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Preface

The aim of this series of problem-solvers is to provide a selection of
worked examples in algebra designed to supplement undergraduate
algebra courses. We have attempted. mainly with the average student
in mind, to produce a varied selection of exercises while incorporating
a few of a more challenging nature. Although complete solutions are
included, it is intended that these should be consulted by readers only
after they have attempted the questions. In this way, it is hoped that
the student will gain confidence in his or her approach to the art of
problem-solving which. after all. is what mathematics is all about.

The problems. although arranged in chapters, have not been
‘graded’ within each chapter so that. if readers cannot do problem =
this should not discourage them from attempting problem n+1. A
great many of the ideas involved in these problems have been used in
examination papers of one sort or another. Some test papers (without
solutions) are included at the end of each book ; these contain questions
based on the topics covered.

TSB, EFR
St Andrews
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Background reference material

Courses on abstract algebra can be very different in stvle and content.
Likewise. textbooks recommended for thege courses can vary enorm-
ouslv. not only in notation and exposition but also in their level of
sophistication. Here is a list of some major texts that are widelyv used
and to which the reader mayv refer for background material. The
subject matter of these texts covers all six of the present volumes. and
in some cases a great deal more. For the convenience of the reader there
is given overleaf an indication of which parts of which of these texts
are most relevant to the appropriate sections of this volume.

(1]
(2]

[3]

3]
9]

10
1]

1. T. Adamson. Introduction to Field Theory. Cambridge
University Press. 1982,

F. Ayres. Jr. Modern Algebra. Schaum’s Outline Neries,
MeGraw-Hill. 1965.

D. Burton. A first course in rings and ideals. Addison-Wesley.
1970,

P. M. Cohn. Algebra Vol. 1. Wilev. 1982,

D. T. Finkbeiner 11. Introduction to Matrices and Linear
Transformations. Freeman. 1978.

R. Godement. dlgebra. Kershaw. 1983.

J. AL Green. Nets and Groups. Routledge and Kegan Paul,
1965.

1. N. Herstein. Topies in Algebra. Wiley. 1977.

K. Hoffman and R. Kunze. Linear Algebra. Prentice Hall.
1971,

N, Lang. Introduction to Linear Algebra. Addison-Wesley. 1970.
S, Lipschutz, Linear Algebra. Schaum’s Outline Neries,
MeGraw-Hill. 1974

viil



[12] L. D. Macdonald. The Theory of GGroups. Oxford University
Press. 1968.

[13] S. MacLane and G. Birkhoff. Algebra. Macmillan. 1968.

[14] N. H. McCoy. Introduction to Modern Algebra. Allyn and
Bacon. 1975.

[15] J.J. Rotman. The Theory of (froups. An Introduction. Allyn
and Bacon. 1973.

[16] L. Stewart. Galois Theory. Chapman and Hall. 1975.

[17] 1. Stewart and D. Tall. The Foundations of Mathematics.
Oxford University Press. 1977.

References useful for Book 5

1: Subgroups [4. Sections 9.1. 9.6]. [6. Chapter 7].
[8. Sections 2.1. 2.11]. [12. Chapters 1-6].

[13. Sections 13.1. 13.4]. [15 Chapters 1-4].

2: Automorphisms and Sylow theory [4. Sections 9.4. 9.8].
[8. Section 2.12]. [12. Chapter 7]. [13. Section 13.3].
[15. Chapter 5].

3: Series [4. Sections 9.2. 9.5]. [12. Chapters 9.10].
[13. Sections 13.6-13.8]. [15. Chapter 6].

+: Presentations [4. Section 9.9]. [12. Chapter 8].
[15. Chapter 11].

In [8]) morphisms are written on the left but permutations are
written as mappings on the right. In [4] and [12] all mappings
(including permutations) are written as mappings on the right.
In American texts “solvable is used where we have used
“soluble .



1: Subgroups

The isomorphism and correspondence theorems for groups should be
familiar to the reader. The first isomorphism theorem (thatif f: G —» H
is a group morphism then G/ Ker f ~ Im f) is a fundamental result from
which follow further isomorphisms : if A < G (i.e. 4 is a subgroup of
G), f N <G (i.e. N is a normal subgroup of G), and if K < G with
K < N, then

A/(ANN)~NA/N and G/N ~ (G/K)/(N/K).

The correspondence theorem relates the subgroups of G/N to the sub-
groups of G that contain N.

Elements a,b of G are said to be conjugate if a = g~1lbg for some
g € G. Conjugacy is an equivalence relation on G and the correspond-
ing classes are called conjugacy classes. The subset of G comsisting of
those elements that belong to singleton conjugacy classes forms a normal
subgroup Z(G) called the centre of G. For H < G the subset

Ne(H)={9€G | (Vhc H)g 'hgc H}

is called the normaliser of H in G. It is the largest subgroup of G in which
H is normal. The derived group of G is the subgroup G’ generated by
all the commutators [a,b] = a='b~'ab in G, and is the smallest normal
subgroup of G with abelian quotient group.

Examples are most commonly constructed with groups of matrices
(subgroups of the group GL(n, F') of invertible nxn matrices with entries
in afield F), groups of permutations (subgroups of the symmetric groups
Sn), groups given by generators and relations, and direct (cartesian)
products of given groups.



Book 5 Groups

1.1

1.2

1.3

1.4

1.5

An example of a presentation is
G={(ab|a?=0"=1,a tba=0b"1).

Since [{b)} = 3 and (b) « G with G/{b) =~ C, (the cyclic group of order
2), we see that |G| = 6. The generators @ and b can be taken to corre-
spond to the permutations (12) and (123) which generate S3, or to the

matrices
0 1 1 1
1 of 1 0

which generate SL(2, Z,), the group of 2 x 2 matrices of determinant 1
with entries in the field Z,. Thus we have that G ~ S3 ~ SL(2, Z,).

Let G be a group, let H be a subgroup of G and let K be a subgroup
of H. Prove that
|G:K|=|G: H||H: K|

Deduce that the intersection of a finite number of subgroups of finite
index is a subgroup of finite index. Is the intersection of an infinite
number of subgroups of finite index necessarily also of finite index?

Let G be a group and let H be a subgroup of G. Prove that the only
left coset of H in G that is a subgroup of G is H itself. Prove that the
assignment

p:zH — Hz!

describes a mapping from the set of left cosets of H in G to the set of
right cosets of H. Show also that ¢ is a bijection. Does the prescription

Yv:zH — Hz

describe a mapping from the set of left cosets of H to the set of right
cosets of H? If so, is ¢ a bijection?

Find a group G with subgroups H and K such that HK is not a sub-
group.

Consider the subgroup H = ((1 2)} of S3. Show how the left cosets of H

partition S3. Show also how the right cosets of H partition S3. Deduce
that H is not a normal subgroup of Sj.

Let G be a group and let H be a subgroup of G. If ¢ € G is such that
|{g)| = n and g™ € H where m and n are coprime, show that g € H.

2



1.6

1.7

1.8

1.9

1.10

1: Subgroups

Let G be a group. Prove that
(i) If H is a subgroup of G then HH = H.
(i1} If X is a finite subset of G with XX = X then X is a subgroup of
G.
Show that (ii) fails for infinite subsets X.

Let G be a group and let H and K be subgroups of G. For a given
z € G define the double coset Hz K by

HzK ={hzk | he H,k € K}.

If yK is a left coset of K, show that either HzK nyK = @ or yK C
HzK. Hence show that for all z,y € G either HzK N HyK = @ or
HzK = HyK.

Let n be a prime power and let C, be a cyclic group of order n. If H
and K are subgroups of Cy,, prove that either H is a subgroup of K or
K is a subgroup of H. Suppose, conversely, that C,, is a cyclic group of
order n with the property that, for any two subgroups H and K of C,,,
either H is a subgroup of K or K is a subgroup of H. Is n necessarily
a prime power?

Let G be a group. Given a subgroup H of G, define
H('; = ﬂ g_ng.
geG

Prove that Hg is a normal subgroup of G and that if K is a subgroup
of H that is normal in G then K is a normal subgroup of Hg.

Now let G = GL(2,Q) and let H be the subgroup of non-singular
diagonal matrices. Determine Hy. In this case, to what well-known
group is Hg isomorphic?

Let H be the subset of Matyy2{C€) that consists of the elements
1 0 -1 0 0 1 0 -1
o 1/ 0 —-1/"!1-1 o |1 0y
0 1 0 -2 -1 0 ) 0
1 0{ | —1 0l 0 +/ |0 —1f

Prove that H is a non-abelian group under matrix multiplication (called
the quaternion group). Find all the elements of order 2 in H. Find also
all the subgroups of H. Which of the subgroups are normal? Does H
have a quotient group that is isomorphic to the cyclic group of order 47

3



Book 5 Groups

1.11

1.12

1.13

1.14

The dihedral group Dy, is the subgroup of GL(2, €) that is generated by
the matrices

0 1 a 0

1 of 0 o!
where a = e

Prove that |Dj,| = 2n and that D;, contains a cyclic subgroup of
index 2.
Let G be the subgroup of GL(2,Z,,) given by

o=l !

Prove that G is isomorphic to Dy,. Show also that, for every positive
integer n, Dy, is a quotient group of the subgroup Dy, of GL(2, Z) given

by
e k
po~{[; t] - suea)

Let @, IR*,C" denote respectively the additive groups of rational, real,
complex numbers; and let Q*,1R*, €* be the corresponding multiplicative
groups. If U/ = {z € € | [z| = 1} and Q%,, IR, are the multiplicative
subgroups of positive rationals and reals, prove that
() €*/RY ~R™;
(i) €*/IRY, = U;
(i) €*/U ~ Ry, ~ IR*/Cy;
(iv) R*/RS, = Co =~ Q°/Q%1;
(v) @'/C; ~ @,
Let p be a fixed prime. Denote by Z,~ the p"th roots of unity for all
positive integers n. Then Z,. is a subgroup of the group of non-zero
complex numbers under multiplication.
Prove that every proper subgroup of Z,~ is a finite cyclic group; and
that every non-trivial quotient group of Z,~ is isomorphic to Z,~.
Prove that Z,~ and Q" satisfy the property that every finite subset
generates a cyclic group.

2ni/n

le:il,keln}‘

Show that if no element of a 2-group G has order 4 then G is abelian.

Show that the dihedral and quaternion groups of order 8 are the only
non-abelian groups of order 8. Show further that these two groups are
not isomorphic.



1.15

1.16

1.17

1.18

1: Subgroups

According to Lagrange’s theorem, what are the possible orders of sub-
groups of 8§47 For each kind of cycle structure in Sy, write down an
element with that cycle structure, and determine the total number of
such elements. State the order of the elements of each type.

What are the orders of the elements of Sy, and how many are there
of each order? How many subgroups of order 2 does Sy have, and how
many of order 37 Find all the cyclic subgroups of §4 that are of order
4. Find all the non-cyclic subgroups of order 4.

Find all the subgroups of order 6, and all of order 8. Find also a
subgroup of order 12.

Find an abelian normal subgroup V of S4. Is S4/V isomorphic to
some subgroup of 547

Does A4 have a subgroup of order 67

Consider the subgroup of Sg that is generated by {a,b} where
a = (1234)(5678) and b = (1537) (2846).

Determine the order of this subgroup and show that it is isomorphic to
the quaternion group. Is it isomorphic to any of the subgroups of order
8 in 547

Suppose that p is a permutation which, when decomposed into a product
of disjoint cycles, has all these cycles of the same length. Prove that p
is a power of some cycle #.

Prove conversely that if ¥ = (12 - m) then ¢* decomposes into a
product of h.c.f.(m, s) disjoint cycles of length m/h.c.f.(m,s).

Let SL(2, p) be the group of 2 x 2 matrices of determinant 1 with entries
in the field Z,, (where p is a prime). Show that SL(2, p) contains p(p—1)
elements of the form

a b

¢ d

where a # 0. Show also that SL(2, p) contains p(p — 1) elements of the

form
0 b
c df

Deduce that [SL(2,p)[ = p(p — 1)(p + 1).
If Z denotes the centre of SL(2, p) define

PSL(2, p) = SL(2,p)/2.
5



Book 5 Groups

1.19

1.20

1.21

1.22

1.23

1.24

1.25

Show that |PSL(2,p)| = ip(p—1)(p+ 1) if p # 2.

More generally, consider the group SL{n,p) of n X n matrices of de-
terminant 1 with entries in the field Z,. Using the fact that the rows of
a non-singular matrix are linearly independent, prove that

sL(np)l = — [16" ).

Let F be a field in which 1 + 1 # 0 and consider the group SL(2, F)
of 2 x 2 matrices of determinant 1 with entries in F. Prove that if
A € SL(2, F) then A? = — I, if and only if tr (A) = 0 (where tr(A4) is
the trace of A, namely the sum of its diagonal elements).

Let PSL(2,F) be the group SL(2,F)/Z(SL(2,F)) and denote by A
the image of A € SL(2, F') under the natural morphism f : SL(2, F) —
PSL(2, F). Show that A is of order 2 if and only if tr(4) = 0.

Show that C3 x C; is a non-cyclic group of order 4. Prove that if G is
a non-cyclic group of order 4 then G ~ C; x Cs.

If p,q are primes show that the number of proper non-trivial subgroups
of C, x Cy is greater than or equal to 2, and that equality holds if and

only if p # q.

If G,H are simple groups show that G x H has exactly two proper
non-trivial normal subgroups unless |G| = |H| and is a prime.

Is the cartesian product of two periodic groups also periodic? Is the
cartesian product of two torsion-free groups also torsion-free?

Let G be a group and let A, B be normal subgroups of G such that
G = AB. If An B = N prove that

G/N ~ A/N x B/N.

Show that this result fails if G = ADB where the subgroup A is normal
but the subgroup B is not.

Let f : G — H be a group morphism. Suppose that 4 is a normal
subgroup of G and that the restriction of f to A is an isomorphism onto
H. Prove that

G ~ A x Ker f.

Is this result true without the condition that A be normal?
Deduce that (using the notation defined in question 1.12)

(i) € ~ R x R*;



1.26

1.27

1.28

1.29

1.30

1.31

1: Subgroups

(i) ®° ~ QL x Cy;

(ill) R* =Ry, x Cy;

(iv) €* ~ IRy, x U.

Find all the subgroups of C; x Cy. Draw the subgroup Hasse diagram.
Prove that if G is a group whose subgroup Hasse diagram is identical

to that of C; x Cy then G ~ Cy x (5.

Find all the subgroups of C3 x Cz x Cy and draw the subgroup Hasse
diagram.

Consider the set of integers n with 1 < n < 21 and n coprime to 21.
Show that this set forms an abelian group under multiplication modulo
21, and that this group is isomorphic to Cy x Cg. Is this group cyclic?
Is the set
{neZ|1<n<12, ncoprime to 12}

a cyclic group under multiplication modulo 127

Determine which of the following groups are decomposable into a carte-
sian product of two non-trivial subgroups :

54) SS; A47 A55 'R.5 Cﬁ) CS) ¢+a Zp’“'

Let G be an abelian group and let H be a subgroup of G. Suppose that,
given h € H and n € IN, the equation " = h has a solution in G if and
only if it has a solution in H. Show that given zH there exists y € zH
with y of the same order in G as zH has in G/H. Deduce that if G/H
is cyclic then there is a subgroup K of G with G~ H x K.

Let G be an abelian group. If z,y € G have orders m,n respectively,
show that zy has order at most mn. Show also that if 2 € G has order
mn where m and n are coprime then z = zy where z,y € G satisfy
z™ = y™ = 1. Deduce that z and y have orders m, n respectively.
Extend this result to the case where z has order m;mgy - - - my where
my,...,mj are pairwise coprime.
Hence prove that if G is a finite abelian group of order

pitpst o PRt
where py,...,pr are distinct primes then

G:HIXHQX"‘XHIC

where H; = {r € G | 2" =1} for i = 1,...,k. Show also that if r
divides |G| then G has a subgroup of order r.

7



Book 5 Groups

1.32

1.33

1.34

1.35

1.36

1.37

1.38

Let H be a subgroup of a group G. Prove that the intersection of all
the conjugates of H is a normal subgroup of G.
If z € G is it possible that

A={g'zg | g€ G}

is a subgroup of G7 Can A be a normal subgroup? Can A be a subgroup
that is not normal?

Are all subgroups of order 2 conjugate in 5,7 What about all subgroups
of order 37
Are the elements (123) and (234) conjugate in A,7

Show that a subgroup H of a group G is normal if and only if it is a
union of conjugacy classes.

Exhibit an element from each conjugacy class of Sy and state how
many elements there are in each class. Deduce that the only possible
orders for non-trivial proper normal subgroups of S4 are 4 and 12. Show
also that normal subgroups of orders 4 and 12 do exist in S,.

Exhibit an element from each conjugacy class of §5. How many elements
are there in each conjugacy class? What are the orders of the elements
of Ss7 Find all the non-trivial proper normal subgroups of Ss.

Find the conjugacy classes of As and deduce that it has no proper
non-trivial normal subgroups.

If G is a group and a € G prove that the number of elements in the
conjugacy class of a is the index of Ni(a) in G. Deduce that in S, the
only elements that commute with a cycle of length n are the powers of
that cycle.

Suppose that n is an odd integer, with n > 3. Prove that there are
two conjugacy classes of cycles of length n in A,. Show also that each
of these classes contains 1(n — 1)! elements.

Show that if n is an even integer with n > 4 then there are two
conjugacy classes of cycles of length n — 1 in Sy, and that each of these
classes contains 2n(n — 2)! elements.

If G is a group and a € G prove that the conjugacy class containing a
and that containing a=! have the same number of elements.
Suppose now that |G] is even. Show that there is at least one a € G

with @ # 1 such that a is conjugate to a™1.

Find the conjugacy classes of the dihedral group Dg, when n is odd.
What are the classes when n is even?

8



1.39

1.40

1.41

1: Subgroups

Let G be a group and let H and K be conjugate subgroups of G. Prove
that Ne(H) and Ng(K) are conjugate.

Let H be a normal subgroup of a group G with [H| = 2. Prove that
HC Z(G).

Is it necessarily true that H C G'7

Prove that if G contains exactly one element z of order 2 then (z) C

Z(G).

Suppose that N is a normal subgroup of a group G with the property
that N NG’ = 1. Prove that N C Z(G) and deduce that

Z(G/N) = Z(G)/N.



2.1

2: Automorphisms and Sylow theory

An isomorphism f : G — G is called an automorphism on G. The auto-
morphisis on a group G formy, under composition of mappings, a group
Aut G. Conjugation by a fixed element ¢ of G, namely the mapping
g+ G -» G described by z — @4(z) = ¢7'zg, is an automorphism on
G. The inner automorphism group InnG = {¢, | g € G} is a normal
subgroup of Aut G, ard the quotient group Aut G/Inn G is called the
outer antomorphism group of G. For example, the cyclic group C,, (be-
ing abelian) has trivial inner automorphism group, and ¢ : C, — C,
given by 9#(g) = ¢g~! is an (outer) automorphism of order 2. A subgroup
H of a group G is normal if and only if 9(H) C H for every ¢ € Inn G,
and is called characteristic if 9(H) C H for every ¢ € AutG.

For finite groups, the converse of Lagrange’s theorem is false. How-
ever, a partial converse is provided by the important theoreius of Sylow.
A group P is called a p-group if every element has order a power of p
for a fixed prime p. In this case, if P is finite, |P| is also a power of p.
If G is a group with |G, = p™k where % is coprime to p then a subgroup
of order p" is called a Sylow p-subgroup. In this situation we have the
following results, with which we assume the reader is familiar:

(a) G has a subgroup of order p™ for every m < n;

) eveiy p-subigroup of G is contained in a Sylow p-subgroup;

) any two Sylow p—subgroups are conjugate in G;

) the number of Sylow p-subgroups of G is congruent to 1 modulo p
G|.

and divides

Let p be a prime. Use the class equation to show that every finite p-
group has a non-trivial centre. Deduce that all groups of order p? are
abelian.

2 a

(Y]



2.2

2.3

2: Automorphisms ond Sylow theory

List all the groups of order 9.

Let G be a group and let ¥ € AutG. If A and B are subgroups of G
prove that $(AN B) is a subgreup of $ ANV B. Is it necessarily true that
HANB)=394AN¥B"Y

Let G be a group and let Inn G be the group of inner automorphisms on
G. Prove that Inn G is a noruial subgroup of Ant G and th-t

InnG ~ G/Z(G).
The two non-abelian groups of order 8 are the dihedral group Dg with
presentation
Ds={(ab|a®=1,b"=1,atba=b"")

and the quaternion group Q3 with presentation

QS = <Zay | ot = L Y y2) y—lzy:Z—1>.

Show that Z(Dg) = (%) ~ Cy and Z(Qs) = {z?) ~ C;. Deduce that
Inn Dg ~ Inn Qx.

Let G be a group with the property that it cannot be decomnposed into
the direct product of two non-trivial subgroups. Does every subgroup
of G have this property? Does every quotient group of G have this
property?

If G is a group such that G/Z{G) is cyclic, prove that G is abelian.
Deduce that a group with a cyclic antomorphisin group is necessarily
abelian.

Find the automorphism group of the symmetric group Ss.
Prove that C; x Cy and §; have isomorphic automorphism groups.

Let G be a group with Z(G) = {1}. Prove that Z{Aut G) = {1}. Is the
converse true in general?

Let Z,, denote the field of integers modulo p where p is a prime, and let
Z; be an n-dimensional vector space over Z,. Prove that the additive
group of Z; is isomorphic to the group
CoxCpx - xC,
consisting of n copies of C,,.
Show that every element of Aut G corresponds to an invertible linear
transformation on Z7.

Deduce that
Aut G =~ GL(n,p).

Find all groups G with Aut G = {1}.

11
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2.11

2.12

2.13

2.14

2.15

2.16

2.17

A subgroup H of a group G is called fully invariant if $(H) C H for
every group morphism ¢ : G — G. Which of the following statements
are true?

(a) The derived group of a group is fully invariant.

(b) The centre of a group is fully invariant.

(¢) A4 contains a normal subgroup that is not fully invariant.
(d) G*=(g¢" | g € G) is a fully invariant subgroup of G.

(e) G, ={ge G| g™ =1)is a fully invariant subgroup of G.

Let G be a group and C a conjugacy class in G. If « € Aut G prove that
a(C) is also a conjugacy class of G.
Let K be the set of conjugacy classes of G and define

N={acAutG | (VC € K)a(C)="C}.
Prove that N is a normal subgroup of AutG.

Let G be a group and N a normal subgroup of G. Let A = Aut N and
I =InnN. If C is the centraliser of ¥ in G prove that NC is a normal
subgroup of G and that G/NC is isomorphic to a subgroup of the outer
automorphism group A/I of N. Show also that NC/C ~ I.

Prove that if the outer automorphism group of N is trivial and Z(N) =
{1} then G = N x C. Deduce that a group G contains S3 as a normal
subgroup if and only if G = §3 x C for some normal subgroup C of G.

Prove that if G is a group then

{a) a subgroup H is characteristic in G if and only if $(H) = H for
every ¥ € Aut G;

(b) the intersection of a family of characteristic subgroups of G is a
characteristic subgroup of G;

(c) if H, K are characteristic subgroups of G then so is HK;

(d) if H, K are characteristic subgroups of G then so is [H, K|;

(e) if H is a normal subgroup of G, and K is a characteristic subgroup
of H, then K is a normal subgroup of G.

Suppose that G is a finite group and that H is a normal subgroup of G
such that |H| is coprime to |G : H|. Prove that H is characteristic in G.

Let G be a group and let F' be the subset consisting of those elements
z of G that have only finitely many conjugates in G. Prove that F is a
subgroup of G. Is F' a normal subgroup? Is F* characteristic in G?7

Ift € Q\{0} prove that 9¥; : Q" — Q% given by #(r) = ¢r is an automor-
phism of the (additive) group @*. Deduce that the only characteristic
subgroups of @ are {1} and Q*.

12
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2: Automorphisms and Sylow theory

Suppose that G is a finite group and that H is a subgroup of G. Show
that every Sylow p—subgroup of H is contained in a Sylow p-subgroup
of G. Prove also that no pair of distinct p-subgroups of H can lie in the
same Sylow p-subgroup of G.

Now suppose that that H is normal in G and that P is a Sylow p-
subgroup of G. Prove that H N P is a Sylow p—subgroup of H and that
HP/H is a Sylow p-subgroup of G/H. Is HN P a Sylow p-subgroup of
H if we drop the condition that H be normal in G?

Prove that a normal p—subgroup of a finite group G is contained in every
Sylow p-subgroup of G.

Suppose that, for every prime p dividing |G|, G has a normal Sylow p-
subgroup. Prove that G is the direct product of its Sylow p-subgroups.

Determine the structure of the Sylow p-subgroups of As and find the
number of Sylow p-subgroups for each prime p.

Let G be a finite group and let K be a normal subgroup of G. Suppose
that P is a Sylow p-subgroup of K. Show that, forall ¢ € G, ¢~ Py
is also a Sylow p-subgroup of K. Use the fact that these Sylow p-
subgroups are conjugate in K to deduce that G = N(P)} K. Deduce
further that if P is a Sylow p-subgroup of G and N(P) < H < G then
N(H) = H.

Let G be a finite group with the property that all its Sylow subgroups
are cyclic. Show that every subgroup of G has this property.
Prove that any two p-subgroups of G of the same order are conjugate.
Let H and N be subgroups of G with N normal in G. Show that

INNH| =hcl{|N],|H|),
|HN| = Le.m.(|N}, |HY).

Deduce that every normal subgroup of G is characteristic.

Use the Sylow theorems to prove that

(a) every group of order 200 has a normal Sylow 5-subgroup;
(b) there is no simple group of order 40;

(c) there is no simple group of order 56;

(d) every group of order 35 is cyclic.

Use the Sylow theorems to prove that

(a) every group of order 85 is cyclic;
(b) if p,q are distinct primes then a group of order p?¢ cannot be simple.

13



Book 5 Groups

2.25

2.26

2.27

2.28

2.29

Let G be a group of order pg where p,q are distinct primes such that
g Z 1 modulo p. Prove that G has a normal Sylow p-subgroup. Show
that this result fails if ¢ = 1 modulo p. Show that if |G| = pgq where
p,q are distinct primes then G is not simple. Deduce further that if p, ¢
are distinct primes with p Z 1 mmodulo ¢ and ¢ # 1 modulo p then every
group of order pq is cyclic.

Suppose that a group G has the property that if n divides |G| then G has
a subgroup of order n. Does every subgroup of G have this property?

Let G be a finite group and P a Sylow p-subgroup of G. Suppose that
z,y € Z(P) and are conjugate in G. Show that z,y are conjugate in
N(P).

Let G be a group with a subgroup H of index n in G. Show that there
is a largest normal subgroup K of G that is contained in H and that
G/ K is isomorphic to a subgroup of Sy,.

Deduce that if G is a simple group with |G| = 60 (there is exactly
one such group, namely As, but this fact is not required) then G has no
subgroups of order 15, 20 or 30.

Let G be a simple group with |G| = 168. Prove that G has eight Sylow
7-subgroups. Show also that if P is a Sylow 7-subgroup of G then
|Ne(P)| = 21. Deduce that G contains no subgroup of order 14.

14



3: Series

Given subgroups A, B of a group G we obtain the subgroup
{A,B] = ([a,b] | a € A,b€ B).

In particular, |G, G] is the derived group of G. We define the derived se-
ries of G to be the most rapidly descending series with abelian quotients
(factors), namely

G(O) =G, (V‘L > l) G(l') — [G(i——l)’G(i—l)].

We say that G is soluble of derived length n if n is the least integer with
G = {1}.

Similarly, the most rapidly descending central series and the most
rapidly ascending central series of G are the lower central series and the
upper central series, defined by

0(G) =G,  (W>1) [i(6)=[0(G),Gl,
Z():{].}, (VlZ 1) Z;‘/Z,'__l =Z(G/Z|_1)

respectively. The lower central series reaches {1} in a finite number of
steps if and only if the upper central series reaches G in a finite number
of steps. In this case G is said to be nilpotent, and the number of factors
in either series is the class of G.

Every subgroup H of a nilpotent group G is subnormal, in the sense
that there is a series

H=Hy<x<H, <« - --<H, =G.

The final type of series with which we assume the reader is familiar
is called a composition series. This is a subnormal series from {1} into
which no further terms can be properly inserted.



Book 5 Groups

3.1

3.2

3.3

3.4

Let G be a group. Establish each of the following results concerning
commutators.

(a) ¥ S < Gand T <G then [$,T] =T, S].
(b) If H< G and K <G then [H,K| < Hn K. What does this imply
when HN K = {1}7
(c) If z,y,2 € G then
lzy, 2] = y~ 'z, 2lyly, 2.
Deduce that if H, K, L are normal subgroups of G then
{HL: K] = [H’ K] L, K]
(d) Define [a,b,¢,] = [[a,b],¢]. Prove that
la, be] = la,c][a,b] [a,b, c]
and that
lab, ¢] = [a,c]|a, ¢, b] [byc].

Find the upper and lower central series of G = Qg x Cz and show that
they do not coincide. Show, however, that the upper and lower ceutral
series of Qg do coincide.

Prove that if G is generated by its subnormal abelian subgroups then any

quotient group of G is generated by its subnormal abelian subgroups.
Show that every subgroup of a nilpotent group is subnormal. Deduce

that a nilpotent group is generated by its subnormal abelian subgroups.

Let A, B, C be subgroups of a group G with B < A. Prove that
AnC B(ANC)

BnC B
If, in addition, C < G prove that
AC A
BC ~ B(ANC)

Use the above results to show that if H is a soluble group then every
subgroup and every quotient group of H is soluble.

Prove that if K is a group with H < K and both H and K/H are
soluble then K is soluble.

Let G be a group with normal subgroups A and B such that G/A and
G/ B are soluble. Show that A/(A N B) is soluble and deduce that so
also is G/(A N B).

16



3.5

3.6

3.7

3.8

3.9

3: Series

Which of the following statements are true? Give a proof for those that
are true and a counter-example to those that are false.

(a) Let G be a group and let H, K be normal soluble subgroups of G.
Then HK is a normal soluble subgroup of G.

(b} Let G be a group and H, K normal abelian subgroups of G. Then
HK is a normal abelian subgroup of G.

(c) Let G be a group and H, K normal p-subgroups of G. Then HK
is a normal p-subgroup of G.

Let G be a pon-trivial finite nilpotent group. Use induction on |G|
to prove that every proper subgroup of G is properly contained in its
normaliser. Deduce that every Sylow subgroup of G is normal.

[Hint. Use question 2.21.]

Suppose that G is a group with the properties

(a) G is nilpotent of class 3;

(b} |G| = 16.
Prove that G contains a unique cyclic subgroup of order 8.
Give an example of such a group.

A group G is said to be residually nilpotent if it has a series of subgroups
G=H >Hy> >H>

with [H;,G] < Hyy and (2, Hi = {1}.

Show that a finite group is residually nilpotent if and only if it is
nilpotent. Give an example of a residually nilpotent group that is not
nilpotent.

Prove that every subgroup of a residually nilpotent group is also resid-
ually nilpotent. Show that a quotient group of a residually nilpotent
group need not be residually nilpotent.

Establish the identity

[zy, 2] = y~ [z, 2ly[y, 2].

Hence show that if A is a subgroup of a group G then |G, A} is normal
in G.

Prove that if G is a group with a non-trivial subgroup A such that
A =[A,G] then G cannot be nilpotent.

A minimal normal subgroup of a group is a non-trivial normal sub-
group which properly contains no non-trivial normal subgroup of the
group. Deduce from the above that every minimal normal subgroup of
a nilpotent group is contained in the centre of the group.

17
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3.10

3.11

3.12

Let p be a prime. Prove that every finite p—group is nilpotent.
Let G = H x K where |H| = p? and |K| = p®. Prove that if G is
non-abelian then G is nilpotent of clazs 2 and |Z(G)| = p°.

Let G be the multiplicative group

1 a b
0 1 ¢||abeceZ
0 0 1

Find the centre of G and the derived group of G. Prove that G is
nilpotent and that the upper and lower central series for G coincide.
Let ¢15,%13, 23 denote the matrices

1 1 0 1 01 1 0 0
0 1 0}, 0 1 0f, 0 1 1
0 0 1 0 0 1 0 0 1

respectively. Prove that

G = (tia,t13,t23 ).

Find a subnormal series for each of the subgroups

{tia), (tia), ({t2a).
Let X,Y,Z be subgroups of a group G and let
A=[X)Y,Z], B=[Y,Z,X]|, C=ZX,Y]
Prove that if N is a normal subgroup of G that contains two of 4, B,C
then N contains the third.
[Hint. Use the identity [z,y™ ', 2¥[y, 271, z]?[z, 271 y]* = 1]

Deduce that if G has subgroups H and K such that
H=Hy>H >Hy> -

is a series of normal subgroups of H with [H;, K] < H;y; forall7 >0
then [H;, T, (K)] < H;,,, for every n & IN where I, (K) is the nth term
of the lower central series for K.
Suppose that G has lower central series G = I') > T'; > -+, upper
central series {1} = Z;, < Z; < ---, and derived series G = GO >
G > ...  Prove that
(a«) [mern] < Trin;
) {Zm)Fn] < Zmn;
) [Zm;Tm] = {1}

d) GV < Ty
)

18



3.16

3.17

8: Series

Let G be a group with |G/Z(G)| = p". Let z € Z,(G) and N = {][z,¢] |
g € G). Prove that |[Ni < p™.

Use induction to prove that G/ is a p-group of order at most pzn{n=1),
p p

Let G be a finite group and let & be the intersection of all the maximal
subgroups of G. Prove that if H is a subgroup of G such that G = ®H
then H = G.

Let T be a Sylow p-subgroup of ® and let ¢ € G. By considering T
and TY, prove that g € N;(T)®. Deduce that every Sylow p-subgroup
of ® is normal.

A group G is said to sattsfy the maztmum condition for subgroups if for
every chain of subgroups

HSHy < SHy <o

there is an integer N such that (Ym > N) H,,, = Hy.

Prove that G satisfics the maximum condition for subgroups if and
only if every subgroup of G is finitely generated.

A group G is called polycyclic if G has a series

G=Hy>H > >H ={1}

with H; < H;_; and H,_,/H; cyclicferi=1,...,r.
Prove that a group G is polycyclic if and only if G is soluble and
satisfies the maximum condition for subgroups.

Suppose that A and B are abelian subgroups of a group G such that
G = AB. Use the relation

[zy,2] =y~ [z, 2]yly, 2]

to prove that [4, B] is normal in G and hence show that G' = |4, B].
Prove further that if a;,a; € A and b;,b; € B then

(agb2)™tay,bilashks = (bzaz) '[ay,b1lboay

and deduce that |4, B] is abelian.
Conclude that G is soluble of derived length at most 2.

Let G be a finite nilpotent group. Prove that every maximal subgroup
of G is normal.

Let S be a Sylow p-subgroup of G and suppose that Nz (S) is properly
contained in G. Let M be a maximal subgroup of G containing Ng(S).
Show that if g € G then S and g~!Sg are Sylow p—subgroups of M and
derive the contradiction that ¢ € M. Hence deduce that Ng(S) = G
and that G has just one Sylow p—subgroup for each prime p that divides
the order of G.

Prove also that G is the direct product of its Sylow subgroups.

19
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3.18

3.19

3.20

3.21

Let M be a maximal subgroup of a finite soluble group G. Let K be the
intersection of all the subgroups of G that are conjugate to M. Prove
that K is the largest normal subgroup of G contained in M.

Let H/K be a minimal normal subgroup of G/K. Prove that G =
HM and that Hn M = K.

Deduce that the index of M in G is equal to the order of H/K.

A group G is called metacyelic if it has a normal subgroup N such that
N and G/N are cyclic.

Prove that every subgroup and every quotient group of a metacyclic
group is also metacyclic.

Show that the group described by

(a,b ] a®? =1, =1, aba=b")

is metacyclic.

Let F be a field. fa € Fand 1 <1< j < nlett;(a) bethe matrix
in GL(n, F) that differs from the identity in having @ in the (4, j)-th
position. Let

To(F)=(ti;(a) [ 1S1<j<n,a€F).

Prove that T,(F) is the subgroup of GL(n,F) consisting of all upper
triangular n X n matrices over F of the form

1 % x *
01 % ... =%
0 0 1 *
0 0 0 ... 1

For1<k<mn-—1let He=(t;(a)| j—1i>k, a€ F). Prove that
T.(F)=Hi >H; > -~ > H,_, > {1}

is a central series for T,,(F}).
If F =2, for some prime p, show that T, (F) is a Sylow p-subgroup
of SL{n, F).

Show that the groups S3,Ss and Ss; have unique composition series.
Find the composition series for each of these groups.
What can you say about a composition series of S,, when n > 57

20



3: Sertes

3.22 Let G be a group of order p"¢® where p and g are distinct primes. Sup-
pose that G has composition series

G=A4;,>A4;> - > Ary,q1 = {1},
G=B; > B; > "'>Br+g+1 Z{l}
such that |A,11] = ¢* and [Bsyi| = p”. Show that A,.; and B,,; are

normal subgroups of G and deduce that G is the direct product of these
subgroups.

21



4.1

4: Presentations

Given an abelian group G with a presentation
(1, Zn | =1, =1, ..., rm,=1)

the relation matrix of the presentation is the m x n matrix 4 = [a;]
where a;; is the exponent sum of z; in the relation r; = 1. Now A can
be reduced by elementary row and column operations, in which only
integer multiples are used, to a diagonal matrix D = diag{d;,...,d;}
where ¢t = min{n,m}. This is equivalent to finding invertible integer
matrices P,Q such that PAQ~! = D. We can assume that d;,...,dx
are non-zero and dgy1,...,ds are zero. Then if C is the direct product
of n — k copies of Uy we have

G~Cy xCq, x -+ xCq xC.

If G is a group then G/G' is abelian, and G is called perfect if G/G" is
the trivial group. If G is given by the presentation (X | R) then G/G’
is given by the presentation (X | R,C) where

C = {[zi,z;] | zi,z; € X}.

This is a special case of von Dyck’s theorem which shows that adding
relations to a group presentation leads to a quotient group. In fact,
von Dyck’s theorem lies behind the method of showing that a given
presentation defines a particular group.

Let G be the abelian group

59
(a,b,c | a37b27c47 — ao..b37CG7 — a59b44c74 — 1’

ab = ba, bc = cb, ca = ac).



4.2

4.3

t.4

4.6

4: Presentations

Express G as a direct product of cyclic groups.
By adding the relation a®bc* = 1 to those of G show that a®b?c* is
not the identity of G. Deduce that a®h?c* is an element of order 5 in G.
Find an element of order 7 and an element of order 35 in G.

Express each of the following as a dircet product of cyclic groups :

(a) {a,b,c | a?h®c® = a*t%c? =1, at = ba, be = cb, ca = ac);

(b) (a,b,c | u®b°c® = a*t%c* = a®b"c? = 1, ab = ba, be = cb, ac =
ca)

;-

Let G be the group with presentation
G ={a,b! atab? =1).

Show that G 1s abelian. Describe the structure of G.

Let G be an abelian group. Show that the elements of finite order form
a subgroup T. Let @ consist of the elements of infinite order together
with the identity element. Find a necessary and sufficient condition for
Q to be a subgroup of G.

Let I be the set of primes and define a group G as follows. Let
X = Uperl Z, and let G be the set of mappings f : Il — X such that
f(p) € Z, for every p € Il. Given f,q € G define f +g: Il - X to be
the mapping given by

(vpeTl) (f+9)p) = flp)+9(p).

Show that G is an abelian group containing elements of prime order for
every prime, and elements of infinite order.

Prove that the subgroup T in this case consists of those mappings
f € G with the property that there are only finitely many p € Il with

fp) #0.
Let G be the group with presentation

G ={a,b,c | a"b™m™ =a"b"c™ =a"b" " =1).

Prove that G/G’ is infinite if and only if m = n or 2m = —n.
Show further that G is perfect if and only if G is the trivial group.

If n is an integer that is coprime to 6 show that there is an integer k
such that the group

(z,y | 2% == (ay)°, (oytoys )2y a7 = 1)
is perfect.

23
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4.7 Find G/G’ when G is given by
{a,b ] a" =1, b2 = (ab)s’ (a%(n+1)ba4b)2 =1),

where n is an odd integer.

4.8 Let G be the group generated by R, S,T,U,V,W, X subject to the rela-

tions
R* = SaTbUC,

SVRY =1,
vyreyd = 1,
T 'wvz =1,
WU =1,
UX~'wt =1,
Xt=1.

Find a presentation for G on the generators R, S, T, U.

Show that whether G/G’ is finite depends only on z,y,2t,a. Give

precise conditions for G/G’ to be finite. Find values of a,b,¢,d,z,y, 2,1t
so that

(a) G is perfect;

(b) G/G" =~ Cyg;

(C) G/G' ~ 02 X 04 X Cg.

4.9 Let G be the group with presentation
(a1, .y 82m | @i = i42Qitme1; Gige = Gip16y, (1=1,...,2m))

where the subscripts are reduced modulo 2m to lie between 1 and 2m.
Prove that G = {a;,4a2).
Define the Fibonacci sequence by

fi=1 fo=1, (Vn21) foro = fag1 + fu.

Prove that
(Vn > 2) foe1fas1 — fn2 = (—-1)".

If gn = fao1 + fn+1 show that

v 12+ gm if m is even;
G/G"] = { g if m is odd.

24



4.10

411

412

4.13

4: Presentations

Let G be defined by

n-2

G={ab|a® =1 babt=a"!, B2 =0a"")

and let H be defined by

2

H={ab]|a?  =b"=(ab)?).

Prove that G ~ H by showing that the relations of G imply those of H
and conversely.

Show that the groups

G={ab|a*=1,d® =b% ab=bd®)
H={a,b| a=bab, b=aba)
K={ab|ab=c¢, bc=a, ca=b)

are isomorphic.

Show that
el OY L]0 i i 0
“i-1 o) " |ioof T |0 —i

satisfy the above presentations, and that the multiplicative group gen-
erated by a and & is the quaternion group. Deduce that all of the above
presentations are presentations of the quaternion group.

Let G be a group and suppose that
G={a),...,0.).
If a, € G' N Z(G), prove that
G={(a1,...,0p-1)-

Deduce that if H/A ~ Qg with A < Z(H) N H' then H ~ Q5.
Let G be the group with presentation

G={zy]| 2%y =yz, 2 =1).
Prove that (zy)* =1 and y® = 1.

25
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4.14

4.15

4.16

4.17

Let G be the group with presentation
G ={(a,b]|a” = (a%h)® = (a®)® = (ab®)® = 1).
Prove that G may also be presented as
{z,y | 2°=¢" = (z0)" = ((y'zyz)?y~'2)? = 1).
Let G be the group with presentation
{a,b,c,dye | ab=c, be =d, cd=¢, de=a, ea =b).
By eliminating ¢, d, e show that
(1) a = babab?ab,
(2) b = ab?aba.

Replacing the final a in (2) by the expression given by (1), show that
b® = a~2, Deduce, by multiplying (1) on the right by a and using (2),
that a = 78,

Conclude that G ~ Cy;.

Show that the group
G = {a,b | ab=b%a, ba = a’b)

is the trivial group.
More generally, consider the group

Gp = (a,b| ab" =b""1q, ba" = a"*'b).
Prove by induction on ¢ that
aibn‘a—i _ b(n+1)'.
Using the relations obtained by taking 7 = n and 7 = n+ 1, deduce that
G,, is the trivial group.

Let SL(2,7) denote the group of 2 x 2 matrices of determinant 1 with
entries in Z7, and let

PSL(2,7) = SL(2,7)/Z(SL(2,7)).
Let b : SL(2,7) — PSL(2,7) be the natural map and let

0 6 5 6
Show that {a,b) is the dihedral group of order 8.
26
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4: Presentations

Let GL(2,3) be the group of 2 x 2 non-singular matrices with entries in
Z5. Show that |GL(2,3)] = 48,

Prove that SL(2,3) is the derived group of GL(2, 3).

The guaternion group Qg may be presented by

Qs ={abclab=c, bc=a, ca=0b).

From this presentation it is clear that s has an automorphism ¢ of
order 3 which permutes a, b, ¢ cyclically. Let H be Qg extended by this
automorphism ¢ of order 3. Show that H is isomorphic to SL(2,3).
Hence show that GL(2,3) has derived length 4.

Let H be the group with presentation
{a,b | a? =8° =1, (ab)™ = (abtab)k).

Show that H is generated by ab and ab~'ab. Deduce that {(ab)™) is
contained in the centre of H. Prove also that {(ab)™) is contained in
the derived group of H.

Let G be the group with two generators a,b subject to the relations
% = 1 for all z € G. Show that [a,b] belongs to the centre of G.
Deduce that G is finite.

For any integers a,b,c define a group G by

G={z,y| %=1, zy*zy'zy° = 1).

Prove that ¥*(zy? “z)y ™" = 4" ~°z and find two similar relations with

a, b, ¢ permuted cyclically.

Deduce that y2(a+%+¢) commutes with zy® z. Prove also that if
h.c.f{a —¢,b —c) =1 then y2(*+0+<) commutes with zyz.

Finally, show that if h.c.f.{a — ¢,b — ¢) = 1 then

y2(41+b+c) c Z(G)

b—c

Let G be the group
(z,t | ot™ ! =227 zt?zt2%t = 1).

Prove that
a) fL‘t“m+22L'_1 — tI—Qt—l;

(b) [t?, ztz] = 1;
( ) 2 —l _t°m+1 —-t—l.

( ) xt2rn -1 e 2m.
Deduce that t2™ € Z(G) and t4™ = 1.
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4.23 Let SL(2, Z) be the group of 2 x 2 matrices of determinant 1 with entries

in Z. Let
8_11 t_0—1
1o 1" "1 of

ela b a b
Provethatlf[c OJESL(Z,Z)then[C O}E(s,t).

! !

Suppose, by way of an inductive hypothesis, that (Z, b }e SL(2, Z)

dl
’ ’

with |d'] < |d] implies {‘; 2}e (s,¢). If

m = [i 2}6 SL(2, Z)

prove, by considering ts"m where |b+nd] < |d|, that m € {s,t). Deduce
that SL(2,Z) = (s,t).

Now let u = st and denote by u,f the images of u,t under the nat-
ural map § : SL{2,Z) — PSL(2,Z). Use the above results to show
that PSL(2,Z) = (%,f). Show also that #® = - = I, the identity of
PSL(2,Z).

Suppose, if possible, that some word of the form

Ha:tlf-ilt“-ilt-u'

is equal to I in PSL(2, Z). Show that there is a word of the form
w=uttutt .ty

that is equal to =7 in SL(2, Z) and, by considering the trace of w, obtain

a contradiction.

Finally, show that

PSL(2,2Z) ~ (a,b | a® = b° =1).

28



~n

Solutions to Chapter 1

Let G be partitioned by the set {Hz, | o € A} of cosets of H, and let
H be partitioned by the set {Kyg | B € B} of cosets of K. Suppose
that ¢ € G. Then we have g € Hz, for some o € A and so g = hz,
for some (unique) h € H. But h € Kyg for some § € B and so we
have that g = kygz, for some k € K. Thus we see that every element
of G belongs to a coset Kygz, for some f € B and some o € A. The
result now follows from the fact that if Kygz, = Kyg zo then, since
the left hand side is contained in the coset Hz, and the right hand side
is contained in the coset Hz,', we have necessarily £, = z,, which
gives Kyg = Kyp and hence yg = yg.

Now observe that (H N K}z = Hzn Kz for all subgroups H and K of
G. Then, if H and K have finite index, the fact that there are finitely
many cosets Hz and Kz implies that there are only finitely many cosets
of HN K, so HN K is also of finite index. The result for the intersection
of a finite number of subgroups now follows by induction.

The result is not true for an infinite number of subgroups each of finite
index. To see this, consider the additive group Z. The subgroup nZ has
index n; but (,5, nZ = {0} which is not of finite index in Z.

If zH is a subgroup of G then we have 1 € zH which gives ! €
z7!z2H = H and hence z € H, so that zH = H.

That ¢ is a mapping (or, as some say, is well-defined) follows from
the observation that

tH=yH =y 'zc H

= Hy 'z=H
= Hy !=Hz ',
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It is clear that ¢ is a bijection.

% on the other hand is not a mapping. To see this, take for example
G = GL(2,Q) and

H:{{g i}la,b,cé@,ac;éo}‘
{1 O}H _ {1 1}}1,
1 1 1 2
which is immediate froin the observation that if

a0

We have that

then

However,

1 0- 11
H{l I#H[l 2}

since equality here would give the contradiction

0 1

-1 __
BAT = -1 2

|en

1.8  Consider the subgroups H and K of the group G = GL(2, Q) given by

T e

1t is readily seen that

HK:{{IJFab b]| a,beQ}.
a 1

But H K is not a subgroup of G since, for example, the matrices
2 1 1 1
1 10 0 1

are each in HK but the product

HH B

30
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Solutions to Chapter 1

The right cosets are
H(1) = {(1),(12)}
H(13) = {(13), (132)}
H(23) = {(23), (123)}.

The left cosets are

(1)

H = {(1), (12)}
(13)H = {(13), (12))
(235 = {(23), (132)}.

It is clear from this that H is not normal in G.

Since m and n are coprime there exist integers ¢ and b with am+bn = 1.
Then, using the fact that g™ = 1, we have

g= gl — grlm-f-l:n — gurnghn - (gm)w(gn)b — (gm)a

Since it is given that ¢™ € H we have that (¢™)* € H and hence g € H.

(i) If H is a subgroup of G then clearly HH C H; and, since every
subgroup contains the identity element, we have H = 1H C HH.

(i) Given z € X we have zX C XX = X. Since y — zy is injective
(by the cancellation law) we deduce that |zX| = | X| and hence, since
X is finite, that zX = X. Consequently, z = ze for some ¢ € X. The
cancellation law gives ¢ = 1, and so we have that 1 € X. We now observe
from 1 € £X that 1 = zy for some y ¢ X, which gives 27! =y € X. It
now follows from the fact that XX C X that X is a subgroup of G.

That (ii) no longer holds when X is infinite may be seen, for example,
by taking G to be the additive group of integers and X to be the set of
non-negative integers.

Suppose that ¢ € HzK NnyK # @. Then {with a notation that is self-
explanatory) we have t = hzk and ¢ == yk;. If now s € yK then

s =yky, = tkl_lkz = thkl_lk'g € HzK,

and hence yK C HzK.
Suppose now that t € HzK N HyK # @. Then we have t = hyzk;
and t = hoyks. If now s € Hz K then

s = hzk = h(h] 'tk ')k = hhT (hoyka )k 'k € HyK.
Thus HzK C HyK, and similarly HyK C HzK.
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1.8

1.9

Let C, = {a) with n = p™ where p is prime. If H and K are subgroups
of C, then we have H = {a*) and K = (a'). Now we can assume that
s = p* and ¢ = p¥ where 0 < u < m and 0 < v < m. For, if s = kp*
where h.c.f.(k,p) = 1 then there are integers z,y with zk + yp™ = 1.
Then (a*?")* € H and (a?” )¥?" € H since a?” = 1. Thus

u m4u u
atkr®+p Vgl c H

and so H = {a”"). It now follows that if u < v then we have K C H,
while if v < u then H C K.

The converse is also true. Suppose that n = pg where h.c.f.(p,q) = L.
Then if C,, = {a) we have that |{a?}| = ¢ and [{a?)| = p. Since p and ¢
are coprime, we have (a?) N {a?) = {1}. But this is not possible under
the assurnption that, for any two subgroups H and K, either H C K or
KCH.

Since ¢g~!Hyg is a subgroup of G for every g € G we have that Hg =
Mye 9~ Hyg is a subgroup of G. Let £ € Hg. Then z € g~ Hy for
every ¢ € G and so, for every y € G, we have

ylzyey g 'Hoy = (gy) " 'Hgy

which shows that y~'zy € Hg. Thus we see that Hg is a normal
subgroup of G.

Suppose now that K is a subgroup of H that is normal in G. Then if
k € K we have gkg~! € K for every g € G and so

keg'KgCg 'Hyg
which shows that k € (e 97 ' Hg = Ho.

In the case where G = GL(2,®) and H is the subgroup of non-singular
diagonal matrices, i.e.

H:{[g 2}| a,beQ, ab;éo},

consider the subset K of H described by

a 0
e {3 o) ocaal,
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Solutions to Chapter 1

Clearly, K is a normal subgroup of G and so, by the above, we have

2 € H¢ then from

320l ol 5 e

we deduce that a — 6 = 0 whence z € K and so Hg = K.
K is isomorphic to the group of non-zero rationals under multiplica-
tion.

K C Hg. Butifz:{g

-1 0
That H is a group is routine. The only element of order 2 is [ J

G- e
(-
)

> ~ C5 and is a subgroup of all the three cyclic subgroups

-1 0
0 -1
of order 4 given above.

The only other subgroups are H and {1}. For, if K is a subgroup
of H then |K| divides |H| = 8, so |K| is 1, 2, 4, or 8. The subgroups
of orders 1,8 are {1}, H respectively. There is only one subgroup of
order 2 since there is only one element of order 2. If {K| = 4 then
either K is cyclic (and so is given above) or K has all its non-trivial
elements of order 2 (since the order of an element divides the order of
the group). This is impossible since there is only one element of order
2. All these subgroups are normal (although the group is not abelian).
H cannot have a quotient group isomorphic to Cy. For, if H/K ~ C,4

thenK':CgsoK=<—l 0

0 -1 > But every non-trivial element has

square equal to so every non-trivial coset zK has order 2.

1
0 -1
Consequently H/K # Cj.
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1.11

1 0 0
of order 2 and b is of order n. Moreover,

s R
- Y

=51,

0 1 0 : .
Let a = and b= | & ol }where a = ¢2"/" Then clearly a is

Thus (b} is a normal subgroup of Dy,. Now

D2n/<b> = {{b}, a<b>}

and so |Dap, /(b}| = 2 and [ D5, = 2n. The subgroup {b) is cyclic and of
index 2.

We observe that |G| = 2n; for € takes two possible values and k takes
n possible values. Now it is readily seen that the assignment

-1 o |t
a4 0o 1/ 01

sets up an isomorphism between Ds, and the subgroup of G that is

generated by
-1 0 11
0 10 1 '

Since this subgroup has order 2n, which is the order of G, it must coin-
cide with G and so G is isomorphic to Dy,.
Consider now the mapping from D, — D3, described by the assign-

ment
e k| e k (mod n)
01 0 1 '

It is readily seen that this is a group morphism. Since it is clearly
surjective, it follows by the first isomorphism theorem that Dg, is a
quotient group of D
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1.18

Solutions to Chapter 1

(i) Define f : €™ — IR* by f(a+1b) = a. Then f is a group morphism
which is surjective. Since

Kerf={a+ibe€" | a=0}~IR",

the result follows by the first isomorphism theorem.
(ii) Define f: €* — I/ by

a 4y b
i .
Va2 +82 \/a? 1 b2

a+ b

Then f is a surjective group morphism with

Kerf={a+ib€C" | b=0, ——= =1} =RS,.

Va
The result now follows by the first isomorphism theorem.

(iii) Define f : € — Ry, by a +1b — Va? + b2, and define g: IR* —
RS by @ — |a|. Then f and g are surjective group morphisms and the
result follows from the observation that

Kerf={a+ibeC" | Va?+b2 =1} ~U;
Kerg = {1,-1} ~ C,.
(iv) Define f : IR®* — C3 by

(1 ifa>0
ﬂ@”{—1 if ¢ <0,

Then f is a surjective group morphism with Ker f = IR%,.
Also, define g : Q°* — C; by

1 ifa >0
“@“{_1 if a < 0.

Then g is a surjective group morphism with Kerg = Q2.
(v) Define f: Q* — Q% by a — lal.

We have the chain of subgroups
{I}QCPQsz CCp T CCpn & Clp~

with Z, - = |J,,», Cp~. Here the cyclic subgroup Cp~ is generated by
a primitive p™th root of unity. To see that every proper subgroup of
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1.14

Z,~ is cyclic note that, given any subset X of Zy«, there is a smallest
member of the chain that contains X (this, of course, might be Zp»
itself). Now if X is finite then it is clear that this smallest member is
Cy» for some n; but if X is infinite then it must contain p”th roots of
unity for arbitrarily large n and so must generate Zp«.

To see that Z,x/Cpn ~ Z,~ , consider the mapping f : Zpeo — Zp
described by

n
zr 2P,

It is readily seen that f is a surjective group morphism with Ker f = Cpn,
so the result follows by the first isomorphism theorem.
For Q*, suppose that

X:{&, &P_}
g1 92 qn

Then clearly we have that

*< (o)
q192 " gn

which is a cyclic group. Hence {X)} is a subgroup of a cyclic group and
therefore is itself a cyclic group.

If no element of G has order 4 then clearly every element has order 1 or
2 and so z2 = 1 for every z € G. But then (zy)? = 1 gives

zy=(zy)" =yl =y irT e =
and so the group is abelian.

It follows from this that if G is non-abelian of order 8 then G contains
an element of order 4. Let this element be a. Clearly, {1,a,a?, 4%} has
index 2 in G and so is normal. Suppose that b # a? is of order 2 in G.
Then b~ 'ab # a {otherwise G would be abelian) and so b=!ab is of order
4 in {a) and so must be a®. Thus G is the group

(b a*=02=1,b"lab=a"")

which has order 8.

If G does not contain any other element of order 2 we can choose
b & {(a) of order 4. Then b° has order 2 and so 42 = a%. As in the above,
b=lab # a and so b~1ab = a® and G is the quaternion group

{a,b | a* =b* =1, a®> =b%, b7 lab = a71).

yz

These groups are not isomorphic since the number of elements of order
2 in each is different.
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1.15 'The possible orders are the positive divisors of 24, namely 1, 2, 3, 4, 6,

8, 12, and 24.
(1) 1 element order 1
(12) 6 elements order 2
(123) 8 elements order 3

(1234) 6 elements order 4
(12)(34) 3 elements  order 2
There is one element of order 1; nine elements of order 2; eight elements
of order 3; six elements of order 4. There are nine subgroups of order 2,
and four subgroups of order 3 (each of which contains two elements of
order 3).
The cyclic subgroups of order 4 are

{{1), (1234}, (13)(24), (1432)}

{(1), (1324), (12)(34), (1423)}

{(1),(1243), (14)(23),(1342)}.
The non-cyclic subgroups of order 4 (=~ C3 x Cz) ar

{(1), (12)(34), (13)(24), (1 )(23)}
{(1),(13), (24), (13)(24)}
{(1),(14), (23), (14)(23)}.

The subgroups of order 6 are those that fix one of 1, 2, 3, or 4. Hence
there are four such subgroups; for example, 4 is fixed by

{(1),(12), (13), (23), (123), (132)}.

There are three subgroups of order 8, namely
{(1),(13),(24), (13)(24),{12)(34),(14)(23), (1234), (1432)}
{(1),(12),(34),(12)(34),(13)(24), (14)(23),(1324),(1423)}
{(1),(14),(23), (14)(23),(12)(34),(13)(24), (1243), (1342)}.

Ay is a subgroup of 84 of order 12.
An abelian normal subgroup of Sy is

v = {(1), (12)(34), (13)(24), (14)(29)}.

S4/V has order 6 and is isomorphic to S3 (which is a subgroup of Sy).

A subgroup of A4 is necessarily a subgroup of S4. Hence, if A4 had a
subgroup H with |H| = 6 then H must be one of the subgroups of S4 of
order 6. But none of these consist only of even permutations. Hence A4
has no subgroup of order 6. This, incidentally, shows that the converse
of Lagrange’s theorem is false.
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1.16 We have that

a = (1234)(5678)
a® = (13)(24)(57)(68)
a® = (1432)(5876)
at = (1)
b = (1537)(2846)
b? = (13)(57)(24)(86) = a*
b® = (1735)(2648)
bt = (1) = a*
ab = (1836)(2745)
ba = (1638)(2547)
(ab)? = (13)(86)(24)(75) = a?
(ab)® = (1638)(2547) = ba.

The assignment

01
{_1 0}'—) (1234)(5678)

0 1
[i o}_’ (1537)(2846)

extends to give the following isomorphism :

1 0
0 1]—’(1)

1 o
: —JH (13)(24)(57)(68)

[0 1

= O}M (1234)(5678)

0 -1

X O}H (1432)(5876)

o
;

o}k_’ (1537)(2846)
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1.18

Solutions to Chapter 1

0 -1

= OJ'—> (1735)(2648)
[~ 0

K i]—» (1638)(2547)

' 01_» (1836)(2745).

0 —zJ

It is easy to see that the quaternion group is not isomorphic to any of the
subgroups of order 8 in S4. For, in the quaternion group, there is only
one element of order 2 whereas the subgroups of order 8 in §4 have five
elements of order 2. The subgroups of order 8 in S, are all isomorphic
to the dihedral group Dg. These are, in fact, the only two non-abelian
groups of order 8 (see question 1.14).

Suppose that
p=1(a11 - a1m)asy - Gam) - (@r1 - Q).
Then we have that p = 4" where
9= (a1 az - G120z - Qpg ).

Conversely, suppose that 9 = (12 --- m). Then

#=(1 s+1 2¢6+1 -+ (k—1)s+1)
o2 s+2 2842 - (k—1)s+2)
o...
m m m m
o(7c- S+7c' 25+z (k—l)sﬁ-z)

where k is the least positive integer such that ks is divisible by m. Hence
k = m/h.cf(m,s) and the cycles have length m/h.c.f.(m,s). Also, there
are m/k = h.c.f.(m, s) cycles in the decomposition as required.

We can choose @ in p—1 ways since Z,, contains p— 1 non-zero elements.
The elements b and ¢ are arbitrary while d is uniquely determined by
the condition that ad — bc = 1 (i.e. d = a7!(1 + bc)). Thus there are
p?(p — 1) elements of this form.

. 0 b . . . .
Consider now . . As d is arbitrary it can be chosen in p ways.

d
Since —bc = 1 the element b must be non-zero, so can be chosen in
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p~1 ways. Then ¢ = —b~! is uniquely determined. There are therefore
p(p — 1) elements of this form.
We thus have

ISL(2,p)| = p*(p— 1) +p(p — 1) = p(p — 1)(p + 1).
The centre Z of SL(2,p) is

ot 2l

Hence, if p # 2, we have |Z]| =2 and so

ISL(2,p)/Z| = jp(p— 1)(p + 1).

Since SL(2,2) is a group of order 6 and is non-abelian, it must be the
symmetric group S;.

We count the number of n x n matrices over Z,, with linearly inde-
pendent rows. The first row can be any n—tuple except zero, so there
are p" — 1 possible first rows. Now there are p multiples of the first
row and the second row can be any except these; so there are p” — p
possible second rows. Again, there are p? linear combinations of the first
two rows and the third row can be any but these; so there are p™ — p?
possible third rows. Continuing in this way, we see that there are

such matrices.

Finally, consider the morphism from the group of these matrices to
the multiplicative group of non-zero elements of Z, that is described by
the determinant map. The result follows from the fact that SL(n,p) is
the kernel of this morphism.

1.19 Suppose that 4 = [j 3] and that tr (A4) =0, i.e. d = —a. Then since

—a

A= [: b }e SL(2, F)

40
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1.20

1.21

Solutions to Chapter 1

we have that —a? — b¢ = 1. Consequently,

r

2
2 |a®+be 0 _
4 _t 0 bc+a2]_‘ L.

Conversely, suppose that A € SL(2, F) is such that 42 = —I,. Then

ifA:[: Z}wehave ad—be=1and

a®+bc ab+bd
ca+de cb+d?

-1 0
0o -1

Suppose that a + d # 0. Then since (a + d)b = 0 and (a + d)c = 0 we
have 6 = ¢ = 0. From ad — bc = 1 we then have ad = 1. But a + d # 0
so a? + ad = a(a + d) # 0. This contradicts a? = —~1 and ad = 1. Thus
a + d = 0 as required.

Now if tr (A) = 0 then A% = — I, and hence A is the identity since

a3 )

Conversely, if A is the identity of PSL(2, F) then we have either A% = I,
or A2 = —I,. If A2 = —I; then tr(A) = 0 as required. If A2 = I, then
it is easily seen that either A = I; or A = — I, and in either case A4 is
the identity of PSL(2, F') so is not an element of order 2.

Every element of C; x C; has order 2 so, since |Cy x C2] = 4, it follows
that C; x C; cannot be cyclic.

Suppose now that G is non-cyclic and of order 4. Then every element
of G has order 2 and the multiplication table is uniquely determined.
Since this is the same as that of Cy x C; the result follows.

If p # q then Cp x Cq ~ Cpq and, since a cyclic group has only one
subgroup of each order and the order of a subgroup divides the order of
the group, there can be only two subgroups of Cp, other than {1} and
Cpq-

However, Cp, x Cp has more than two proper non-trivial subgroups;
for {1} x Cp,Cp x {1} and {(a,d)) (where a,b are non-trivial) are all
isomorphic to Cj.
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1.22

1.28

1.2}

Let K be a normal subgroup of G x H with K # {(1,1)}. Suppose that
(z,1) € K for some z # 1 in G. Then for every g € G we have, since K
is normal,

(g—lrga 1) = (g‘lv 1)(1:7 1)(ga 1) € K.
Now {(¢7'zg,1) | g € G) is a subgroup of K and {y™'zg | g €G) is a
normal subgroup of G. Hence (¢ 'zg | g € G) = G (since z # 1) and
so G x {1} is a subgroup of K. Now

G x H -
Gx {1} ~

and K corresponds to a normal subgroup of H under the isomorphism.
Hence either K =G x H or K = G x {1}.

Similarly, if (1,y) € K where y # 1 then {1} x H is a subgroup of K
so K ={1} xHor K=Gx H.

The only other case to consider is when K contains only (1,1) and
elements of the form (z,y) where z,y # 1. But if g € G then there exists
h € H with (g, k) € K since the mapping described by (z,y) — (z,1) is
a morphism whose image would be a proper non-trivial normal subgroup
of G if ¢ € G did not appear in some element of K. Now either G is
abelian or there exist g,z € G with g7'zg # z. Then (g,h) € K gives

(z7Ygz, h) = (271, 1)(g, h)(z,1) € K.

Let ¢ = z7'gz # g. Then (¢}, A7 ')(g,h) € K gives (¢""1g,1) € K,
which is a contradiction.

Hence G, H are abelian and so cyclic of prime order. Clearly, |G| = |H|
by question 1.21.

Suppose that G and H are periodic. If (¢,h) € G x H then g € G s0
g" = 1,and h € H so h™ = 1. Consequently we have that (g, h)"" =
{1,1) and G x H is also periodic.

Suppose now that G and H are torsion-free. If (g,h)™ = (1,1) then
g" = 1 and A" = 1, which is a contradiction; hence G x H is also
torsion-free.

7

Suppose that G = AB where A, B are normal subgroups of G with

AN B = N. That G/N ~ A/N x B/N follows from the following

observations :

(i) A/N and B/N are normal subgroups of G/N;

(i) If gN € G/N then gN = aN.bN where g = ab;

(iii) If «zN € A/N n B/N then zN = aN = bN gives a='b € N so
that & = an € A and hence b € AN B = N and consequently
zN =b6N = N.
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Consider Sz and the subgroups A = {(123)) and B = {(12)). We
have S; = AB and A B = {1} but S3 is not isomorphic to C3 x C,.

1.25 That G ~ A x Ker f follows from the following observations.

(a) A and Ker f are normal subgroups of G.

(b) If g € G then f(g) € H so there exists a € A with f(a) = f(g).
Then g = a(a™!g) where a € 4 and a~'g € Ker f.

(c) If ye AnKerf then f4(y) = f(g) = 1 whence, since fg : A - H
is an isomorphism, ¢ = 1.
The result is not true if A is not normal in G. For example, consider

the mapping f: S3 — Cy = {1,a} (where a® = 1) yiven by

]. lf ¥$o= 1
flz)=1a if = has order 2;
1 if # has order 3.

It is readily seen that f is a morphism with Ker f = {(123)) ~ C3. The
subgroup A = {(1),(12)} of S; is not normal in S;, and the restriction
of f to A is an isomorphism onto C;. However, S; is not isomorphic to
CQ X Cg.

The isomorphisms stated in (i), (ii), (iii} and (iv) follow from the
morphisms of question 1.12.

1.26 Suppose that €y x C; is generated by z and by y. Then the subgroups
of 02 X CQ are
{I}’ <I>, <y>! <T—y>a CQ X CQ-

The subgroup Hasse diagram is then
, X ('

<x /-<y\> (2
N

{1}
Suppose now that G is a group and that the subgroup Hasse diagram
of G is
*B
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1.27

1.28

Clearly, D = {1} and A, B, C must be cyclic of prime order since they
contain no proper subgroups other than 1. Let A = (a} and B = (b).
We show first that G ~ A x B. For this purpose, we observe that A
and B are normal in G. Suppose in fact that this were not the case.
Then (ab) would not be the whole of G (for otherwise A and B would
be normal} and so we must have {ab) = C (since {(ab) = A and (ab) = B
lead to contradictions). Consider now {6~!ab). This subgroup cannot be
G, B, C or D and so it must be A. Similarly, (a~'ba) = B. Now G must
be generated by a and b (otherwise (a,b) would be properly contained
in G). Hence A and B are normal in G, their intersection is {1}, and so
G=AxB.

It remains to show that A ~ B ~ C,. For this purpose, consider
{(ab™1). It is easy to see that this subgroup must be C, since the other
possibilities lead to immediate contradictions. Now, since G is abelian,
we have a? = abab™! € C. But a> € A,s0 a2 € ANC = {1}. Ina
similar way we have that 42 = 1. Consequently, G ~ C; x C,.

C; x Cy x C; has 16 subgroups. Suppose that it is generated by a,b,c.
Then the subgroup Hasse diagram is

Cyxyx(,
@,

{ab. )@ <. br).(u/.br}l

o (ur.he <h.odle o {n. >

(i b) e

{a)®

ahe)®

W\\l/uuo e (h> Lo
[
N

Consider the subgroups

H=(2) ={1,2,4,8,11,16} ~ Cj ;
K={(13) = {1,13} > C;.

We have that

(i) H and K are normal subgroups of G;
(ii) G = HK (this is easily checked : for example, 5 = 2.13,10 = 4.13,
etc.);
(ii) HNn K = {1}.
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1.80

1.81

Solutions to Chapter 1

Consequently, G ~ C; x Cqs. This group is not cyclic since 2 is not
coprime to 6.

The set of integers n with 1 < n < 12 and n coprime to 12 is
{1,5,7,11}. Since

52=1 (mod12), 7°=1 (mod 12), 11°=1 (mod 12),

we see that every non-trivial element has order 2. Hence the group is
C3 x Cy and is not cyclic.

The only normal subgroups of Sy (other than {1} and §,) are

V = {(1),(12)(34), (13)(24), (14)(23)}

and A4, with V C A4 C 54.

The only normal subgroup of S5 is As.

The only normal subgroup of 44 is V above.

The group Ag is simple.
Consequently S4, S5, Ag, A5 are indecomposable.

IR® ~ IR, x C3 (see question 1.25), and C¢ ~ C; X Cs.

Cs is indecomposable. For, if H and K are subgroups of Cg then
either H C K or K C H (see question 1.8).

€* ~ IR x IR™ (see question 1.25).

Z,~ is indecomposable. For, if H and K are subgroups then either
HCKorKCH.

If zH has order n then z" = h € H so, by the hypothesis, there exists
h' € H with A'™ = h. Now let y = zh'~!. We have that y" = 1.  G/H
is cyclic, take zH as a generator and let K = (y). Then we have

(i) H and K are normal in G;
(ii}) yH generates G/H and so, given g € G, we have g € y™H for some
m, whence g = y™h;
(ilf) if t € HN K then ¢t = y™ for some m < n. But y™ ¢ H so we must
have t = 1.

Consequently, G~ H x K.

Let z have order m and y have order n. Then we have that (zy)™" = 1,
and so zy has order at most mn. Suppose now that 2™" = 1 where m
and n are coprime. Then there are integers a and b such that am+bn =
1, whence z = 2" 2% = zy where z = 2°™ and y = 2% It follows that
2™ = 2" = 1 and y" = 2%™" = 1. The orders of z and y are m and
n respectively, for if their orders were less, say m’ and n/, then 2z would
be of order at most m'n/, a contradiction.
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1.82

1.88

1.84

A similar argument extends this result to the case where z is of order
mymy - - my where my, ..., my are pairwisc coprime. In this case m;
iz coprime to H?:g m; so, by the first part, we have z = zy where z has
order my and y has order Hf:z m;. The result now follows by induction
on k.

That G = H; x Hy x --- x Hy follows from the fact that

(i) each Hy is a normal subgroup of G;
(1) G=H;Hy --- Hy (by the above):
(i) if £ € H; then z'" =1 which shows that z does not belong to the
product H, -+ H;, . H;y, - Hg.

If finally = divides |G| then r is necessarily of the form

B1, B2 B

r=py Py " Pr

where 0 < 8; < a; foreachi. If K; = {z € G | = 1}, then G hasa
subgroup of order r, namely the cartesian product of the subgroups K;.

Let [ =Y, c;e ' Hz. It € I thent € 7! Hz for every z € G. Given
g € G we then have ¢7'tg € z7'Hz for t € (zg7!)"'Hzg~!. Hence
g 'tg € I and so I is a normal subgroup of G.

If A={g'zg | g € G} is a subgroup of G then it must contain 1
and so ¢g~'zg = 1 for some g € G, which implies that z = 1. Thus we
see that A is a subgroup of G if and only if A = 1, in which case it must
be normal.

The subgroups {(1),(12)} and {(1),(12)(34)} of Sy are not conjugate.
All elements of order 3 in Sy are conjugate, so all subgroups of order 3
are conjugate.

The elements (123) and (234) are not conjugate in A4, for there is
no g € A4 such that ¢(123)g™! = (234). In Sy there are three such g,
namely (1234),(1324), (14).

Let {Cx | A € A} be the set of conjugacy classes of G. Suppose that H
1s a subgroup which is a union of conjugacy classes, say H = U,\em C
where Ay CA. f h € H then h € C, forsome A € A; andso g~ thg €
Cx € H. Thus we see that H is a normal subgroup of G. Conversely, if
H is a normal subgroup of G then clearly every conjugate of h € H is
contained in H and so H contains the conjugacy class of G containing
k. Thus H is a union of conjugacy classes.
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In 8, the conjugacy class of

(1) has 1 element
(12) has 6 elements
(123) has 8 elements

(1234) has 6 elements

{12)(34) has 3 elements.

A normal subgroup is a union of conjugacy classes including the class
{1} with one element. By Lagrange’s theorem, the order of a subgroup
must therefore divide 24. The only possibilities are 1 +3 and 1 + 3 + 8,
so the only possible orders for non-trivial proper normal subgroups are
4 and 12.

The group S; has the normal subgroup A4 with [A44] = 12. Note that
Ay consists of all the even permutations and is the 1 + 3 + 8 case above.
The 1 + 3 case gives the subgroup

{(1), (12)(34), (13)(24), (14)(23) }.

To see that this is a normal subgroup, it suffices to check that it is a
subgroup; this follows easily from the fact that

(12)(34) - (13)(24) = (14)(23), etc.

1.85 The conjugacy classes are as follows.

(1) 1 element of order 1 even
(12) 10 elements of order 2 odd
(123) 20 elements of order 3 even

(1234) 30 elements of order 4 odd

(12345) 24 elements of order 5 even
(12)(34) 15 elements of order 2 even
(12)(345) 20 elements of order 6 odd

The only normal subgroup of S5 is As (use the method of the previous
question). The conjugacy classes of As are the classes marked ‘even’
above, with the exception that the 24 elements of order 5 break into two
classes of 12 elements, one containing (12345) and the other (13524).
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The first statement is a consequence of the observation that two con-
jugates z7laz and y~lay are equal if and only if (zy~!)"tazy~! = g,
which is equivalent to zy~* € Ng(a), which is the case if and only if
Nela)y = Ng(a)z.

Now the conjugacy class of a cycle of length n in S,, consists of all
the cycles of order n. Thus it contains (n — 1)! elements. For a given
cycle a, the index of Ng(a) in S, is therefore (n — 1)!. Since S, | = n! it
follows that | Nz (a)| = n. Since a has n distinct powers which commute
with it, no other elements of S,, can commute with a.

Suppose now that n is odd with n > 3. Cycles of length n are even
permutations, so are in A,. Suppose that a is a cycle of length n. Only
the n powers of a are in Ng, (a) (by the above argument) and so the
conjugacy class of a contains ;n!/n = i(n — 1)! elements. Since there
are (n —1)! cycles of length n, there must be two conjugacy classes each
containing %(n — 1)! elements.

Suppose now that n is even with n > 4. Then n — 1 is odd, so a cycle
of length n ~ 1 is even and therefore belongs to A,. There are n(n —2)!
cycles of length n — 1. Let a be such a cycle. Then in S,, the conjugacy
class of a contains n{n — 2)! elements and so |Ng (a)l = n — 1. But
if z € Ng,(a) then, since n — 1 is odd, z is an even permutation, so
z € A,. Thus we have that Ng, (a) = Na,(a), so the conjugacy class
of a in A, contains In!/(n — 1) = In(n — 2)! elements. Thus there are
two conjugacy classes of cycles of length n — 1 in A, each containing
1

zn(n —2)! elements.

z € @ commutes with a € G if and only if it commutes with a~*. Hence
Ng(a) = Ng(a™!). The number of conjugates of a, being the index of
Ng{a) in G, must therefore be the same as the number of conjugates of
a"l.

Suppose now that |G| is even and that 1 is the only element of G that
is conjugate to its inverse. For each conjugacy class A; let B; be that
containing the inverses. Then we have

G:{I}UA]_U . UALUB U ...UBy
from which we obtain
|Gl =1+ Al + ... +|Ak| +|B1| + ... +|Bxk]
=14+ 2[A [+ ... + 2| A4k|

since |B;| = |A;] for each 1. This contradicts the fact that |G| is even.
Thus we conclude that there is at least one element a # 1 with a conju-
gate to a™?.
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Solutions to Chapter 1

Consider Dj, with generators a and b such that > = b” = 1 and
aba = b~1. The elements of Dy, are

{1,6,6%, ... 6" a,ab,ab? ... ab" "'},

Now since ‘ . ' .
b~ (ab')b = b~ lab't! = abbtt! = ab'?

we see that ab’ is conjugate to ab**? for every 1. Also, since ab'a = b~*
we see that b* is conjugate to 6%,
Suppose that n is odd. Then the conjugacy classes are

(1}, {a,ab, ... ,ab" "}, {b',b7"}

where 1 <i < Z2(n—1).
If n is even, the conjugacy classes are

{1}, {a,ab?, ... ,ab™ 2}, {ab,ab’, ..., ab" 1}, (67"}, {b*,67"}
where 1 <1< i(n~2).

Suppose that K = z7!Hz. We show that Ng(K) = 27! Ng(H)z. For
this purpose, let a € Ng(K). To show that a € 271 Ng(H)z we must
show that zaz™! € Nc(H). So let h € H and consider

1 1

(zaz™ ') thzaz™! = za 'z hzaz !,

Now z7'hz = k € K since z7'Hz = K, and a *ka = k' € K since
a € Ng(K). Hence

(zaz™!) " lhzaz~ ! =zk’z" ' =K € H

since zKz~! = H. Thus zaz™! € Ng(H) as required.

Let H = {1,h}. For every g € G we have g"'hg€ H,s0 g"*hg=1or
g~ 'hg = h. The former gives the contradiction A = 1. Hence g~ thg=h
and H C Z(G).

That H is not necessarily a subgroup of the derived group of G can
be seen by taking G = C;. Here we have that C; is a normal subgroup
of C7 but the derived group of C; is {1}.

Suppose that z is the only element of order 2 in G. Let ¢ € G and
consider g7'zg = y say. We have y? = g7 z%g = 1 and certainly
g~ lzg # 1 (since otherwise z = 1). Thus y is an element of order 2
and so, by the hypothesis, we have y = z. Consequently g~'zg = z and
z € Z(G).
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141 Letn € N and g € G. Then [n,9] = n'g7!ng € G’. Since N is a
normal subgroup of G we have n=!(g~'ng) € N. Consequently |n,g] €
NN G =1. It follows that [n,g] = 1 and hence that n € Z(G).
Clearly, if z € Z(G) then

zN.gN = zgN = g2aN = gN.zN

and so Z(G)/N C Z(G/N). To obtain the converse inclusion we observe

that
zN e Z(G/N) = (Vg€ @G zNgN—gNzN

( )
= (VgeG)z g7 l2gN=N
= (Vg €G) [g,Z]EN
= (Vg€ G)[g,2le NnG' =1
=>z€ Z(G).
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Solutions to Chapter 2

Let |G| = p®. The class equation gives

Gl =12(G)| + > _1G: N(g})]

N

where ¢} € C, for |C\| > 1. Now p divides both |G| and |G : N(g})], so
p divides |Z(G)|. Hence Z(G) is non-trivial.

Now suppose that |G| = p%. Since Z(G) is non-trivial we have
{Z(G)| = p or |Z(G)| = p®. Now if |Z(G)| = p then |G/Z(G)| = p so is
cyclic. Let aZ(G) be a generator of G/Z(G). Then two arbitrary ele-
ments of G are a™z and a"y where z,y € Z(G). But a™za"y = a"ya™z
since z,y € Z(G). Hence G is abelian, and so |G| = |Z{G)| = p which is
a contradiction. It follows that we must have |Z(G)| = p? = |G| whence
G is abelian.

The groups of order 9 are C3 X C3 and Cg.

If z€ AN B then ¥(z) € ¥(A) and 9(z) € §(B) and consequently we
see that 9(AN B) < 9(A)N¥(B). Now ¢! is an automorphism and so
we also have that 871 (X NnY) <971 X)nd~'(Y). Now put X = 9¥{4)
and Y = §(B) to get 97! [${A)N¥(B)] < AN B, whence 9(4)Nd¥(B) <
#(AnN B). Hence we have the equality (4 N B) = ¥(4) N $(B).

Let ¢, € Inn G be the automorphism ¢, : g +— z7'gz. Let ¥ € Aut G;
we have to show that 971,49 € Inn G. Now

9 g 97 (27 (g)z) = 9 (27 h) g9 (=),
But if 97'(z) = y then 97!(z7!) = y~! and we have

3 o9 g y gy,
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2.4

2.5

so 97,9 € InnG. To show that G/Z(G) ~ Inn G define ¢ : G —
InnG by ¢(z) = @,-1: g+ zgz~!. Then

Y(2Y) = P(ay)-+ = Py-12-1 1 g TYgy 'z

= ¥(z)¥(y)-
Clearly, 9 is surjective, and
z € Keryp = (Vg€ G) zgz7! = g = z € Z(G).

Thus Keryp = Z(G) and Inn G = Im ¢ ~ G/ Kery = G/Z(G).

Clearly, b* € Z(Dg) since a™'b%a = (a7 '4a)? = (b7')% = b%. Now
we have Dg = {1,5,b%,b7!,a,ab,ab?,ab~'} and a,b ¢ Z(Ds) since oth-
erwise Dg would be abelian. Hence b~ ¢ Z(Dg). Since b2 € Z(Ds)
and a ¢ Z(Ds) we have ab? ¢ Z(Dg). Also ab,ab™! commute with
a if and only if b commutes with a, so ab,ab™! ¢ Z(Dg). Hence
Z(Dg) = <b2> ~ Cg.

Dg/Z(Dg) ~(ab | a®=1,b*=1,a tba=b"1, 02 =1)
:(a,,b | a2:1,b2=1,ab=ba)
ECQXCQ.

Similarly, Z(Qs) = (z?) ~ C; and Q3/Z(Qs) ~ Cy x Cs.

Both questions have a negative answer. The same group, namely the
dihedral group of order 8, serves to provide counter-examples.

Let Dg = {a,b | a® = 1,b* = 1, (ab)? = 1). If Dg were the direct
product of two non-trivial subgroups, one must be of order 4 and the
other of order 2. But a normal subgroup of order 2 is central, so Dg =
A x B where |A|] = 4 and B = Z(Ds) = (b?). Now b ¢ A since
AN B = {1}, s0o Ab € Dg/A ~ C,. Hence (Ab)? = Ab®> = A, showing
that b2 € A. Thus B C A, which contradicts An B = {1}. Thus Dy is
indecomposable.

However, there is a subgroup and a quotient group of Dg each of which
is isomorphic to Cy x Ca; for the subgroup, take {a, %) (or (ab,b?}), and
note that Dg/Z(Dg) ~ Cg X Cg since Z(Dg) = <b2>

Since G/Z(@G) is cyclic, every element is a power of a single element, say
aZ(G). Thus, given g € G, we can write ¢ = a"z for some z € Z(G)
and ne Z. If ¢g,,g2 € G then, with an obvious notation, we have

9192 = a™z1aM 2y = a™ T Mgy 2
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Solutions to Chapter 2
since 2z is central; and
g2g1 = a™zpa™ 2 = ™ M2y 2

since z;, zo are central. Thus G is abelian.
Suppose that Aut G is cyclic. Then InnG is cyclic. But G/Z(G) ~
Inn G, so G/Z(G) is cyclic and hence G is abelian.

If « € AutS; then o must map an element of order 2 in S; to an
element of order 2. Hence a permutes the set A = {(12),(23),(13)}. If
o leaves all three of these elements fixed then, since the elements of order
2 generate S3, o must be the identity map. Hence if o, 8 € Aut S; give
the same permutation of A then af~! leaves the elements of A fixed,
whence a3~! = id and o = 3. Hence |Aut S3| < 6.

Now since Z(S3) = {1} and S3/Z(S;) =~ Inn 85 it follows that S5 has
six inner automorphisms. Then

6 = |Inn S3| < |Aut S5/ < 6

gives Inn S5 = Aut Ss, so that Aut 83 ~ S3/Z(S3) = S5 as required.

Let C; x C; = {a,b | a® = b2 = a7 b7 lab = 1). Then we have
Cy x Cy = {1,a,b,ab} and each element in the set {a,b,ab} is of order
2. If o € Aut(C, x C;) then o fixes 1 and permutes a,b,ab. Thus « is
completely determined by its action on {a, b, ab}. Hence Aut(Cz x Cy) <
S3. To show that Aut(Cz; x C2) = 83, it remains to show that every
permutation on {a, b, ab} gives an automorphism of C; x C;. This follows
easily on noting that the product of any two distinct elements of {a, b, ab}
yields the third element, and this property is preserved under a bijection.

Now, as shown in question 2.6, Aut S3; = S;. Hence we have that
C; x €y and S; have isomorphic automorphism groups.

If § € Z(AutG) and ¢4 is the inner automorphism given by @4(z) =
9~ 'zg then we must have d¢p, = p,8. Hence, for every z € G, we have

B(g™1)8(z)P(g) = P(g™ 'zg) = g7 B(z)g

and so g¥(g~")9(z) = ¥(z)g9¥(g™"'). Since ¥ is surjective, we see that
g9(g~ ") € Z(G) = {1} and therefore #(g) = g. Since this holds for all
g € G we have that 4 = id as required.

To see that the converse is false, note that S3 = Aut(Cs; x C3) (by
question 2.7) and Z(S3) = {1}, yet Z(Cy x C3) = C, x Cy # {1}.
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It is clear that the additive group of the vector space Z} is isomorphic to
Cp x Cp, x -+ x Cp (with n terms). Suppose that ¢ is an automorphism
of the additive group of Zy. To see that ¢ is a linear mapping on Zj it
suffices to observe that

Sllar, ..y an) + (bry .-y 00)] = Hay, ..oy an) + by, ..., by)

gives
dm(a1,...,a,)) = d(may,...,ma,)

=md(as,...,an).

Thus ¢ is an invertible linear map. This shows that Aut G is isomorphic
to the group of invertible linear maps on the vector space Z;. Now fix
a basis B of Z;’. Then the mapping that associates with each invertible
linear map on Z;} its n x n matrix relative to B is clearly an isomorphism
onto GL(n, p).

If AutG = {1} then G must be abelian. For, given g € G, the inner
automorphism of conjugation by ¢ is trivial if and only if ¢ € Z(G).
Hence G = Z(G) and so is abelian.

Suppose now that G contains an element g of order greater than 2.
Since G is abelian, the mapping described by ¢ : £ +— z7! is a group
morphism. Since #(g) = g~! # g we see that # is a non-trivial element
of Aut G, a contradiction. Thus every element of G must have order 2.

It now follows that G is a vector space over Z;. If the dimension of
this vector space is greater than 1 then every non-trivial permutation of
the basis elements induces a non-trivial automorphism on G. Hence the
dimension is at most 1. Consequently we have that either G ~ C; or G
is trivial.

(a) True. Let ¥ : G — G be a group morphism. Then for a,b € G we

have
3{[a, b)) = B{a” b ab) = F(a) " 9(b) "  ¥(a)B(b)

= [#(a),d(b)] € G".
Hence ¢9(@') C G
(b) False. Consider C3 x S3 where C; = (a). Z(C, x S3) is the

subgroup ((a,1)}. Consider the mapping ¢ : C; x S§3 — C3 x S3 given
by setting

1
rees) {7y Sl

Then ¥ is a group morphism but #(Z{Csz x S3)) € Z(Cy x S3).
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Solutions to Chapter 2

(c) False. A4 contains only one non-trivial proper normal subgroup
V ~ Cy; x Cy. Suppose that ¥ : Ay — A4 is a group morphism. Then
Kerd must be {1},V or A4 and it follows from this that V is fully
invariant.

(d) True. If ¥ : G — G is a group morphism then from ¥#(g") = [¥(g)]"
we obtain ¢(G™) C G".

(e) True. If ¥ : G — G is a group morphism then

g"=1==>9(g") =1 = [¥(g)]" = 1
gives 9(Gp) C Gy.

It suffices to show that « is conjugate to y if and only if a{z) is conjugate
to a(y). But

z=g 'yg += a(z) = alg'yg) = [a(g)] 'a(y)al(g)

so the result follows.

To show that N is normal in Aut G we must show that fa € N,3 €
Aut G then (67 1aB)(C) = C. But B{C) is a conjugacy class by the first
part of the question, so o[3(C)] = G(C) by the definition of «. Hence
(B~1aB)(C) = B~ [B(C)] = C as required.

To show that NC « G it suffices to show that C <« G since N is given to
be normal. Solet ¢ € G and ¢ € C. Given n € N there exists n' € N
such that gn = n’g and so, since C centralises N,

1 1 1

g_lcgn =g ten'g=g"tn'cg = ng “cg.

For g € G we have ¢, € A where ¢, : n +— gng~! € N. Define
Y+ G — A by ¢(G) = ,. Note that Keryy = C. We show that
Y(NC) C I, whence ¥ induces a morphism from G/NC to A/I. Now
Y(C) C I since C = Kery; and if n € N then ¢(n) = ¢, € I s0
Y(N) C I whence ¢ (NC)C I

To show that the mapping from G/NC to A/ induced by ¢ is injec-
tive, we must show that {g € G | ¥(g) € I} = NC. But this is clear
from the fact that 4(N) = I and Kery = C.

Also, since N/Z(N} ~ I and Z{N) = N nC we have
I~N/(NnC)~NC/C.

If Z(N) = {1} then NnC = {1}. Also, since 4/ is trivial so is G/NC.
Hence G = NC and we have shown that G = N x C.

Since Z(8;) = {1} we have Inn 83 ~ S5/Z(S3) =~ S3. But Aut S; =
83 (see question 2.6), so every automorphism of S3 is inner. Thus -
satisfies the conditions required of the subgroup N and the result {7 w
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(a) If $(H) < H and 97*(H) < H then from the latter we have
H < 9(H) whence equality follows.

(b) If z € () Hy where each Hj is characteristic then for every ¢ €
Aut G we have 9(z) € H) for all A, whence #{z) € (] H,.

(c) If z € HK then z = hk gives ¥(z) = ¥(h)d(k) € HK.

(d) Let ¢ € C = [H,K|. Then ¢ = t;tp---t, where t; € [hy, ki]©
with ¢, = £1. Then #(c) = #(¢1) - 9(t,) with O(¢;) = dHhs, k]S =
[B(hi), B(k:)].

{e) H is normal in G, so if ¢ is an inner automorphism of G then
o(H) < H. But if pg is the restriction of ¢ to H we have oy (K) < K,
for certainly g is an automorphism (not necessarily inner) and K is
characteristic in H. But ¢(K) = oy (K) so o(K) < K gives K «G.

Let ¥ € AutG and let K = 9(H). We have to show that K C H.
Suppose that {H| = n and |G/H| = m. Since HK/H < G/H we
have that |HK/H| divides m. But we know that HK/H ~ K/(H N
K), so |[HK/H| divides n. But h.c.f.(n,m) = 1 by hypothesis. Hence
|[HK/H|=1,s0 HK = H and K < H as required.

Ifa € Fthen a=! € F since (¢ tag)™! = g~ la~lg. Bt ifa,b € F
we have ab € F, for g~ 'abg = g~ 'agg~'bg. Hence F < G. Now F
is characteristic in G. To see this, let a € F and ¥ € Aut G. Writing
g = 9(g') we have g~ '9(a)g = ¥(¢' 'ag') and so there are only finitely
many conjugates of ¥(a). Thus ¥(a) € F.

¥; is clearly an additive group morphism which, since ¢ # 0, is injective.
Since ¥:(t7'z) = z we see that ¥ is also surjective. Hence ¥ is an
automorphism.

Let H be a non-trivial characteristic subgroup of @*. For every t €
@\ {0} we have 9,(H) = H. We show as follows that H = Q. Since
H is non-trivial, choose z € H with z # 0 and let y € @\ {0}. Then for
t =yz~! # 0 we have

y=tz=%(z)e%(H)=H,

from which H = Q% follows.

A Sylow p-subgroup of H is a p-subgroup of G that is contained in
a Sylow p-subgroup. Let P, and P; be Sylow p-subgroups of H. Let
P, < Pand P, < P where P is a Sylow p-subgroup of G. Then HNP is
a p-subgroup of H and P; < HNP, P, < HNP implies P, = ANP = P,.

Now suppose that H<G and that P is a Sylow p—subgroup of G. Then
HNP is a p-subgroup of H so is contained in a Sylow p—-subgroup P; of
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H. Now P; < P where P is a Sylow p-subgroup of G. Then P = g~ ! Pyg
for some g € G since Sylow p-subgroups of G are conjugate. Now since

H a G we have
P, :FﬁH:g‘ngﬁH:g’l(PﬁH)g.

Hence |[PNH| = |P;| and, since PNH < Py, it follows that PN H = P,.
Let |G| = p™k. Then |P| = p™. Let |H| = p™t. Then |[HN P| = p™.
Now |G/H| = p™~™s where st = k and

|HP/H|=|P|/I[PNH|=p""".

Hence HP/H is a Sylow p-subgroup of G/H.

Suppose now that we drop the condition that A be normal in G.
Consider G = S; and H = ((12)). We have that P = {(13)) is a Sylow
2-subgroup of §3, but |[H| =2 and HNP = {1}.

Let H be a normal p~subgroup of G. Then H < P where P is a Sylow
p-subgroup of G. But every Sylow p-subgroup of G is of the form g~! Pg
for some g € G, and H < P implies H = g~ Hg < g~ ! Pg since H «G.

Let Hy,..., H, be distinct normal Sylow p-subgroups of G. Since a
normal Sylow p-subgroup is unique, every element of p—power order is
contained in this Sylow p-subgroup. Now observe that

(a) Hy,...,H, <G by hypothesis.

(b) G = H, - H,. This follows from the fact that H; N H; = {1} for
i#7and |H, - Hol = |Hi| - |Ha| = |Gl.

(¢} Hi0Hy - H;.yH;y( - H, = {1}. This follows from the fact that
if a € H; and b€ H; with 1 # j then [a,b] € H; N H; = {1}.

Thus we see that G is the direct product of its Sylow p-subgroups.

We have that |4s| = 60 = 5-3-22. Hence the Sylow 5-subgroups are Cs,
the Sylow 3-subgroups are C,, and the Sylow 2-subgroups are C; x C;
since As has no element of order 4.

There are 1 + 5k Sylow 5-subgroups where 1 + 5k divides 60; thus
there are six Sylow 5-subgroups. There are 1 + 3k Sylow 3-subgroups
where 1 + 3k divides 60; thus there are four or ten Sylow 3-subgroups.
There are in fact ten Sylow 3-subgroups as a little computation will
show. There are 1+ 2k Sylow 2-subgroups where 1+ 2k divides 60; thus
there are three, five or fifteen Sylow 2-subgroups. There are in fact five
Sylow 2-subgroups as a little computation will show.
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Let g € G. Then ¢7*Pg < ¢g7'Kg = K since K < G. Thus, since
tg=1 Pg| = |P|, we have that g~!Pg is also a Sylow p-subgroup of K.
Hence, by Sylow’s theorem, P and ¢g=! Pg are conjugate in K. It follows
that g7'Pg = k! Pk for some k € K. Then (gk™!)"'Pgk~! = P and
so gk € N(P) whence g € N(P)K. Since this holds for all g € G, we
have that G = N(P)K

Let N(P) < H < G. Since P < H < G, we have that P is a
Sylow p-subgroup of H. Let L = N(H). By the first part of the
question, L = N(P P)H where N, (P) is the normaliser of P in L. But
NL(P) < N(P) < H,so L = H as required.

Let § < G and suppose that P is a Sylow p-subgroup of S. We have to
show that P is cyclic. Now P is a p-subgroup of G so P < P for some
Sylow p-subgroup P of G. Since P is cyclic, so then is P.

Suppose that P, and P> are p-subgroups of G with |P;| = | P;).
have P, < P, and P, < P, where F;,E are Sylow p- subgroups of G
But P, is conjugate to P,, 0 there exists ¢ € G with ¢"*Pig = P,. But
now ¢g"'Pyg < P, and |¢g” ' Pyg| = |P\| = IP,|, so g~'P,g and P, are
subgroups of the same order in the cyclic group P,. Hence g~'Pyg = P,
as required.

Certainly |N N H| divides || and |H| and so divides h.cf.(|N|,|H]).
Let p be a prime divisor of h.c.f.(|N|,|H|) and suppose that p" is the
highest power of p that divides it. Then p™ divides |N| and |H| and so
there exist Py, P; with P, < N, P, < H and |P,| = p" = |P2|. Now
P, is conjugate to P, and since N <G we must have P, < N. Hence
P, < Hn N and |H N NJ is divisible by p™. Thus

|HN N =h.ctl(|H|,|NJ|)
and from the isomorphism HN/N ~ H/(H 1 N) we obtain

CH[IN] __ [HIN]

[HN| = \HON|  hoi(H|,IN)

= lem.(JH|,|NJ).

Finally, suppose that N « G and ¢4 € AutG. Then {$(N)| = |N]| so
[$(NYNN| = h.cf.(|[9(N),|N)) = |N: and hence 9(N) = N as required.

(a) 200 = 52 . 2°. Hence G contains k& Sylow 5-subgroups of order
25 where k = 1 4+ 5z and k divides 200. Since (k,5) = 1 we have that
k divides 8 and hence z = 0. Thus G has a unique Sylow 5-subgroup
which is therefore normal.

(b) 40 = 5 2%, Hence G contains £ Sylow 5-subgroups where k =
1+ 5z and k divides 40. Here again we have z = 0 and so G contains
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a unique Sylow 5-subgroup which is therefore normal. Hence G is not
simple.

(c) 56 = 723, There are 1 + 7k Sylow 7-subgroups where 1 + 7k
divides 56. If the group is simple then there must be eight Sylow 7-
subgroups with 49 distinct elements. Also there must be seven Sylow
2-subgroups and the group now has more than 56 elements.

(d) 35 = 7-5. The number of Sylow 5-subgroups is congruent to 1
mod 5 and divides 35. Hence there is only one Sylow 5-subgroup which
is therefore normal. By the same argument, there is only one Sylow
7-subgroup which is therefore normal. Let the Sylow 5-subgroup be H
and the Sylow 7-subgroup be K. We show as follows that G ~ H x K.

(1) H, K < G has already been seen.

. _ |HIK] 5.7 3
(ii) ‘HK‘_——_IHQIQ = =35s0 HK =G.
(ili) HN K = {1} since h.c f.(|H|, |K|) = 1.

It follows that G ~ H x K ~ C5 x Cy ~ C;5 as required.

(a) If |G| = 85 = 517 then the number of Sylow 5-subgroups is
congruent to 1 modulo 5 and so is one of

1,6, 11, 16, 21, 26, etc.

But the number of Sylow 5-subgroups divides 85. Hence G has only one
Sylow 5-subgroup, H say, which is then normal. Similarly, there is a
unique Sylow 17-subgroup, K say, which is also normal. Now

(i) H,K«G;

e _HIK 517
(ii) G = HK since |HK| = HAK| - 1
(i) HN K = {1} since h.c.L.(|H|,|K|) = 1.

Thus G~ H x K ~Cs x Cy7 ~ Css.

(b) Let G be a group of order p?g. Suppose that G is simple. Let G
have n, Sylow p—subgroups and n, Sylow g-subgroups. Then n, > 1
and ng > 1. Since ny divides ¢ we must have n, =q. Alson, = 1mod p
$0 ¢ > p. Again n, divides p? so n, is either p or p°.

There must be ny(g— 1) distinct elements of order ¢. Hence if ny = p?
there are p?q —p?(g—1) = p? elements that are not of order q. But since
the Sylow p-subgroup of G has order p? we have n, = 1, a contradiction.
Thus we must have n, = p. But n, = 1 mod ¢ and so p > ¢ which is
also a contradiction. We conclude therefore that G cannot be simple.

= 85;
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2.26

2.27

By Sylow’s theorem, the number n of distinct Sylow p-subgroups of G
is a divisor of ¢, and n = 1 mod p. Since g is prime, we have n = 1 or
n = ¢. Since ¢ Z 1 mod p it follows that n = 1. Thus G has a unique
Sylow p-subgroup P, say, and P« G.

Consider S5. We have |S3/ = 2-3 and 3 = 1 mod 2. In this case the
result fails since 53 has no normal 2-subgroup.

To show that G is not simple when |G| = pg we can assume that
p > g, so that ¢ — 1 is not divisible by p. Then G has a normal Sylow
p—-subgroup so cannot be simple.

Now suppose that |G| = pg where p Z 1 mod g and ¢ Z I mod p. Then
G has a normal Sylow p-subgroup P and a normal Sylow g—subgroup
Q. Since P and @ have prime orders they are cyclic. Let P = (z) and
Q@ = {y). Now PN @Q = {1} so zy = yz. Hence zy has order pg and
G = (zy) is cyclic.

The answer is no, and the symmetric group Sy provides an illustration.
First we must show that S; contains a subgroup of order n for every
divisor n of 24. The cases n = 1 and n = 24 are obvious. As for
subgroups of order 2, 3, 4, 6, 8, 12 we have

(1) [{(12))] = 2;

2) 1{(123))] = 3;

3) [{(1234))] = 4

} 83 C 8, and [S3] = 6;

) 24 = 3-8 so a Sylow 2—subgroup of S4 has order 8;

) Ay has order 12.

Consider now the subgroup A4. We claim that this does not have a
subgroup of order 6. To see this, suppose that H were such a subgroup.
Then H cannot be abelian (since S; has no element of order 6) and so
H ~ S;. But every subgroup S3 in Sy fixes a point and contains odd
permutations. Hence no such subgroup H can exist.

(
(
(4
(5
(6

Let y = g~ 'zg for some ¢ € G. Then y € P and y € g~'Pg. Hence,
since y € Z(P) and y € Z(g~ ! Pyg), we have that P and ¢g~!Pg both
centralise y. Thus

(P9 Pg) < Ne(y).

But P and ¢~ !Pg are Sylow p-subgroups of G and so are Sylow p-
subgroups of N (y). Therefore P and g~! Pg are conjugate in No(y).
Thus P = ¢ tg~! Pgc for some ¢ € N (y). Now gc € N(P) and

1 1

(gc) tzgc =c g7 lzge =cTlyc = y.
Hence z and y are conjugate in N(P).
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Let @ = {aH | a € G} and for every g € G define a permutation g on
Q by
g:aH — gaH.

Then ¢ : G — Sq defined by (g) = 7 is readily seen to be a group
morphism. Now g € Keryp if and only if aH = gaH for all a € G,
which is the case if and only if g € eHa~! for all a € G. Thus we see
that Kerp = (,c; a~ ' Ha which is easily seen to be the largest normal
subgroup of G contained in H. By the first isomorphism theorem,

G/Kerp=Imp < S,.

Now suppose that G is simple with |G| = 60. If H is a subgroup with
[H| = 15 then H has index 4. But K = {1} since G is simple, and
G/K = G which (by the above) must be isomorphic to a subgroup of
S4. However, 60 does not divide 24, and so we have a contradiction.

In a similar way we can show that G has no subgroups of order 20 or
30.

The number n of Sylow 7-subgroups is such that n = 1 mod 7 and
n divides 168. Now n # 1 since otherwise G has a unique Sylow 7-
subgroup which is therefore normal. The only other divisor of 168 that
is congruent to 1 modulo 7 is 8. Hence G has eight Sylow 7-subgroups.

Since Ng(P) must have index 8, we have |Ng(P)l = 21.

Suppose now that H < G with |H| = 14. We derive a contradiction
as follows. Consider the number m of Sylow 7-subgroups of H. We have
that m = 1 mod 7 and m divides 14. Thus m = 1 and H has a normal
Sylow 7-subgroup K. However, |K| = 7 so K must be a Sylow 7-
subgroup of G. Now since K is normal in H we must have H < Nq(K).
This shows that {H| = 14 divides {Ng(K)| = 21 which is the required
contradiction.
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(a) Given [s,t] € [S,T} we have [s,¢|]7! = {t,s] € |T,S). Hence
|8, T) C [T, S] and similarly for the reverse inclusion.
(b} We have that

Ak thk=h"'W € H since H<G
and
R Yk 'hk=kke K since K<G.

Hence [H,K] < Hn K. In the case where H N K = {1} we have

[H, K] = {1} and the elements of H commute with those of K.

(¢) The first part follows from [zy, 2] = y~!z7 2~ !zyz and

y_l[zvz}y{yvz] = y_lflz—lxzyy‘lz“yz.

Clearly [H, K] < |HL,K] and [L, K| < [HL, K], so
[H,K]|L,K|<[HL,K].

But [Al k] = 7'k, k)l|l,k] € [H,K]|L, K] since [H, K] <G. Hence the
required equality follows.

(d) This follows immediately on expanding the commutators.
Let Qs = (a,b | a? = 62 = (ab)?) and C; = (¢ | ¢* = 1). Then
Z(G) = {a?,c) and the upper central series is

{1} < {a*¢c) < G.

The derived group of G is
Gl - <CL2>
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Solutions to Chapter 8

and the lower central series is

G > (a%) > {1}
Thus G is nilpotent of class 2 and the upper and lower central series do
not coincide.

Qs has derived group (a?) and Z(Qg) = {a?). Thus the upper and

lower central series of Qg are both equal to

Qs > (a®) > {1}.
Suppose that G is generated by its subnormal abelian subgroups. Then

G = { G, | Gy subnormal abelian ).
Now since G is subnormal in G we have a series
Gy=Ro <R < <R, =G

with R; normal in R, ; for 0 <7< n~ 1. But if H is a quotient group
of G then H ~ G/K and so

Gy\K _ G\ R < G\ R, <. < Ga\R, :E
K K - K ~ - K K
is a series of subgroups with G}{Ri normal in G—’\]I% for0<i<n—L
Now
G,K G,
K " GinkK
which is abelian since G is abelian. Hence
G G\K | GAK . . G
= < X e subnormal abelian in E> .

Therefore H ~ G/K is generated by its subnormal abelian subgroups.
Suppose now that G is a nilpotent group and that H < G. Let

G=G,>G, > - >2G,={1}
be a central series for G. Consider the series
H=HG, <HG,_., < - <HG <HGy,=G.
Now HG; < HG; 1, since for h,h' € H,g; € G;,9;:_1 € G;_; we have
(R'gir) " hgih giy = g K" hgih! giy .

But, for any z € G, zg,_1 = gi— g for some g, € G; so it follows that
gz-__llh"lhgih’g,-_l € HG,; as required. Since every group is generated
by abelian subgroups (the cyclic subgroups generated by its elements),
a nilpotent group is then generated by its subnormal abelian subgroups.
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8.4  Apply the fundamental isomorphism
A HK
HnK K

to the case where G = A, H = AN C and K = B; then since B4 4 we
obtain

AnC (AnC)B
BnC~ B
Now apply the isomorphism to the case where G = AC,H = A and
K = BC to obtain
A A(BC)

ANBC -~ BC

But AnBC = B(ANC) and A(BC) = AC, and the result follows.
Suppose that G is a soluble group with a series

{1} =G <G, < <Gr=G
where each G;/G;_ is abelian. Let H < G and consider the series

{1} =GonH<LGNH<L ---<G,NnH=H.

We have
GinH - G,‘_l(GiﬂH) < G;
Gi_y,nH "™~ Gi_y ~ G
JNH . . .
and so G nH is abelian (being a subgroup of an abelian group).
Also, if K <G then
E:GOK<%<.”<GHK:€'
K K - K -~ - K K
Now we have
G:K/K N G;K N G;
G K/K ~ G, 1K~ G- (G;nK)
i G;K/K . .
which is a quotient group of . Hence ——L"—_ is abelian {bein
q group of = G K/K (being

a quotient group of an abelian group).
If H< K and both H and K/H are soluble then we have

H

£_ﬁ>£1_>.‘.>.{(_":_
- H H

H H~™H~™
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and H = Hy > H; > --- > H, = {1}, whence we have that
K=Ko>K > - >K =H=H>H?> - >H={1

is a series for K with abelian factors.

For the last part, suppose that G/A and G/B are soluble. Then

A AB G
~ 22 <

AnB~ B B

and so A/(4 N B} is soluble. Then G/A soluble and A/(A N B) soluble
gives G/(A N B) soluble.

(a) True. We have HK/K ~ H/(H N K) which is soluble, being a
quotient group of the soluble group H. But then H K/K is soluble and
K is soluble, so HK is soluble.

(b) False. For example, consider

G=Qs={a,b| a®=0b%=(ab)?).

H = {a) and K = {b) are normal cyclic subgroups but HK = Qs
which is not abelian.
(c) True, by the same argument as in (a).

Let H be a proper subgroup of G. If Z(G) € H then Z(G)H normalises
H and the result follows. Suppose then that Z{G) C H. Suppose, by
way of induction, that the result holds for groups of order less than |G|.
Since Z(G) # {1} we can apply the induction hypothesis to H/Z(G) as
a subgroup of G/Z(G). This shows that H/Z(G) is properly contained
in its normaliser, K/Z(G) say. Then H is normal in K and properly
contained in K as required.

Let P be a Sylow subgroup of G. Using the result of question 2.21, we
have that N{P) is equal to its own normaliser in G and so, by the first
part of the question, N(P) cannot be a proper subgroup of G. Hence
N(P) = G and so P is normal in G.

If |Z(G)| > 2 then |G/Z(G)| < 4 and so G/Z(G) is abelian. This
contradicts the class of G being 3. Hence we have that |Z(G)| = 2 and
IG/Z(G)| = 8. Now G/Z(G) must contain an element zZ(G) of order 4,
otherwise G/Z(G) would be abelian. Let H = (z,Z(G)) so that H is
an abelian subgroup of G with |H| = 8. We show first that H is cyclic.

Suppose that H is not cyclic, so that H = (z) x Z(G). Consider the
subgroup {z?). There must be some g € G such that [z%,g] # 1, for
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otherwise z? € Z(G). Now consider the non-trivial element z=2g—!z3g.
Since H is normal in G, we have that g~'zg € H and g~ 'z%g must be
a non-trivial square of an element of H. This gives ¢7'z%g = z? and so
iz%, g] = 1, a contradiction.

Suppose now that H and K are cyclic subgroups of order 8 with
H # K. Then G = HK and so HN K < Z(G). However, this gives
H N K| <2, which contradicts

|\HK|H " K| =[H||K].

Thus we conclude that H = K.
An example of such a group is the dihedral group Djs.

If G is a finite nilpotent group then it has a lower central series which
satisfies the conditions required for G to be residually nilpotent. Con-
versely, if G is finite and residually nilpotent then H; cannot properly
contain H;,; except for finitely many ¢, sc H; = H;,; foralli > N.
But now, since

ﬁH:ﬂH Hy,

=1

we have Hy = {1} and so G is nilpotent.
The group
Do ={a,b | b*> =1,bab=1a"")

is residually nilpotent. For, taking H; = (a® ) we have that [H;,G] <
Hiiy and N2, Hi = {1}. However, Dy, is not nilpotent. To see this,
take K = (a®) and observe that

Do/K~{ab|a®=b=1bab=2a"')~8;

which is not nilpotent.

If H is a subgroup of a residually nilpotent group G then intersecting
the series of G with H shows that H is residually nilpotent (the argu-
ment generalises the usual proof that a subgroup of a nilpotent group is
nilpotent).

Consider Dy, again. We have seen above that S, is a quotient group.
But since S5 is finite and not nilpotent, it fails to be residually nilpotent
(by the first part of the question). Thus we see that a quotient group of
a residually nilpotent group need not be residually nilpotent. (In fact,
every group is a quotient group of a residually nilpotent group.)
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It is readily seen by expanding the commutators that
2y, 20 =y~ 'z, 2]yly, 2.
Now |G, A] is generated by [g,a] where g € G and a € A. It is therefore
sufficient to check that z7![g,alz € |G, A} for all g,z € G and a € A.
But
7y, alr = lgz,a 1,47 €1G, A
and so [G, A] < G.
Suppose that A = [A, G| and that G is nilpotent of class n say. Then
we have
A=1[4,G,G,...,G] = {1}.
———
n
Thus if A # {1} then G cannot be nilpotent.

Let A be a minimal normal subgroup of a nilpotent group G. Then
‘G, A] < A and so, since (G, A] <G, we must have either [G,A] = 4
or [G, A] = {1}. The former is impossible since & is nilpotent. Hence
‘G, A} = {1} and A is in the centre of G.

Let G be a finite p-group. First we show that the centre of G is non-
trivial. Note that a conjugacy class has one element if and only if the
elements of the class are central. Now G is the union of its conjugacy
classes, and {1} is a conjugacy class. Any conjugacy class containing
more than one element has k elements where pik. Hence G has more
than one conjugacy class containing one element and so Z(G) # {1}.

Let Z2(G)/Z(G) be the centre of G/Z(G). Continuing in this way, we
obtain a series

(1} <2(6) < Z(G)< - <G

and, since G is finite, Z,(G) = G for some n. Thus G is nilpotent.

Suppose that G = H x K where |H = p® and |K| = p®. Now we have
that Z(G) = Z(H) x Z(K) and Z(H} = H since a group of order g? is
abelian. Consequently, |Z(G)| = p*>'Z(K)I. 1t follows that |Z(K)| is p,
or p?, or p*; for IZ(K), # 1 since K is a p-group. But if |Z(K)| = p?
then [K/Z(K)| = p and so K/Z(K) iz cyclic, say K/Z(K) = (aZ(K)).
Then k € K gives k = o'z for some 2z € Z(K). Then any two elements
of K commute, whence it follows that |Z(K)| = p® which contradicts
the hypothesis that . Z(K)! == p?. We now note that 'Z(K)} # p* since
otherwise G is abelian. Thus we have that Z(K) must be p, whence
Z(G)] = p and |G/Z(G)| = p*. Using again the fact that a group of
order p? is abelian, we see that

G>Z(G) > {1}

is the upper central series of GG, and hence that G is nilpotent of class 2.

67



Book 5 Groups

3.11

Consider the matrices

O - A,
— o

where a,b,c,d, ¢, f € Z. Then [z, y] is given by

1 —a ac—b||1l —d df—e]|l a b||1 d e
0 1 —c 0 1 i 0 1 ¢jy|0O 1 f
6 O 1 (U] 1 0 0 1710 0 1

which reduces to

1 0 af—dec
0 1 0
0 0 1

Now if z is central in G then [z,y] = I3 for all y € G, which gives
af —dc =0 forall d,f € Z, whence a = ¢ = 0. Thus we see that the
centre of G is

1 0 b
Z={|0 1 0||beZ
00 1

The derived group of G is {[z,4] | z,y € G). From the above calculation
of {z,y] it is easy to see that the derived group of G is Z. To see that
G is nilpotent, we show that [Z,G] = {I5}. Again, this follows from the
above calculation.

The upper central series is

{L}<Z<G.

For, we have shown that Z is the centre of G, and G/Z is abelian since
Z is the derived group of G. This is also the lower central series of G as
our calculations have shown. Hence the upper and lower central series
of G coincide.

For the given matrices we have

1 n 0 1 0 n 1 0 0
=10 1 0f, /=10 1 0|, =10 1 n
0 0 1 00 1 00 1
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Now since
1 a & 1 a 0f|1 0 Ol{1l 0 b-ac
0 1 ¢|={0 1 0{j0 1 cijj0 1 0
0 0 1 0 0 1({0 0 1||{0 O 1
it follows that we have G = (#12,813,%23 ).
A subnormal series for ({2 ) is
<t12><1<t12,t13><1G.
A subnormal series for {tz3) is
(t23><] (tgs,t13>QG.
A subnormal series for {#;3) is
<t13) <G@.
8.12 Suppose that NaGand A< N,B < N. Thenforallze X,y Y,z Z

we have
2,y 2Y €N and [y,z ', z)*€N.
Hence [2,27!,y]” € N and so {z,z7%,y] € N, whence [z,z7!| commutes
with ¥y modulo N, whence [Z, X| commutes with Y element-wise modulo
N, and consequently C < N.
For the next part, use induction. The result is clearly true if n = 1.
Assume then that [H;, Ty (K)] < Hiyp-;. Let

X= Fn—l(K)a Y=K Z=H, N=H,,
Then we have
A=[Tn_i(K), K, Hi} = [Tn(K), Hi]
B = [Ka Hiyrn—l(K)] S [HH—l’Fn——l(K)] S H’H—n =N
C= [Hi:rn—l(K)vK] < [H,'+n_1,K] SHiyn = N
and hence A < N as required.
For the last part, take G = H = K and the series to be the lower
central series. Then
(a) and (b) follow immediately;
(¢} follows from (b) with m = n;
(d) is proved by induction. We have GI® = T';. Suppose that
G'"=1) < Ty _1; then, by (a),
G =[G G Y] < [Dyeoh, Tgrea] < Tye
(€) [Z2,T2] = {1} and 80 [Z;, G] = {1} gives Z3 < Z, whence Z, = Z,.
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3.18 Since z € Z3{G) we have [z,9] € Z(G) so N < Z(G). Now in this case

5.14

we have
(.91} [z, 92] = 27 g, 2gu ™ g5 P zge
= z_lgz_lr.zflgl_lzgl.gz
= [z, 9192]
and hence
N ={[z,q | g€ G}.
Now

z,91] = [z, 92] <= g7 'z = 95 290
<= N(z)g1 = N(z)g2.

This gives |[N| = |G : N(z)|. However, Z(G) < N(z)and z ¢ Z(G),z €
N(z) and so Z(G) is properly contained in N(z}), whence |[N| < p™.

If n =1 then G is abelian and G’ = {1} so the result holds. Suppose,
by way of induction, that the result holds for all groups with factor
by the centre of order p* for k < n. Consider Z(G/N). Certainly
Z(G)/N < Z(G/N). But zN € Z(G/N) since |z,G] C N so Z(G/N)
properly contains Z(G)/N. Hence

(G/N : Z(G/N)| ="

for sonme & < n, and so by the inductive hypothesis
G'/N| < p%(n—l)(n—?).

But |N| < p"~! and so |G| < p™'"—1) a5 required.
P p q

Suppose that H is a subgroup of G with G = ®H. Then if H # G
we have that H is contained in a maximal subgroup M of G, whence
G = ®H < ®M and consequently G = ®M. But & < M since & is the
intersection of all the maximal subgroups of G. Hence G = M < M
which is a contradiction. Thus H = G as required.

Since T < & we have TY < &Y. First we show that ® is normal in
G. If M is a maximal subgroup of G then ¢g~'My is also maximal,
since otherwise g7'Mg < K < G for some subgroup K and then M <
gKg~! < G, a contradiction. Suppose now that z € &, If g7 lzg ¢ &
then g~ lzg ¢ M for some maximal subgroup M, and then z ¢ gMg~!
which is a contradiction. Therefore TY < ®9 = ® and so T and TY are
Sylow p-subgroups of ® Thus 79 = T" for some h € ®, by Sylow’s
theorem. It now follows that 79*™" = T and so gh™! € Ne(T) whence
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g € No(T)®. Hence we see that Nu(T)® = G and, by the first part of
the question, that N;(7) = G. Thus T is normal in G and so is norma.
in ®.

Thus every Sylow p-subgroup of ¢ is normal.

Suppose that G satisfies the maximum condition for subgroups and let
H be a subgroup of G. Choose z; € H and let H; = {z; ). f{ H, < H
choose z, € H\ H; and let Hy = {(z;,z,). Continuing in this way, we
obtain a chain of subgroups

H «<Hy< - <H,<Hpy, <
in which, by the maximum condition, H, = H for some r. Hence
HZHr = (ZI,IQ,...,Ir>

is finitely generated.
Conversely, if G fails to satisfy the maximum condition then G con-
tains an infinite chain of distinct subgroups

H<H < -<H,<Hpe1 <.

Let H = |J;», H; and suppose that H is finitely generated. If, say,
H = {(zy,...,z,) then we have

€ Hy, zo€H,,,...,2, € H,

and consequently each z; € H, where s = max;<;<r s;. It follows that
H = H,, a contradiction. Hence H cannot be finitely generated.

Let G be a soluble group that satisfies the maximum condition for
subgroups. Let

G=H,>H > -->H ={1}

be a series for G with each quotient H;_,/H; abelian. Now H;_;, being a
subgroup of G, is finitely generated and so therefore is H,; ;/H;. Thus
we may insert between H; and H;_, a finite number of subgroups to
obtain a series in which quotients of consecutive members are cyclic.
Thus we have that G is polycyclic.

Conversely, if G is polycyclic let

G=Hy>H > -->H = {1}
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8.16

be a series with each quotient H;_,/H; cyclic. Then if K < G we have,
writing K; = H N H;, the series
K=Ky> K, > ---> K, ={1}

in which consecutive quotients are cyclic. Let K;a;_; be a generator of
K;_1/K;. Then it follows that

K =1{ag,a;,...,a,_1)
and so K is finitely generated as required.
Rewriting the given relation in the form
(1) v~z 2ly = [zy, 2] [y, 2]~
we see that, for all z,y € A and all z € B,

v~ 2,2y € (4, B]

and so A normalises [4, B]. Similarly, B normalises [4, B] and so {4, B]

is normal in G.
Replacing z by 2zt in (1) gives

1

[:CyaZt] = [vatJy[yJZt]'
However, [z,2t] = [zt,z]7* and [y, 2t] = [zt,y]7! so we can use (1)
again to express [zy,zt] as a product of conjugates of commutators of
the form [a,b] where a,b € {r,y,2,¢t}. Hence if z,2 € Aand y,t € B

then using the fact that [z,2] = 1 = [y,¢] and the fact that |4, B] is

normal in G we see that {zy, zt] € [A,B] Thus G’ C [A, B]. However,
|[A,B] C [AB,AB] = G' and so G' = [4, B].
Since AB = BA we have
b7 = agb; and a’f’ = byay
for some a3,a4 € A and b3,by € B. Now
(@, 64]%" = [af?, 87217 = (a1, a3b5]"
= [a}?,b3] = [byaa, ba]
= [44,b3].
Similarly we can show that
a1,61]7%%% = [a4, b3]
and so [a;,5;]%2% = [a;,b,]%2%* as required. It now follows that
[al’bl][b%aﬂ = [al,bl}

and so [A, B] is abelian.
The derived series for G is now

G >[4,B] > {1}

and so G is soluble, of derived length at most 2.
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8.17 Let M be a maximal subgroup of G. Then M is subnormal in G
question 3.3) so we have

MaH 4 - aH, <G.

But M < H; < G is impossible, so M <« G.
S is a Sylow p-subgroup and M is a maximal subgroup of G witk

Ne(§) < M <G.

Let g € G. Then ¢7!Sg < g”'Mg. But g7'Mg = M since M iz
normal. Therefore § and g~ 'S¢ are Sylow p—subgroups of M. Now.
using the Sylow theorems, we have that S and g~!Sg are conjugate in
M. Hence there exists m € M with ¢~ 1S¢g = m~*Sm. This shows that
mg~tSgm~! = S and so (gm~!)"!Sgm~! = S whence gm™! € Ng(S).
It now follows that gm~! € M whence g € M since m € M. This is
clearly impossible since we now have the contradiction M = G. We

deduce, therefore, that Ng(S) = G and so S is normal in G.

Suppose now that § is a Sylow p-subgroup of G. Then S =g18yg
for some g € G, by Sylow’s theorem. Hence S = g7 !§g = S since S« G

and so S is unique.

Let Sy,...,S be Sylow subgroups, each corresponding to distinct
prime divisors of |G|. Since §; is the only Sylow subgroup for its asso-
ciated prime, we have S; < G. Clearly, if ¢ # j then §; N S; = {1} since

h.c.f.(]5¢],18;]) = 1. Hence

G=8 x8;x - x8,.

8.18 Let k€ K. Then k € g~ Mg for every g € G. If z € G we then have

(VvgeG) ™ kz € (gz) ' Mgz

and so z7'kz belongs to every conjugate of M. Hence z7'kz € K and

so K4G.
If NaGand N < M then for every g € G we have

N=g 'Ng<g'My

from which it follows that N < K.

Since H/K is a minimal normal subgroup of G/K we have H « G
and K C H,so H £ M. Therefore G = MH since M is maximal an?

G>MH>M.
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Now HNM is normal in M and so (HNM)/K isnormal in M/ K. But
(HNM)/K is normal in H/K since H/K is a minimal normal subgroup
of a soluble group and is therefore abelian. Thus every subgroup of H/K
is normal.

Now (H N M)/K is normalised by M/K and is also normalised by
H/K. Hence H/K - M/K normalises (H N M)/K. But

H/K M/K = HM/K = G/K.

Consequently, (HNM)/K is normal in G/K. It now follows that HNM
is normal in G.

Now HNM < M and HNM«G imply that HNnM < K. But K < H
and K < M, so we have HN M = K.

Finally, [ MH : M|=|H : HnM|gives |G : M| =|H : K|.

Suppose that G is metacyclic and that N <« G with N and G/N cyclic.
Let H < G. Then HNN<H and HN N is cyclic (since it is a subgroup
of the cyclic group N). Also,

H/(HENN)~HN/N < G/N

so H/(H N N) is cyclic (being isomorphic to a subgroup of the cyclic
group G/N). Hence H is metacyclic.

Suppose now that K <G. We have K<NK and NK/K ~ N/(NnK)
which is cyclic (being a quotient group of the cyclic group N). Also,

G/K _ G _ G/N

——— A

NK/K =~ NK NK/N

which is cyclic (being a quotient group of the cyclic group G/N). Hence
NK < G
K K
If

K
with v'a cyclic and cyclic, so G/K is metacyclic.

G
NK/K
G={ab|a?=10=1,aba=0")

then we have a=lba = b1 so (b) < G since then a~!b*a = b~* for all
integers 7. But

G/(b) =(ab|a®=1=8)
and so G/{b) ~ C,. Also, () ~ Cs so G is metacyclic.
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8.20 Consider the following matrices (in each of which the entries not s:. -

are all 0) :
1 aij2 @z ... Qin
1 23 ... Qap
AO — 1 oo Q3p
1
1 ~a19 —aiz ... —Qain
1
A1 = 1
1
1
1 —ag ... —agn
Ay = 1
1
1
1
Ap 1 =
—Gn—-1,n
1

It is readily seen that AgA4; - 4,_; = I,. Also,

1 —a12 —a13 ... —Qain
1

=t12(—a2)tia(—a1s) - tip(—ain).
1

Expanding the other matrices in a similar way, the description of T, (F)
follows.
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A similar argument shows that H is the set of all upper triangular
matrices over F of the form

1 1441 Q1i+2 ... Qip
1 2542 ... Q2n
1

To show that
Tu(F)=H > Hy> > Hy > {1}

is a central series for T,(F), first note that if I, + A € T,,(F) where

0 a2 a3 ... aip

0 0 gz ... QG2p

A= 0 0 0o ... A3n
0

then I, + A% € Hy, I, + A € Ha,..., I, + A® = I,,. Also,
(L, + A~ '=1, - A+ A2 - A+ ... 4 (-1)"t4anL,
Now let I, + B € H;. Then we have
I+ A I, + B = (I, + A)" (I, + B)"'(I, + A)(I, + B)
=, -A+ .. ), —B+ ..)In+ A}, + B)
= I, + AB + higher powers of A and B
€ Hiyy.

Tn(Zp) consists of all upper triangular matrices with diagonal entries
all 1 and arbitrary elements of Z,, in the %n(n — 1) positions above the

main diagonal. It follows immediately that [T, (Z,)| = pzn(n=1) But
we know that

st = =5 167 )

(see question 1.18), and the highest power of p that divides |SL{~n,p)]| is
therefore p3”("=1), Hence T.(Z,) is a Sylow p-subgroup of SL{n, p).
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Solutions to Chapter 8

S3 can have non-trivial proper subgroups only of order 2 or 3. Only the
Sylow 3-subgroup ((123}) is normal and so the only composition series
is

Sy > {(123)) > {1}.

No Sylow subgroup of S, is normal, nor is any subgroup of order 2.
Thus the only possible orders for proper non-trivial normal subgroups
are 4, 6, and 12. But a subgroup of order 6 contains a Sylow 3-subgroup
and so, if it is normal, contains all four Sylow 3-subgroups which is
impossible since 4 does not divide 6. Any subgroup of order 12 contains
all Sylow 3-subgroups and so is A4 (observe that A,, is generated by the
3-cycles). As A4 hasindex 2, it is normal. It is easy to see that the only
normal subgroup of order 4 is

V = {(1),(12)(34), (13)(24), (14)(23)}

and so the only composition series is
Sy > Ay >V > {1}
Ss has only one non-trivial proper normal subgroup and so
S5 > As > {1}

is the only composition series. To see this, we again use Sylow theory.
If {1} # N « S5 and 5 divides |N| then N contains all six Sylow 5-
subgroups of S5 so |N| is 30, 60, or 120. But each of these possibilities
means that N contains one and so all Sylow 3-subgroups of S5 and so
contains Ay as above. Thus N is either A5 or §s. Now if neither 3 nor
5 divides the order of N then N contains an element of order 2. But
then, by conjugation, it contains at least 15 elements of order 2. Thus
As is the only possibile N. The above argument applies to subgroups of
As which is therefore simple, and S5 has only one composition series.
If n > 5 then the only composition series of §,, is

Sp > Ap > {1}.

As A, is a Sylow g-subgroup of A, and A, < A, we see that A,
has only one Sylow g-subgroup. We show by induction on 7 that A,_;
has only one Sylow g-subgroup, namely A,.;. Suppose that A,_;4;
has only one Sylow g—subgroup A,4+;. Then A,_;+1 9 A,_; implies that
if g€ A,y then g7'4,,,9 < g7'4A, 419 = Ar_;41 and so, by the
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assumption, ¢~ 4,419 = Aryq. Thus A, < A,_;. and so is the only
Sylow g-subgroup of A,_,. Hence, by induction, A,,; « 4; = G. Thus
A,yy, and similarly B, 1, are normal subgroups of G.

For g€ A, and h € B, we have

g“lh_lgh S Ar+1 N Bs_+_1 = {1}

Thus A,,; and B,+, generate their direct product and the order of this
shows that A,+,B,+; =G.
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Solutions to Chapter 4

The first part is achieved by a standard matrix reduction using the
elementary operations of the forms

{a) add an integer multiple of one row/column to another;

(b) interchange two rows/columas;

(¢) multiply a row/column by —1.

In this case the reduction begins and ends as follows :

37 27 47 1 0 O
52 37 67|~ -~ 10 35 Of.
59 44 74 0 0 0

This then shows that
Grol(zyzlz=14°=1,2"=1) ~Cs x Coo.

If we now add the relation a3b%¢c? = 1 to those of G then a corre-
sponding matrix reduction gives

37 27 47 1 0 0

52 37 67 60 7 0

59 44 74 0 0 0}
3 2 4 0 0 0

Thus adding the relation a®4%c* = 1 to the relations of G changes G to
the group C7 x Co. Hence the relation a%6%¢* = 1 cannot hold in G.
However, it follows immediately from the first two relations of G that
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4.2

4.8

al®h*9¢2% = 1 and so the order of a®b%c* divides 5. As the order is not
1, it must then be 5.

From the second and third relations it is clear that (abc)” = 1 and so
abc has order 1 or 7. Adding the relation abe = 1 to those of G gives a
matrix that reduces to

1 0 0O
0 5 0
0 0 0
0 0 O

which corresponds to the group Cs x Co. Thus we see that abc # 1 in
G and that consequently abc has order 7.

Now in an abelian group, if z has order m and y has order n then zy
has order l.c.m.(m, n). Thus we deduce that

a*b®cd = a®b2ct - abc

has order 5- 7 = 35.

(a) The relation matrix for G reduces as follows :

236, 11 00
4 9 4 0 -2 0

Consequently, G~ (z,9,2 | 2=y 2 =2°=1) ~ C; x Cw.
(b) The relation matrix for G reduces as follows :

2 3 6 1 0 0
4 9 4|~ ---~10 1 01{.
3 3 2 0 0 -—-66
Consequently G ~ Cgg.
From abab? = 1 we have bab = b~ !a~!. Hence babab = 1 and so

bab=la~! = 1, from which it follows that G is abelian.
G is the infinite cyclic group. In fact, a relation matrix for the abelian

group G is [2 3%[2 1},[0 1}.

Alternatively, it is easy to see that G = (ab) since b = (ab)™2 and
a = (ab)®.
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4.5

Solutions to Chapter 4

Suppose that g, h € G have orders m, n respectively. Then ¢! has crder
m and g¢gh has order that divides mn. Thus the non-empty subset T is
closed under multiplication and taking inverses, so it is a subgroup <
G.

If g€ @ and h € T\ {1} then gh € @. Thus, if @ is a subgroup, we
have h = g~'.gh € Q. It follows that a necessary condition for @ to be
a subgroup is that 7' = {1}. This condition implies that @ = G and so
is also sufficient.

Given a prime p, the element f of G defined by f(p) =1and f(g) =0
for ¢ € T\ {p} is an element of order p.

The element ¢ of G defined by g(g) = 1 for all ¢ € II has infinite order.

Let f € G be such that f(p) # O for only finitely many p € IL
Suppose that {p1,...,pn} is the finite subset of TI on which f takes
non-zero values. Then if P = p;p; - - py, it is readily seen that the order
of f divides P (and in fact is equal to P), so P has finite order.

Conversely, suppose that f € G has order n say, so that nf = 0.
We show that if f(p) # 0 for p € Il then p must divide n. This will
complete the proof since n can have only finitely many distinct prime
divisors. Now f(p) # 0 and f(p) € Z, imply that f(p) has order p. But

since nf = 0 we have nf(p) = 0, and so p divides n.

The relation matrix for G is

n o m m
m n m
m m n
This reduces as follows :
n m m n m—-n m-n
m n mi~{im n—m 0
m m n m 0 n—m
2m+n 0 0
~ m n—m 0
m 0 n—m
The determinant is zero if and only if m = n or 2m = —n, whence the

result follows.
If G is perfect then 2m+n=1landn—-m=1,som=0and n = 1.
Thus
G={(a,bc|la=1b=1¢c=1)

which is the trivial group.
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4.6

4.7

4.8

The relation matrix for G is

1 3
4+2k 2n+9

For G to be perfect, we require the determinant of this matrix to be +1.
Now the determinant is

A=2n+9—3(4+2k)=2n—3—6k.

Since, by hypothesis, n is coprime to 6, there are two cases to consider.
(a) n =6m+1. Inthiscase A = 12m+2—3—6k and we can choose
k = 2m to obtain A = —-1.
{b) n =6m — 1. In this case A = 12m — 5 — 6k and we can choose
k =2m — 1 to obtain A = 1.

The relation matrix is

n 0 n O n O
3 1{~]13 1|~|3 O
n+9 4 n 1 0 1

Hence G/G" is cyclic, of order h.c.f.{3,n). Therefore G/G' ~ C; if n is
divisible by 3, and is trivial if n is coprime to 3.

We have
V=8"1R"v
W=TV"*=T(RYS)?
X =W'U = (T(RYS)*)'U
and hence

G = (R,S,T,U | R* = §*T*U¢, (RYS)¥ = T*U",
(T(RYS)*)* =U*, ((T(R'S)")'U) =1).

The relation matrix for G/G’ is therefore

z —-a -b —c
M= y2 Y —a ~d
Tyt 22 oz —a

yzt? 22 42 ¢
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Solutions to Chapter 4

We can simplify this relation matrix using elementary row or colum:
operations over Z. Add —y times column 2 to column 1, then —z tines
column 3 to column 2, then —¢ times column 4 to column 3, and w=

obtain
r4+ay —-a+bz -bt+ct —c¢

0 y+az —a+dt —d
0 0 z+at —al
0 0 0 t

Now |G/G'| = det M = (z + ay)(y + az)(z + at)t. Hence G/G' is finite
if and only if (z + ay)(y + az)(z + at)t # 0.
(a) |G/G'| = 1 requires

M ~

z+ay==%x1, y+az==x1, z4+at = %1, t = +1

so we can take, for example, a =0t =z=y=2=1.
(b) Take, for example, t =16,z =y =z2z=l,a=b=c=d=0.
(c) Take, for example, t =2,2=4,y=8,z=1,a=b=c=d=0.
To see that G = {a;,a2} we use induction. Suppose that a; € {a;,az)
for all i < n. Then a, = a,_31ap—2 shows that a, € (ay,az). Since
aj,ay € {ay,ay) it follows that a; € (ay,a2) for 1 < ¢ < 2m and so
G= <alya2>'

To see that fn_ifny1 — f2 = (—1)" we again use induction. The

result is readily seen to hold for n = 2. Now

Joerfosr = fo = faci(2fnci + fac2) = (facz + fac1)®
=2+ facifoa—fioa = fii —2fa_2fan
= fi_1 = fac2lfnoz + faci)
= 3—1 —fn2fn

EILE

=(-1)"
the penultimate equality resulting from the inductive hypothesis.
Now in G/G’ the relation a; .o = a;,;a; allows us to write

il

a; = a{‘"’aé“’.

Substituting these values of a; into a; = @4 20;4m+1 We obtain only two
relations. From ¢ = 1 we obtain

Fm A4+Tm+r _
ay"a, =1,
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5.11

and from 7 = 2 we obtain

ai+/m+1aé+fm+2 ~1.
Hence we see that a relation matrix of G/G' is

fm 1+fm+l

fm 1+ fnsr -
1"’fm—l fm

1+fm+1 1+fm+2

Consequently,

|G/G’[ = ffr%; - (1 + fm+1)(1 + fm—1)|

from which the result follows on using the equalities

fm+1fm—1 - frzn = (—l)m and gm = fm+1 + fm—l-
Since b2 = 2" is a relation of both G and H we need only show that
the relation (ab)? = b2 holds in G to see that the relations of G imply
those of H. But clearly bab~! = a—! implies abab™! = 1, i.e. (ab)? = b2.

To show that the relations of H imply those of G, we need only show
that bab™! = a~! and a®"~ = 1 hold in H. Now b2 = (ab)? implies
bab™' = a~! immediately. Raise bab™! = a~! to the power 2772 to
obtain

a2 bl = g2,

But %ince a?" ™" = b? we see that a2” " commutes with b. It follows that
2ﬂ~ _2n—2 27\—1
a = 1.

=a , l.e. a
It is easy to see that H and K are isomorphic. For, eliminating ¢ from
the presentation of A by setting ¢ = ab gives the presentation for H.

We now show that the relations of H are consequences of those of G.
In fact,

bab = b24a%  since ab = ba®

=a’a® since b% = a2
=q since a* = 1.
Also,
aba = ba®a since ab = ba®
=b since a* = 1.
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Solutions to Chapter 4

Next we show that the relations of G can be deduced from those -7
H. In fact,

a? = abab since a = bab
= b2 since aba = b,

and
ab = bab? since ¢ = bab
= ba® since b? = a°.

Finally, b = ¢ba = ba®a = ba* so a* = 1 as required.
Since the matrices

S

generate a group of order 8, the last part of the question is routine.

Let K = (ay1,...,8n-1). Then setting L = (a, ) we have G = KL,
and since L < Z(G) we must have K normal in G. Now G/K ~ L, an
abelian group, so G' < K. But since a, € G' we have L < K. Hence
KL = K and so G = K as required.

Take as presentation for Qg

(ayb | a* =1, a® = b2, ab=ba®).

Since H/A ~ Qg and A < Z(H) N H' we have, by the above result, that
H={a,f)and a* € 4,0?87% € 4,08 'af € A. Now [o,8) = o™ %a
where ¢ € A and so [a,f] commutes with a since a € Z(H). But
a?f72? € A so |a,f] = B~ %a’ where o' € A and so [@,f] commutes
with B. Thus H' = ([o,8]). However, a? commutes with § since
a?B~% € A< Z(H) and so we have

o, B]* = [a, Bla™' f™ aff
=a o, B 0p
— a-—?ﬁ—la2ﬁ

1.

I

I

Therefore H' ~ C,. But A < H' and so, since H/A ~ Qs, we havs
H/H' ~ Cy x Cy whence |H| =8 and A = {1} as required.
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4.18 We have 22 = y?zy~! and so
1= zs — (yQ:ry_l)4 — (y.yx.y—lyi = y(ya:)4y_1.
Hence (yz)* = 1 and so {zy)* = 1.
Also, 4% = z%yz~! so
y® = (z.xy.z™ ) = z(zy)iz ! =227t = 1.

4.14 Let z = a®b and y = (a®b)~!. Then since zy = a it is clear that z and
y generate G.
Writing @ = zy, b = (zy) %z =y~ 'z~ 'y~ 'z~ y~! we obtain

G=(z,y (zy) =y’ =2 = (zy(y~ ey 'z iy )PP =1).

Now the final relation can be written in the form

(zyy—lx——ly—-lI—ly—l(y—-lx—ly—lx—ly—-l)‘i)Z = 1.

Taking the inverse of this we obtain

i
—

((yzyzy)tyzy)?
Now conjugate by y to get

((y%zyz)*y®z)? = 1.

1

Since y® = 1 we have y? = y~! and the required form follows.

4.15 Substituting
¢ = ab,

d = bc = bab,
e =cd = ab’ab

into the relations of G' we obtain (1) and (2).

Now
b= abZaba

= ab?ab?ababZab by (1)
= ab%ab by (2).
Thus we have b° = a=2. Also,
a? = babab®aba
= bab® by (2).
Hence b7° = a2 = bab? and so a = b2 as required.

Replacing a by 5=% in (1) and (2) produces b'! =1 and 4?2 = 1,50 G
is the cyclic group Cy;.
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4.16 From ab = b%a = b.ba = b.a’b = ba.ab we obtain ba = 1. Hencea = 67,
and substituting into ab = b%2a we obtain b = 1. Now substitute & = 1
in ba = a®b to obtain a = 1. Hence G is the trivial group.

Consider now G,. The relation

aibn‘a—i — b(n-+-1)l
holds for 1 = 1. Also, assuming this equality we have that
a I g o g (gfh gy g
- abn(n+1|‘a—1

— (abna—l)(n+1)'
_ (bn+1)(n+1)'

141
— b(TH—l) ,

whence the result follows by induction.
Taking 1 = n we obtain from the above

anbn”a—n - b(n-%-l)”.
It follows that
banbn"a-—nb—l — b(n+1)"
and hence that

(1) aﬂ-{-lbn" a—-(n-H) — b(n+1)n.

But taking ¢+ = n + 1 gives

n—{-lbn"+1 —{n+1} _ b(n-f—l)"'*'1

a a

and so, raising (1) to the power n we obtain

n41

bn(n+1)" = pin+1)

from which it follows that 5("+1)" = 1, Substituting this into (1) now
produces b®" = 1. Since n" is coprime to (n + 1)" we then have that
b=1,s0a=1also and G, is trivial.
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4.17 Let H = {a,b). Then H is not abelian. To see this, let
11 6 2

5 6
ab=1(4),  ba=L(B).

Now (A) # §(B) since otherwise we would have AB~! = +1I, which is
false.
A simple computation shows that

6 0
a2:b4:(ab)2:h{0 6}

A=

so that we have

where 60 is the identity of PSL(2,7). Hence H is an image of
0 6

Dg = (a,b | a® =b* = (ab)? = 1)
using von Dyck’s theorem. However, any proper image of Dg has order
1, 2, or 4, and so is abelian. This then shows that H ~ Dg.

4.18 By question 1.18, SL(2,3) has order 24. The elements of GL(2,3) have
determinant 1 or 2, and the same argument that counts the elements of
determinant 1 clearly shows that there are 24 elements with determinant

2. Hence
IGL(2, 3)| = 48.

Since SL(2, 3) has index 2 in GL(2, 3) it must be normal and contain the
derived group. But

—1 o][1 1][-1 o][1 -1] [1 1
0 1|0 1] o 1{jo 1| |0 1
~1 o][1 o|[-1 o] 1 o] [1 0
0 1it 14 0 1f|-1 1{ |1 1}
It is now straightforward to check that

- (321 2])
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Solutions to Chapter 4
and so SL(2,3) is the derived group of GL(2, 3).
We now have
H={a/bc,d |ab=c, bc=a,ca=b, 8°=1, 0" 1a¥ = ¢,
97 =¢, 57 et = a).

A little trial and error soon produces the correspondence
a 0 -1 b 1 1
— —
1 o) 1 -1
¢ — -1 § — -1
1 1) 0 1|

This then shows that H ~ SL(2,3) since each has order 24.
The presentation for H may be simplified by eliminating b and ¢ using
the fifth and sixth relations, to obtain

H={ad]| $ada"'9a"! =1,8° =1).

Now H/H' ~ Cj and is generated by ¢. Hence H' ~ Qg and the derived
group of Qg is {a?) ~ C, with quotient group C; x Cj.
The derived series of GL(2,3) is now seen to be

* GL(2,3)
&
e SL(2,3)=H
Cs
e H' =Qs
Cy x Cy
o C,

{1}
Let T = {ab,ab"'ab) < H. Then
ab™! =ab lab(ab) ' €T
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4.20

5.21

and so b =b"%2 = (ab)~lab-! €T and a = abb~! € T. Hence T = H
and so H is generated by ab and ab~!ab.

Let M = ((ab)®) < H. We show first that M is central in H.
Since H = {ab,ab™'ab) it is sufficient for this purpose to show that
(ab)*,abl = 1 and [(ab)",ab~'ab] = 1. Now the first of these is clear,
and the second follows on substituting (ab~*ab)* for (ab)™. Since also

(ab)" = (ab™'ab)* = (e~ b tab)* € H'
we see that M C H' as required.

To show tht the commutator [a,b] is in the centre of G, it suffices to

prove that it commutes with each of the generators a and . Now
a~ta,bla=a"t(a 6 ab)a
2

Il

a(b™'a)ba since a® = 1 gives a~
a(a™ba"b)ba since (b~'a)® =1 gives b~la = (a~'b)?
=ba"'b"'a since b2 = b!

= b(baba)a since a~'b7! = (ba)?
2

=a

=b"taba™! since b2 =b"1,a2 = a~!
=a"'ba"'bba™! since b~la = (a~1b)?
=a tba" 7 a7t since b2 = p!

= a 'bbabaa™' since a~b7! = (ba)?
a"'b7tab since b2 =b!

= [a, 8],

and so we have that {a, b] commutes with a. A similar proof shows that
‘a, b] commutes with b.

Since the commutator [a,b] is thus in Z(G) we have that G/Z(G)
is abelian and Z(G) is abelian. But an abelian group must be finite
whenever it is generated by a finite number of elements and is such
that, for all z and a fixed n, z* = 1. Hence Z(G) is finite, G/Z{G) is
finite, and so G is finite.

We have y%zy® = zy~°z and y~Czy~t = zy”z, so

(1) vy (zy" )y = 2y "z.2yz = Ty ‘sz
Similarly,

(2) y(zy T n)y ™ = oy’ %



Solutions to Chapter 4
and
(3) vz o)yt =1y

From (1) and (3) we have

yirl(zyb—mz)y~h~c _ Iya-cz
and using (2) we obtain
y2:14—b(xyc—az)y¥b-'2r: — l‘ya_%‘l'.
Hence
y21L+b(yb+ZCIya~I:Iy—2a~b)y~—b—2c - Iya~cx

and so

[yQ(a+b+c)’zya—cIJ = 1.
Similarly

[yZ(a#—bJ.-c), zy"_bz} - 1.

Ifhef(a—c,c—~b) =1 we have A(a — ¢) + p(c — b) =1 and then
[yz(a+b+c?, (Iya_cl')'\(ryc—bz)“} -1

and so [0+ zyzl = 1. But now

(zyz)* = zy“z = y zyt

so [yHletb+e) y=czy=b] = 1, giving [y?(**+P+¢) 7] = 1 as required.

4.22 Call ¢t™+! = {227 relation (1) and z¢t?ztz?t = 1 relation (2). From (1)

we obtain

ztm+lr—l — t2I

so, squaring and using (2),
ot?mH 27l = 22y = 73

This then establishes (a).
From (2) we have 72 = (ztz)? so [t2, ztz] = 1, which is (b).
By (1) and (b) we have

™= t*lz—lt‘ZIZ — (ItQIalt—lI‘l‘I:’,
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Hence
w2z ="

= ¢2mHgm 3l by (1)
— t2mtz~2t—1
— th(It2m+ZI—l) by (a)

This establishes both (¢) and (d).
Finally,

t2m — tzm(l'tm+l z—Qt—Z)
— (ztm+l)t—2m(z—2t—2)

— (Itm+1 I—Zt—Z)t—ZTn

so t*™ = 1 and hence, using (d), [t>™,z] = 1 which shows that t*™ €
Z(G).

4.28 Since i (b) € SL(2, Z) we have bc = —1 and so b = 1. Suppose that

b= —1. Then we have

a b a -1 1 af|0 -1 "
[c 0}2[1 0]:[0 1}[1 o}zﬂe(s’t)'

Suppose now that b = 1. Then if

we have, by the above,

2 -1 0 a 1 —a -1
tm:{ 0 —1“—1 0}:[ 1 o}e(s’”'

Consequently, m € {s,t).
Now choose n such that |6+ nd| < |d|. Then if

o]
S ) S

92

we have

a+nc b+ nd
¢ d




Solutions to Chapter 4

we have
S = 1 nila b| |[a+nc b+nd
10 tlfc 4y c d

and hence

ts"m — 0 —-1lfla+nc b+nd| | —c —d

SME e ¢ d | la+nc b+nd
Now ts"m € {s,t) by induction, so m € (s,t).
Writing

1 -—IW
u—-st_[l ol

we have

-1 0 -1 o
3 2
= t =
v [ 0 —1}’ 0 —1}

and so @® = 2 = I in PSL(2, Z).

To show that we can assume that w has the given form, note that
conjugation will transform words with different beginnings or endings
to this form.

That ut = —s follows by a simple matrix multiplication. Thus, putting
v = u~lt, we have

w=uTltuF! ot = 4 gy gMir g

where ..., n;,n,,,... are positive integers. But

« |1 @ J1 o0
ST

so any product of the above form is a matrix whose entries are all noxz-
negative and, provided both s and ¢ occur, the trace exceeds 2. Herce
w # =1 and so

PSL(2,Z) = (4,f | a° =82 =T},

since we have shown that no further non-trivial relations can hold.
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Test paper 1

Time allowed : 3 hours
{Allocate 20 marks for each question)

Prove that the centre of a group of order p™ is non-trivial. Let K be a
finite group and let H be a subgroup of K. If P; is a Sylow p—subgroup
of H, explain why P, < P, for some Sylow p-subgroup P, of K.

Now suppose that H satisfies the condition that if h € H and h # 1
then Ng(h) < H. By considering the centre of P;, or otherwise, show
that P, = Ps.

Deduce that h.cf.(|H]|,|K : H|) = 1.

Let the quaternion group Qs be given by the presentation
Qs ={a,b | a* =1, a® = b°, aba = b).

Show that the mappings «, # defined by

extend to automorphisms of Qs.
Let G = {,8). Prove that G is a group of order 24 isomorphic to
S4. Show also that
G ~ Aut Qg.

Suppose that A is a set of generators of a group G and that H is a
proper subgroup of G. Given an element a of A not belonging to H, let
B be the set obtained from A by replacing each £ € AN H by az. Show



that B is a set of generators of G. If A is finite and has n elements,
show that B has at most n elements.
Deduce that

(i) if G has n generators then it has n generators lying outside a given
proper subgroup;
(ii) if H is a proper subgroup of G then G\ H generates G.

(a) Prove that every subgroup H of an (additive) cyclic group G is
cyclic and show that if a is a generator of G and H has index n then
na is a generator of H. If the order of G is m, show that b is also a
generator of G if and only if & = ra and a = sb for some integers r, s
both coprime to m. Deduce that if, in addition, G is a p—group and d is
any generator of H then there is a generator ¢ of G such that nc = d.

(b} Let p be a fixed prime. Suppose that G is an additive abelian
group with the property that it contains precisely one subgroup H, of
order p® for each «, and no other subgroups. Show that H, C Hyq
and that H, is cyclic. Deduce using (a) that there are generators zo =
0,2Zy,...,%a,... of Hy = {0}, Hy,...,Hq,... such that pzey1 = 24 for
every «.

Consider the additive group

Q=5 1fac2 az0)
of rational numbers. Show that 8/p* — Gz, describes a group mor-

phism from @ to G and deduce that G~ Q/Z.

Express the abelian group
G={(z,y,2 | z°%2° = 2%y*2® = 2*y*2%, 2y = yz, yz = 2y, 22 = z2)

as a direct product of cyclic groups.

Suppose that o is a morphism from G such that Im o is of odd order.
Show that Im « is cyclic.

Let H be a group in which g2 = 1 for every ¢ € H. Show that H is
abelian. If the order of H is finite show that it is 2™ for some positive
integer n.
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Time allowed : 3 hours
(Allocate 20 marks for each question)

Let G be a finite group of order p™n where p is a prime that is coprime
to n. What do the three Sylow theorems tell you about the p-subgroups
of G7

Show, by using induction on the order or otherwise, that a maximal
subgroup of a finite p—group P is normal in P.

Supose that G has at least three Sylow p-subgroups P;, Py, P; where
P, " P, and P; N Py are maximal subgroups of index p in P;. Show that
Py = (hk)='P3hk where h € Ng(P2 N P3) and k € No(Py N Py).

Prove that every subgroup of a nilpotent group is subnormal. Deduce
that a maximal subgroup of a nilpotent group is normal.

Let G be a group in which every finitely generated subgroup is nilpo-
tent, and let M be a maximal subgroup of G. Suppose that M is not
normal in G. Prove that there is an element z of G/ with z ¢ M. Writ-
ing z = [[_,[v;, ], prove that {z,4;,2; | ¢ = 1,...,n} is contained in
a subgroup H of G where

H={z,01,...;,a;m | e, EM,i=1,... ,m}.

Let A = {ai1,...,am ) and let L be maximal in H with respect to the
property that A < L and z ¢ L. Show that L is a maximal subgroup of
H, that z € H', and that H' < L.

Deduce from the above that a maximal subgroup of a group in which
every finitely generated subgroup is nilpotent is normal.



Find permutations z,y € A5 with 22 = 1,y® = 1, (zy)® = 1. Show that
As has a presentation

(z,y | 22 =¢° = (zy)° =1).

By considering the matrices

10 8
X:[S 1:|’ Y =

5 7
5 5
in SL(2, 11), find a subgroup of PSL(2,11) that is isomorphic to As.

An additive (resp. multiplicative) abelian group G is said to be divisible
if for every z € G and every non-zero integer n there exists y € G with
ny = z (resp. y" = z).

Prove that the additive group of rationals is divisible, and that so also
is the multiplicative group of complex numbers of modulus 1.

Show that no proper subgroup of the rationals is divisible.

Show that the group K with presentation
{a,b,e,d | ab=4d, bc=a, cd=b, da=r¢)

is cyclic of order 5. Hence or otherwise find the order of the group with
presentation

L={a,byc,d| ab=d,ad=c, bc=a, cd=b, da=c).
Show that the group M with presentation
{a,b,c | abcabe = a, bcabeca = b, cabcab = ¢)

is cyclic and determine its order.
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Let G be a finite group and let p be a prime dividing the order of G.
Let Py,..., P, be the Sylow p-subgroups of G. Show that the mapping
¥, from {Py,..., P.} to itself defined by
g(P:) = gPig™"

is a bijection. Show also that the mapping © from G to the group of bi-
jections on {Py,..., P, } given by ©(g) = 9, is a morphism whose kernel
is the largest normal subgroup of G that is contained in the normaliser
in G of a Sylow p—subgroup.

Let G be a group of order 168 which has no non-trivial proper nor-
mal subgroups. Show that G cannot be represented non-trivially as a
permutation group on fewer than seven letters. Show that G can be
represented ag a permutation group on eight letters.

Let G be a nilpotent group and H a normal abelian subgroup of G with
the property that H is not properly contained in any normal abelian
subgroup of G. Prove that H = {g€ G | (Vh € H) [g,h] = 1}.

Deduce that H is not properly contained in any abelian subgroup of
G and that Aut G contains a subgroup igsomorphic to G/ H.

Show that if p is prime then §j : Z — Z/pZ induces a morphism from
G* = 8L(2, Z) to the group G} = SL(2,Z,).
Given that in both G* and G} the centre is the subgroup generated

by
-1 o0
0 -1/




explain why the above morphism induces a morphism
Oy : G*[Z(G*) — G;/Z(GY).

Show that conjugation by the element

)

induces an automorphism 7 of order 2 of Ker#,. Prove also that

0 1
-1 0

and that 7(z) = z implies £ = 1. By considering the matrices

R

show that Ker#, is not abelian.

Let G be a finite group and let 7 be an automorphism of G such that
72 = 1 and 7(z) = z implies z = 1. Show that if z717(z) = y~!7(y)
then £ = y. Deduce that 7 inverts every element of G. Hence prove that
G is an abelian group of odd order.

¢ Ker ¥,

Prove that every quotient group of a nilpotent group is nilpotent, and
that every finite p~group is nilpotent.
Find the order of the group

Gn = {a,b|a® =82 =(ab)? =1).

Prove that G,,/Z(G,) =~ Gn—1. Hence show that G,, is nilpotent of class
n.

Express the abelian group
a,byc | at®BPctt = aBb 3¢ = a®® =1, ab=ba, bc =cb, ca = ac
b

as a direct product of cyclic groups. Show that the subgroup of elements
of finite order is cyclic and find a generator for it.
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If G is a finite group and H, K are subgroups of G prove that

|H] K|

|HK|=[H0K|'

If G is a group of order 48 with more than one Sylow 2-subgroup,
find the possible number of Sylow 2-subgroups. If Py, P, are distinct
Sylow 2-subgroups, prove that |P; N P;| = 8. Show also that Py Py C
Ng(PynP,). By considering | Ng(P, N P;)| show that Py NP; is a normal
subgroup of G.

Hence show that any group of order 48 has a proper non-trivial normal
subgroup.

Show that the number of elements in a conjugacy class in a finite p-
group is a power of p. Deduce that a non-trivial finite p-group has a
non-trivial centre.

Show that if P is a non-trivial finite p—group then P contains sub-
groups Py,..., Py such that

P=P13P23"':)Pk:{l},

each P; is a normal subgroup of P, and |P; : P41 = pfori=1,...,k-1.

Let G be a group with G' < Z(G). Prove that, for all z,y € G and all
integers n > 1,

n,n 1n(n—l)

z*y" = (zy)"[z,9]2 :




Suppose now that G = (z,y). Prove that if g € G then g = z%y"[z,y*
for some integers a, b, c.
Deduce that if H is the subgroup of SL(3,Z) given by

2

1 c
0 1 tabce”
0

[an)
—

(]

b
L= 2yl
0

—_

is a surjective group morphism. Deduce that G is a quotient group of
H.

If H and K are nilpotent groups prove that so also is H x K. What is
the class of H x K in terms of the classes of H and K7

Let M, N be normal subgroups of a group G. Prove that the mapping
G — G/N x G/M given by g — (gN,gM) is a morphism. Hence show
that if G/N and G/M are nilpotent then so also is G/(N N M). What
can you say about the class of G/(NNM) in terms of the classes of G/N
and G/M?

Express the abelian group
G = {abc| a’b?c® =a*t®c* = a®b?c* = 1,ab = ba,ac = ca,bc = cb)

as a direct product of cyclic groups.

Find the number of elements of order 11 in G. Show that every element
of order 11 in G is of the form a?*62#¢?7 for some integers o, 4,v. Find
an element of order 11 in G and express it in terms of the generators
a,b,c.
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Algebra through practice

A collection of problems in algebra, with solutions

Problem solving is an art that is central to understanding and ability in
mathematics. With this series of books the authors have provided a selection
of problems with complete solutions and test papers designed to be used
with or instead of standard textbooks on algebra. For the convenience of the
reader, a key explaining how the present books may be used in conjunction
with some of the major textbooks is included. Each book of problems is
divided into chapters that begin with some notes on notation and
prerequisites. The majority of the material is aimed at the student of average
ability but there are some more challenging problems. By working through
the books, the student will gain a deeper understanding of the fundamental
concepts involved, and practice in the formulation, and so solution, of other
algebraic problems. Later books in the series cover material at a more
advanced level than the earlier titles, although each is, within its own limits,
self-contained.

Students in schools, colleges, polytechnics and universities will find these
books invaluable as an accompaniment to their courses, and of great
assistance in preparing for examinations.
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