and xt2xtx2t = 1 relation (2). From (1)
we obtain

so, squaring and using (2),

This then establishes (a).
From (2) we have t- 2 = (xtX)2 so [t 2, xtx) = 1, which is (b).
By (1) and (b) we have



Book 5

Hence

Groups

xt2x- 1 = tmx-1t

= t2m+1 X- 2 C 1 by (1)

= t2mtx-2C 1

= t2m(xt2m+2x-l) by (a).

This establishes both (c) and (d).
Finally, em = t2m(xtm+lx-2t-2)

= (xtm+l)t-2m(x-2t-2)

= (xt m+1x-2t-2)t-2m ,

so t4m = 1 and hence, using (d), [t 2m ,xl = 1 which shows that t2m E

Z(G).

4.29 Since [: ~ JE SL(2,~) we have be = -1 and so b = ±1. Suppose that

b = -1. Then we have

[ae ob]= [a1 -01]= [01 a][o -1]1 1 0 =satE(s,t).

Suppose now that b = 1. Then if

we have, by the above,

[-1 0][ a 1] [-a -1]t2m= = E(s,t).o -1 -1 0 1 0

Consequently, m E (s, t ).
Now choose n such that Ib + ndj < !dl. Then if

we have

m=[: ~]

sn m = [~ ~ J[: ~] = [a ~ ne b+dnd ]
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we have

and hence

b+nd]=[ -c
d a + nc

-d ]b+ nd .

-1]
o '

Now tsnm E (s, t) by induction, so mE (s, t).
Writing

we have

3=[-10]
u 0 -1 '

t2 = [-1 0]o -1

and so u3 = P = 1 in PSL(2, Z!}
To show that we can assume that w has the given form, note that

conjugation will transform words with different beginnings or endings
to this fonn.

That ut = -s follows by a simple matrix multiplication. Thus, putting
v = u-lt, we have

where ... , ni, ni+l, ... are positive integers. But

a [1 Cl']
s = 0 l'

so any product of the above form is a matrix whose entries are all no:::.­
negative and, provided both sand t occur, the trace exceeds 2. HeLce

w =1= ±I and so

PSL(2, tE) =(u,t r u3 =r =1),

since we have shown that no further non-trivial relations can hold.
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Test paper 1

Time allowed : 3 hours
(Allocate 20 marks for each question)

1 Prove that the centre of a group of order pn is non-trivial. Let K be a
finite group and let H be a subgroup of K. If PI is a Sylow p-subgroup
of H, explain why PI ::::: P2 for some Sylow p-subgroup P2 of K.

Now suppose that H satisfies the condition that if h E Hand h i= 1
then NK(h) ::::: H. By considering the centre of P2 , or otherwise, show
that PI = P2 •

Deduce that h.c.f.(IHI, IK : HI) = 1.

2 Let the quaternion group Qs be given by the presentation

Show that the mappings a, f3 defined by

a(a) = ab,

f3(a) = b,

a(b) = a

f3(b) = a

extend to automorphisms of Qs.
Let G = (a, f3). Prove that G is a group of order 24 isomorphic to

54' Show also that
G~AutQs.

3 Suppose that A is a set of generators of a group G and that H is a
proper subgroup of G. Given an element a of A not belonging to H, let
B be the set obtained from A by replacing each x E An H by ax. Show



that B is a set of generators of G. If A is finite and has n elements,
show that B has at most n elements.

Deduce that

(i) if G has n generators then it has n generators lying outside a given
proper subgroup;

(ii) if H is a proper subgroup of G then G \ H generates G.

4 (a) Prove that every subgroup H of an (additive) cyclic group G is
cyclic and show that if a is a generator of G and H has index n then
na is a generator of H. If the order of G is m, show that b is also a
generator of G if and only if b = ra and a = sb for some integers r, s
both coprime to m. Deduce that if, in addition, G is a p-group and d is
any generator of H then there is a generator e of G such that ne = d.

(b) Let p be a fixed prime. Suppose that G is an additive abelian
group with the property that it contains precisely one subgroup Ha of
order pa for each 0:, and no other subgroups. Show that Ha ~ Ha+1
and that Ha is cyclic. Deduce using (a) that there are generators XQ =
O,Xl, ... ,Xa, ... of Ho = {O},H1, ... ,Ha, ... such that PXa+l = Xa for
every 0:.

Consider the additive group

Q={~ I {3,O:Ell., o:~O}
pC<

of rational numbers. Show that {3 Ipa f-+ {3xa describes a group mor­
phism from Q to G and deduce that G ~ QIll..

S Express the abelian group

as a direct product of cyclic groups.
Suppose that 0: is a morphism from G such that 1m 0: is of odd order.

Show that 1m 0: is cyclic.
Let H be a group in which g2 = 1 for every 9 E H. Show that H is

abelian. If the order of H is finite show that it is 2" for some positive
integer n.
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Test paper 2

Time allowed : 3 hours
(Allocate 20 marks for each question)

1 Let G be a finite group of order pm n where p is a prime that is coprime
to n. What do the three Sylow theorems tell you about the p-subgroups
of G?

Show, by using induction on the order or otherwise, that a maximal
subgroup of a finite p-group P is normal in P.

Supose that G has at least three Sylow p-subgroups PI, P2 , P3 where
PI n P2 and P2 n P3 are maximal subgroups of index p in P2 • Show that
PI = (hk)-l P3 hk where hE )/c(P2 n P3 ) and k E )/c(P1 n P2 ).

2 Prove that every subgroup of a nilpotent group is subnormal. Deduce
that a maximal subgroup of a nilpotent group is normal.

Let G be a group in which every finitely generated subgroup is nilpo­
tent, and let M be a maximal subgroup of G. Suppose that M is not
normal in G. Prove that there is an element x of G' with x tf- M. Writ­
ing x = rr~=l[Yi,Zi], prove that {X,Yi,Zi I i = l, .. "n} is contained in
a subgroup H of G where

H=(x,al, ... ,am I aiEM,i=l, .. "m).

Let A = (al, ... , am) and let L be maximal in H with respect to the
property that A ~ L and x 1:- L. Show that L is a maximal subgroup of
H, that x E H', and that H' ~ L.

Deduce from the above that a maximal subgroup of a group in which
every finitely generated subgroup is nilpotent is normal.



3 Find permutations x, yEAs with x2 == 1, y3 = 1, (xy)S == 1. Show that
As has a presentation

(x, y I x2 = y3 == (xy)S == 1).

By considering the matrices

in SL(2, 11), find a subgroup of PSL(2, 11) that is isomorphic to As.

4 An additive (resp. multiplicative) abelian group G is said to be divisible
if for every x E G and every non-zero integer n there exists y E G with
ny == x (resp. yn = x).

Prove that the additive group of rationals is divisible, and that so also
is the multiplicative group of complex numbers of modulus 1.

Show that no proper subgroup of the rationals is divisible.

5 Show that the group K with presentation

( a, b, c, d I ab == d, be = a, cd = b, da == c)

is cyclic of order 5. Hence or otherwise find the order of the group with
presentation

L == (a, b, c, d I ab = d, ad = c, be == a, cd == b, da = c).

Show that the group M with presentation

( a, b, c I abcabc = a, bcabca = b, cabcab = c)

is cyclic and determine its order.
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Test paper 3

Time allowed : 3 hours
(Allocate 20 marks per question)

1 Let G be a finite group and let p be a prime dividing the order of G.
Let PI, ... 'Pr be the Sylow p-subgroups of G. Show that the mapping
{}g from {PI, ... , Pr} to itself defined by

{}g(Pi) = gPig- 1

is a bijection. Show also that the mapping e from G to the group of bi­
jections on {PI"'" Pr} given by e(g) = {}g is a morphism whose kernel
is the largest normal subgroup of G that is contained in the normaliser
in G of a Sylow p-subgroup.

Let G be a group of order 168 which has no non-trivial proper nor­
mal subgroups. Show that G cannot be represented non-trivially as a
permutation group on fewer than seven letters. Show that G can be
represented as a permutation group on eight letters.

2 Let G be a nilpotent group and H a normal abelian subgroup of G with
the property that H is not properly contained in any normal abelian
subgroup of G. Prove that H = {g E G I (Vh EH) [g, h] = 1}.

Deduce that H is not properly contained in any abelian subgroup of
G and that AutG contains a subgroup isomorphic to G/H.

3 Show that if p is prime then q : lL -> lL/plL induces a morphism from
G* = SL(2,lL) to the group G; = SL(2,lLp ).

Given that in both G* and G; the centre is the subgroup generated
by

[-1 0]
o -1 '



explain why the above morphism induces amorphism

!Jp: G* /Z(G*) ----> G;/Z(G;).

Show that conjugation by the element

induces an automorphism 7 of order 2 of Ker !Jp. Prove also that

and that 7(X) = x implies x = 1. By considering the matrices

[~ ~] and [~ n
show that Ker!Jp is not abelian.

Let G be a finite group and let 7 be an automorphism of G such that
7 2 = 1 and 7(X) = x implies x = 1. Show that if X- 17(X) = y-1 7(y)
then x = y. Deduce that 7 inverts every element of G. Hence prove that
G is an abelian group of odd order.

4 Prove that every quotient group of a nilpotent group is nilpotent, and
that every finite p-group is nilpotent.

Find the order of the group

Prove that Gn/Z(Gn) ~ Gn- I . Hence show that Gn is nilpotent of class
n.

5 Express the abelian group

as a direct product of cyclic groups. Show that the subgroup of elements
of finite order is cyclic and find a generator for it.
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Test paper 4

Time allowed : 3 hours
(Allocate 20 marks for each question)

1 If G is a finite group and H, K are subgroups of G prove that

IHKI = IH11KI
IH nKI'

If G is a group of order 48 with more than one Sylow 2-subgroup,
find the possible number of Sylow 2-subgroups. If P1 , P2 are distinct
Sylow 2-subgroups, prove that IP1 n P2 1 = 8. Show also that P1P2 <;;:

NG(P1 nP2 ). By considering ING(P1 nP2 )1 show that P1 nP2 is a normal
subgroup of G.

Hence show that any group of order 48 has a proper non-trivial normal
subgroup.

2 Show that the number of elements in a conjugacy class in a finite p­
group is a power of p. Deduce that a non-trivial finite p-group has a
non-trivial centre.

Show that if P is a non-trivial finite p-group then P contains sub­
groups P1 , ... , Pk such that

each Pi is a normal subgroup of P, and IPi : Pi+ 1 ! = p for i = 1, ... , k-l.

3 Let G be a group with G' ::; Z(G). Prove that, for all x, yE G and all
integers n ~ 1,



Suppose !lOW that G = (x, y). Prove that if 9 C G then 9 = xayh[x, y"
for some integers a, b, c.

Deduce that if H is the subgroup of SL(3, a':) given by

then {} : H ---> G described by

[

1 b c

{} 0 1 a = x"yiJ[X, y]C
o 0

is a surjective group morphism. Deduce that G is a quotient group of
H.

4 If Hand K are nitpotent groups prove that so also is H x K. What is
the class of H x K in terms of the classes of Hand K?

Let M, N be normal subgroups of a group G. Prove that the mapping
G ---> G / N x G / M given by 9 ---> (gN, gM) is a morphism. Hence show
that if G/N and G/M are nilpotent then so also is G/(N n M). What
call you say about the class of G/ (N n M) in terms of the classes of G/ N
and G/M?

5 Express the abelian group

as a direct product of cyclic groups.
Find the number of elements of order 11 in G. Show that every element

of order 11 in G is of the form a2 O:b 2 (3c 2 , for some integers a,(3, "t. Find
an element of order 11 in G and express it in terms of the generators
a, b, c.
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